Dynamics of Near-identity Maps and Interpolating Vector Fields

SIAM DS25

MS13: Higher Dimensional Dynamics and Chaos: Theory and Computations

Denver, 11/06/2025.

Arturo Vieiro

vieiro@maia.ub.es

Universitat de Barcelona

Departament de Matemàtiques i Informàtica

Interpolating vector fields (IVFs)

Let $f:D\mapsto\mathbb{R}^s$ real analytic on $D\subset\mathbb{R}^s$ open domain. Let $m\geq 0$ and assume that there is $D_0\subset D$ such that $f^k(D_0)\subset D$ for $0\leq k\leq m$. Denote $x_k=f^k(x_0),\,x_0\in D_0$. There is a unique polynomial $P_m(t;x_0)$ of order m in t such that $P_m(k;x_0)=x_k$ for $0\leq k\leq m$.

The interpolating vector field (IVF) X_m at $x_0 \in D_0$ is the velocity vector of the interpolating curve at t=0, that is, $X_m(x_0)=\partial_t P_m(0,x_0)$.

Useful for theoretical derivations as well as for numerical simulations:

1. Discrete averaging: $X_m(x_0) = \sum_{k=0}^m p_{mk} f^k(x_0)$ is a weighted average of the iterates with p_{m0} the Harmonic number and for k>1

$$p_{mk} = (-1)^{k+1} \frac{m+1-k}{k(m+1)} \binom{m+1}{k}.$$

2. Numerics: higher accuracy for symmetric interpolation nodes around x_0 . (i.e. we consider p_{2m} s.t. $x_k = p_{2m}(t_k; x_0, \epsilon), \ \forall t_k = \epsilon k, \ |k| \leq m$.)

IVF-embedding a near-ld map into a flow

1. Consider a one-parameter near-Id family of maps $f_{\epsilon}(x)=x+\epsilon\,G_{\epsilon}(x)$, $|\epsilon|<\epsilon_0$, and interpolation nodes $t_k=\epsilon k$. Then the IVF X_{2m} is uniformly bounded in any compact subset of D and a

$$f_{\epsilon}(x) = \Phi_{X_{2m}}^{\epsilon}(x) + O(|\epsilon|^{2m+1}).$$

2. Refined version of Neishtadt's averaging theorem with explicit v.f. and constants that applies to individual maps: b If f is ϵ -close-to-Id in a complex δ -neighbourhood of D_0 and $\epsilon/\delta \leq 1/6e$, then taking $m = \delta/6e\epsilon$ one has

$$\|\Phi_{X_m}^1 - f\|_{D_0} \le 3\epsilon \left(\frac{6(m-1)\epsilon}{\delta}\right)^m.$$

^aV.Gelfreich & AV, Interpolating vector fields for near identity maps and averaging, Nonlinearity 31(9), 2018

^bV.Gelfreich & AV. On exponentially accurate approximation of a near the identity map by an autonomous flow. ArXiv Nov 2024.

IVF-exp. embedding near-ld symplectic maps

Let f an exact symplectic map ϵ -close-to-Id in $D=D_0+\delta$ a complex δ -neighbourhood of $D_0\subset \mathbb{R}^{2d}$. Assume it admits a generating function G(P,q)=Pq+S(P,q) such that S can be analytically continued onto D and denote by $\epsilon=\left\|\nabla S\right\|_D$. As before X_m is the IVF.

Theorem. ^a If
$$m = \left\lfloor \frac{\delta}{6e \, \epsilon} - d \right\rfloor \geq 1$$
, then
$$\|\Phi_{X_m} - f\|_{D_0} \leq 3 \, \mathrm{e}^{d+2} \epsilon \exp\left(-\delta/(6e \, \epsilon)\right).$$

Moreover there is a Hamiltonian interpolating vector field \hat{X}_m such that

$$\|\hat{X}_m - X_m\|_{D_1} \le 3 e^{d+1} \epsilon \exp(-\delta/(6e \epsilon)),$$

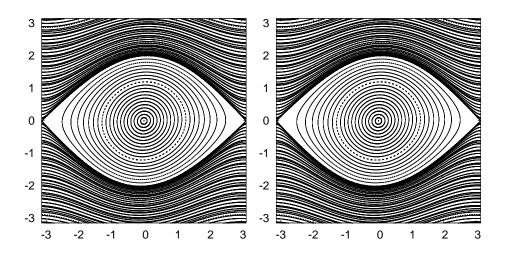
where D_1 is the $\frac{\delta}{2}$ -neighbourhood of D_0 , and

$$\|\Phi_{\hat{X}_m} - f\|_{D_0} \le 5 e^{d+2} \epsilon \exp(-\delta/(6e \epsilon)).$$

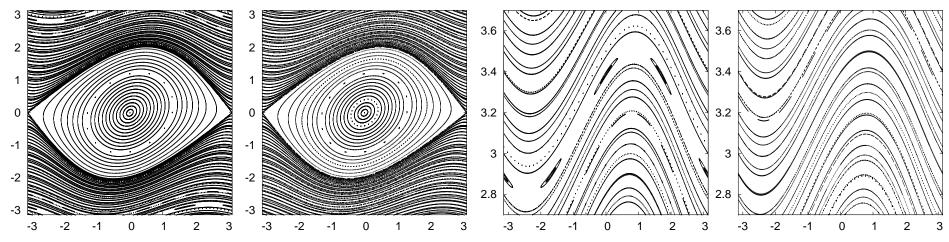
^aV.Gelfreich & AV. Nekhoroshev theory and discrete averaging. ArXiv Nov 2024, submitted to DCDS-A.

Example: Chirikov standard map on $\mathbb{S}^1 imes \mathbb{R}$

$$M_{\epsilon}: (x,y) \mapsto (\bar{x},\bar{y}) = (x + \epsilon \bar{y}, y - \epsilon \sin(x)), \quad \epsilon \in \mathbb{R}.$$



 $\epsilon=0.1$, same 200 i.c. Left: 10^3 iterates of M_ϵ . Right: RK78 integration of X_{10} up to $t=10^3$ plotting every $\Delta t=0.1$. No visual differences!



Bottom: $\epsilon=0.5$, left plots for M_{ϵ} and right plots for X_{10} .

Arnold diffusion: Nekhoroshev estimates

4D symplectic maps - long term dynamics

We study the dynamics of quasi-integrable analytic exact-symplectic maps of $\mathbb{R}^d \times \mathbb{T}^d$

$$F_{\varepsilon}: \begin{cases} \bar{I} = I + \varepsilon a(I, \varphi), \\ \bar{\varphi} = \varphi + \omega(I) + \varepsilon b(\bar{I}, \varphi) \pmod{1}, \end{cases}$$

implicitly defined by the generating function

$$S(\bar{I},\varphi) = \bar{I}\,\varphi + h_0(\bar{I}) + \varepsilon s(\bar{I},\varphi), \quad h_0 \text{ convex function, } h_0'(I) = \omega(I),$$

through the relations $I=\partial S/\partial \varphi,\ \bar{\varphi}=\partial S/\partial I.$

We want to study the long term (Nekhoroshev) global stability properties of F_{ε} .

Nekhoroshev estimates

Consider $0 < \varepsilon < \varepsilon_0$ and denote $(I_k, \varphi_k) = F_{\varepsilon}^k(I_0, \varphi_0)$, $k \in \mathbb{Z}$.

For d=1, the rotational invariant curves divide the 2D phase space and there is no global diffusion if ε is small enough (e.g. Chirikov standard map).

For $d \geq 2$, the complement of KAM d-dimensional discrete tori is connected and trajectories might travel along phase space (Arnold diffusion).

a Nekhoroshev estimate: $|I_k - I_0| \le R(\varepsilon)$ when $|k| \le T(\varepsilon)$, where $R(\varepsilon) \sim \varepsilon^{\beta}$ and $T(\varepsilon) \sim \exp(c/\varepsilon^{\alpha})$ with $\alpha = \beta = 1/(2(d+1))$.

Our main interest is not in the result itself (which is well-known) but in the methodology: we recover this estimate from an explicit construction of the slow variable directly from the iterates of the map (IVFs).

^aS.Kuksin and J.Pöschel, *On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications.* Seminar on Dynamical Systems 12:96–116, 1994.

P.Lochak and A.I.Neishtadt, *Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian*, Chaos 2, 1992.

Phase space geometry (d=2)

Diffusion along phase space takes place basically along single resonances but double resonances play a key role in an explanation of the Arnold diffusion.

To illustrate this we consider the map T_δ defined by the generating function

$$S(\psi_1, \psi_2, J_1, J_2) = \psi_1 \bar{J}_1 + \psi_2 \bar{J}_2 + \delta \mathcal{H}(\psi_1, \psi_2, \bar{J}_1, \bar{J}_2), \text{ where}$$

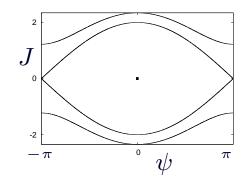
$$\mathcal{H}(\psi_1, \psi_2, \bar{J}_1, \bar{J}_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} + \cos(\psi_1) + \epsilon \cos(\psi_2),$$

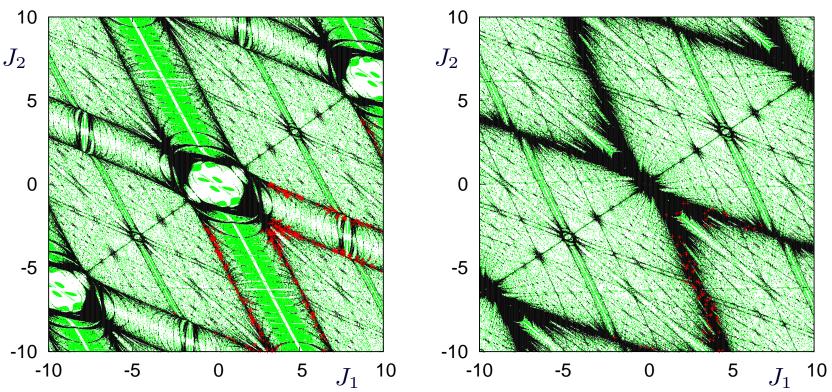
through the relations $J_i = \partial S/\partial \psi_i$, $\bar{\psi}_i = \partial S/\partial \bar{J}_i$, i = 1, 2:

$$T_{\delta}: \begin{pmatrix} \psi_1 \\ \psi_2 \\ J_1 \\ J_2 \end{pmatrix} \mapsto \begin{pmatrix} \bar{\psi}_1 \\ \bar{\psi}_2 \\ \bar{J}_1 \\ \bar{J}_2 \end{pmatrix} = \begin{pmatrix} \psi_1 + \delta(\bar{J}_1 + a_2\bar{J}_2) \\ \psi_2 + \delta(a_2\bar{J}_1 + a_3\bar{J}_2) \\ J_1 - \delta\sin(\psi_1) \\ J_2 - \delta\epsilon\sin(\psi_2) \end{pmatrix}$$

 ${\cal H}$ resembles to a "two-pendulum" Hamiltonian and T_δ is δ -close to the Id. Single resonance: NHIC \approx ric of a pendulum system \times saddle of the other Double resonance: $\approx (\psi_1,J_1)$ -pendulum $\times (\psi_2,J_2)$ -pendulum

Role of double resonances





 $\delta=\epsilon=a_2=0.5, a_3=1.25.$ Lyap. exp. (megno): **black** \to chaotic, green \to weakly chaotic, white \to regular. Red: Iterates of the point (0,0,4.5,-5.25) in a slice of width 5×10^{-3} around $\psi_1=\psi_2=0$ (left plot) and $\psi_1=\psi_2=\pi$ (right plot). Total number of iterates= 10^{12} .

Lochak approach steps

The role of double resonances (d=2) is emphasized in the Lochak-Neishtadt approach to proof the Nekhoroshev estimates. The map F_{ϵ} is the isoenergetic Poincaré return map of a (d+1)-dof analytic Hamiltonian

$$\hat{H}(\hat{I},\hat{\psi},\epsilon) = \hat{H}_0(\hat{I}) + \epsilon \hat{H}_1(I,\hat{\phi},\epsilon), \text{ where}$$

$$\hat{I} = (I,I_3), \hat{\psi} = (\psi,\psi_3), \hat{w}(\hat{I}) = (w(I),1), \text{ and } \hat{H}_0(\hat{I}) = \hat{\omega}(\hat{I}) \cdot \hat{I}.$$

- 1. Construct a covering of the action space by open neighbourhoods of a finite number (depending on ϵ) of unperturbed tori bearing periodic motions (maximum resonances).
- 2. Normalize the Hamiltonian around a periodic orbit: by successive changes of variables (averaging procedure) the non-resonant terms of H can be annihilated within an exponentially small error \rightsquigarrow slow observable
- 3. Use convexity to guarantee exponential stability in the neighbourhood.

Indirect procedure: The evaluation of the local (in each domain of the covering) slow observable (to measure diffusion) requires a transformation to NF.

IVFs - "Our Lochak-like approach"

Note that, for a map $F_{\varepsilon}=F_0+\mathcal{O}(\varepsilon)$, $F_0(I,\varphi)=(I,\varphi+\omega(I))$, if $n\omega(I_*)\in\mathbb{Z}^d$ for some $n\in\mathbb{N}$ and $I_*\in\mathbb{R}^d$ then $I=I_*$ is a torus invariant by F_0 foliated by invariant n-periodic orbits. Note that near I_* the map F_{ε}^n becomes close-to-the-identity.

We proof of the Nekhoroshev estimates: a

- 1. using the approximation of a close-to-ld map by an autonomous Hamiltonian flow with an exponential small error.
- constructing an approximating vector field using discrete averaging and interpolating vector fields (IVFs): it is explicit in terms of iterates of the map, can be easily implemented numerically and avoids changes of variables.

^aV.Gelfreich & AV. Nekhoroshev theory and discrete averaging. ArXiv Nov 2024, submitted to DCDS-A.

Exploring (Arnold) diffusion: qualitative and quantitative description

Diffusion - general picture

Consider F_{ε} near-integrable 4D map. We need a slow observable (adiabatic invariant) h_m easy to compute from the iterates of the map, and accurate enough (with exp. small error) to measure diffusion. IVFs provide a way to obtain a Hamiltonian vector field \hat{X}_m , with energy h_m that is preserved for long times. Indeed:

- 1. Near a double resonance: Closer to a tori bearing periodic orbits of short period n, the distance-to-Id of the lift f_{ε}^n of the near-integrable map F_{ε}^n becomes smaller. Hence, h_m^n is well-preserved for a much larger number of iterates.
- 2. **Single resonances:** For double resonances of different enough order, hence with large n, h_m^n is badly preserved since f_{ε}^n is far-from-ld. This is responsible of the fast drift along single resonances typically observed.

IVFs- "Poincaré" sections to visualize dynamics

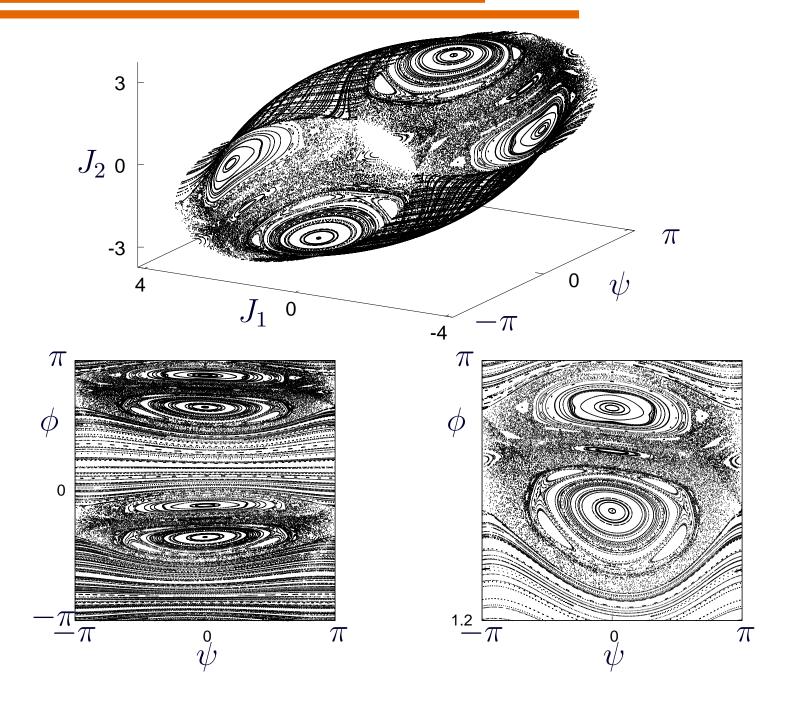
Let $g:\mathbb{R}^m \to \mathbb{R}$ smooth s.t. $\Sigma = \{x \in \mathbb{R}^m : g(x) = 0\}$ is a smooth hyper-surface of codimension one. Take $x_0 \in D_0$ and iterate $x_{k+1} = f_\epsilon(x_k)$. Assume that $g(x_k)g(x_{k+1}) \leq 0$ (crossing). If the limit vector field G_0 is (locally) transversal to Σ then, for ϵ small enough, there is a unique $t_k \in [0, \epsilon]$ such that $g(\Phi^{t_k}_{X_n}(x_k)) = 0$.

 \longrightarrow Plot $y_k = \Phi_{X_n}^{t_k}(x_k)$ instead of (any other projection of) x_k .

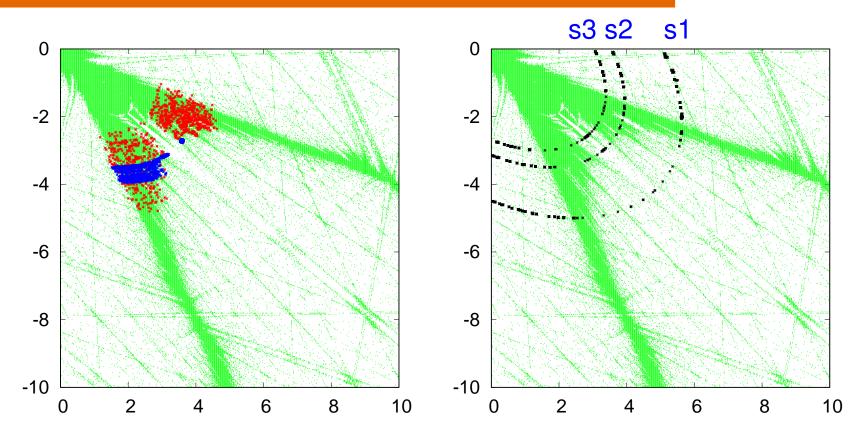
Example (visualizing 4D near-Id discrete dynamics): For a map like T_{δ} , obtained as a discretization of $H=J_1^2/2+a_2J_1J_2+a_3J_2^2/2+V(\psi)$, $\Sigma=\{\psi_1=\psi_2\}$ is a transversal section (if $|\delta|$ small enough). On a moderate time scale the iterates of $x_0\in\mathbb{T}^2\times\mathbb{R}^2$ remain close to the "energy" surface $M_E^m=\{x:h_m(x)=E\}$, where $E=h_m(x_0)$.

For E large enough, one has $M_E^n\cong \mathbb{T}^3$. Then $\psi=\psi_1=\psi_2$, $\phi=\arg(J_1+iJ_2)$ are convenient coordinates on $\Sigma\cap M_E^n\cong \mathbb{T}^2$.

T_{δ} , $\delta = 0.35$, 400 i.c. on $\Sigma \cap \{h_{10} = 4\}$, 500 it

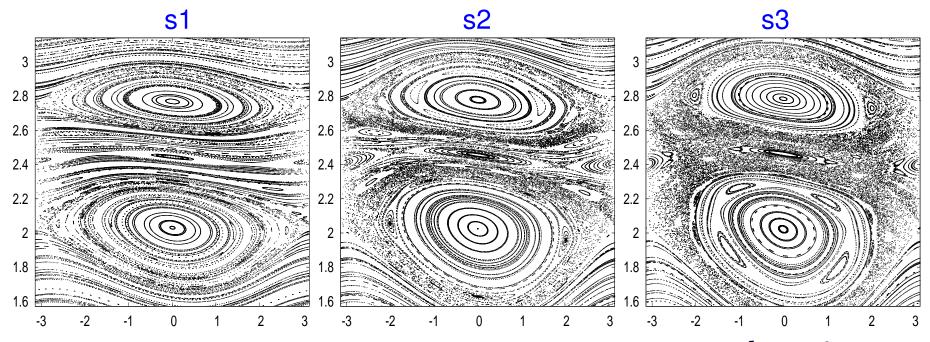


Turning at a resonant crossing



 T_δ , $\delta=0.4$. Left: IC (3,3,2.136447,-3.904401) near $J_1+a_2J_2\approx 0$. We perform around 10^8 (resp. 10^{10}) iterates and show in blue (resp. red) iterates on $\Sigma=\{\psi_1=\psi_2\}$ with $|\psi_1-\pi|<0.35$. Similar for most orbits. Right: Energy levels (s1 and s2 above the level of the crossing observed).

"Poincaré" sections & last "RIC"



J_1	$ ilde{h}_{11}^1$	tori?
2.5	12.327	Y s1
2.0	7.889	Υ
1.75	6.041	Y s2
1.625	5.209	Ν
1.5	4.439	N s3

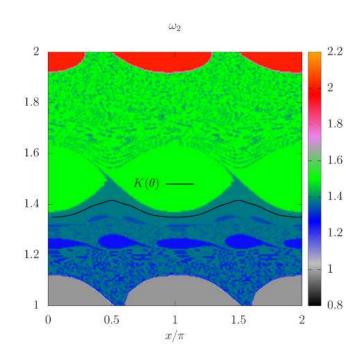
Approaching the HH-point (with h=0) of the double resonance the projection "Poincaré" maps become more chaotic. The last "rotational invariant curve" is at $h\approx h(\pi,\pi,J_1,-a_2J_1)\approx 5.209$. It corresponds to $J_1\approx 1.625$. Numerical simulations detect passages for $1.37\lesssim J_1\lesssim 1.5$.

Dynamics and chaos in dissipative maps

(numerical simulations leading to open theoretical problems)

Near-conserv. dynamics – coexistence attractors

Motivating example: The *spin-orbit* problem is a simplified model for the rotational dynamics of a satellite orbiting around a central planet and rotating around an internal spin-axis. This is a non-autonomous periodic in time ode system that, considering the time orbital period map, reduces to the so-called spin-orbit map.



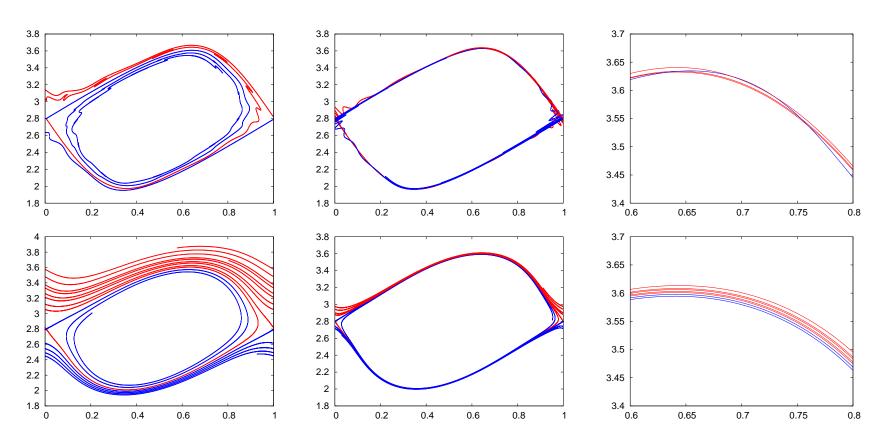
R. Calleja, A. Celletti, J. Gimeno, R. de la Llave. KAM quasi-periodic tori for the dissipative spin-orbit problem. CNNS 106, 2022.

For some parameters, there is a coexistence an attracting invariant curve and many periodic attracting points. To study the dynamics in nearby resonances one uses resonant BNF around the inv. curve. A major question concerns the probability of capture by each attractor.

C.Simó and AV. Planar Radial Weakly-Dissipative Diffeomorphisms. Chaos 20(4), 2010.

Near-conserv. dynamics – IVFs prob(capture)

Diss. Std. map $M_{\epsilon,\delta}:(x,y)\mapsto (\bar x,\bar y)=(x+\delta\bar y,(1-\epsilon)y-\delta\sin(2\pi x)+c),\quad \epsilon\in\mathbb{R}.$ We consider $\delta\approx 3.57\times 10^{-1}$, $\omega\approx 6.18\times 10^{-1}$ and $\epsilon=10^{-2}$ (left), 10^{-3} (center/right).



The origin is an attracting focus. Preliminary numerical explorations indicates that the probability of capture by the focus can be defined as the ratio between the entrance/exit strips (one can avoid homoclinics). Note that this implies $\lim_{\epsilon \to 0} P_{\text{capture}} > 0$. Theoretical justification is missed!

IVFs - Discrete Lorenz attractors

 $\text{Lorenz map: } \bar{x}=x+\delta(\sigma(y-x)), \; \bar{y}=y+\delta(\bar{x}(\rho-z)-y), \; \bar{z}=z+\delta(\bar{x}y-8z/3).$ 70 8.0 8.0 12 60 10 50 0.6 0.6 40 0.4 0.4 30 20 0.2 0.2 10 10 20 30 40 50 60 70 80 12 14 16 18 20 19 20 17 15 15 14 10 13 12

For δ small, we use IVF to compute kneading diagram, (ρ,σ) -parameter space (top right $\delta=0.001$, top left $\delta=0.06$), reduce dynamics to 1D-"Poincaré maps" (bottom left, $\delta=0.001$), and compute the region with pseudohyperbolic discrete Lorenz-like attractors (bottom right, $\delta=0.01$).

Convert numerical evindence into a direct proof for the existence of discrete Lorenz attractors?

^aA.Kazakov, A.Murillo, AV, K.Zaichikov, "Numerical study of discrete Lorenz-like attractors." Reg. Chaotic Dyn. 29(1), 2024.

Conclusions

IVFs – a numerical tool to study near-Id dynamics:

- 1. IVFs explicitly relate discrete near-ld maps with the dynamics of the average vector fields obtained from suspension+averaging construction (discrete averaging).
- 2. IVFs allow to compute the slowest variable at any point of the phase (useful for visualizations/quantitative simulations of diffusion) from simulations in original system variables.
- 3. We can use IVFs to compute "Poincaré maps" directly from the discrete dynamics. This is a useful tool to investigate chaos in conservative/dissipative near-ld discrete systems.

In particular, we have used IVFs to investigate the *key role of double resonances* in the (Arnold) diffusion process of 4D symplectic maps.

• IVFs – analytical tool to study near-Id dynamics:

The relation of IVFs with discrete averaging allow to obtain optimal and explicit theoretical results: bounds of the error of the flow approximation, bounds of the error produced by the projections onto "Poincaré surfaces", an exponential embedding of a symplectic near-Id map into a Hamiltonian flow and Nekhoroshev estimates for near-integrable maps.

Thanks for your attention!!