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Interpolating vector fields (IVFs)

Let f : D — R? real analytic on D C R® open domain. Let m > 0 and
assume that there is Dy C D such that f*(Dy) C Dfor0 < k < m.
Denote x, = f*(xy), 79 € Dy. There is a unique polynomial P, (¢; o) of
order m in t such that P, (k;x¢) = xp for 0 < k < m.

The interpolating vector field (IVF) .X,,, at xo € D, is the velocity vector of
the interpolating curve at t = 0, thatis, X,,(x¢) = 9,5, (0, xq).

Useful for theoretical derivations as well as for numerical simulations:

1. Discrete averaging: X,,(2o) = >, Pmk S " (o) is a weighted average
of the iterates with p,,,o the Harmonic number and for & > 1

+1—-—k[{m+1
= (=1 k+1M .
P = (=" 0T ( k >
2. Numerics: higher accuracy for symmetric interpolation nodes around x.

(i.e. we consider po, S.t. T = Pon (tr; Xo, €), Vi = €k, |k| < m.)
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IVF-embedding a near-Id map into a flow

1. Consider a one-parameter near-Id family of maps f.(x) = x + e G(x),
€| < €, and interpolation nodes t;, = €k. Then the IVF X, is uniformly
bounded in any compact subset of D and 2

fe(@) = 0%, (x) + O(e["").

2. Refined version of Neishtadt’s averaging theorem with explicit v.f. and
constants that applies to individual maps: °
If fis e-close-to-Id in a complex d-neighbourhood of Dy and /6 < 1/6e,

then taking m =  /6ee one has

[OL — Flin, < 3¢ (

6(7715— 1)€>m.

a\.Gelfreich & AV, Interpolating vector fields for near identity maps and averaging, Nonlinearity 31(9), 2018
b\.Gelfreich & AV. On exponentially accurate approximation of a near the identity map by an autonomous flow. ArXiv
Nov 2024.
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IVF-exp. embedding near-Id symplectic maps

Let f an exact symplectic map e-close-to-Id in D = Dy + 0 a complex
0-neighbourhood of Dy C R24. Assume it admits a generating function
G(P,q) = Pq+ S(P, q) such that .S can be analytically continued onto D
and denote by € = | VSHD. As before X, is the IVF.

Theorem. 2 If m = o dJ > 1, then
| Gee

|®x,, — fllp, <3 e eexp(—d/(6ee)).

Moreover there is a Hamiltonian interpolating vector field Xm such that

H)A(m — Xnllp, £3 ed+1€exp (—0/(6ee)),

where D1 is the g-neighbourhood of Dy, and
|05, — Flip, < 5 ™ 2eexp (~6/(6ee)).

2\.Gelfreich & AV. Nekhoroshev theory and discrete averaging. ArXiv Nov 2024, submitted to DCDS-A.
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Example: Chirikov standard map on St x R

)= (r+ey,y —esin(x)), €€ R.

e = 0.1, same 200 i.c. Left: 10°
iterates of V.. Right: RK78 integra-
tion of X;o up to ¢t = 107 plotting

every At = 0.1. No visual differences!

-3 2 -1 0 1 2 3 -3 -2 -1

Bottom: ¢ = 0.5, left plots for M, and right plots for X.
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Arnold diffusion: Nekhoroshev estimates



4D symplectic maps — long term dynamics

We study the dynamics of quasi-integrable analytic exact-symplectic maps of
RY x T )
I = I+8a(],gp),
F. - _
o=@+ w(l)+eb(l,p) (mod1),

implicitly defined by the generating function
S(I, ) =1p+ho(I) +es(I,p), hgy convex function, hy(I) = w([),

through the relations I = 9S/0p, ¢ = 0S/01.

We want to study the long term (Nekhoroshev) global stability properties of F-.
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Nekhoroshev estimates

Consider 0 < £ < gy and denote (I}, o) = F*(Iy, po), k € Z.

For d = 1, the rotational invariant curves divide the 2D phase space and there
is no global diffusion if £ is small enough (e.g. Chirikov standard map).

For d > 2, the complement of KAM d-dimensional discrete tori is connected
and trajectories might travel along phase space (Arnold diffusion).

? Nekhoroshev estimate: |I;, — I)| < R(¢) when |k| < T'(¢), where
R(e) ~ &P and T'(g) ~ exp(c/e®) witha = 8 =1/(2(d + 1)).

Our main interest is not in the result itself (which is well-known) but in the
methodology: we recover this estimate from an explicit construction of the slow
variable directly from the iterates of the map (IVFs).

23 Kuksin and J.Pdschel, On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applica-
tions. Seminar on Dynamical Systems 12:96—116, 1994.
P.Lochak and A.l.Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian,
Chaos 2, 1992.
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Phase space geometry (d=2)

Diffusion along phase space takes place basically along single resonances but
double resonances play a key role in an explanation of the Arnold diffusion.
To illustrate this we consider the map 15 defined by the generating function
S(h1, Y2, J1, J2) = 1 J1 + ada + OH (Y1, 2, J1, J2), where
2 2

H(Y1, 2, J1, J2) = J—21 + asJ1Jo + a3J72 + cos(11) + e cos(i2),
through the relations J; = 05/0v;, ¥; = 8S/0J;,i = 1, 2:
( (5 \ ( 1 \ ( ¢1+5(J_1-|—a2j2) \

(P &2 () —i—5(a2j1 +a3j2)

j1 J1 —5Sin(¢1)

J1
\ ) )\ - besinwn)

‘H resembles to a “two-pendulum” Hamiltonian and 7s is 0-close to the Id.

Single resonance: NHIC =~ ric of a pendulum system X saddle of the other
Double resonance: ~ (1, J1)-pendulum X (1), Jo)-pendulum ons



Role of double resonances

10 10
JQ J2
5 5
0 0
-5 -5
-10 5 - -10 =
-10 -5 0 5 Jl 10 -10 -5 0 5 Jl 10

d =€ =az = 0.5, ag = 1.25. Lyap. exp. (megno): black — chaotic, green — weakly chaotic, white
— regular. Red: Iterates of the point (0, 0, 4.5, —5.25) in a slice of width 5 x 10~ around

Y1 = Y2 = 0 (left plot) and 1)1 = 12 = T (right plot). Total number of iterates=10"2.
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L ochak approach steps

The role of double resonances (d = 2) is emphasized in the Lochak-Neishtadt
approach to proof the Nekhoroshev estimates. The map F. is the isoenergetic
Poincaré return map of a (d + 1)-dof analytic Hamiltonian

H(I,%,€e) = Ho(I) + eH1(I, d,€), where
[ =(1,13),9 = (,¢3), (1) = (w(I),1), and Ho(I) = (1) - I.
1. Construct a covering of the action space by open neighbourhoods of a
finite number (depending on €) of unperturbed tori bearing periodic motions

(maximum resonances).

2. Normalize the Hamiltonian around a periodic orbit: by successive changes
of variables (averaging procedure) the non-resonant terms of { can be

annihilated within an exponentially small error ~> slow observable

3. Use convexity to guarantee exponential stability in the neighbourhood.

Indirect procedure: The evaluation of the local (in each domain of the covering)
slow observable (to measure diffusion) requires a transformation to NF. ez



IVFs — "Our Lochak-like approach”

Note that, foramap F. = Fy + O(¢e), Fo(L, ) = (I, +w(1)), if
nw(l,) € Z4 forsomen € Nand I, € R?then I = I, is a torus invariant
by [ foliated by invariant n-periodic orbits. Note that near /. the map £
becomes close-to-the-identity.

We proof of the Nekhoroshev estimates:

1. using the approximation of a close-to-ld map by an autonomous
Hamiltonian flow with an exponential small error.

2. constructing an approximating vector field using discrete averaging and
interpolating vector fields (IVFs): it is explicit in terms of iterates of the map,
can be easily implemented numerically and avoids changes of variables.

2V.Gelfreich & AV. Nekhoroshev theory and discrete averaging. ArXiv Nov 2024, submitted to DCDS-A.
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Exploring (Arnold) diffusion:
qualitative and quantitative description



Diffusion - general picture

Consider F near-integrable 4D map. We need a slow observable (adiabatic
invariant) h,,, easy to compute from the iterates of the map, and accurate
enough (with exp. small error) to measure diffusion. IVFs provide a way to
obtain a Hamiltonian vector field Xm, with energy h,,, that is preserved for
long times. Indeed:

1. Near a double resonance: Closer to a tori bearing periodic orbits of short
period n, the distance-to-Id of the lift f* of the near-integrable map F
becomes smaller. Hence, 1! is well-preserved for a much larger number
of iterates.

2. Single resonances: For double resonances of different enough order,
hence with large n, A} is badly preserved since fI' is far-from-Id. This is
responsible of the fast drift along single resonances typically observed.
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IVFs- “Poincarée” sections to visualize dynamics

Let g : R™ — R smooths.t. ¥ = {x € R™ : g(x) = 0} is a smooth
hyper-surface of codimension one. Take x¢ € Dy and iterate x, 1 = f.(x).
Assume that g(xy)g(zr11) < 0 (crossing). If the limit vector field G is
(locally) transversal to 33 then, for € small enough, there is a unique t; € [0, €]
such that g(®% (z)) = 0.

— Plot y,, = q)é’gn (xk) instead of (any other projection of) x.

Example (visualizing 4D near-Id discrete dynamics): For a map like 1,

obtained as a discretization of H = J%/2 + asJyJo + azJ3 /2 + V (1),

Y, = {11 = 15} is a transversal section (if |0| small enough). On a moderate

time scale the iterates of 7o € T? x R? remain close to the “energy” surface
m={x: hy(r)=FE}, where E = h,,(xg).

For E large enough, one has M =2 T3, Then ) = 1)1 = 1o, ¢ = arg(Jy + iJ2) are convenient

coordinates on 3 N Mg = T=.
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Ty, §=0.35, 400 i.c. on SN {hyg = 4}, 500 it
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Turning at a resonant crossing

-10

0 2 4 6 8

. s3s2 si
[ T % = - T
= T
2 | i H
* Erm n‘jf * ;
-4 1
-6 +
-8+
_10 ‘ ! ! ! !
0 2 4 6 8 10

Ty, § = 0.4. Left: IC (3,3, 2.136447, —3.904401) near J; + agJ ~ 0.
We perform around 102 (resp. 10'") iterates and show in blue (resp. red)

iterates on 3 = {11 = o} with |¢p1 — 7| < 0.35. Similar for most orbits.
Right: Energy levels (s1 and s2 above the level of the crossing observed).
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“Poincaré” sections & last “RIC”

s1’

J1 Al tori?

25 12327 Y si
2.0 7.889 Y
1.75 6.041 Ys2
1.625 5209 N

1.5 4439 Ns3

-3 2 1 0 1 2 3 3 2 1 0 1 2

Approaching the HH-point (with & = 0) of
the double resonance the projection “Poin-
caré” maps become more chaotic. The
last “rotational invariant curve” is at h ~
h(m,m,Ji,—asJ;) = 5.209. It corres-
ponds to J; =~ 1.625. Numerical simula-
tions detect passages for 1.37 < J; < 1.5.
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Dynamics and chaos in dissipative maps

(numerical simulations leading to open theoretical problems)
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Near-conserv. dynamics — coexistence attractors

Motivating example: The spin-orbit problem is a simplified model for the rotational dynamics of a
satellite orbiting around a central planet and rotating around an internal spin-axis. This is a
non-autonomous periodic in time ode system that, considering the time orbital period map, reduces to

the so-called spin-orbit map.

For some parameters, there is a

2 22
. . coexistence an attracting invariant
B h curve and many periodic attracting

™ 1.6
points. To study the dynamics in

14 1.4
12 nearby resonances one uses reson-

1.2

B ant BNF around the inv. curve. A

] 0 0.5 l 1.5 2 "

major question concerns the prob-
ability of capture by each attractor.

R. Calleja, A. Celletti, J. Gimeno, R. de la C.Simé and AV. Planar Radial Weakly-Dissipative

Llave. KAM quasi-periodic tori for the dissipative Diffeomorphisms. Chaos 20(4), 2010.
spin—orbit problem. CNNS 106, 2022. p.20/23



Near-conserv. dynamics — IVFs prob(capture)

Diss. Std. map M 5 : (z,y) — (Z,y) = (x + 6y, (1 — €)y — dsin(27x) + ¢), € € R. We
consider § &~ 3.57 x 107!, w ~ 6.18 x 10~ and e = 102 (left), 10~ (center/right).
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‘ ‘ ‘ ‘ _ ‘ ‘ ‘ \ 3.4 ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.6 0.65 0.7 0.75 0.8

The origin is an attracting focus. Preliminary numerical explorations indicates that the probability of
capture by the focus can be defined as the ratio between the entrance/exit strips (one can avoid

homoclinics). Note that this implies lime_,0 FPeapure > 0. Theoretical justification is missed!
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IVFs — Discrete Lorenz attractors
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For & small, we use IVF to compute kneading diagram, (p, o )-parameter space (top right 6 = 0.001,
top left 6 = 0.06), reduce dynamics to 1D-“Poincaré maps” (bottom left, d = 0.001), and compute the
region with pseudohyperbolic discrete Lorenz-like attractors (bottom right, = 0.01).

Convert numerical evindence into a direct proof for the existence of discrete Lorenz attractors?

24A.Kazakov, A.Murillo, AV, K.Zaichikov, “Numerical study of discrete Lorenz-like attractors” Reg. Chaotic Dyn.
29(1), 2024. p.22/23



Conclusions

e |VFs — a numerical tool to study near-Id dynamics:

1. IVFs explicitly relate discrete near-ld maps with the dynamics of the average vector fields
obtained from suspension+averaging construction (discrete averaging).

2. IVFs allow to compute the slowest variable at any point of the phase (useful for
visualizations/quantitative simulations of diffusion) from simulations in original system variables.

3. We can use IVFs to compute “Poincaré maps” directly from the discrete dynamics. This is a
useful tool to investigate chaos in conservative/dissipative near-Id discrete systems.
In particular, we have used IVFs to investigate the key role of double resonances in the (Arnold)

diffusion process of 4D symplectic maps.

e |VFs — analytical tool to study near-ld dynamics:
The relation of IVFs with discrete averaging allow to obtain optimal and explicit theoretical results:
bounds of the error of the flow approximation, bounds of the error produced by the projections onto
“Poincaré surfaces”, an exponential embedding of a symplectic near-ld map into a Hamiltonian flow

and Nekhoroshev estimates for near-integrable maps.

Thanks for your attention!!
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