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Interpolating vector fields (IVFs)

Let f : D 7→ R
s real analytic on D ⊂ R

s open domain. Let m ≥ 0 and

assume that there is D0 ⊂ D such that fk(D0) ⊂ D for 0 ≤ k ≤ m.

Denote xk = fk(x0), x0 ∈ D0. There is a unique polynomial Pm(t; x0) of

order m in t such that Pm(k; x0) = xk for 0 ≤ k ≤ m.

The interpolating vector field (IVF) Xm at x0 ∈ D0 is the velocity vector of

the interpolating curve at t = 0, that is, Xm(x0) = ∂tPm(0, x0).

Useful for theoretical derivations as well as for numerical simulations:

1. Discrete averaging: Xm(x0) =
∑m

k=0
pmkf

k(x0) is a weighted average

of the iterates with pm0 the Harmonic number and for k > 1

pmk = (−1)k+1m+ 1− k

k(m+ 1)

(

m+ 1

k

)

.

2. Numerics: higher accuracy for symmetric interpolation nodes around x0.

(i.e. we consider p2m s.t. xk = p2m(tk; x0, ǫ), ∀tk = ǫk, |k| ≤ m.)
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IVF-embedding a near-Id map into a flow

1. Consider a one-parameter near-Id family of maps fǫ(x) = x+ ǫGǫ(x),

|ǫ| < ǫ0, and interpolation nodes tk = ǫk. Then the IVF X2m is uniformly

bounded in any compact subset of D and a

fǫ(x) = Φǫ
X2m

(x) +O(|ǫ|2m+1).

2. Refined version of Neishtadt’s averaging theorem with explicit v.f. and

constants that applies to individual maps: b

If f is ǫ-close-to-Id in a complex δ-neighbourhood of D0 and ǫ/δ ≤ 1/6e,

then taking m = δ/6eǫ one has

‖Φ1

Xm
− f‖D0

≤ 3ǫ

(

6(m− 1)ǫ

δ

)m

.

aV.Gelfreich & AV, Interpolating vector fields for near identity maps and averaging, Nonlinearity 31(9), 2018
bV.Gelfreich & AV. On exponentially accurate approximation of a near the identity map by an autonomous flow. ArXiv

Nov 2024.
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IVF-exp. embedding near-Id symplectic maps

Let f an exact symplectic map ǫ-close-to-Id in D = D0 + δ a complex

δ-neighbourhood of D0 ⊂ R
2d. Assume it admits a generating function

G(P, q) = Pq + S(P, q) such that S can be analytically continued onto D

and denote by ǫ =
∥

∥∇S
∥

∥

D
. As before Xm is the IVF.

Theorem. a If m =

⌊

δ

6e ǫ
− d

⌋

≥ 1, then

‖ΦXm
− f‖D0

≤ 3 ed+2ǫ exp (−δ/(6e ǫ)) .

Moreover there is a Hamiltonian interpolating vector field X̂m such that

‖X̂m −Xm‖D1
≤ 3 ed+1ǫ exp (−δ/(6e ǫ)) ,

where D1 is the
δ
2
-neighbourhood of D0, and

‖ΦX̂m
− f‖D0

≤ 5 ed+2ǫ exp (−δ/(6e ǫ)) .

aV.Gelfreich & AV. Nekhoroshev theory and discrete averaging. ArXiv Nov 2024, submitted to DCDS-A.
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Example: Chirikov standard map on S
1 × R

Mǫ : (x, y) 7→ (x̄, ȳ) = (x+ ǫȳ, y − ǫ sin(x)), ǫ ∈ R.
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ǫ = 0.1, same 200 i.c. Left: 103

iterates of Mǫ. Right: RK78 integra-

tion of X10 up to t = 103 plotting

every ∆t = 0.1. No visual differences!
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Bottom: ǫ = 0.5, left plots for Mǫ and right plots for X10.
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Arnold diffusion: Nekhoroshev estimates
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4D symplectic maps – long term dynamics

We study the dynamics of quasi-integrable analytic exact-symplectic maps of

R
d × T

d

Fε :

{

Ī = I + εa(I, ϕ),

ϕ̄ = ϕ+ ω(I) + εb(Ī , ϕ) (mod 1),

implicitly defined by the generating function

S(Ī , ϕ) = Ī ϕ+ h0(Ī) + εs(Ī , ϕ), h0 convex function, h′0(I) = ω(I),

through the relations I = ∂S/∂ϕ, ϕ̄ = ∂S/∂Ī .

We want to study the long term (Nekhoroshev) global stability properties of Fε.
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Nekhoroshev estimates

Consider 0 < ε < ε0 and denote (Ik, ϕk) = F k
ε (I0, ϕ0), k ∈ Z.

For d = 1, the rotational invariant curves divide the 2D phase space and there

is no global diffusion if ε is small enough (e.g. Chirikov standard map).

For d ≥ 2, the complement of KAM d-dimensional discrete tori is connected

and trajectories might travel along phase space (Arnold diffusion).

a Nekhoroshev estimate: |Ik − I0| ≤ R(ε) when |k| ≤ T (ε), where

R(ε) ∼ εβ and T (ε) ∼ exp(c/εα) with α = β = 1/(2(d+ 1)).

Our main interest is not in the result itself (which is well-known) but in the

methodology: we recover this estimate from an explicit construction of the slow

variable directly from the iterates of the map (IVFs).

aS.Kuksin and J.Pöschel, On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applica-

tions. Seminar on Dynamical Systems 12:96–116, 1994.

P.Lochak and A.I.Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian,

Chaos 2, 1992.
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Phase space geometry (d=2)

Diffusion along phase space takes place basically along single resonances but

double resonances play a key role in an explanation of the Arnold diffusion.

To illustrate this we consider the map Tδ defined by the generating function

S(ψ1, ψ2, J1, J2) = ψ1J̄1 + ψ2J̄2 + δH(ψ1, ψ2, J̄1, J̄2), where

H(ψ1, ψ2, J̄1, J̄2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
+ cos(ψ1) + ǫ cos(ψ2),

through the relations Ji = ∂S/∂ψi, ψ̄i = ∂S/∂J̄i, i = 1, 2:

Tδ :















ψ1

ψ2

J1

J2















7→















ψ̄1

ψ̄2

J̄1

J̄2















=















ψ1 + δ(J̄1 + a2J̄2)

ψ2 + δ(a2J̄1 + a3J̄2)

J1 − δ sin(ψ1)

J2 − δǫ sin(ψ2)















H resembles to a “two-pendulum” Hamiltonian and Tδ is δ-close to the Id.

Single resonance: NHIC ≈ ric of a pendulum system × saddle of the other

Double resonance: ≈ (ψ1, J1)-pendulum × (ψ2, J2)-pendulum p.9/23



Role of double resonances
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δ = ǫ = a2 = 0.5, a3 = 1.25. Lyap. exp. (megno): black → chaotic, green → weakly chaotic, white

→ regular. Red: Iterates of the point (0, 0, 4.5,−5.25) in a slice of width 5× 10−3
around

ψ1 = ψ2 = 0 (left plot) and ψ1 = ψ2 = π (right plot). Total number of iterates=1012.
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Lochak approach steps

The role of double resonances (d = 2) is emphasized in the Lochak-Neishtadt

approach to proof the Nekhoroshev estimates. The map Fǫ is the isoenergetic

Poincaré return map of a (d+ 1)-dof analytic Hamiltonian

Ĥ(Î , ψ̂, ǫ) = Ĥ0(Î) + ǫĤ1(I, φ̂, ǫ), where

Î = (I, I3), ψ̂ = (ψ, ψ3), ŵ(Î) = (w(I), 1), and Ĥ0(Î) = ω̂(Î) · Î .

1. Construct a covering of the action space by open neighbourhoods of a

finite number (depending on ǫ) of unperturbed tori bearing periodic motions

(maximum resonances).

2. Normalize the Hamiltonian around a periodic orbit: by successive changes

of variables (averaging procedure) the non-resonant terms of H can be

annihilated within an exponentially small error ❀ slow observable

3. Use convexity to guarantee exponential stability in the neighbourhood.

Indirect procedure: The evaluation of the local (in each domain of the covering)

slow observable (to measure diffusion) requires a transformation to NF. p.11/23



IVFs – ”Our Lochak-like approach”

Note that, for a map Fε = F0 +O(ε), F0(I, ϕ) = (I, ϕ+ ω(I)), if

nω(I∗) ∈ Z
d for some n ∈ N and I∗ ∈ R

d then I = I∗ is a torus invariant

by F0 foliated by invariant n-periodic orbits. Note that near I∗ the map F n
ε

becomes close-to-the-identity.

We proof of the Nekhoroshev estimates: a

1. using the approximation of a close-to-Id map by an autonomous

Hamiltonian flow with an exponential small error.

2. constructing an approximating vector field using discrete averaging and

interpolating vector fields (IVFs): it is explicit in terms of iterates of the map,

can be easily implemented numerically and avoids changes of variables.

aV.Gelfreich & AV. Nekhoroshev theory and discrete averaging. ArXiv Nov 2024, submitted to DCDS-A.
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Exploring (Arnold) diffusion:

qualitative and quantitative description
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Diffusion - general picture

Consider Fε near-integrable 4D map. We need a slow observable (adiabatic

invariant) hm easy to compute from the iterates of the map, and accurate

enough (with exp. small error) to measure diffusion. IVFs provide a way to

obtain a Hamiltonian vector field X̂m, with energy hm that is preserved for

long times. Indeed:

1. Near a double resonance: Closer to a tori bearing periodic orbits of short

period n, the distance-to-Id of the lift fn
ε of the near-integrable map F n

ε

becomes smaller. Hence, hnm is well-preserved for a much larger number

of iterates.

2. Single resonances: For double resonances of different enough order,

hence with large n, hnm is badly preserved since fn
ε is far-from-Id. This is

responsible of the fast drift along single resonances typically observed.
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IVFs- “Poincaré” sections to visualize dynamics

Let g : Rm → R smooth s.t. Σ = {x ∈ R
m : g(x) = 0} is a smooth

hyper-surface of codimension one. Take x0 ∈ D0 and iterate xk+1 = fǫ(xk).

Assume that g(xk)g(xk+1) ≤ 0 (crossing). If the limit vector field G0 is

(locally) transversal to Σ then, for ǫ small enough, there is a unique tk ∈ [0, ǫ]

such that g(Φtk
Xn

(xk)) = 0.

−→ Plot yk = Φtk
Xn

(xk) instead of (any other projection of) xk.

Example (visualizing 4D near-Id discrete dynamics): For a map like Tδ,

obtained as a discretization of H = J2
1/2 + a2J1J2 + a3J

2
2/2 + V (ψ),

Σ = {ψ1 = ψ2} is a transversal section (if |δ| small enough). On a moderate

time scale the iterates of x0 ∈ T
2 × R

2 remain close to the “energy” surface

Mm
E = {x : hm(x) = E}, where E = hm(x0).

For E large enough, one has Mn
E
∼= T

3
. Then ψ = ψ1 = ψ2, φ = arg(J1 + iJ2) are convenient

coordinates on Σ ∩Mn
E
∼= T

2
.
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Tδ, δ=0.35, 400 i.c. on Σ∩{h10 = 4}, 500 it
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Turning at a resonant crossing
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Tδ, δ = 0.4. Left: IC (3, 3, 2.136447,−3.904401) near J1 + a2J2 ≈ 0.

We perform around 108 (resp. 1010) iterates and show in blue (resp. red)

iterates on Σ = {ψ1 = ψ2} with |ψ1 − π| < 0.35. Similar for most orbits.

Right: Energy levels (s1 and s2 above the level of the crossing observed).

s3 s2 s1
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“Poincaré” sections & last “RIC”

s1 s2 s3
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J1 h̃111 tori?

2.5 12.327 Y s1

2.0 7.889 Y

1.75 6.041 Y s2

1.625 5.209 N

1.5 4.439 N s3

Approaching the HH-point (with h = 0) of

the double resonance the projection “Poin-

caré” maps become more chaotic. The

last “rotational invariant curve” is at h ≈

h(π, π, J1,−a2J1) ≈ 5.209. It corres-

ponds to J1 ≈ 1.625. Numerical simula-

tions detect passages for 1.37 . J1 . 1.5.
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Dynamics and chaos in dissipative maps
(numerical simulations leading to open theoretical problems)
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Near-conserv. dynamics – coexistence attractors

Motivating example: The spin-orbit problem is a simplified model for the rotational dynamics of a

satellite orbiting around a central planet and rotating around an internal spin-axis. This is a

non-autonomous periodic in time ode system that, considering the time orbital period map, reduces to

the so-called spin-orbit map.

R. Calleja, A. Celletti, J. Gimeno, R. de la

Llave. KAM quasi-periodic tori for the dissipative

spin–orbit problem. CNNS 106, 2022.

For some parameters, there is a

coexistence an attracting invariant

curve and many periodic attracting

points. To study the dynamics in

nearby resonances one uses reson-

ant BNF around the inv. curve. A

major question concerns the prob-

ability of capture by each attractor.

C.Simó and AV. Planar Radial Weakly-Dissipative

Diffeomorphisms. Chaos 20(4), 2010.
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Near-conserv. dynamics – IVFs prob(capture)

Diss. Std. map Mǫ,δ : (x, y) 7→ (x̄, ȳ) = (x+ δȳ, (1− ǫ)y − δ sin(2πx) + c), ǫ ∈ R. We

consider δ ≈ 3.57× 10−1
, ω ≈ 6.18× 10−1

and ǫ = 10−2
(left), 10−3

(center/right).
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The origin is an attracting focus. Preliminary numerical explorations indicates that the probability of

capture by the focus can be defined as the ratio between the entrance/exit strips (one can avoid

homoclinics). Note that this implies limǫ→0 Pcapture > 0. Theoretical justification is missed!
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IVFs – Discrete Lorenz attractors

Lorenz map: x̄ = x+ δ(σ(y − x)), ȳ = y + δ(x̄(ρ− z)− y), z̄ = z + δ(x̄y − 8z/3). a
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For δ small, we use IVF to compute kneading diagram, (ρ, σ)-parameter space (top right δ = 0.001,

top left δ = 0.06), reduce dynamics to 1D-“Poincaré maps” (bottom left, δ = 0.001), and compute the

region with pseudohyperbolic discrete Lorenz-like attractors (bottom right, δ = 0.01).

Convert numerical evindence into a direct proof for the existence of discrete Lorenz attractors?

aA.Kazakov, A.Murillo, AV, K.Zaichikov, “Numerical study of discrete Lorenz-like attractors.” Reg. Chaotic Dyn.

29(1), 2024. p.22/23



Conclusions

• IVFs – a numerical tool to study near-Id dynamics:

1. IVFs explicitly relate discrete near-Id maps with the dynamics of the average vector fields

obtained from suspension+averaging construction (discrete averaging).

2. IVFs allow to compute the slowest variable at any point of the phase (useful for

visualizations/quantitative simulations of diffusion) from simulations in original system variables.

3. We can use IVFs to compute “Poincaré maps” directly from the discrete dynamics. This is a

useful tool to investigate chaos in conservative/dissipative near-Id discrete systems.

In particular, we have used IVFs to investigate the key role of double resonances in the (Arnold)

diffusion process of 4D symplectic maps.

• IVFs – analytical tool to study near-Id dynamics:

The relation of IVFs with discrete averaging allow to obtain optimal and explicit theoretical results:

bounds of the error of the flow approximation, bounds of the error produced by the projections onto

“Poincaré surfaces”, an exponential embedding of a symplectic near-Id map into a Hamiltonian flow

and Nekhoroshev estimates for near-integrable maps.

Thanks for your attention!!
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