## Periodic forcing of a 2-dof Hamiltonian undergoing a Hamiltonian-Hopf bifurcation

Dynamics, Bifurcations and Strange Attractors

#### Nizhny Novgorod, July 20-24, 2015

A. Vieiro

Ongoing work with E. Fontich and C. Simó

University of Barcelona (UB)

To show some aspects related to the Hamiltonian-Hopf bifurcation in different contexts. The major interest will be on the behaviour of the splitting of the invariant manifolds for

- 1. 2-dof Hamiltonian system ← well known
- 2. 4D symplectic maps
- 3. 2-dof Hamiltonian + periodic forcing

Let me start with:

1. An overview of the Hamiltonian-Hopf bifurcation for 2-dof Hamiltonian

systems

## 2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians  $H_{\nu}$  undergoing a HH bifurcation (at the origin). Concretely: for  $\nu > 0$  elliptic-elliptic,  $\nu < 0$  complex-saddle.

Analysis of the HH bifurcation  $\rightarrow$  Reduction to **Sokolskii NF**:

- 1. Taylor expansion at 0:  $H_{\nu} = \sum_{k \geq 2} \sum_{j \geq 0} \nu^{j} H_{k,j}$ , where  $H_{k,j} \in \mathbb{P}_{k}$  homogeneous polynomial of order k.
- 2. Williamson NF (double purely imaginary eigenvalues  $\pm i\omega$ ):  $H_{2,0} = -\omega(x_2y_1 - x_1y_2) + \frac{1}{2}(x_1^2 + x_2^2).$
- 3. Use Lie series to order-by-order simplify  $H_{2,j}$ , j > 1 and  $H_{k,j}$ , k > 2, j > 0. But: **non-semisimple** linear part!

Then, at each order (k, j), one looks for  $G \in \mathbb{P}_k$  s.t.

$$H_{k,j} + \operatorname{ad}_{H_2}(G) \in \operatorname{Ker} \operatorname{ad}_{H_2}^{ op}.$$

#### 2-dof HH: Sokolskii NF

4. Introducing the Sokolskii coordinates  $(dx_1 \wedge dy_1 + dx_2 \wedge dy_2 = dR \wedge dr + d\Theta \wedge d\theta)$ 

 $y_1 = r\cos(\theta), y_2 = r\sin(\theta), R = (x_1y_1 + x_2y_2)/r, \Theta = x_2y_1 - x_1y_2,$ 

one has 
$$H_2^{\top} = -\omega\Theta + \frac{1}{2}r^2$$
 and  
 $\operatorname{NF}(H_{\nu}) = -\omega\Gamma_1 + \Gamma_2 + \sum_{\substack{k,l,j \ge 0 \\ k+l \ge 2}} a_{k,l,j} \Gamma_1^k \Gamma_3^l \nu^j$ ,

where

$$\Gamma_1 = x_2 y_1 - x_1 y_2, \ \Gamma_2 = (x_1^2 + x_2^2)/2 \text{ and } \Gamma_3 = (y_1^2 + y_2^2)/2.$$

5. Introducing  $\nu = -\delta_{\nu}^2$ , and rescaling  $x_i = \delta_{\nu}^2 \tilde{x}_i$ ,  $\omega y_i = \delta_{\nu} \tilde{y}_i$ , i = 1, 2,  $\omega t = \tilde{t}$ , one has

$$\mathsf{NF}(\tilde{H}_{\delta_{\nu}}) = -\tilde{\Gamma}_{1} + \delta_{\nu} \left(\tilde{\Gamma}_{2} + a\tilde{\Gamma}_{3} + \eta\tilde{\Gamma}_{3}^{2}\right) + \mathcal{O}(\delta_{\nu}^{2}).$$

The  $\tilde{\Gamma}_i$  written in terms of the Sokolskii coordinates are given by  $\tilde{\Gamma}_1 = \tilde{\Theta}, \ \tilde{\Gamma}_2 = \frac{1}{2} \left( \tilde{R}^2 + \frac{\tilde{\Theta}^2}{\tilde{r}^2} \right), \text{ and } \tilde{\Gamma}_3 = \frac{\tilde{r}^2}{2}.$ 

## 2-dof HH: invariant manifolds

For  $\nu < 0$  the origin has stable/unstable inv. manifolds  $W^{s/u}(\mathbf{0})$ . Note that

- $W^{s/u}(\mathbf{0})$  are contained in the zero energy level of NF $(\tilde{H}_{\delta_{\nu}})$ .
- $\{\tilde{\Gamma}_1, \tilde{\Gamma}_2\} = \{\tilde{\Gamma}_1, \tilde{\Gamma}_3\} = 0 \Rightarrow \tilde{\Gamma}_1 \text{ is a formal first integral of NF}(\tilde{H}_{\delta_{\nu}}).$ Hence  $\tilde{\Gamma}_1 = 0$  on  $W^{s/u}(\mathbf{0}).$

Then, ignoring  $\mathcal{O}(\delta_{\nu}^2)$  terms,  $W^{s/u}(\mathbf{0})$  are given by  $R^2 + ar^2 + \eta r^4/2 = 0$ , which is the zero energy level of a Duffing Hamiltonian system.

 $\Rightarrow W^{u/s}(\mathbf{0})|_{(R,r)\text{-plane}} \text{ form a figure-eight}$ (for  $a < 0, \eta > 0$ ; unbounded otherwise! but only r > 0 has sense!).



The 2D  $W^{s/u}(\mathbf{0})$  are obtained by rotating the right hand side of the figure around the R axis (on  $W^{s/u}(\mathbf{0})$  one has  $\Theta = 0, \dot{\theta} = 1$ ).

## 2-dof HH: splitting of inv. manifolds

For the truncated NF (i.e. ignoring  $\mathcal{O}(\delta^p_{\nu})$ -terms, p > 1) the 2D stable/unstable inv. manifolds coincide. But: For the complete 2-dof Hamiltonian they split!

- 1. Consider  $\Sigma = \{\theta = 0\}$ . The Poincaré map (in Cartesian coord. to avoid singularities) defines a *near-the-Id family of analytic APMs.*
- 2. The limit vector field is  $\dot{R} = \delta_{\nu} \left(ar + \eta r^3\right)$ ,  $\dot{r} = -\delta_{\nu}R$ ,  $\leftarrow$  Duffing! The homoclinic solution  $\gamma(t)$  with nearest singularity to the real axis  $\tau = i\pi/2\sqrt{-a}\delta_{\nu}$ and dominant eigenvalue  $\mu = 2\pi\sqrt{-a}\delta_{\nu}$  (then rescale time by  $\sqrt{-a}\delta_{\nu}$ ).
- 3. From Fontich-Simó theorem (upper bounds are generic!) it follows

$$\alpha \sim A \delta_{\nu}^{B} \exp\left(\frac{-\pi}{\sqrt{-a}\delta_{\nu}}\right) \sim A |\operatorname{Re} \lambda|^{B} \exp\left(\frac{-\pi |\operatorname{Im} \lambda|}{|\operatorname{Re} \lambda|}\right)$$

The asymptotic expansion of this splitting has been obtained in

J.P.Gaivao, V.Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example, Nonlinearity 24(3), 2011.

### 2-dof HH: An example

$$H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2)$$

**Reversibility:**  $(\psi_1, \psi_2, J_1, J_2) \in W^u(\mathbf{0})$  then  $(-\psi_1, -\psi_2, J_1, J_2) \in W^s(\mathbf{0})$ . This suggests to consider  $\Sigma = \{\psi_1 = 0, \psi_2 = 0\}$  and to look for homoclinic points in  $\Sigma$ .





 $\frac{1}{2}$ 

 $a_2 = 0.5, a_3 = -0.75, \epsilon = -0.5 (\epsilon^c = -4/9)$ 

#### 2-dof HH: Checking the behaviour of $\alpha$



Up to this point: 2-dof Hamiltonian-Hopf bifurcation.

- 1. Everything was "more or less" well-known: Sokolskii NF, geometry of the invariant manifolds, the splitting  $\alpha$ ,...
- 2.  $\alpha$  behaves as expected for a near-the-identity family of 2D APM.

Let me now continue with:

2. A brief excursion to 4D symplectic maps undergoing a HH bifurcation

#### A paradigmatic Froeschlé-like map

Consider the map 
$$T:(\psi_1,\psi_2,J_1,J_2)\mapsto (ar{\psi}_1,ar{\psi}_2,ar{J}_1,ar{J}_2)$$
 given by

$$\bar{\psi}_1 = \psi_1 + \delta(\bar{J}_1 + a_2\bar{J}_2), \quad \bar{\psi}_2 = \psi_2 + \delta(a_2\bar{J}_1 + a_3\bar{J}_2), \bar{J}_1 = J_1 + \delta\sin(\psi_1), \quad \bar{J}_2 = J_2 + \delta\epsilon\sin(\psi_2).$$

• T is related to the time- $\delta$  map of the flow associated to the Hamiltonian

$$H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + \cos\psi_1 + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} + \epsilon \cos(\psi_2),$$

• 4 fixed points: For  $\epsilon d > 0$ ,  $d = a_3 - a_2^2$ ,  $|\epsilon| \ll 1$  and  $\delta \lesssim 2$ 

 $p_1 = (0, 0, 0, 0)$  HH,  $p_2 = (\pi, 0, 0, 0)$  EH,  $p_3 = (0, \pi, 0, 0)$  HE,  $p_4 = (\pi, \pi, 0, 0)$  EE.

 $\rightarrow$  *T* models the dynamics at a double resonance, it was derived from BNF around an EE point of a symplectic map in V. Gelfreich, C. Simó & AV, *Dynamics of 4D symplectic maps near a double resonance*, Phys D 243(1), 2013.

### Motivation: Transition to complex unstable

 $\rightarrow$  If d > 0 (definite case) the EE point remains EE for all  $\epsilon$  and  $\delta$ .  $\rightarrow$  If d < 0 (non-definite case) the point  $p_4$  suffers a Krein collision at

$$\epsilon = \left( -(2a_3 - 4d) \pm \sqrt{(2a_3 - 4d)^2 - 4a_3^2} \right) / (2a_3^2),$$

and becomes a **complex-unstable** point (Hamiltonian-Hopf bifurcation).



Eigenvalues of  $DT(p_4)$  for

$$\delta = 0.5, a_2 = 0.5, a_3 = -0.75$$
 (hence  $d = -1$ )

and  $\epsilon$  from -0.01 (squares) to -20. The (first) Krein collision takes place at  $\epsilon^c = -4/9$  at a collision angle  $\hat{\theta}_{\rm K} = \arctan(\sqrt{23}/11)$ .

ightarrow The CS point has 2D stable/unstable invariant manifolds.

# T: Invariant manifolds

One can compute  $W^{u/s}(\mathbf{0})$  and a homoclinic point  $p_h \in \Sigma = \{\psi_1 = \psi_2 = 0\}$ (similarly to the 2-dof case).



12/27

# T: Splitting volume V

We compute the volume of a 4D parallelotope defined by two pairs of vectors tangent to  $W^u$  and  $W^s$  at  $p_h \in \Sigma$ :

 $G(s_1, s_2)$  - local parameterisation  $(s_1^h, s_2^h)$  - local parameters s.t.  $T^N(s_1^h, s_2^h) = p_h$ , N > 0. 1. Consider the vectors:

$$\tilde{v}_1 = (\partial G/\partial s_1)(s_1^h, s_2^h), \quad \tilde{v}_2 = (\partial G/\partial s_2)(s_1^h, s_2^h) \quad \leftarrow \text{ tangent to } W^u(\mathbf{0})$$

2. Transport these vectors under  $T^N$  to  $p_h$  and consider, by the reversibility,

$$\tilde{v}_3 = R(\tilde{v}_1^{p_h}), \quad \tilde{v}_4 = R(\tilde{v}_2^{p_h}) \quad \leftarrow \text{ tangent to } W^s(\mathbf{0})$$

3. Finally, normalize them  $v_j = \tilde{v}_j^{p_h} / \|\tilde{v}_j^{p_h}\|, \ j = 1, \dots, 4$  and define

$$V = \det(v_1, v_2, v_3, v_4)$$

Question: How does V behave as  $\epsilon \to \epsilon^c$ ?

## T: Behaviour of the splitting volume V

$$T: \quad \bar{\psi}_1 = \psi_1 + \delta(\bar{J}_1 + a_2 \bar{J}_2), \quad \bar{\psi}_2 = \psi_2 + \delta(a_2 \bar{J}_1 + a_3 \bar{J}_2),$$
$$\bar{J}_1 = J_1 - \delta \sin(\psi_1), \qquad \bar{J}_2 = J_2 - \delta \epsilon \sin(\psi_2).$$

We compute the volume of a 4D parallelotope defined by two pairs of vectors tangent to  $W^u$  and  $W^s$  at  $p_h \in \Sigma$ .

 $a_2 = 0.5, a_3 = -0.75 \rightsquigarrow \epsilon^c = -4/9.$   $\delta = 0.5 \rightsquigarrow \theta_{\rm K} = \arctan(\sqrt{23}/11)/2\pi$  (" $\in \mathbb{R} \setminus \mathbb{Q}$ ").



Left:  $\log V$  vs.  $\epsilon$ . Right:  $h |\log(V)|$  vs. h  $(h = \log(\lambda))$ .

# Explanation of the behaviour of ${\cal V}$

Consider (generic) symplectic map  $F_{\delta_t,\epsilon_t}$  in  $\mathbb{R}^4$  that undergoes a HH bif. Rec:  $\delta_t$ : Collision angle  $\hat{\theta}_{\mathtt{K}} = 2\pi(q/m + \delta_t)$ .  $\epsilon_t$ : Relative distance to the bifurcation.

#### **Different (naive) important aspects:**

- 1. "Two" exp. small effects: one within the Hamiltonian itself (already studied!), the other measures the "Hamiltonian-map distance".
- 2. "Two" frequencies: "Duffing" and its  $2\pi\theta_{\rm K}$ -perturb. + "time" frequency.
- 3. The Hamiltonian part is known  $\Rightarrow$  only necessary to measure the second effect. But: We have a "privilegiated direction" (the time!)  $\Rightarrow$  we will use an energy function  $\psi$  to measure the splitting in that direction (instead of using the splitting potential or the Melnikov vector which measures both effects together).

Let  $F_{\epsilon_t}$  be a family of symplectic maps s.t. at  $\epsilon_t = 0$  undergoes a HH bifurcation. The inv. manifolds  $W^{u/s}(\mathbf{0})$  are given by  $u(\alpha, t)$  and  $v(\alpha, t)$ resp., where  $(\alpha, t) \in [t_0, t_0 + h) \times S^1$ .

Under *reasonable* conditions: Define  $\psi(\alpha, t) = E(u(\alpha, t))$ , E analytic energy function. Then:

(i) Rational Krein collision. Let  $\theta_{\rm K} = p/q$ , with (p,q) = 1. Then, there exists  $\epsilon_t^0 > 0$  s.t. for  $\epsilon_t < \epsilon_t^0$ 

$$|\psi(\alpha, t)| \le K \exp(-C/h), \quad C, K > 0.$$

(ii) Irrational Krein collision. Let  $\theta_{K} \in \mathbb{R} \setminus \mathbb{Q}$ . Then,  $\psi$  is bounded by a function that is exponentially small in a parameter  $\gamma$ , s.t.  $\gamma \searrow 0$  when  $h \searrow 0$ . Moreover, the dominant harmonic k(h) of  $\psi$  changes infinitely many times as  $h \to 0$ .

## Intrinsic geometry plays a role

The theory is not fully satisfactory because (at the moment!) we can't explain:

- 1. all the different changes in slope observed.
- 2. when the changes take place.

Maximum  $\alpha_M$  and minimum  $\alpha_m$  angle of splitting.



 $h\log(|Q|)$  vs h, being Q=V (red),  $\alpha_M$  (blue),  $\alpha_m$  (magenta).

C. Simó, C. Valls, A formal approximation of the splitting of separatrices in the classical Arnold's example of diffusion with two equal parameters, Nonlinearity 14, 2001.

Let me consider a "similar" but somehow "easier" setting:

3. Periodically perturbed Hamiltonian-Hopf

We consider

$$H(\mathbf{x}, \mathbf{y}, t) = H_0(\mathbf{x}, \mathbf{y}) + \epsilon H_1(\mathbf{x}, \mathbf{y}, t), \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^2,$$

where

1.  $H_0$  is the truncated 2-dof Sokolskii NF up to order 4

$$H_0(\mathbf{x}, \mathbf{y}) = \Gamma_1 + \boldsymbol{\nu}(\Gamma_2 - \Gamma_3 + \Gamma_3^2),$$

where  $\Gamma_1 = x_1 y_2 - x_2 y_1$ ,  $\Gamma_2 = (x_1^2 + x_2^2)/2$  and  $\Gamma_3 = (y_1^2 + y_2^2)/2$ . 2.  $H_1$  is periodic in t. We choose  $H_1 = y_1^5 \frac{1}{5-\sin(\gamma t)}$ .

Then:  $F_1 = \Gamma_1$  and  $F_2 = \Gamma_2 - \Gamma_3 + \Gamma_3^2$  are first integrals of the unperturbed system  $H_0$ . We can use them to measure the splitting when perturbing.

The 2-dimensional  $W^{u/s}(\mathbf{0})$  of the **unperturbed system** ( $\epsilon = 0$ ):

- 1. Are contained in the level  $F_1^{-1}(0)$  and  $F_2^{-1}(0)$ .
- 2. Intersect the Poincaré section  $\Sigma = \max\{y_1^2 + y_2^2\}$  in the curve  $x_1 = 0, y_1^2 + y_2^2 = 2.$
- 3. Are foliated by the 1-parameter family of homoclinic orbits given by  $(R_1(t)\cos(\psi), R_1(t)\sin(\psi), -R_2(t)\cos(\psi), -R_2(t)\sin(\psi))$ , where  $\psi = t + \psi_0, \psi_0 \in [0, 2\pi)$  initial phase  $R_1(t) = \sqrt{2}\operatorname{sech}(\nu t) \tanh(\nu t), \quad R_2(t) = \sqrt{2}\operatorname{sech}(\nu t).$  $\implies$  Singularities at  $t = (2m + 1)i\pi/2\nu, m \in \mathbb{Z}.$

#### Adding an autonomous perturbation

Consider  $H_1(\mathbf{x}, \mathbf{y}) = y_1^5$ . Question: Splitting behaviour w.r.t  $\nu$ ?

Taking suitable i.c. on  $W^u$  and on  $W^s$  we propagate them until  $\Sigma$ . Let  $\theta = \arctan(y_2/y_1)$ . We fit numerically  $F_1^{W^{u/s}}(\theta) = \sum_{k=1}^6 a_k^{u/s}(\nu)e^{ik\theta}$ . Then we compute the difference  $\Delta F_1 = F_1^{W^u} - F_1^{W^s}$ .



Left: Log of the amplitudes  $A_i$  of the 6 main harmonics of  $\Delta F_1$  (vs.  $\nu$ ). Right: Fit of  $\nu \log(A_1)$  by  $f(\nu) = a\nu + b\nu \log(\nu) + c$ , gives  $c \approx \pi/2$  and  $b \approx -5$ .

Melnikov prediction:  $\Delta F_1 = \mathcal{O}(\nu^{-5} \exp(-\pi/2\nu)).$ 

#### Adding a non-autonomous perturbation

Consider  $H_1(\mathbf{x}, \mathbf{y}, t) = y_1^5/(5 - \cos(\gamma t)), \gamma = (\sqrt{5} - 1)/2, \epsilon = 10^{-3}.$ Same question: Splitting behaviour w.r.t  $\nu$ ?

Taking suitable i.c. on  $W^u$  and on  $W^s$ , depending on the initial values of  $\psi_1$  and the phase of  $\gamma t$ , we propagate them up to  $\Sigma$ .

Similar to what was done before we compute  $\Delta F_i$ , i = 1, 2, (i.e., the splitting function) which depend on two angles, and compute the nodal curves (i.e. the zero level curves) of  $\Delta F_i$ , i = 1, 2.

**Remark:** Intersections of the two nodal curves  $\leftrightarrow$  homoclinic trajectories.

# The $F_1$ -difference of the invariant manifolds



**Remark:** For the displayed values of  $\nu \Delta F_2$  is "almost" equal. The nodal lines "almost coincide".

#### Nodal curves I





resonance (k, l)dominant term  $k\theta - l\hat{t} \approx 0$  $\Delta F_1 \ \Delta F_2$ left: (0,1), (0,1) right: (1,1), (0,1)

0.158





 $\Delta F_1 \ \Delta F_2$ left: (1,1), (0,1) right: (1,1), (1,1)

### Nodal curves II



# Nodal curves III



#### Conclusions:

- Several bifurcations are observed.
- The changes in the nodal lines of  $\Delta F_1$  and  $\Delta F_2$  occur for different  $\nu$ .
- The dominant terms of  $\Delta F_1$  and  $\Delta F_2$  coincide for values in between the changes.

- Dynamics close to separatrices? Derive a return separatrix map.
   Ingredients:
  - (a) The splitting function.
  - (b) Flight times (in  $\hat{t}$  and  $\theta$ ) from  $\Sigma$  to  $\Sigma$ .
- 2. Use the separatrix map to obtain **quantitative** information about distance to maximal tori, to secondary resonances,... from the separatrices.
- 3. Analyse the diffusion properties by performing accurate computations in different regimes.

#### Thanks for your attention!!