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Goal of this talk

To show some aspects related to the Hamiltonian-Hopf bifurcation in different

contexts. The major interest will be on the behaviour of the splitting of the

invariant manifolds for

1. 2-dof Hamiltonian system← well known

2. 4D symplectic maps

3. 2-dof Hamiltonian + periodic forcing

Let me start with:

1. An overview of the Hamiltonian-Hopf bifurcation for 2-dof Hamiltonian

systems
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2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians Hν

undergoing a HH bifurcation (at the origin).

Concretely: for ν > 0 elliptic-elliptic, ν < 0 complex-saddle.

Analysis of the HH bifurcation→ Reduction to Sokolskii NF :

1. Taylor expansion at 0: Hν =
∑

k≥2

∑

j≥0 ν
jHk,j, where Hk,j ∈ Pk

homogeneous polynomial of order k.

2. Williamson NF (double purely imaginary eigenvalues±iω):

H2,0 = −ω(x2y1 − x1y2) + 1
2
(x21 + x22).

3. Use Lie series to order-by-order simplify H2,j ,j>1 and Hk,j ,k>2,j>0.

But: non-semisimple linear part!

Then, at each order (k, j), one looks for G ∈ Pk s.t.

Hk,j + adH2
(G) ∈ Ker ad⊤H2

.
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2-dof HH: Sokolskii NF

4. Introducing the Sokolskii coordinates (dx1∧dy1+dx2∧dy2=dR∧dr+dΘ∧dθ)

y1=r cos(θ), y2=r sin(θ), R=(x1y1 + x2y2)/r, Θ=x2y1 − x1y2,

one has H⊤
2 = −ωΘ+ 1

2
r2 and

NF(Hν) = −ωΓ1 + Γ2 +
∑

k,l,j≥0
k+l≥2

ak,l,j Γ
k
1 Γ

l
3 ν

j,

where
Γ1 = x2y1 − x1y2, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2.

5. Introducing ν = −δ2ν , and rescaling xi = δ2ν x̃i, ωyi = δν ỹi, i = 1, 2,

ωt = t̃, one has

NF(H̃δν ) = −Γ̃1 + δν

(

Γ̃2 + aΓ̃3 + ηΓ̃2
3

)

+O(δ2ν).

The Γ̃i written in terms of the Sokolskii coordinates are given by

Γ̃1 = Θ̃, Γ̃2 =
1

2

(

R̃2 +
Θ̃2

r̃2

)

, and Γ̃3 =
r̃2

2
.
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2-dof HH: invariant manifolds

For ν < 0 the origin has stable/unstable inv. manifolds W s/u(0). Note that

• W s/u(0) are contained in the zero energy level of NF(H̃δν ).

• {Γ̃1, Γ̃2} = {Γ̃1, Γ̃3} = 0⇒ Γ̃1 is a formal first integral of NF(H̃δν ).

Hence Γ̃1 = 0 on W s/u(0).

Then, ignoring O(δ2ν) terms, W s/u(0) are given byR2+ ar2+ ηr4/2 = 0,

which is the zero energy level of a Duffing Hamiltonian system .

⇒ W u/s(0)|(R,r)-plane form a figure-eight

(for a<0, η>0; unbounded otherwise!

but only r>0 has sense!).

r

R

The 2D W s/u(0) are obtained by rotating the right hand side of the figure

around the R axis (on W s/u(0) one has Θ=0, θ̇=1).
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2-dof HH: splitting of inv. manifolds

For the truncated NF (i.e. ignoring O(δpν)-terms, p > 1) the 2D stable/unstable inv.

manifolds coincide. But: For the complete 2-dof Hamiltonian they split!

1. Consider Σ = {θ = 0}. The Poincaré map (in Cartesian coord. to avoid

singularities) defines a near-the-Id family of analytic APMs.

2. The limit vector field is Ṙ = δν
(

ar + ηr3
)

, ṙ = −δνR, ←− Duffing!
The homoclinic solution γ(t) with nearest singularity to the real axis τ = iπ/2

√
−aδν

and dominant eigenvalue µ = 2π
√
−aδν (then rescale time by

√
−aδν ).

3. From Fontich-Simó theorem (upper bounds are generic!) it follows

α ∼ AδBν exp

( −π√
−aδν

)

∼ A|Re λ|B exp

(−π |Im λ|
|Re λ|

)

The asymptotic expansion of this splitting has been obtained in

J.P.Gaivao, V.Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the

Swift-Hohenberg equation as an example, Nonlinearity 24(3), 2011.
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2-dof HH: An example

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ a2J1J2 + a3

J2
2

2
− cos(ψ1)− ǫ cos(ψ2)

Reversibility: (ψ1,ψ2,J1,J2)∈W u(0) then (−ψ1,−ψ2,J1,J2)∈W s(0).

This suggests to consider Σ={ψ1=0, ψ2=0} and to look for homoclinic

points in Σ.
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2-dof HH: Checking the behaviour of α

H(ψ1, ψ2, J1, J2) =
J2

1

2
+ a2J1J2 + a3

J2

2

2
− cos(ψ1)− ǫ cos(ψ2)
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Recall: α ∼ Ã(|Re λ|)B exp
(

C
|Re λ|

)

, where C = −π |Im λ|.

For a2 = 0.5, a3 = −0.75 one gets C ==
√
2π/3 +O(ν).

Fitting function (right plot): f(x) = Ax+ B x log(x) + C .
❀ It perfectly fits the behaviour!
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Part 2

Up to this point: 2-dof Hamiltonian-Hopf bifurcation.

1. Everything was “more or less” well-known: Sokolskii NF, geometry of the

invariant manifolds, the splitting α,...

2. α behaves as expected for a near-the-identity family of 2D APM.

Let me now continue with:

2. A brief excursion to 4D symplectic maps undergoing a HH bifurcation
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A paradigmatic Froeschlé-like map

Consider the map T : (ψ1, ψ2, J1, J2) 7→ (ψ̄1, ψ̄2, J̄1, J̄2) given by

ψ̄1 = ψ1 + δ(J̄1 + a2J̄2), ψ̄2 = ψ2 + δ(a2J̄1 + a3J̄2),

J̄1 = J1 + δ sin(ψ1), J̄2 = J2 + δǫ sin(ψ2).

• T is related to the time-δ map of the flow associated to the Hamiltonian

H(ψ1, ψ2, J1, J2) =
J2
1

2
+ cosψ1 + a2J1J2 + a3

J2
2

2
+ ǫ cos(ψ2),

• 4 fixed points: For ǫd > 0, d = a3 − a22, |ǫ| ≪ 1 and δ . 2

p1=(0, 0, 0, 0) HH, p2=(π, 0, 0, 0) EH, p3=(0, π, 0, 0) HE, p4=(π, π, 0, 0) EE.

→ T models the dynamics at a double resonance, it was derived from BNF around an EE point of a

symplectic map in V. Gelfreich, C. Simó & AV, Dynamics of 4D symplectic maps near a double resonance,

Phys D 243(1), 2013.
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Motivation: Transition to complex unstable

→ If d > 0 (definite case) the EE point remains EE for all ǫ and δ.
→ If d < 0 (non-definite case) the point p4 suffers a Krein collision at

ǫ =

(

−(2a3 − 4d)±
√

(2a3 − 4d)2 − 4a2
3

)

/(2a23),

and becomes a complex-unstable point (Hamiltonian-Hopf bifurcation ).
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Eigenvalues of DT (p4) for

δ=0.5, a2=0.5, a3=−0.75 (hence d=−1)

and ǫ from −0.01 (squares) to −20. The (first) Krein

collision takes place at ǫc = −4/9 at a collision angle

θ̂K=arctan(
√
23/11).

→ The CS point has 2D stable/unstable invariant manifolds.
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T : Invariant manifolds

One can compute W u/s(0) and a homoclinic point ph∈Σ={ψ1=ψ2=0}
(similarly to the 2-dof case).
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T : Splitting volume V

We compute the volume of a 4D parallelotope defined by two pairs of vectors

tangent to W u and W s at ph ∈ Σ:

G(s1, s2) - local parameterisation

(sh1 , s
h
2) - local parameters s.t. TN(sh1 , s

h
2) = ph, N > 0.

1. Consider the vectors:

ṽ1 = (∂G/∂s1)(s
h
1 , s

h
2), ṽ2 = (∂G/∂s2)(s

h
1 , s

h
2) ← tangent to Wu(0)

2. Transport these vectors under TN to ph and consider, by the reversibility,

ṽ3 = R(ṽph1 ), ṽ4 = R(ṽph2 ) ← tangent to W s(0)

3. Finally, normalize them vj = ṽphj /‖ṽphj ‖, j = 1, . . . , 4 and define

V = det(v1, v2, v3, v4)

Question: How does V behave as ǫ→ ǫc?
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T : Behaviour of the splitting volume V

T : ψ̄1 = ψ1 + δ(J̄1 + a2J̄2), ψ̄2 = ψ2 + δ(a2J̄1 + a3J̄2),

J̄1 = J1 − δ sin(ψ1), J̄2 = J2 − δǫ sin(ψ2).

We compute the volume of a 4D parallelotope defined by two pairs of vectors

tangent to W u and W s at ph ∈ Σ.

a2=0.5, a3=−0.75❀ ǫc=−4/9. δ=0.5❀ θK=arctan(
√
23/11)/2π (“∈ R\Q”).
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Exponentially

small but...

...different slopes

as ν → 0 !!!
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Explanation of the behaviour of V

Consider (generic) symplectic map Fδt,ǫt in R4 that undergoes a HH bif.

Rec: δt: Collision angle θ̂K = 2π(q/m+ δt). ǫt: Relative distance to the bifurcation.

Different (naive) important aspects:

1. “Two” exp. small effects: one within the Hamiltonian itself (already

studied!), the other measures the “Hamiltonian-map distance”.

2. “Two” frequencies: “Duffing” and its 2πθK-perturb. + “time” frequency .

3. The Hamiltonian part is known⇒ only necessary to measure the second

effect. But: We have a “privilegiated direction” (the time!)⇒ we will use an

energy function ψ to measure the splitting in that direction (instead of using the

splitting potential or the Melnikov vector which measures both effects together).
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Towards a sharp upper bound of the splitting

Let Fǫt be a family of symplectic maps s.t. at ǫt = 0 undergoes a HH

bifurcation. The inv. manifolds W u/s(0) are given by u(α, t) and v(α, t)

resp., where (α, t)∈ [t0, t0+h)×S1.

Under reasonable conditions: Define ψ(α, t) = E(u(α, t)), E analytic

energy function. Then:

(i) Rational Krein collision. Let θK = p/q, with (p, q) = 1. Then, there

exists ǫ0t > 0 s.t. for ǫt < ǫ0t

|ψ(α, t)| ≤ K exp(−C/h), C,K > 0.

(ii) Irrational Krein collision. Let θK ∈ R \ Q. Then, ψ is bounded by a
function that is exponentially small in a parameter γ, s.t. γ ց 0 when hց 0.
Moreover, the dominant harmonic k(h) of ψ changes infinitely many times as
h→ 0.
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Intrinsic geometry plays a role

The theory is not fully satisfactory because (at the moment!) we can’t explain:

1. all the different changes in slope observed.

2. when the changes take place.

Maximum αM and minimum αm angle of splitting.
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Part 3

Let me consider a “similar” but somehow “easier” setting:

3. Periodically perturbed Hamiltonian-Hopf
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The system

We consider

H(x,y, t) = H0(x,y) + ǫH1(x,y, t), x,y ∈ R2,

where

1. H0 is the truncated 2-dof Sokolskii NF up to order 4

H0(x,y) = Γ1 + ν(Γ2 − Γ3 + Γ2
3),

where Γ1 = x1y2 − x2y1, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2.

2. H1 is periodic in t. We choose H1 = y51
1

5−sin(γt)
.

Then: F1 = Γ1 and F2 = Γ2−Γ3 +Γ2
3 are first integrals of the unperturbed

system H0. We can use them to measure the splitting when perturbing.
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The unperturbed system

The 2-dimensional W u/s(0) of the unperturbed system (ǫ = 0):

1. Are contained in the level F−1
1 (0) and F−1

2 (0).

2. Intersect the Poincaré section Σ = max{y21 + y22} in the curve

x1 = 0, y21 + y22 = 2.

3. Are foliated by the 1-parameter family of homoclinic orbits given by

(R1(t) cos(ψ), R1(t) sin(ψ),−R2(t) cos(ψ),−R2(t) sin(ψ)), where

ψ = t+ ψ0, ψ0 ∈ [0, 2π) initial phase

R1(t) =
√
2 sech(νt) tanh(νt), R2(t) =

√
2 sech(νt).

=⇒ Singularities at t = (2m+ 1)iπ/2ν, m ∈ Z.
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Adding an autonomous perturbation

Consider H1(x,y) = y51 . Question: Splitting behaviour w.r.t ν?

Taking suitable i.c. on W u and on W s we propagate them until Σ.

Let θ = arctan(y2/y1). We fit numerically FWu/s

1 (θ) =
∑6

k=1 a
u/s
k (ν)eikθ.

Then we compute the difference ∆F1 = FWu

1 − FW s

1 .
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Melnikov prediction: ∆F1 = O(ν−5 exp(−π/2ν)).
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Adding a non- autonomous perturbation

Consider H1(x,y, t) = y51/(5− cos(γt)), γ = (
√
5− 1)/2, ǫ = 10−3.

Same question: Splitting behaviour w.r.t ν?

Taking suitable i.c. on W u and on W s, depending on the initial values of ψ1

and the phase of γt, we propagate them up to Σ.

Similar to what was done before we compute ∆Fi, i = 1, 2, (i.e., the splitting

function) which depend on two angles, and compute the nodal curves (i.e. the

zero level curves) of ∆Fi, i = 1, 2.

Remark: Intersections of the two nodal curves ↔ homoclinic trajectories.
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The F1-difference of the invariant manifolds
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Remark: For the displayed values of ν ∆F2 is “almost” equal. The nodal lines “almost coincide”.

Behaviour:

∆Fi ≈
∑

Aj(ν) exp(−βjπ/2ν)
where βj contain suitable combinations of the angles.
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Nodal curves I
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Nodal curves II
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Nodal curves III
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Conclusions:

• Several bifurcations are observed.

• The changes in the nodal lines of ∆F1 and ∆F2 occur for different ν.

• The dominant terms of ∆F1 and ∆F2 coincide for values in between the

changes.
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Future work

1. Dynamics close to separatrices? Derive a return separatrix map .

Ingredients:

(a) The splitting function.

(b) Flight times (in t̂ and θ) from Σ to Σ.

2. Use the separatrix map to obtain quantitative information about distance

to maximal tori, to secondary resonances,... from the separatrices.

3. Analyse the diffusion properties by performing accurate computations in

different regimes.

Thanks for your attention!!
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