The transition to complex-saddle in a Froeschlé-type map

AIMS 2014

Madrid, July 6-11, 2014

A. Vieiro

Joint work with E. Fontich and C. Simó

University of Barcelona (UB)
Consider the map $T : (\psi_1, \psi_2, J_1, J_2) \mapsto (\bar{\psi}_1, \bar{\psi}_2, \bar{J}_1, \bar{J}_2)$ given by

$$
\bar{\psi}_1 = \psi_1 + \delta (\bar{J}_1 + a_2 \bar{J}_2), \quad \bar{\psi}_2 = \psi_2 + \delta (a_2 \bar{J}_1 + a_3 \bar{J}_2),
$$

$$
\bar{J}_1 = J_1 + \delta \sin(\psi_1), \quad \bar{J}_2 = J_2 + \delta \epsilon \sin(\psi_2).
$$

- T is related to the time-δ map of the flow associated to the Hamiltonian

$$
H(\psi_1, \psi_2, J_1, J_2) = \frac{J_2^2}{2} + \cos \psi_1 + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} + \epsilon \cos(\psi_2),
$$

- **4 fixed points:** For $\epsilon d > 0$, $d = a_3 - a_2^2$, $|\epsilon| \ll 1$ and $\delta \lesssim 2$

$$
p_1 = (0, 0, 0, 0) \text{ HH}, \quad p_2 = (\pi, 0, 0, 0) \text{ EH}, \quad p_3 = (0, \pi, 0, 0) \text{ HE}, \quad p_4 = (\pi, \pi, 0, 0) \text{ EE}.
$$

→ T models the dynamics at a double resonance, it was derived from BNF around an EE point of a symplectic map in V. Gelfreich, C. Simó & AV, *Dynamics of 4D symplectic maps near a double resonance*, Phys D 243(1), 2013.
Motivation: Transition to complex unstable

→ If $d > 0$ (definite case) the EE point remains EE for all ϵ and δ.
→ If $d < 0$ (non-definite case) the point p_4 suffers a Krein collision at $\epsilon = -(2a_3 - 4d) \pm \sqrt{(2a_3 - 4d)^2 - 4a_3^2} / (2a_3)^2$,

and becomes a complex-unstable point (Hamiltonian-Hopf bifurcation).

Eigenvalues of $DT(p_4)$ for $\delta = 0.5, a_2 = 0.5, a_3 = -0.75$ (hence $d = -1$)
and ϵ from -0.01 (squares) to -20. The (first) Krein collision takes place at $\epsilon^c = -4/9$ at a collision angle $\hat{\theta}_K = \arctan(\sqrt{23}/11)$.

→ The CS point has 2D stable/unstable invariant manifolds. → Next plots show their role!

→ The previous considerations also hold for H: the eigenvalues collide at the imaginary axis and the 2-dof analogous Hamiltonian-Hopf bifurcation takes place. Later: differences discrete/continuous cases in the splitting of the 2D inv. manifolds.
Motivation: Dynamical consequences

Lyapunov exp. MEGNO, i.e. on $\psi_1 = \psi_2 = 0$: white \rightarrow regular, green \rightarrow mild chaos, black \rightarrow chaos.

Left: $\epsilon = -0.4$. Right: top $\epsilon = -0.44$, bottom: $\epsilon = -0.45$. (Rec: $\epsilon^c = -4/9$.)

\rightarrow Lyapunov inv. curves families, local character of the bifurcation, evolution to global connection,...
Goal of this work

We want...

2. Geometry of the 2D invariant manifolds: behaviour of the splitting for the 4D map.

→ But, previously, we review the 2-d.o.f. analogous Hamiltonian-Hopf case.

1. Sokolskii NF.
2. Splitting of the invariant manifolds: Reduction to a 2D near-the identity area-preserving map.

→ Important: How are both cases related?

1. Main idea: Takes NF + interpolating Hamiltonian
2. Differences in the behaviour of the splitting: energy function
2-dof Hamiltonian Hopf (HH): Sokolskii NF

2-dof HH codim 1: Consider a 1-param. family of 2-dof Hamiltonians H_ν undergoing a HH bifurcation (at the origin).

Concretely: for $\nu > 0$ elliptic-elliptic, $\nu < 0$ complex-saddle.

Analysis of the HH bifurcation \rightarrow Reduction to **Sokolskii NF**:

1. Taylor expansion at 0: $H_\nu = \sum_{k \geq 2} \sum_{j \geq 0} \nu^j H_{k,j}$, where $H_{k,j} \in \mathbb{P}_k$ homogeneous of order k.

2. Williamson NF (double purely imaginary eigenvalues):

 $H_{2,0} = -\omega (x_2 y_1 - x_1 y_2) + \frac{1}{2} (x_1^2 + x_2^2)$.

3. Use Lie series to order-by-order simplify $H_{2,j}, j > 1$ and $H_{k,j}, k > 2, j > 0$.

 But: **non-semisimple** linear part!

 Then, at each order (k, j), one looks for $G \in \mathbb{P}_k$ s.t.

 $$H_{k,j} + \text{ad}_{H_2}(G) \in \text{Ker } \text{ad}^\top_{H_2}.$$
4. Introducing the Sokolskii coordinates \((dx_1 \wedge dy_1 + dx_2 \wedge dy_2 = dR \wedge dr + d\Theta \wedge d\theta)\)

\[
y_1 = r \cos(\theta), \ y_2 = r \sin(\theta), \ R = (x_1 y_1 + x_2 y_2)/r, \ \Theta = x_2 y_1 - x_1 y_2,
\]

one has \(H_2^\top = -\omega \Theta + \frac{1}{2} r^2\) and

\[
\text{NF}(H_\nu) = -\omega \Gamma_1 + \Gamma_2 + \sum_{\substack{k,l,j \geq 0 \\ k+l \geq 2}} a_{k,l,j} \Gamma_1^k \Gamma_3^l \nu^j.
\]

where

\[
\Gamma_1 = x_2 y_1 - x_1 y_2, \quad \Gamma_2 = (x_1^2 + x_2^2)/2 \quad \text{and} \quad \Gamma_3 = (y_1^2 + y_2^2)/2.
\]

5. Introducing \(\nu = -\delta_\nu^2\), and rescaling \(x_i = \delta_\nu^2 \tilde{x}_i, \ \omega y_i = \delta_\nu \tilde{y}_i, \ i = 1, 2, \omega t = \tilde{t}\), one has

\[
\text{NF}(\tilde{H}_{\delta_\nu}) = -\tilde{\Gamma}_1 + \delta_\nu \left(\tilde{\Gamma}_2 + a \tilde{\Gamma}_3 + \eta \tilde{\Gamma}_3^2 \right) + \mathcal{O}(\delta_\nu^2).
\]

The \(\tilde{\Gamma}_i\) written in terms of the Sokolskii coordinates are given by

\[
\tilde{\Gamma}_1 = \Theta, \quad \tilde{\Gamma}_2 = \frac{1}{2} \left(R^2 + \frac{\Theta^2}{r^2} \right), \quad \text{and} \quad \tilde{\Gamma}_3 = \frac{r^2}{2}.
\]
2-dof HH: invariant manifolds

For \(\nu < 0 \) the origin has stable/unstable inv. manifolds \(W^{s/u}(0) \). Note that

- \(W^{s/u}(0) \) are contained in the zero energy level of \(\text{NF}(\tilde{H}_\delta) \).
- \(\{\tilde{\Gamma}_1, \tilde{\Gamma}_2\} = \{\tilde{\Gamma}_1, \tilde{\Gamma}_3\} = 0 \Rightarrow \tilde{\Gamma}_1 \) is a formal first integral of \(\text{NF}(\tilde{H}_\delta) \).

Hence \(\tilde{\Gamma}_1 = 0 \) on \(W^{s/u}(0) \).

Then, ignoring \(\mathcal{O}(\delta^2) \) terms, \(W^{s/u}(0) \) are given by \(R^2 + ar^2 + \eta r^4 / 2 = 0 \), which is the zero energy level of a **Duffing Hamiltonian system**.

\[
\Rightarrow W^{u/s}(0)\big|_{(R,r)-\text{plane}} \text{ form a figure-eight}
\]

(for \(a < 0, \eta > 0 \); unbounded otherwise!

but only \(r > 0 \) has sense!).

The **2D** \(W^{s/u}(0) \) are rotated around the origin (on \(W^{s/u}(0) \) one has \(\Theta = 0, \dot{\theta} = 1 \)).

For the truncated NF (i.e. ignoring \(\mathcal{O}(\delta^p) \)-terms, \(p > 1 \)) the **2D** stable/unstable inv. manifolds **coincide**. **But:** For the complete 2-dof Hamiltonian **they split**!
2-dof HH: splitting of inv. manifolds

The asymptotic expansion of this splitting has been obtained in J.P. Gaivao, V. Gelfreich, *Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example*, Nonlinearity 24(3), 2011.

\[
\alpha \sim A \delta^B \nu \exp \left(\frac{-\pi}{\sqrt{-a \delta}} \right) \sim A |\text{Re} \lambda|^B \exp \left(\frac{-\pi |\text{Im} \lambda|}{|\text{Re} \lambda|} \right)
\]

Main idea: The exponential part of this formula can be obtained by reducing to a near Id family of analytic APMs + Fontich-Simó thm. (upper bounds are generic!).

Consider \(\Sigma = \{ \theta = 0 \} \) (but in Cartesian coord. to avoid singularities) and

- \(T_{\delta \nu} : \Sigma \to \Sigma \) (Poincaré map of the full 2-dof Hamiltonian) \(\sim \) separatrices split,
- \(T_{\delta \nu}^0 : \Sigma \to \Sigma \) (Poincaré map of the truncated 2-dof Hamiltonian, ignoring \(O(\delta^2) \)) \(\sim \) homoclinic loop.

Then, \(T_{\delta \nu}^0 (R, r, \Theta, \theta) = (\phi^X_{2\pi}, \Theta, \theta \mod 2\pi) \), being \(X \) the vector field

\[
\dot{R} = \delta (ar + \eta r^3), \quad \dot{r} = -\delta R, \quad \text{← Duffing!}
\]

which has a homoclinic solution \(\gamma(t) \) with nearest singularity to the real axis \(\tau = i\pi / 2\sqrt{-a \delta} \) and dominant eigenvalue \(\mu = 2\pi \sqrt{-a \delta} \) (then rescale time by \(\sqrt{-a \delta} \)). But \(T_{\delta \nu}^0 = (\hat{T}_0^{\delta \nu})^2 \), being \(\hat{T}_0^{\delta \nu} \) close to -Id \(\Rightarrow \) use \(\mu / 2 \) instead of \(\mu \) in the exponential part of the upper bound \(C \exp (-2\pi (\text{Im} \tau - \eta) / \mu) \).
2-dof HH: the example

\[H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2) \]

Reversibility: \((\psi_1, \psi_2, J_1, J_2) \in W^u(0)\) then \((-\psi_1, -\psi_2, J_1, J_2) \in W^s(0)\). This suggests to consider \(\Sigma = \{\psi_1 = 0, \psi_2 = 0\}\) and to look for homoclinic points in \(\Sigma\).

\[a_2 = 0.5, \quad a_3 = -0.75, \quad \epsilon = -0.5 \quad (\epsilon^c = -4/9) \]
Methodology to get a homoclinic point in $\Sigma (I)$

One can locally represent W^u as a series

$$G(s_1, s_2) = \sum_{i+j \geq 0} a_{i,j} s_1^i s_2^j, \quad a_{i,j} \in \mathbb{R}$$

where $s_1, s_2 \in \mathbb{R}$ are (real) local parameters in a fundamental domain (an annulus) \sim parameterisation method.

Then, one can propagate the local representation and get the invariant manifolds (e.g. using Taylor integrator).

Main steps:

1. Compute the local parameterisation of W^u (order by order).

2. Truncate it to order N and look for r_\star (radius in (s_1, s_2)) such that the invariance equation is verified up to a given tolerance tol. The points on the circle of radius r_\star can be parameterised by an angle θ.

Methodology to get a homoclinic point in Σ (II)

3. To compute θ s.t. parameterises a point on Σ we proceed as follows:

(a) **Discretize** θ: $\{\theta_i\}_{i=1,\ldots,1000}$.

Each θ_i gives an initial condition \rightarrow integrate (Taylor method).

(b) **Integrate** each i.c. up to $\{\psi_2 = 0\}$.

Problem: $\{\psi_2 = 0\}$ is crossed many times before we arrive to Σ!!

We proceed as follows:

i. We fix a number m and we integrate up to the m crossing with $\psi_2 = 0$.

Hence, for each i we obtain a point on $\psi_2 = 0$. Denote by $\psi_{1,i}$ the corresponding coordinate of this point.

ii. If for a concrete i one has $\psi_{1,i} \psi_{1,i-1} < 0$ then we look for $\theta \in (\theta_{i-1}, \theta_i)$ such that $\psi_1 = 0$ in Σ (e.g. secant method).

Otherwise, if there is not i verifying this last condition, we increase m.

\implies We get a homoclinic point on Σ (first intersection!).
2-dof HH: Computing the splitting

Using the last methodology one obtains \((s^h_1, s^h_2)\) corresponding a homoclinic point \(p_h\) on \(\Sigma\) (at the first intersection!). \(\sim\) The homoclinic orbit was shown in the last plot!

To measure the splitting angle \(\alpha\) at \(p_h\):

1. **Compute a basis of** \(T_{X_h^0}(W_{loc}^u(0)) \sim v_t^0 = \frac{\partial G}{\partial s_1}(s^h_1, s^h_2), v_{vf}^0\)

2. **Transport the vectors to** \(\Sigma \sim v^\Sigma_t, v^\Sigma_{vf}\) (integrating variational eqs.)
 These vectors form a basis of \(T_{p_h}(W^u(0))\).

3. **Compute an orthogonal basis of** \(T_{p_h}(W^u(0)) \sim w_1, v_{vf}^\Sigma\)

4. **Compute the splitting angle.** By reversibility, from \(w_1 \in T_{p_h}(W^u(0))\)
 we obtain a vector \(w_2 \in T_{p_h}(W^s(0))\). Then,
 \[
 \alpha = \text{angle}(w_1, w_2)
 \]
2-dof HH: Checking the behaviour of α

$$H(\psi_1, \psi_2, J_1, J_2) = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2)$$

Left: $\log(\alpha)$ vs. $\epsilon - \epsilon^c$. Right: $\text{Re}(\lambda) \log(\alpha)$ vs. $\text{Re}(\lambda)$.

Recall: $\alpha \sim \tilde{A}(|\text{Re} \lambda|)^B \exp \left(\frac{C}{|\text{Re} \lambda|} \right)$, where $C = -\pi |\text{Im} \lambda|$.

For $a_2 = 0.5$, $a_3 = -0.75$ one gets $C = \sqrt{2\pi}/3 + O(\nu)$ (Sokolskii NF).

Fitting function (right plot): $f(x) = A x + B x \log(x) + C$.

\sim It perfectly fits the behaviour!
Up to this point: **2-dof Hamiltonian-Hopf** bifurcation.

1. Everything was “more or less” well-known: Sokolskii NF, geometry of the invariant manifolds, the splitting α, ...

2. α behaves as expected for a near-the-identity family of 2D APM.

 Guiding example: $H = \frac{J_1^2}{2} + a_2 J_1 J_2 + a_3 \frac{J_2^2}{2} - \cos(\psi_1) - \epsilon \cos(\psi_2)$.

Now: 4D discrete Hamiltonian-Hopf!

Guiding example: the 4D symplectic map T given by

$$
\bar{\psi}_1 = \psi_1 + \delta (\bar{J}_1 + a_2 \bar{J}_2), \quad \bar{\psi}_2 = \psi_2 + \delta (a_2 \bar{J}_1 + a_3 \bar{J}_2), \\
\bar{J}_1 = J_1 + \delta \sin(\psi_1), \quad \bar{J}_2 = J_2 + \delta \epsilon \sin(\psi_2).
$$

The origin undergoes a HH bif. and 2D stable/unstable manifolds are born. **Question:** Behaviour of the splitting of the 2D inv. manifolds?
Planning:

First: Numerical exploration of T.
- Computation of the invariant manifolds.
- Behaviour of the splitting.
- A naive justification of the behaviour observed.

After: General theoretical results on splitting of inv. manifolds for the 4D HH.
- Upper bounds from a suitable energy function.
One can compute $W_{u/s}^u(0)$ and \(p_h \in \Sigma = \{ \psi_1 = \psi_2 = 0 \} \) (similarly to the 2-dof case).
T: Splitting volume V

We compute the volume of a 4D paralleloptope defined by two pairs of vectors tangent to W^u and W^s at $p_h \in \Sigma$:

$G(s_1, s_2)$ - local parameterisation

(s^h_1, s^h_2) - local parameters s.t. $T^N(s^h_1, s^h_2) = p_h, N > 0$.

1. Consider the vectors:

$$\tilde{v}_1 = (\partial G/\partial s_1)(s^h_1, s^h_2), \quad \tilde{v}_2 = (\partial G/\partial s_2)(s^h_1, s^h_2) \quad \text{← tangent to } W^u(0)$$

2. Transport these vectors under T to p_h and consider, by the reversibility,

$$\tilde{v}_3 = R(\tilde{v}^{ph}_1), \quad \tilde{v}_4 = R(\tilde{v}^{ph}_2) \quad \text{← tangent to } W^s(0)$$

3. Finally, normalize them $v_j = \tilde{v}^{ph}_j / \|\tilde{v}^{ph}_j\|, \quad j = 1, \ldots, 4$ and define

$$V = \det(v_1, v_2, v_3, v_4)$$

Question: How does V behave as $\epsilon \to \epsilon_c$?
$T: \text{Behaviour of } V$

$$T: \quad \bar{\psi}_1 = \psi_1 + \delta(\bar{J}_1 + a_2 \bar{J}_2), \quad \bar{\psi}_2 = \psi_2 + \delta(a_2 \bar{J}_1 + a_3 \bar{J}_2),$$

$$\bar{J}_1 = J_1 + \delta \sin(\psi_1), \quad \bar{J}_2 = J_2 + \delta \epsilon \sin(\psi_2).$$

Fixed a_2, a_3 one has $\epsilon^c = \epsilon^c(a_2, a_3)$. The (Krein) collision angle $\hat{\theta}_K$ depends on δ.

$a_2 = 0.5, a_3 = -0.75 \leadsto \epsilon^c = -4/9. \quad \delta = 0.5 \leadsto \theta_K = \arctan(\sqrt{23}/11)/2\pi \in \mathbb{R} \setminus \mathbb{Q}$.

Left: $\log V$ vs. ϵ. Right: $h|\log(V)|$ vs. h ($h = \log(\lambda)$).
Naive explanation of the behaviour of V

Consider a (generic) symplectic map F in \mathbb{R}^4 undergoing a HH bif. Discrete HH bif. \leadsto codim 2 bif \leadsto Let δ_t, ϵ_t be the unfolding parameters.

δ_t: Collision angle $\hat{\theta}_K = 2\pi(q/m + \delta_t)$.

ϵ_t: Measures the relative distance to the critical parameter.

Different (naive) important aspects:

1. “Two” exp. small effects: one within the Hamiltonian itself (already studied!), the other measures the “map-Hamiltonian distance”.

3. The Hamiltonian part is known \Rightarrow only necessary to measure the second effect. But: We have a “privilegiated direction” (the time!) \Rightarrow we will use an energy function to measure the splitting in that direction (instead of using the splitting potential or the Melnikov vector which measures both effects together).
Towards a sharp upper bound of the splitting (I)

Idea: It is enough to measure the “Hamiltonian-map distance”.

Let \(F_{\epsilon_t} \) be a family of symplectic maps s.t. at \(\epsilon_t = 0 \) undergoes a HH bifurcation. The inv. manifolds \(W^{u/s}(0) \) are given by \(u(\alpha, t) \) and \(v(\alpha, t) \) resp., where \((\alpha, t) \in [t_0, t_0 + h) \times S^1 \). This defines FD’s \(D^{u/s} \).

Main result: Assume that

(H1) There exists an energy function \(E \), i.e. such that \(E \circ F_{\epsilon_t} = E \), defined in a neighbourhood of the fundamental domain \(D^s \) such that \(E(v(\alpha, t)) = 0 \). Moreover we assume that \(E \) and \(v(\alpha, t) \) can be analytically extended to a neighbourhood of \(W^u(0) \) within \(D^u \) (by iteration of \(F_{\epsilon_t}^{-1} \)).

We define the splitting function:

\[
\psi(\alpha, t) = E(u(\alpha, t))
\]
Towards a sharp upper bound (II)

(H2) There is a (limit) vector field

\[\dot{x} = f(x), \quad x \in \mathbb{R}^2, \]

such that \(f \) is analytic, it possesses a hyperbolic saddle fixed point and a homoclinic orbit \(\sigma(t) \) associated to it, and satisfies that compact pieces of the real invariant manifolds of \(F_{\epsilon_t} \) are \(\epsilon_t \)-close to an embedding of \(\mathbb{S}^1 \times \{\sigma(t), \ t \in \mathbb{R}\} \) for \(\epsilon_t > 0 \) small enough.

(H3) \(F_{\epsilon_t} \) can be extended analytically to a neighbourhood of

\[\{\alpha \in \mathbb{C}/2\pi \mathbb{Z}, |\text{Im} \alpha| < \rho\} \times \{\sigma(t), |\text{Im} t| < \tau\} \]

for some \(0 < \tau < \tau_0 \) and \(0 < \rho < \rho_0 \).
Towards a sharp upper bound (Result)

Under (H1), (H2) and (H3)...

(i) **Rational Krein collision.** Let $\theta_K = p/q$, with $(p, q) = 1$. Then, there exists $\epsilon_t^0 > 0$ s.t. for $\epsilon_t < \epsilon_t^0$

$$|\psi(\alpha, t)| \leq K \exp(-C/h), \quad C, K > 0.$$

(ii) **Irrational Krein collision.** Let $\theta_K \in \mathbb{R} \setminus \mathbb{Q}$. Then, ψ is bounded by a function that is exponentially small in a parameter γ, s.t. $\gamma \searrow 0$ when $h \nearrow 0$. Moreover, the dominant harmonic $k(h)$ of ψ changes infinitely many times as $h \to 0$.

Idea: Bounding the Fourier coefficients of ψ, one gets

$$|\psi(\alpha, t)| < K \sum_{(k, n) \in \mathbb{Z}^2^*} \exp\left(-2\pi |n - \theta_0 k| \tau/h - |k| \rho\right).$$

Then we look for $k = k_*(h) > 0$ s.t. the dominant coefficient β_{k_*} in the exponential bound is minimum (different cases according to the properties of θ_K).
Map T: fit of the volume V (I)

$$
T: \quad \bar{\psi}_1 = \psi_1 + \delta(J_1 + a_2 J_2), \quad \bar{\psi}_2 = \psi_2 + \delta(a_2 J_1 + a_3 J_2),
\quad \bar{J}_1 = J_1 + \delta \sin(\psi_1), \quad \bar{J}_2 = J_2 + \delta \epsilon \sin(\psi_2).
$$

$a_2 = 0.5$, $a_3 = -0.75 \sim \epsilon^c = -4/9$.

We look for the dominant coefficients $\beta_k(h)$. They depend on θ_K and $h = \log(\lambda) = \mathcal{O}(\sqrt{|\epsilon - \epsilon^c|})$. We fix $\theta_K = \arctan(\sqrt{23/11})/2\pi$.

Left: first five dominant exponents β_k as a function of h. Right: values of k_* corresponding to the minimum exponent β_k. Both in log–log scale.
Map \mathcal{T}: fit of the volume V (II)

- We have $k_*=1, 15, 46, 107, 703, 2002, 9307, 25919, \ldots$ as $h \to 0$.
- The values of k_* are related to the approximants of $\theta_K \approx 0.06543462308$: $1/15, 3/46, 4/61, 7/107, 39/596, 46/703, 85/1299, 131/2002, \ldots$
- Not all the approximants produce a change of $k_*(h)$ as $h \to 0$, only those that are smaller than θ_K play a role (except the first one $1/15 > \theta_0$).
- The length of the interval in h where $k_*(h)$ dominates depends on the CFE(θ_K) = $[15, 3, 1, 1, 5, 1, 1, 3, 1, 2, \ldots]$, but also on the constants in front of the exponential terms of V (terms with larger β_k can dominate for finite $h > 0$!!)

Conclusion: The numerical fit data show that the different slopes observed are related to the different values $k_*(h)$ obtained \sim OK!!!
1. **Other aspects** related to the HH bifurcation for 4D maps have been also investigated (preprint).

For example:

(a) Structure of the Lyapunov families of invariant curves (analytic results on: the detachment of the Lyapunov families, analysis of the rational and irrational collision angle θ_k cases, stability of the inv. curves, ...).

![Graphs showing the detachment of the Lyapunov families of invariant curves for T: $\epsilon = -0.1$, -0.4 and -0.5 ($\epsilon^c = -4/9$).](image)

Detachment of the Lyapunov families of invariant curves for T:

$\epsilon = -0.1$, -0.4 and -0.5 ($\epsilon^c = -4/9$).
(b) Possible diffusive patterns **through and around** the double resonance.

Left: Positive definite case \((\delta = \epsilon = a_2 = 0.5 \text{ and } a_3 = 1.25) \).
Centre/Right: Non-definite case \((\delta = \epsilon = a_2 = 0.5 \text{ and } a_3 = -0.75) \).

2. **Many open questions**: Theorem of splitting for a family of 4D maps? Separatrix return map? Diffusive properties (quantitative data)?

...but this is left for future works...
Thanks for your attention!!