Abundance of stable periodic orbits inside homoclinic lobes

Conference on Computational Methods in Dynamics

Trieste, 5 July, 2011

C. Simó, A. Vieiro

Contents

\rightarrow I. Introduction.

What we want to study?

II. Preliminary background.

The separatrix map (SM). The Simó-Treschev result (2008).

III. Analytical results

"Symmetric" SM. Main result.

IV. Numerical computations

Standard map. Hénon map (1:4 resonance).

Splitting of separatrices + chaotic zone

Consider an APM F with a hyperbolic fixed point H. Generically, the separatrices of H split and create a chaotic zone (CZ) which extends up to the "outermost" invariant curve.

The dynamics within the chaotic zone...

^a Simó-V. *Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.* Physica D, 240(8), 2011.

Dynamics within the homoclinic lobes

Apparently chaotic...

...but, inside the homoclinic lobes, one finds **tiny** islands of stability: ^a

^aSimó-Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Disc. Cont. Dyn. Sys. B, 10(2,3), 2008 Instead of a single APM F, we consider a **one-parameter family of APMs** F_{ϵ} .

 $\longrightarrow \epsilon$ – distance-to-integrable parameter

We are interested in the elliptic periodic orbits visiting homoclinic lobes (EPL) of the lowest possible period ("dominant") of F_{ϵ} for $\epsilon << 1$.

For **analytical** results: we assume "central symmetry" of F_{ϵ} and use the separatrix map (SM) to... (concrete details later...)

- ... study the *abundance* of EPL (i.e. the relative measure of the set E_{ϵ} of ϵ -parameters for which F_{ϵ} has EPL).
- ... describe the pattern of creation/destruction/bifurcation of these EPL in terms of the parameter ϵ .
- ... obtain an (explicit!) accurate estimate of the $m(E_{\epsilon})$.

 \rightarrow "maybe nice theory"... but, moreover,...

... we want to compare the theoretical results with "real" situations.

To this end, we perform **accurate numerical computations** to obtain estimates of $m(E_{\epsilon})$. The numerical experiments we will consider as F_{ϵ} the standard map (STM) and the Hénon map.

 \rightarrow Note that a "real" situation does not necessarily fit within "our" theoretical framework (typically, one simplifies the model, use a perturbative approach,...).

I. Introduction.

What we want to study?

\rightarrow II. Preliminary background.

The separatrix map (SM). The Simó-Treschev result (2008).

III. Analytical results

"Symmetric" SM. Main result.

IV. Numerical computations

Standard map. Hénon map (1:4 resonance).

Non-symmetric figure-eight

The figure-eight loops maybe non-symmetric!

Example of interest: resonant islands emanating from a fixed elliptic point. Let F_{δ} be a one-parameter family of APMs, $F_{\delta}(E_0) = E_0$ elliptic f.p., dynamics around the (q:m)-resonance, $m \ge 5$, $(1 \le q < m, (q,m) = 1)$. Spec $(DF_{\delta})(E_0) = \{\lambda, \lambda^{-1}\}, \lambda = \exp(2\pi i \alpha), \alpha = q/m + \delta, \delta \in \mathbb{R}.$

Thm. Under generic assumptions: outer splitting > inner splitting. ^{*a*}

^aSimó-V. *Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.* Nonlinearity 22, 5:1191–1245, 2009.

Double separatrix map (figure-eight)

- Defined on a domain $\mathcal{W} = \mathcal{U} \cup \mathcal{D}$ (around the outer/inner separatrices).
- $a_{s,\bar{s}}$ suitable "shifts" (reinjection to \mathcal{W}).
- $b = 1/\log(\lambda)$, λ dominant eigenvalue of H.
- y-variable rescaled: $\nu_1 = 1$ and $\nu_{-1} = A_{-1}/A_1$, where A_1 (resp. A_{-1}) is the amplitude of the outer (resp. inner) splitting.

A priori stable/unstable cases

Recall that we want to study EPL of F_{ϵ} , ϵ dist-to-integr. param., F_0 integrable. **A priori unstable:** F_0 has a non-degenerated hyperbolic fixed point H_0 s.t. $\lambda(0) > 1$. Then $\lambda(\epsilon) = \lambda(0) + \mathcal{O}(\epsilon^r)$, r > 0. The separatrices of H form an integrable figure-eight.

A priori stable: F_0 has a degenerated fixed point (e.g. we encounter a line of fixed points for $\epsilon = 0$). Then $\lambda(\epsilon) = 1 + \mathcal{O}(\epsilon^r)$, r > 0. Remark: Islands emanating from a fixed elliptic point \rightarrow a priori stable case.

All the examples we deal with fit within the *a priori stable* framework!

A priori stable/unstable differences

- Size (width) of the homoclinic lobes.
 - (i) a priori unstable: $\mathcal{A}_{\epsilon} = \mathcal{O}(\epsilon^{r}), r > 0$
 - (ii) a priori stable: $\mathcal{A}_{\epsilon} = \mathcal{O}(\exp(-c/\epsilon^r))$, with r, c > 0 ctants.
- Relation $F_{\epsilon} \longleftrightarrow SM_{a,b}$.
 - (i) a priori unstable: $a = \mathcal{O}(-\log \epsilon)$, $b = \mathcal{O}(1)$,
 - (ii) a priori stable: $a = \mathcal{O}(1/\epsilon^{2r})$, $b = \mathcal{O}(1/\epsilon^r)$,

Remarks:

- Case (i): a, b change "independently" (a changes with ϵ).
- Case (ii): Both a and b depend on ϵ . But $b'(a) \approx \epsilon^r \to 0$ as $\epsilon \to 0$ (i.e. a changes faster with respect to small variations of ϵ).

Simó-Treschev result

 F_{ϵ} – a priori unstable family of APMs $E_{\epsilon}, \epsilon < \epsilon_0 << 1$ – set of ϵ -parameters for which F_{ϵ} has EPL **Thm.** $m(E_{\epsilon})$, when $\epsilon_0 \rightarrow 0$, remains greater than a constant K > 0independent of ϵ .

Comments:

- It does not provide any approximation of $m(E_{\epsilon})$.
- It is enough to proof the existence of one EPL for some concrete a and b values of the DSM. Then, using a specific scaling of the SM, one obtains an EPL for values $\epsilon \to 0$.
- This scaling holds because b is indep. of ϵ (a priori unstable) scaling idea: $\epsilon_2 = \epsilon_1 / \lambda^{1/r} \Rightarrow a(\epsilon_2) \approx a(\epsilon_1) \pmod{1}$

^aSimó-Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Disc. Cont. Dyn. Sys. B, 10(2,3), 2008

I. Introduction.

What we want to study?

II. Preliminary background.

The separatrix map (SM). The Simó-Treschev result (2008).

→ III. Analytical results

"Symmetric" SM. Main result.

IV. Numerical computations

Standard map. Hénon map (1:4 resonance).

Central symmetry

We assume that F_{ϵ} commutes with the central symmetry with respect to H_{ϵ} . This implies:

- 1. The figure-eight loops are symmetric.
- 2. The lowest possible period for an EPL is $\hat{p} = 4$.

Non-symmetric $\hat{p}=3~{\rm EPL}$

Symmetric $\hat{p}=4$ (p=2) EPL

DSM — "symmetric SM"

We can then identify both domains of definition of the DSM and consider a simple model

$$\mathsf{SM}_{a,b}: \left(\begin{array}{c} x\\ y \end{array}\right) \mapsto \left(\begin{array}{c} x_1\\ y_1 \end{array}\right) = \left(\begin{array}{c} x+a+b\log|y_1|\\ y+\sin(2\pi x) \end{array}\right)$$

Motivation: For generic (non-strong) res. islands emanating from an elliptic fixed point, the "lack of symmetry" is detected in a "second order" approximation of the dynamics, which can be described by the Hamiltonian:

$$\mathcal{H}(J,\psi) = \frac{1}{2}J^2 + \frac{c}{3}J^3 - (1+dJ)\cos(\psi), \ c = \mathcal{O}(\delta^{\frac{m}{4}}), \ d = \mathcal{O}(\delta^{\frac{m}{4}-1}).$$

Rec: If the multiplier of the elliptic point is $\alpha = q/m + \delta$, the *m*-resonant islands are located at $I_* = \mathcal{O}(\delta)$ and have a width $\mathcal{O}(\delta^{m/4})$. Then J, ψ are adapted coordinates around the *m*-island.

Main result

Assume F_{ϵ} a priori stable + central symmetry

 \Rightarrow we use SM_{*a*,*b*} to describe dynamics within the homoclinic lobes.

Idea: For a fixed b we look for the measure of the set of maps (depending on $a \in [0, 1)$) having EPL of period p = 2 ($\hat{p} = 4$).

Thm. For a fixed b, let $\sum \Delta a$ denote the sum of the lengths of the intervals $\Delta a = (a_-, a_+)$ such that for $a \in \Delta a$ the separatrix map SM_{*a*,*b*} has a p = 2 EPL. Then,

$$\lim_{b \to +\infty} \sum \Delta a = \frac{1}{2\pi^2} \approx 0.05066.$$

Rec: $a = a(\epsilon)$ and $b = b(\epsilon)$, but a changes quickly!

Transversality: EPL strips & (a, b)-curve of F_{ϵ}

• b large enough (integrable limit, $b = \mathcal{O}(1/\epsilon)$).

- Each p = 2 EPL strip is related to different periodic P trajectory of F_{ϵ} .
- F_{ϵ} defines a curve \mathcal{C} which intersects **transversally** the EPL strips.

Overlapping

Each periodic P trajectory of F_{ϵ} gives two a-intervals of EPL. For P rel. small, elementary overlaps between these a-intervals occur. Skipping these overlaps: $\lim_{b \to +\infty} \sum \Delta a = \frac{1}{2\pi^2} (1/2 + \log(3/2)) \approx 0.04587.$

Numerical check: x-axis: $-\log(b)$, y-axis: $\sum \Delta a$.

I. Introduction.

What we want to study?

II. Preliminary background.

The separatrix map (SM). The Simó-Treschev result (2008).

III. Analytical results

"Symmetric" SM. Main result.

→ IV. Numerical computations

Standard map. Hénon map (1:4 resonance).

Standard map & p = 2 EPL

$$STM_{\epsilon}: (x, y) \to (\bar{x}, \bar{y} = (x + \epsilon \bar{y}, y + \epsilon \sin(x))$$

It commutes with the central symmetry (the figure-eight loops are symmetric). To obtain EPL intervals we continue w.r.t. ϵ periodic trajectories of the form:

Standard map: *e*-intervals of EPL

We consider $\epsilon \in (0.7256, 1.18303)$ and we...

- 1. scan for initial conditions inside the homoclinic lobe (the central symmetry helps!),
- 2. refine them (Newton method) to obtain a periodic (tipically highly hyperbolic!) trajectories,
- 3. continue them to obtain different EPL intervals.

Standard map: *a*-intervals of EPL

Figure: *x*-axis: *a* (without mod 1), *y*-axis: ϵ , each point corresponds to an EPL *a*-interval. Table: $\sum \Delta a$ for each fundamental interval.

Hénon map

$$H_c: (x, y) \mapsto (c(1 - x^2) + 2x + y, -x)$$

- We focus on the (1:4) resonant islands arising for c > 1 (strong resonance!).
- Completely non-symmetric!: e.g. for c = 1.015 the inner splitting $\mathcal{O}(10^{-54})$ and the outer $\mathcal{O}(10^{-1})$.

Dominant EPL are $\hat{p} = 3$ EPL (non-symmetric, do not visit all hom. lobes). H_c is reversible w.r.t R: y = -x and $Q_1: y = c(x^2 - 1)/2 - x$.

Example: m = 93 (i.e. P = 4m = 742), we represent iterates of H_c^4 .

Hénon map: *c*-intervals

- For c = 1.02, we scan for p.o. of the previous type with P < 1200
- We found 274896 p.o.
- We continue those with $Tr(DH_c^P) < 10^8$ (2367 initial conditions).
- Numerically observed: each i.c. gives at most two *c*-intervals.
- We found a total amount of 1989 different *c*-intervals of stability.
- Sum of the lengths $\approx 7.216 \times 10^{-8}$.
- One pair of *c*-intervals overlap. Length of the overlapping $\approx 7.82 \times 10^{-12}$.
- Length of the largest (shortest) c-interval obtained $\approx 0.82 \times 10^{-9}$ ($\approx 2.1 \times 10^{-20}$).

 \rightarrow Qualitative agreement but **not** quantitative (far from 5% of the set of parameters).

Hénon map: continuation pattern

General observed pattern: period-doubling bifurcations (non-symmetric!). Tiny islands (the largest islands, of size 10^{-9} , with shortest period P = 678).

P = 742 periodic orbit (shown before).

Possible explanations for the "non-completely" quantitative agreement in the examples:

- SM_{*a*,*b*} only considers first harmonic of the oscillation between W^u/W^s .
- Slope of the EPL strips for the range of parameters considered.
- Approximated relation of a with the parameter of the family (STM example).
- Non-symmetric case: proper model DSM.
- Specific type of EPL considered in the Hénon map example.

Thanks for your attention!!