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Goal
To illustrate the effect of adding a weakly dissipation on a

conservative map.

Understand the global behaviour around an elliptic fixed
point.

Describe the structure of the resonances / Geometry of
the invariant manifolds.

Transport properties / Probability of capture in a
resonance.

Identify the regions where the topology of the resonances
gives rise to different dynamics.

Illustrate some “limit” properties when the dissipation
goes to zero.
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The model
We use in computations a dissipative version of the classical
conservative Hénon map. Concretely,

Hα,ε(x, y) = (1 − ε)Hα(x, y), (1)

where

Hα :

(

x

y

)

7−→ R2πα

(

x

y − x2

)

,

or (x, y) 7→ (1 − ax2 + y,−bx) with suitablea, b ≈ 1.
Motivation:

“Simplest” planar map. Composition of two simple
reversors.

Appears when modelling a saddle-node bifurcation.
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Conservative case (ε = 0): global idea
Generically, around an elliptic point it is expected to have an
infinite number of resonances characterised by sequences of
islands formed by the invariant manifolds of the hyperbolic
periodic points and containing an elliptic point. The size of
the perturbation from integrable depends on the domain.
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Conservative case: in detail

Moreover, if the map is non-integrable, the invariant
manifolds do not coincide and a splitting of the separatrices is
created. There are known generic upper bounds of the
splitting depending on the parameters of the map.
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Conservative case: rotation number

Generically, in a neighbourhood of an elliptic fixed point a
twist condition holds, that is, therotation numberis a
monotone function of the action. Nevertheless, far from that
point the twist condition can violated. Close to the value of
the radius where the twist condition does not hold the
rotational invariant curves give rise tomeandering curves.
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Conservative case: Splitting
In general, for a generic APM, the inner and the outer
splittings of the same island are different. It depends on the
derivatives (mainly on the sign of the first two derivatives) of
the rotation number with respect to the radial coordinate (that
is, on the torsion coefficient and its first derivative). In the
plots: log10(splitting angle) vsα.
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Weak Dissipation

Previous considerations:

For ε “big” enough the dynamics collapses to the origin
and no resonances outlast the dissipation.

The periodic points which configure a concrete
resonance should be destroyed, whenε increases, as a
result of saddle-node bifurcation.

The destruction of a resonance depends on the width and
order it has (a priori).

The resonances should allow to pass more points asε
increases.
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First critical radius

We expect the small resonances to be destroyed by the
dissipation.

Due to the twist condition, the resonances are arranged
by rotation number.

The width of anm-resonance is of the orderO(I
m/4

∗ ),
whereI∗ = −δ/2b1 beingα = q/m + δ andb1 the first
Birkhoff coefficient.

Conclusion:

Close to the origin we can expect a neighbourhood where no

resonance survives.
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First critical radius: example

log10(ε) Res. destroyed
-6 InsideB0(0.27)

-4.569 (2:19)
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Resonances: (1:7), (1:8), (2:17), (1:9), (2:19) and (1:10)
(α = 0.15).
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Second critical radius

Outside the first critical radius we find some resonances
that have survived the dissipation.

The structure of these resonances has changed:

The elliptic points become attractor foci
The position of the invariant manifolds allows to pass
more points

We can determine two different “types” of resonances
depending on the existence or destruction of homoclinic
orbits. We need first to understand the evolution of a
resonance better.
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Evolution: α = 0.17; log
10

(ε) = −6,−5.4,−4, res.(1:7)
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A possible scenario
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Flow type resonances
When all the homoclinic orbits are destroyed by the
dissipation (but not very close to homoclinic tangency)
the dynamics in a resonance can be approximated by a
flow.

The probability of capture in a flow type resonance
depends on the strips that determine the invariant
manifolds of the hyperbolic point.

We want...
...to describe how the strips travel along the phase space.

...to determine how the probability of capture changes
depending onε and on the map we have. In particular,
which is the limit of this probability whenε ↘ 0?
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The strips
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Points captured by resonances -ε
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Points captured by resonances -α
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Future

It is necessary to do a theoretical approach and generalise
what is observed for the Hénon map to a general map.

In particular, it is necessary to develop models to
understand the dynamics around each type of resonances:

Flow type: NF + Approx. by flow
C.Simó and A.V. (in progress).
Homoclinic type: Deal with the diffeomorphism
directly. It requires suitable models (in progress).

To prove the conjecture to be stated later.

Generalisations to higher dimensions.
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A final picture...
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And a magnification
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Conjecture
Assume thatε is small but sufficiently large to do not have
homoclinic points in a resonance.

The measure of the points captured by the resonance
when approaching the conservative case, assuming that
no homoclinic points are created, is the sum of the
measure of the islands and the measure of the strips (both
can be approximated using normal forms).

Γ(F, ε) = {(x, y) ∈ A (a fixed domain)| ω(x, y) = E} .

lim
ε→0

µ(ε) = lim
ε→0

mesL (Γ(F, ε))

mesL (A)

conj.
= Aislands + Astrips,

Open question: what happens when approaching to the
conservative case and homoclinic points are allowed?
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THE END...
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Rotation number
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Back to the presentation
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Meandering curve
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