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Introduction

We consider a one-parameter family of maps Fδ : U → R
2,

U ⊂ R
2 domain, such that

1. Fδ real analytic in the (x, y)-coordinates of U ,

2. detDFδ(x, y) = 1, for all (x, y) ∈ R
2 and for all δ ∈ R, (APMs)

3. Fδ has a fixed point E0 that will be assumed to be at the origin ∀δ ∈ R,

4. spec DF (E0) = {µ, µ̄}, µ = exp(2πiα), α = q/m+ δ, q,m ∈ Z.

Through the presentation the Hénon map will be used as a paradigm of APM.

One of the formulations is

Hc :

(

x

y

)

7−→
(

c(1 − x2) + 2x+ y

−x

)
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APMs are not large dimensional systems

• The study of APMs becomes relevant for the phase analysis of larger

dimensional systems.

H(θ, I) – n-d.o.f. Hamiltonian system, θ̇ = ω(I) frecuency vector,

assume that for I = I∗, 〈k, ω(I∗)〉 = 0, k ∈ Z
n (single resonance).

Then, after isoenergetic reduction and considering a Poincaré section, the

dynamics for ω(I) ≈ ω(I∗) can be reduced to that of a

R
2 × T

n−2 × R
n−2 map (“APM dynamics × dense motion on a family of

(n− 2) invariant tori”) .

• The methodology we use consists in gluing universal models to describe

dynamical properties in different regions of the phase space. Similar

approaches can be used in higher dimensional problems although the

models become more complicated (and maybe should be

obtained/adapted to each problem using (semi)-numerical techniques).

→ following scheme of Chirikov approach...

→ attempts: scattering map, multi-dimensional separatrix map,...
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Goal of our study of APMs

• We focus on a semi-global description of the phase space.

• More precisely, we want to describe the dynamics in the resonant chains

emanating from (but relatively far from) the elliptic fixed point E0.

• Special interest is focused on the dynamics in chaotic zones either small

regions around the separatrices of the resonant island (with size of the

order of the splitting of the separatrices) or the larger regions due to

interaction of different resonances (for example, Birkhoff zones of instability

if the region is confined between invariant rotational curves).

• We are interested in a topological/qualitative description but our goal is to

obtain quantitative information of the system: size of the chaotic zones,

distance to invariant curves, measure of the stability regions within the

chaotic zones, transport properties,...

sometimes hard (large chaotic regions)... but we should try!!
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Some preliminary local/quantitative
results

• BNF+Interpolating Hamiltonian

• Dynamics within resonant chains

• Inner/outer splittings of separatrices in a resonant island

APMs – p.5/25



BNF + Interpolating Hamiltonian

Fδ one-parameter δ-family of APMs with F (E0) = E0 elliptic fixed point.

Spec DF (E0) = {µ, µ̄}, µ = e2πiα, α = q/m+ δ, δ small enough.

(x, y)-Cartesian coord., (z, z̄)-complex coord. (z = x+ iy, z̄ = x− iy).

(I, ϕ)-Poincaré variables (z =
√

2I exp(iϕ)).

→ Consider the Birkhoff NF of Fδ(x, y) to order m around E0

(say BNFm(Fδ)(z, z̄)) and let K(z, z̄) = BNFm
m(Fδ)(z, z̄) (near Id).

→ Define

Hnr(I) = π
∑s

n=0

bn

n+1
(2I)n+1 and Hr(I, ϕ) = 1

m
(2I)

m
2 cos(mϕ).

The time-1 map generated by the flow defined by the Hamiltonian

H(I, ϕ) = Hnr(I) + Hr(I, ϕ)

interpolates K with an error of order m + 1 with respect to the (z, z̄)-
coordinates, in a suitable annulus containing the resonant m-island.
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Description of resonances

Generic case: α = q/m+ δ, m > 5, δ sufficiently small, b1 6= 0.

• If b1δ < 0 then F has a resonant island of order m.

• The resonant zone is determined by two periodic orbits of period m

located near two concentric circumferences (in the BNF variables). The

closest orbit to the external circumference is elliptic while the one located

close to the inner circumference is hyperbolic.

• The width of the resonant island is O(I
m/4
∗ ), I∗ = −δ/2b1.

∆IΗ

δp

∆IΕ

H

E

H

q

I*

δq

p
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A model around a generic resonance

For a generic APM such that δ < 0, b1 > 0, b2 6= 0, the dynamics around an

island of the m-resonance strip (m ≥ 5) can be modeled, after suitable

scaling (J ∼ δ−m/4(I − I∗)), by the time-log(λ) map of the flow generated by

H(J, ψ) =
1

2
J2 +

c

3
J3 − (1 + dJ) cos(ψ),

where c = O(δ
m
4 ), d = O(δ

m
4
−1). Bounding the errors it is shown that it

gives a “good” enough approximation of the dynamics in an annulus containing

the m-islands.

→ Then, we have the following... a

a The details of the proof (singularities, suitable Hamiltonian,...) can be found in:

Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps.

Nonlinearity 22, 5:1191–1245, 2009.
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Main result: comments on the hypothesis

• A1. b1(δ) is non-zero for δ = 0.

• A2. W u =G(W s), G periodic (between homo p and F (p)),

s scaled variable s.t. G(s)=
∞
∑

k=−∞

ck exp(ik 2πs).

We assume: The maximum of the norms of the functions c±1 exp(±i2πs)
is bounded away from zero, when δ tends to zero, on suitable lines whose

imaginary part tend to τ± when δ → 0.

• A3. There exists a fixed α > 0 s.t.

σ± = exp

(

−2π Im τ± − η±
log(λ(ǫ))

)(

cos

(

2π Re τ±
log(λ(ǫ))

− φ±

)

+ o(1)

)

,

where |η±| < log(λ(ǫ))1−α for ǫ sufficiently small.

• A4. F maybe meromorphic but the singularity remains at a finite distance
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Main result

Theorem. Let F be an APM. Assume that it has an m-order resonance strip,

m > 4, located at an average distance I = I∗ = O(δ) from the elliptic fixed

point and δ is sufficiently small. Under the assumptions A1, A2, A3 and A4,

the following conclusions hold.

a) The outer splitting is larger than the inner one being the difference between

the position of the corresponding nearest singularities O(δm/4−1).

b) Neither the inner nor the outer splittings oscillate.

→ Question: Consequences in the width of the chaotic zones of this fact?

Before some comments...
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Some comments: Far from the elliptic point

2:11 Hénon
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Some comments: Strong resonances

• The description of the resonant structure by means of the interpolating

Hamiltonian does not hold if m ≤ 4.

• We have studied in detail the generic cases for the resonances (1:3) and

(1:4), computing the Hamiltonian and the singularities, and also some

non-generic cases:

Hénon map 1:4 resonance Non-generic!!
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Semi-global study of APMs: Chaotic
regions

We focus now on the chaotic regions created by the invariant manifolds

emanating from a fixed/hyperbolic point h. We do not assume the region of

interest to be close to the origin but we require the system to be not too far

from integrable in the selected domain to be studied.

→ We want:

• To study the resonant islands far from the elliptic point

• To study the dynamics in the chaotic zones

→ How?:

Using suitable return maps −→ universal models.
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Chaotic regions considered

For each of the following cases we use a concrete return map model to study

the dynamics.

• Open case (fish like) Separatrix map

• Figure eight case (pendulum like) Double separatrix map

• Large regions of instability (e.g. Birkhoff z.i.) Biseparatrix map

→ We look for quantitative information on the dynamics within the chaotic
zones. However, the biseparatrix model only gives us a topological description
of the dynamical behaviour. a

aThe following results can be found in:

Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones.

Submitted to Physica D.
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Open case

HE

SM :

(

x

y

)

7−→
(

x′

y′

)

=

(

x+ a+ b log |y′|
y + sin(2πx)

)

where b = 1/ log(λ), λ the dominant eigenvalue of DF (h) and a is a “shift”.

The y-vble. is scaled by the amplitude of the splitting.

We deal with an a priori stable case: log(λ) = O(ǫ) and a = O(1/ǫ) ⇒
A = O(exp(−ctant/ǫr). Here ǫ is a “distance-to-integrable” parameter.
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Open case: results

• Distance to invariant curves from the separatrix: dc ∼ |b|/k∗ (SM is

approximated by STM, k∗ ≈ 0.97/(2π) Greene value).

◮ When coming back to the original variables: Dc ∼ σℓ/(2πk∗ log(λ)),

◮ If measured from the hyperbolic point, assuming the map close to the

time-ǫ flow of H(x, y) = y2/2 − αx3 − βx2, one has:

Dh
c ≈ (3LDc/2)1/2, where L is the distance between the hyperbolic

and the elliptic point inside the “fish”. This result can be improved using

higher order interpolating Hamiltonians.

• Distance to islands from the separatrix: di ∼ |b|/k̃, k̃ = 2/π.

• Expected number of “central” islands before the r.i.c.

#{islands} ≈ 1.415 × b.
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Hénon map Hα(x, y) = R2πα(x, y − x2)

 0.2095
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 0.2105

 0.211

 0.2115

 0.212

 0.2125

 0.213

 0.647  0.648  0.649  0.65  0.651  0.652

α = 0.1

Experimental values: (DH
c )e ≈ 2.94×10−3, (DH

i )e ≈ 2.08×10−3

“Fish” interpolating Hamiltonian: DH
c ≈ 2.47×10−3, DH

i ≈ 1.85×10−3

5-order interp. Hamiltonian: DH
c ≈ 2.731×10−3, DH

i ≈ 2.050×10−3

APMs – p.17/25



Figure eight case

H HE

H

E

H

DSM :









x

y

s









7−→









x̄

ȳ

s̄









=









x + as̄ + b log |ȳ| (mod 1)

y + νs̄ sin 2πx

sign(y) s









,

where ν is such that ν1 = 1 and ν−1 = A−1/A1, being A1 and A−1 the

amplitudes of the outer and inner splittings, respectively, of the resonant island.

Comments:
• It is defined on a domain W = U ∪ D (upper and lower domains around

the outer and inner separatrices of the resonance).
• y > 0 means we are outside the stable manifold (either in U or D).
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Figure eight: results

Generic resonances close to the origin. Assume b1δ < 0 and that the

hypothesis of the theorem concerning the difference of the inner and outer

splittings hold. Then,

• The width of the outer chaotic zone is larger than the width of the inner

chaotic one if, and only if, sign b1 · sign b2 < 0.

• Both amplitudes of the stochastic layer are of the order of magnitude of the

outer splitting (the largest one).
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Pendulum-like islands: comments

The idea is to construct an interpolating Hamiltonian of the map (in a domain

containing the resonance) and to use preservation of energy to see how the

distance to the rotational invariant curves changes when measuring from the

upper U and the lower D domains. This can be done computing the ratio

f = ∇H(JM)/∇H(Jm)

where JM and Jm are the maximum (minimum) of the outer (inner) separatrix

of the Hamiltonian. For close to the origin resonances f = 1 + O(δm/4).

 0.12
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α = 0.21,

σ− = O(10−12),

σ+ = O(10−3).
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Pendulum-like islands: comments II

The same idea applies to resonances far from the origin as well as for strong

resonances but, for each case, a suitable interpolating Hamiltonian must be

considered. In these cases the chaotic zone width measured in both domains

can be of different order of magnitude:

-1.2

-1.1

-1

-0.9

-0.8

-0.7

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

c = 1.015,

σ+ =O(10−54), σ−=O(10−1).

Experimentally, f ≈ −5. Using in-

terp. Ham. up to order δ ≈ c − 1

we obtain f ≈ −5.64.

But δ = 0.015 is too large. For δ

small we obtain better results (even

we can predict # tiny islands).
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Large regions of stability

Due to the interaction of resonances large chaotic zones of instability appear.

These are regions without rotational invariant curves (e.g. Birkhoff zones of

instability). We have considered the biseparatrix model and we have studied

different situations (twist and non-twist case). On the other hand, it helps to

study the phenomena taking place at the border of the stability domain.

Geometrical situation:

H1

H2

D

D

W
s(H2)

W
u(H2)

W
u(H1)

W
s(H1)

H1

H2
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The biseparatrix model

Between two concentric chains of islands, the simplest qualitative model on

the domain 0 < v < d is given by
(

u

v

)

7−→
(

u′

v′

)

=

(

u+ α+ β1 log(v′) − β2 log(d− v′)

v + sin(2πu)

)

.

where β1 = 1/ log(λ), β2 = 1/ log(µ), λ being the eigenvalue of modulus

greater than one of the hyperbolic point of the bottom separatrix and µ the

corresponding one of the top separatrix.

• For this model it is theoretically expected to have rotational invariant curves

provided d > (
√
b1 +

√
b2)

2/k∗ (k∗ = Greene’s value).

• Changing - for + in the 1st. row it is a model for non-twist Birkhoff zones.

• It remains to generalise it to different order for the top/bottom resonances

and to make it quantitative.
APMs – p.23/25



BSM figures

Chirikov standard map

with k = 0.16.

For the corresponding

BSM model:

β1 = β2 ≈ 1.0365

(λ = µ ≈ 2.624248)
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⇒ d ≈ 24 (d = 27, 28)
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The end...

We are working in 4D symplectic maps trying to generalise these studies (in

collaboration with V. Gelfreich). a

The main goal is to get a quantitative description of the dynamics in double

resonances.

Thank you for your attention!!

aSome (numerical) preliminary results can be found in

Some properties of the global behaviour of conservative low dimensional systems, in Foundations of Computational

Mathematics: Hong Kong 2008, F. Cucker et al., editors, London Math. Soc. Lecture Notes Series 363, Cambridge

Univ. Press, 2009.
APMs – p.25/25


	Introduction 
	APMs are not large dimensional systems 
	Goal of our study of APMs
	
	BNF + Interpolating Hamiltonian
	Description of resonances
	A model around a generic resonance
	Main result: comments on the hypothesis
	Main result
	Some comments: Far from the elliptic point
	Some comments: Strong resonances
	
	Chaotic regions considered
	Open case
	Open case: results
	H'enon map $H_{alpha }(x,y)=R_{2 pi alpha }(x,y-x^2)$
	Figure eight case
	Figure eight: results
	Pendulum-like islands: comments
	Pendulum-like islands: comments II
	Large regions of stability
	The biseparatrix model
	BSM figures
	The end...

