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Chapter 1

Introduction

We study the optimality of rearrangement invariant Banach spaces in Sobolev embeddings.
In other words, we would like to know that the rearrangement invariant Banach range
space and the rearrangement invariant Banach domain space are optimal in the Sobolev
embedding, in the sense that domain space cannot be replaced by a larger rearrangement
invariant Banach space and range space cannot be replaced a smaller one. Before commenting
on a brief description of the central part of this work, we will present some facts about
rearrangement invariant Banach spaces.

Let n be a positive integer with n > 2. Let 2 C R™ be an open subset with || = 1.
Let f be a real-valued measurable function in 2. The decreasing rearrangement of f is the
function f* on [0,00) defined by

fft)=inf{A>0;lz € Q;|f(x)] >N <t}, 0<t<|Q.

A set of real-valued measurables functions in €2 is called a rearrangement invariant Banach
space if it is a linear space equipped with a norm ||| y o, satisfying the following properties:

e if 0 < f<gae and g € X(Q2), then f € X(Q) and [[g[|y () < Il xq):
e if0< f, 1 fae and f € X(Q), then || fullxo) T11fllx@:

* Xl x@) < oo for every E C Q such that |E| < oo; here, xp denotes the chacteristic
function of the set E.

e for every £ C Q with |E| < oo, there exists a constant C' such that
[ #@)iz < il forall £ € X (6

o if f € X(2) and f* = g*, then g € X(Q2) and HgHX(Q) = HfHX(Q).

According to a fundamental result of Luxemburg [2, Theorem 11.4.10] to every rearrange-
ment invariant Banach space X () there corresponds a rearrangement invariant Banach
space X (0, |Q2]) such that

“fHX(Q) = ||f*||Y(o,|Q\) , for every f € X(9).



As examples of rearrangement invariant Banach spaces let us mention Lebesgue, Orlicz,
Lorentz and Lorentz-Zygmund spaces. For a detailed treatment of the theory of rearrange-
ment invariant Banach spaces, we refer to [2] and [13].

Fix m € N. Let X(Q) be a rearrangement invariant Banach space. The Sobolev space
W™ X (Q) is defined as

WnrX(Q) = {f Q0 = R; Df is defined and [[D%u|| gy < 00, 0 <af < m},

where D®f = gjg—i (v = (aq,...,qa,) € N") represents the distributional derivate of f. This

space is a Banach space with respect to the norm given by

||f||WmX(Q) - Z ||Daf”X(Q)7

0<|al<m

The notation WX (€2) is employed for the closure of D(§2) in W™ X (Q2), where D(£2) is the
set of C*(Q2) functions with compact support in Q. The Sobolev embedding theorem states
that:

e if 1 <p < n, then

WaLP(Q) < LP (), where p* = (n — p)/pn; (1.1)

e if p =n, then
Wo LP(Q) — L4(Q), for every 1 < g < oc; (1.2)

e if p > n, then
Wy LP(Q) — L>(Q). (1.3)

For more information on Sobolev spaces and Sobolev embeddings theorem, we refer to [1],
[19], [21] and [27].

Let m € N with 1 < m < n — 1. We study the optimality of rearrangement invariant
Banach spaces in Sobolev embeddings. In other words, we want to solve the following
problem: Given two rearrangement invariant Banach spaces X (Q2) and Y (€2) such that

WX (Q) — Y (), (1.4)

we want to find the optimal pair of rearrangement invariant Banach spaces in the Sobolev
embedding (1.4). To solve this problem, we start with the rearrangement invariant Banach
space X () and then find the smallest rearrangement invariant Banach space Yx () that
still renders (1.4) true. Thus, the embedding

WX (Q) — Yx(2) = Y(Q),

has an optimal range, but does not necessarily have an optimal domain; that is X (€2) could
be replaced by a larger rearrangement invariant Banach space without losing (1.4). We take
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one more step in order to get the optimal domain partner for Yx(Q2), let us call it Xy, (Q).
Altogether, we have

WX () — Wi Xy, (2) = Yx(2) = Y(Q),

and W[ Xy, () can be either equivalent to WX () or strictly larger. In any case, after
two steps, the pair (Xy, (), Yx(£2)) forms an optimal pair in the Sobolev embedding and
no futher iterations of the process can bring anything new.

Before commenting on our main theorem, let us discuss some refinements of Sobolev
embeddings.

The embedding (1.1), which is known as classical Sobolev embedding, cannot be improved
in the context of Lebesgue spaces; in other words, if we replace LP()) by a larger Lebesgue
space LY with ¢ < p, the resulting embedding does not hold. Likewise, if we replace LP" ()
by smaller Lebesgue space L"(€2) with r > p*, then again the resulting embedding does not
hold. However, if we consider Lorentz spaces, we have the following refinement of (1.1):

Wy LP(Q) < LP7P(Q). (1.5)

This embedding was observed by Peetre [24] and O’Neil [23]. Now, when p = n it is known
that the Sobolev space W} L"(€) can be embedded in every L(2) with 1 < ¢ < oo, and
it cannot be embedded in L>*(Q2). So, (1.5) is optimal within the Lebesgue spaces, where
no improvement is available. However, if we consider Orlicz spaces, L*(f2), we have the
following refinement

WILM(Q) — L2(Q), ®(t) = exp(t™). (1.6)

This result was shown, independently, by Pokhozhaev [25], Trudinger [29] and Yudovich [17].
It turns out that L*(£2) is the smallest Orlicz space that still renders (1.6). This optimally
is due to Hempel, Morris and Trudinger [15]. An improvement of (1.6) is possible, but we
need to introduce the Lorentz-Zymund spaces. Equipped with these spaces, we have

Wy L™(Q) — L™ 1(Q). (1.7)

This embedding is due to Brézis-Waigner [3] and Hansson [14].
The study of the optimality in Sobolev embeddings can be formulated as follows. We are
interesting in determining those rearrangement invariant Banach spaces such that

Wi X(Q) =Y (Q), meN,withl<m<n-—1. (1.8)

We would like to know that X (€2) and Y (§2) are optimal. Kerman and Pick [18] solved this
problem. The central part of their work may be summarized as follows. They developed
a method that enables us to reduce the Sobolev embedding (1.8) to the boundedness of
certain weighted Hardy operator; and then used it to characterize the largest rearrangement
invariant Banach domain space and the smallest rearrangement invariant Banach range space
in the Sobolev embedding (1.8). Their method allows us to conclude that:

e if 1 < p < n, the couple (LP(Q),LP*’p(Q)) forms an optimal pair for the Sobolev
embedding (1.1);



e if p = n, the range space L™ () is an optimal rearrangement invariant Banach
space in the Sobolev embedding (1.7), but the domain space L"(£2) is not optimal,
since it can be replaced by a strictly larger space Xy, (€2) equipped with the norm

Y

Loo,n;fl(Q)

1
o = | [ s

e if p > n, the couple (L™'(Q2), L>°(€2)) forms an optimal pair for the Sobolev embed-
ding (1.3).

The contents of this work are as follows. In Chapter 2, we first provide some definitions
and results about rearrangement invariant Banach space. In particular, we define and con-
sider some properties of Lorentz spaces, Lorentz Zygmund spaces and Orlicz spaces. This
chapter also contains definitions and results from interpolation theory. For a detailed treat-
ment of interpolation theory, we refer to [2]. This chapter also includes some properties of
Hardy operator and its dual, which will be usefull to prove the main theorem of this work.
For these properties see [18].

In Chapter 3, we present a brief description of those aspects of distributions that are
relevant for our purposes. Of special importance is the notion of weak or distributional
derivative of an integrable function. For a detailed treatment of distributions, we refer to
[5]. In Chapter 3, we also define Sobolev space and collect its most important properties.
We conclude this chapter proving the Sobolev embeddings theorem, that is, we prove the
embeddings (1.1), (1.2) and (1.3). These proofs can be found in [19] and [27].

In Chapter 4, we prove (1.5) and (1.7). Concerning the proofs, they can be found in [20].
Moreover, we prove (1.6). This proof can be found in [1].

In Chapter 5, we study the optimality of Sobolev embeddings in the context of rearrange-
ment invariant Banach spaces. The central part of this chapter is the following theorem,
which is known as Reduction Theorem.

Theorem 5.2.1 Let X(Q2) and Y () be rearrangement invariant Banach spaces. Then,
WiX(Q)—=Y(Q), meN, 1<m<n-—1,

if and only if there is a positive constant C' such that

1
[ @it < Clflan. £ e X0.0),
t

Y (0,1)

When m = 1, this theorem was proved in [10] and the case m = 2 was studied in [6].
Finally, Kerman and Pick [18] proved our version of Reduction Theorem using results from
interpolation theory. In Chapter 5, we also use Theorem 5.2.1 to determine the largest
rearrangement invariant Banach domain space and the smallest rearrangement invariant
Banach range space. To conclude this chapter, we apply Kerman and Pick’s theorem to find
the optimal pair of (1.1), (1.2) and (1.3).
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In Chapter 6, we focus on the following question: what can we say about the optimal
range space with mixed norm in

WILHR™) < LL(R"™) [L(R)]?

The innovative part of this chapter are Proposition 6.3 and Proposition 6.5. These results
allow to conclude that L*(R") [L° (R)] is the partial optimal range space.

Before discussing our results, we will mention our motivation. But, we first need to
introduce spaces with mixed norm. We denote by

Ve=L=R" N [LE(R)], 1<k<n,
the spaces with mixed norm

11l = 1kl gy @n-ry, where W (k) = esssup,, eg | /()] -

We present a brief history of our point of departure. The first proof of (1.1) [26] did not
apply to the case p = 1, but later Gagliardo [12] and Nirenberg [22] found a method of proof
which worked in the exceptional case. Gagliardo’s idea was to observe that

WIL'R™) — Vi, 1<k<n, (1.9)

and to deduce from this that f € L™ (R™).
The embedding (1.9) motivates us to formulate above question: Let X (R™"™!) and Y (R)
be rearrangement invariant Banach spaces such that

WILYR") = Xz (R [Y, (R)].

We want to find its optimal range space with mixed norm. In Chapter 6, we begin to solve
this problem. First, we take X (R™) = L'(R"), and we prove that

WL (R") = Ly (R"™) [L3 (R)] -

has the optimal range space with mixed norm (see Proposition 6.3). Second, we take
Y(R) = L*(R), and we prove that

WLNR™) < L (R [L2 (R)]

has the optimal range space with mixed norm (See Proposition 6.5). These results allows us
to conclude that Lgl/c; (R 1) [Lgo (R)] is the partial optimal range space.






Chapter 2

Preliminaries

In this chapter, we first provide some definitions and results about rearrangement invariant
Banach space. In particular, we define and consider some properties of Lorentz spaces,
Lorentz Zygmund spaces and Orlicz spaces. Next, we present some definitions and results
from interpolation theory. This chapter also contains some properties of Hardy operator and
its dual, which will appear in Chapter 5.

For any measurable subset E of R", we define

M(E) :={f : E— R f is measurable},

and denote by M, (F) the class of non-negative functions in M(FE). We recall the notation
X £ 'Y, which means X is no bigger than a constant times Y, with the constant independent
of all function involved.

2.1 The distribution function

Definition 2.1.1. Let f € M(R"), the distribution function of f is the function d; defined
on [0,00) as follows:

dp(A) = {z e R" - |f(z)] > A}

The distribution function d; provides information about the size of f but not about the
behavior of f itself near any point. For instance, a function and any of its translates have the
same distribution function. It follows from Definition 2.1.1 that dy is a decreasing function
of A (not necessarily strictly).

Example 2.1.2. Recall that simple functions are finite linear combinations of characteristic

fuctions of sets of finite measure. Now, we compute the distribution function d; of a non-
negative simple function

flz) = ZanEj (z), (2.1)

11
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where the sets E; are pairwise disjoint and a; > ... > ay > 0. If A > a4, then dg(\) = 0.
However, if ay < A < a; then |f(z)| > A when z € E;. In general, if a;;; < X < a;, then
|f(x)| > X when z € E; U...U Ej;. Setting B; = > 7_, |Ex| we have

N
de(a) = ZBjX[aj+1,aj)(a)7 where ayi1 = 0.
j=1

f(z) dr(A)
(O S
(0
By ———
- ) — I
) S S —
: : LA
0 E3 E2 E1 as 5] ay

Figure 2.1: The graph of a simple function f = Zizl arX g, and its distribution function
dr(N\). Here B; = > 7 |Exl -

We now state some properties about the distribution function dy.
Lemma 2.1.3. Let f,g € M(R™). Then for all a, 5 > 0 we have:

1. if |g| < |f] a.e. then d, < dy;

2. dep(a) = dg(a/ |c]), for all c € RT;

3. dpygla+ B) < dp(a) + dg(B);
Proof. See [2, Theorem II.1.3]. O

2.2 Decreasing rearrangements

Definition 2.2.1. Let f € M(R™). The decreasing rearrangement of f is the function f*
on [0,00) defined by

f*(t) =1inf{s >0 : ds(s) < t}.
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We adopt the convention inf () = oo, thus having f*(t) = oo whenever ds(«) > t for all
a > 0. Note that f* is decreasing.

Example 2.2.2. Consider the simple function of Example 2.1.2,
~ 3 e
7j=1

where the sets F; are pairwise disjoint and a; > ... > ay > 0. We saw in Example 2.1.2
that

2 : iXlaj+1,a5)

where B; = Zizl |Ex| and anyq = 0. Observe that for 0 < t < B the smallest s > 0 with
d¢(s) < tis ay. Similarly, for By <t < By the smallest s > 0 with ds(s) <t is as. Arguing
this way, we obtain

t) = Zan[B].71 ,Bj )(t), where Bo = 0.

f(z) fr(@)
Q] F-mmmmmmmmmmmm e aq "
A2 [----mmmmmmmmeee e A r---- ,.._..
o |- T
Es E, E; B: B, B3 t

Figure 2.2: The graph of a simple function f(x) and its decreasing rearrangement f*(¢).

Example 2.2.3. It is sometimes more usefull to section functions into horrizontal blocks
rather than vertical ones. Thus, the simple function in (2.1) may be represented also as
follows

= Zbkxpk(x) (2.2)
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where the coefficients b, are positive and the sets F} each have finite measure and form an
increasing sequenece Fy; C Fy C ... C F,,. Comparison with (2.1) shows that

bk:ak—akﬂ, FkZU;?:lEj, k=172, , n.

Thus
£ = bixqom (0.
k=1

Lemma 2.2.4. Suppose f and g belong to M(R™) and let o be any scalar.
1. f* is a right-continuous function on [0,00);
2. if [g] < |f| a.e. then g* < f*;

(af)" = laf f7;

(f +9) (tr +t2) < f*(r) + g7 (E2); (t1, 12 = 0);

de(f*(t)) <t for all 0 <t < o0;

S v S

f and f* have the same distribution function.

The following lemma is useful in proving other properties of f*, since it allows us to
reduce these proofs to the case when f is a simple funcion.

Lemma 2.2.5. Let {f,,} € M(R"), such that for all x € R™, | fp(x)] < |fims1(x)], m > 1.
If f is a measurable function satisfying

f(@)] = lim |fu(o)], @€ R
then for each t >0, f:(t) 1T f*(t).
Proof. 1t follows from Lemma 2.2.4 that f (t) < fr(t) < f*(t) for m > 1. Let
0= lim f(1).
m—ro0
Since fr(t) < ¢, we have

dfm(g) < dfm (f*(t)) < t, thus df(g) = lim dfm<£) <t.

m— 00

Hence, f*(t) < ¢. But, from the inequality f(t) < f*(t) we obtain ¢ < f*(t). It therefore
follows that ¢ = f*(¢) and the lemma is proved. O

Proposition 2.2.6. Let f € M(Q). If 0 < p < oo, then

r@par= [ rara.

Moreover, if p= oo, Hf||OO = f*(0).
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Proof. In view of Lemma 2.2.5, we will prove this property for an arbitary non-negative
simple function f. Using Example 2.2.2 we have

NG Za Bl= [ Za i (Bt = [ (70 e
0
O
We continue with some properties of f*.
Theorem 2.2.7. If f and g belong to M (R™), then
\f(flf)|\g($)|dfc§/ [ (s)g*(s)ds. (2.3)
Rn 0

To prove this theorem we require the following lemma. Its proof can be found in [2].

Lemma 2.2.8. Let g be a non-negative simple function and let E be an arbitrary measurable

subset of R™. Then
92
/ g(x)dx < / g*(s)ds.
E 0

Proof. (Theorem 2.2.7) It is enough to establish (2.3) for non-negative functions f and g.
There is no loss of generality in assuming f and g to be simple. In that case, we may write

ZCLJXE

7j=1
where £y C Ey C...C E,anda; >0,7=1,2,... ,m. Then
F(t) = _axo e ®).
j=1

Hence, by Lemma 2.2.8,

=S [ e [
:/0 Z%X[O\EI ds—/ (s

]

Definition 2.2.9. Let f be a Lebesgue-measurable function on R™. Then f** will denote the
maximal function of f* defined by
1 t
_ -/ F(s)ds (t>0).
t Jo
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Some properties of the maximal function, f**, are listed in the following lemma, which
is proved in [2].

Lemma 2.2.10. Suppose f,g and {f,} belong to M(R™) and let o be any scalar. Then f**

is non-negative, decreasing and continuous on (0,00) . Furthermore, the following properties

hold:

o =01 and only if f =0 a.e;

<

if lgl < |f] a.e. then g™ < f*;
(af) = la f*;

(f +9) () < f () + g7 (t)

if |ful T1f] a.e. then fi* 1 f**.

2.3 Rearrangement invariant Banach function spaces

Definition 2.3.1. A rearrangement-invariant (r.i.) Banach function norm p on M, (R™)
satisfies the following axioms

e o(f) >0 with p(f) =0 if and only if f =0 a.e. on R™;
o plcf) =cp(f), c € RT;
o p(f +9) < p(f)+p(9);

fu 1 f dmplies p(fn) T p(f);

E C R™ with |E| < 0o, then p(xg) < o0;
o E CR™ with |E| < oo, then [, f(z)dz < p(f);
o [* =y, then p(f) = p(g)
Definition 2.3.2. Let p be a r.i. Banach functin norm. The collection, X(R™), of all

Junction f in M(R™) for which p(|f|) < oo is called a rearrangement-invariant Banach
function space. For each f € X(Q), define

1 lxgny = 2 (1)
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Definition 2.3.3. Given a r.i. space X(R™), the set

X' = {f € MR [ 11()g(a)ldo < oo for every g X(R”)} ,

endowed with the norm

Ifllx @ = sup |f(z)g(z)|,
9]l x gny<1JR™

is called the associate space of X(R™).
Proposition 2.3.4. Let X(R"™) be an r.i. Banach function space. Then the associate X'(2)

15 also an r.i. Banach function space. Furthermore,

o = s [ FOg@d and [l = s [ 5o5 o

lgll x (mny<1 9l x/ ny<1
A basic tool for working with r.i. spaces is the Hardy-Littlewood-Pdlya principle:

Theorem 2.3.5. Let X(R") be an r.i. Banach function spaces. If f*(t) < g™(t) for all
t >0, then HfHX(Rn) < ”g”X(R")‘

To prove this theorem we will use the following result. For this result see [2].

Proposition 2.3.6. Let fi and fy be non-negative measurable functions on (0,00) and

Suppose
fi(s)d fa(s)ds
/0 1(s)ds < /o 2(s)ds,

for allt > 0. Let h be any non-negative decreasing function on (0,00). Then,

[ niomeas< [ pomisys

Proof. (Theorem 2.3.5) By Proposition 2.3.4, it needs only be shown that
| reweis< [ g
0 0

for every g such that ||g|| x@n < 1. But this is an immediate consequence of Proposi-
tion 2.3.6, since f(f fr(t)dt < fot g*(t)dt and h* is non-negative and decreasing. O

Theorem 2.3.7. (Luzemburg representation theorem). Let Q@ C R™ be an open subset. Let
p be a rearrangement-invariant function norm on M4 (Q2). Then, there is a (not necessarily
unique) rearrangement-invariant function norm p on My (I), where I = (0,|92]), such that

p(f) =p(f*), Vf € M (Q).
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Furthemore, if o is any rearrangement-invariant function norm on M (1) which represent
p, in the sense that

p(f) =o(f?), feM(Q),

then the associate norm p' of p is representaed in the same way by the associate norm o’ of
o, that 1s

p'(g) =0d'(9), g€ M(I).

2.4 Orlicz spaces

Now, we recall the definition of Orlicz spaces. For a detailed treatment of Orlicz spaces, we
refer to [2].

Definition 2.4.1. Let ¢ : [0,00) — [0, 00| be increasing and left-continuous function with

#(0) = 0. Suppose on (0,00) that ¢ is neither identically zero nor identically infinite. Then
the function ® defined by

o) = [ oludu, (520
0
is said to be a Young’s function.

Remark 2.4.2. Note that a Young’s function is convex on the interval where it is finite.
Indeed, given s,t >0 and XA € (0, 1) we have

O (As+ (1 —MN)t) = /0A5+(1—>\)t o(r)dr = /OS o(r)dr + /:H(l_/\)t o(r)dr
Y /0 Co(r)dr 4+ (1 \) /0 () + / Y a2

Since ¢ is increasing and left continuous we have

AsH(1-A)t
/ S(r)dr < (1= N)(t — 8)6 (As + (1 — \)B)

//\ o(r)dr > Nt — s)p (As+ (1 — N)t).

s+(1-N\)t

Then, comparing the two previous inequalities we obtain

As+(1=N\)t t
)\/s i o(r)dr < (1 - A)A o(r)dr,

s+(1-M)t
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and so,

As+(1-A)t As+(1-A)t As+(1-A)t
/ s(r)dr = A / S(r)dr + (1 — A) / o (r)dr

As+(1-A)t t
< (1—)\)/ ¢<7~>dr+(1—A)/A o(r)dr

sH(1=A)t
— (- / o(r)dr- (2.5)

Finally, plugging (2.5) in (2.4), we obtain

B (As + (1— \t) < A/OS o(r)dr + (1 2) /thb(r)dr — AD(s) + (1 — A)D(L).

Moreover, note that limg_, ®(s)/s = oo. Indeed, for all ¢ > 0 we have

o) 1 [ I 1.(t
= 2/0 P(s)ds > n o ¢(s)ds > §¢ (5) ’

and then, letting t — oo, we obtain the desired result.

Definition 2.4.3. Let ® be a Young’s function. The Luzemburg norm p® is defined by
p?(f) =inf{k >0 : M*(kf) <1}, f € M(R"), (2.6)

M®(kf) = / o (@) da.

Remark 2.4.4. If p®(f) > 0, the infimun in (2.6) is attained. Indeed, we denote

i i [ 8 () ).

Let {k,} € A be a decreasing sequence. We claim that lim,, k,, = p®(f). In fact, given € > 0,
there exists k, such that k, — p®(f) < ¢, since p*(f) is the infimum of A. Then, if n < N
we have

where

kv = p®(f) <k = p"(f) <&,

and so lim,, k,, = p®(f). Thus @ (|f(z)| /k,) T @ (|f(z)| /p®(f)) , beucase ® is left-continuous.
Finally, we obtain, by monotone convergence,

|f(37)!>
/nq) (/ﬂ)(f) dest
Therefore p®(f) € A and

p<1>(f):min{k>0 :/JD(@)dxgl}_
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In order to show that p® is an r.i. norm, we shall need the following preliminary result.

Lemma 2.4.5. If ® is a Young’s function, then
f=0ae & M*(kf)<1, Yk >0.

Proof. Suppose f = 0 a.e. Then p®(f) = 0 and so M®(kf) < 1 for all k > 0. Conversely,
suppose that M®(kf) <1 for all k& > 0, but for some € > 0 we have |f| > ¢ on a set E of
positive measure. Then

M‘I’(k:f)2/E<I>(ks)da::|E|<I>(ke).

Since ®(s) 1 oo as s T oo, we therefore obtain the contradiction that M®(kf) 1 oo as
k1 oo. O
Theorem 2.4.6. If ® is a Young’s function, then p® is an r.i. norm.
Proof. We need to verify the following properties:

e p?(f)=0 & f=0ae. Indeed, it follows from Lemma 2.4.5.

o p®(af) = ap®(f) Va > 0. It is suffices to consider p®(f) > 0. We have

Oé|f(l’)|> _ (|f(l’)|>
fo G )= o (g =
hence p® (af) < ap®(f). On the other hand, since [, ® <°“f )dq: < 1, we have

*(af)
p*(f) < p® (a

f) /e
o 02 (f+9) <p(f)+p®(g), for all f,g € M(R"). Indeed, let v = p®(f) + p*(g) <
and let a = p®(f)/v andﬂ—p (9)/y with a + 8 = 1. By (2.6),

M® (f/p*(f)) <1 and M® (g/p"(g)) < 1.

Since ® is convex, we have

e (%) =M (pg(Jff) i pfgg)) S odt” (pq’{f)> +aM* (p‘bgég))
<a+p=1

Hence, we conclude that p® (f +g) <~ = p*(f) + p*(9).
e 0<g< fae = p®(g) <p?(f). Indeed, 0 < p?(f) < co. Then

e (p‘lféf)) = (p‘p](cf)) ’

and p®(g) < p®(f).
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e 0< fut fae = p*(f.) 1T p®(f). Indeed, by the above property, the sequence p®(f,)

is increasing. Let a,, = p®(f,) and put o = sup av,,. Since p®(f) > a,, for each n, it
follows that p®(f) > a. We must show p®(f) < a. This is clear for a = 0 or @ = o0,
so we may assume that 0 < a,, < oo for all n > 1. In this case

()= ()<

and the monotone Convergence theorem shows that the quantity on the left converges
to M® (L). Hence M® (1) <1, and therefore p®(f) < a.

Let £ C R™ any measurable subset. Let b denote the measure of E' (we may assume
b > 0). We claim that,

Pé(XE) < 00

Indeed, the Young’s function @ is not identically infinite on (0, c0), and it is continuous
on the interval where it is finite. Since ®(0) = 0, it follows that there is a number k& > 0
for which ®(k) < 1/b. Then M®(kxg) = b®(k) < 1 and hence p®(yr) < 1/k < o0o.

Let E be a subset of R" of measure b > 0. Let f € M(R") with 0 < p®(f) < co. With
k=1/p%(|f]), Jensen’s inequality gives

o (5 [rr@las) <5 [ @@ < e <

Hence, since ® increases to oo, there is a constant ¢ ,which depends on ® and b, such
that

%/Ek|f(x)|dx§c ;»/E|f(a:)|d:c§cbp‘1’(f)-

The rearrangement-invariance follows from the fact that M®(f) = M®(g) whenever f
and g are equimesurables. The latter property needs only be established with g = f*.
There is no loss of generality in assuming f to be a simple function. In that case,
we may write f(z) = Zjvzl a;XE,(r), where the sets E; are pairwise disjoint and
a; > ...>ay. Then,

ZCLJX[BJ ..B;)(t), where B; —Z|E| and By = 0.

7j=1

So,

M®(f) = /Rn d (Z%’X@(@) dx = Z |Ej| ®(ay),
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and

Hence, M®(f) = M®(f*

~—

]

Definition 2.4.7. Let ® be a Young’s function. The Orlicz space is the rearrangement
invariant Banach function space of those f € M(R™) for which the Luzemburg norm

1 £llze = p*(f),
is finite.

Example 2.4.8. If we take ¢(u) = puP~!, where 1 < p < oo, then ®(u) = u? and the Orlicz
space L®(R") is the LP(R").

2.5 Lorentz spaces

This section contains definition and some results from Lorentz spaces that will appear later
on. For more information on Lorentz spaces see [2] and [13].

Definition 2.5.1. Given f € M(R") and 0 < p,q < oo, define
Um0 <g <,
T 9l <
o (M7, g = o0,

The set of all f € M(R") with || f|| pyagny < 0o is denoted by LP(R") and is called Lorentz
space.

Remark 2.5.2. Using the notation of Example 2.2.2, when 0 < ¢ < oo we have

1/a 1/q
nfum,q(Rn):(g) alBY +af (B~ BY?) .+t (BYT - BT

It follows that the only simple function with finite |[|-|| Looa(gny DOTI i identically equal to
zero; for this reason we have that L>>9(R") = {0}, for any 0 < ¢ < 00

The next result shows that, for any fixed p, the Lorentz spaces increase as the second
exponent ¢ increases.
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Proposition 2.5.3. Suppose 0 < p < oo and1 < q<r <oo. Then
LPA(R"™) < LPT(R™).

Proof. Suppose r = co. Using the fact that f* is decreasing, we have

t o ds 1/q t ) o ds 1/q 1/q
o= (2 [ lere) ) < (2L el ) < (2) il

Hence, taking the supremum over all ¢ > 0, we obtain

1/q
p
T (5) T

Now, suppose r < oo, we have

00 1/r
* T—q+q dt 1—q/r r
i — ( / [t/ (1)) 7) [ e 4 A
0

(r—q)/rq
p
<(2) T Wl

Note that |[-[|;5.q(gny , does not satisfy the triangle inequality if p < ¢ < oco..

Example 2.5.4. Consider f(t) =t and g(¢) = 1—t defined on [0,1]. Then f*(\) = ¢*(\) =
1 — A\. A calculation shows that the triangle inequality for these functions with respect to
the norm ||+, 4(gny would be equivalent to

(g +1)I'(p/q)
T(g+1+4q/p)

So, if we take ¢ = 2 and p = 4, we will obtain 2 < 1/12.

P <9
q

However, there is the following result.

Theorem 2.5.5. Suppose 1 < q<p < oo orp=q=o0. Then, (Lp’q(R”) ; ||'||Lp,q(Rn)> is a
rearrangement-invariant Banach function space.

Proof. The result is clear when p = ¢ = 1 or p = ¢ = oo since LP9(R") reduces to the
Lebesgue spaces L'(R™) and L>(R"), respectively. Hence, we may assume that 1 < p < oo
and 1 < g < p. We have

I+ Glnateeromony [+ 9V (OB (@
La
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The hypothesis ¢ < p implies that h*(¢)t'/P~1/9 is decreasing. Hence, since

[u+ore< [+

we may apply Proposition 2.3.6 and then Hoélder’s inequality to obtain

/OO tl/pfl/q(f—kg)*(t)h*(t)dt < /OO tl/pfl/Q(f*@) +g*(t))h*(t)dt

0 0

< ( / N tq/”‘l(f*(t))th> i,
i ( / g >>th) i,

= ||f||Lp,q(Rn) + ||9||Lp,q(Rn) ’

since ||k, = 1. This establishes the triangle inequality for ||-[|,.qgn) . The remaining prop-
erties of a r.i. Banach function norm are easy to verify. O

Although the restriction ¢ < p in the previous result is necessary, it can be avoided in
the case p > 1 by replacing ||| 5.4~ With an equivalent functional which is a norm for all
q=>1

Definition 2.5.6. Suppose 1 < p < 0o and 0 < ¢ < oo. The Lorentz space L®9(R™) consist
of all Lebesgue-measurables functions on R™,f, for which the quantity

0 tl/p ** q dt 0<q<
Hf“L(p,q)(Rn) - (f() [ f 1p } t ) ’ - q 00,
SUPg<t<oo (t Pfr (t)) , qg =00
is finite.
The following inequality is knwon as Hardy’s inequality.

Theorem 2.5.7. (Hardy’s inequality) Let 1 be a non-negative measurable function on (0, c0)
and suppose —o0o < A <1 and 1 < g < oo. Then,

([0 [oom) The ([ oo}

with the modification if ¢ = oo

Proof. Writing 9(s) = s~ s"74)(s) and applying Holder’s inequality, we obtain

1 rt 1 [t 1/¢ 1t ) 1/q
;/0 P(s)ds < (2/0 sAds> (;/0 sha/a 1/1(3)qu>

t
=(1- A)*l/q’t(lﬂ)(qfl)/q (/ sA(ql)@b(s)qu)
0

1/q
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Hence,

[ (4 o) s [ f e

=(1-N" /O Ma=Uy) () / 2dtds.

Lemma 2.5.8. If 1 <p < oo and 0 < q < oo, then

”fHLp,q(]Rn) S ”fHL(Pﬂ)(]R") S p/ HfHLIMJ(Rn) ) f € M(Rn)a (27)

if ¢ = 00, the corresponding integral in (2.7) is replaced by the supremum in the usual way.

Proof. The first inequality in (2.7) follows from Lemma 2.2.10. The second follows from
Hardy’s inequality (Theorem 2.5.7). [

Theorem 2.5.9. If 1 <p<oo,1<qg< o0 orifp=q= o0, then (L(p7Q)(R") : H~H(p7q)) is a
rearrangement invariant Banach function space.

Let us determine the associate spaces L™ (R™).

Theorem 2.5.10. Suppose 1 <p<oo,1<qg<o0 (orp=q=1o0rp=q=0o0). Then the
associate spaces of L®9D(R™) is, up to equivalence of norms, the Lorentz space LP-7 (R")

Proof. See [2]. O

2.6 Lorentz Zygmund spaces
In this section, we define the Lorentz-Zygmund spaces. For more details on these space see
[2].

Definition 2.6.1. Let Q C R"™ be a subset with |Q)] = 1. Suppose 0 < p,q < oo and
—00 < a < oo. The Lorentz-Zygmund space LP%*(Q)) consist of all Lebesque measurable
functions f on 0 for which

44

1/q
Hfupq.a:{ (o [2/7 (10g §) po(6)]" %) ™, 0 < q < o0,

()]
SUPg<t<1 [tl/ ( )a fr(t )] ) q =0

53

is finite.

Example 2.6.2. For a = 0, LP9:*(Q) coincides with the usual Lorentz space LP((2).
Moreover, L®(Q) = L>®:=1(Q) with ®(t) = exp(t") and LP*?0(Q) = LP(Q).
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2.7 Interpolation spaces

This section contains definitions and results from interpolation theory that will appear later
on. For a detailed treatment of interpolation spaces, we refer to [2].

Definition 2.7.1. A pair (X, X1) of Banach spaces Xo and Xy is called a compatible couple
if there is some Hausdorff topological vector space in which each of Xy and X, is continuously
embedded.

Any pair (X ,Y) of Banach spaces for which X is continuously embedded in Y (or vice
versa) is a compatible couple, beucase we may choose for the Hausdorff space the space Y
itself.

Theorem 2.7.2. Let (X, X1) be a compatible couple. Then Xo + X7 and Xo N Xy are
Banach spaces under the norms

sy = 06 {oll g + il b+ and 17, =max (S, 171}

respectively.
Proof. See [2, Theorem V.1.3]. O

Definition 2.7.3. Let (Xo,X1) be a compatible couple of Banach spaces. The Peetre
K -functional is defined for each f € Xo+ Xy andt >0 by

K (f.t; Xo, X1) = inf {[| foll s, + tlfullx, - f = fot fi},

where the infimum extends over all representations f = fo+ fi of f with fo € Xy and
f1 € Xi.

Example 2.7.4. Consider the compatiple couple (L'(€2),L>°(€2)) . Then

K(f. 6 INQ), I®(Q)) = / £*(s)ds.

Theorem 2.7.5. Let T be an admisible linear operator with respect to compatible couples
(Xo,X1) and (Yy,Y1). Then

K(Tf,t; Y, Y1) < MoK (f,tMy/Mp; Xo, X1)
for all f in Xo+ X1 and all t > 0.
Proof. The admisible operator T' satisfies

ITfilly, < Mi|lfillx,, fi€Xi,i=0,1.
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If fe Xo+ Xy and f = fo+ f1 is any decomposition of f with f; € X; (i = 0,1), then
Tf=Tfo+Tf and Tf; €Y;, (i =0,1). Hence,

KT, Y0 ) < T ol + ¢ 1T Al < My (HfoHXO Mo Hfluxl)

Taking the infimum over all such representations f = fy + f1 of f, we obtain
K(Tf, t, }/0, }/1) S MOK<f, tMl/Mo, Xo, Xl)
0

Definition 2.7.6. Let (Xo, X1) be a compatible couple. The space (X 7X1)0,q consist of all
f i Xo+ Xy for which the functional

1l = { S A D7 0<hllgg <o
Pr>0 (f.1), 0<#<1l,g=00
is finite where K(f,t) = K(f,t, Xo, X1).
Theorem 2.7.7. Let (Xo,X1) be a compatible couple of Banach spaces. Then (Xo, X1),,
endowed with the norm ||-||, . is a Banach space.

XoNX; = (X(),X1>9 — Xy + X

Example 2.7.8. An important example is the case X, = L'(Q), X; = L>®(Q) for which the
corresponding interpolation spaces are the Lorentz spaces: for 1 < p < oo and 1 < ¢ < o0
one write

LP(Q) = (L1(Q), L*(Q))

1/pq"
Remark 2.7.9. Let (Xy, X;) be a compatible couple and consider two interpolation spaces

790 = (XO 7X1) 791 = (X07X1)

00,90 01,41

where 0 < 0y < 6 < 1l and 1 < qy,q1 < oo. Then (790,791) is itself a compatible
couple. The following theorem relates the K-functional of the underlying couples (Xo,X1)
and (Xg, , Xo, ) . Its proof may be found in [16]. We shall write

K(f,t) = K(f,t; Xo, X1), and K(f.t) = K(f,t; Xg,, Xo,).

Theorem 2.7.10. Let (Xy, X1) be a compatible couple and consider two interpolation spaces

790 = (XO 7X1> 791 = <X07X1)

00,90 ° 01,q1°

where 0 < 0y <0y <1 and1<qy,qu < oo. Then

_ 1/v 1/q0 - a

where v = 6, — 0.
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Remark 2.7.11. With the same technique we can estimate K (f,t) in the two extreme
cases K(f,t; Xo, Xg,) and K(f,t; Xp,, X1). The result in these two cases is

[e.9]

1/
K@“&YMZ(Z @%Kmm“%)

1/6,

S

£1/(1=6g) ds 1/q0
K(f,t;YQO,Xl) ~ (/ (S_GOK(f, 3))‘10 _) '
0

2.8 Weighted Hardy operators

Let n < 2and 1 < m < n — 1. We establish properties of Weighted Hardy operadors.
Throughout this section we present results proved in [18].

Lemma 2.8.1. Let H,,/,, and Hr’l/m be the associate weighted Hardy operators defined by

<mmmwzlﬂmWH@<@meﬂWHéf@w

feMy(I),tel=(0,1). Then,

Hpp 2 LNI) — L™ Hyp o L™ — L(1), (2.8)
and
nm f LMY — LYooy Hy s LYT(T) = LO(T). (2.9)

Remark 2.8.2. Note that H,/,, f is nonincreasing in ¢. Indeed, let ¢; < t; € I. Then,

Hypm(ts) = /t F(s)s™/"1ds < /1t F(s)s™/m " ds = Hypm(t1):

Proof. (Lemma 2.8.1). Let us prove (2.8).

1 1 t
Ln/(n=m) 1 (1) = /0 (Hn/mf(t))** It = / ¢/ </0 (Hn/mf) (y)dy>

0

1 1 1
< /0 min ( / f(t)tm/”_ldt) ds ~ /0 F(t)dt = C |l

Hence, H,/,, : L'(I) — L™=™):1(]). Now,

| Hojm 1|

1
o<tk 0

1
oy = 0, ()" (@) [ g1t < [P (905 = s
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Therefore, H,,/n, : L"™(I) — L*°(I). Let us prove (2.9).

Jo (H,,, F)()g(t)dt . SN (Hopjmg) () £ (£)dt

” n/ HL /=m0 (1) 440 191l o 1y g#0 191l po/mr 1)
|| H 8| oo iy 111 1
n/mJ || Leo (1) LY(I)
< sup = HfHLl(I)
970 ||9||Ln/m,1(1)

Therefore, H , ~: L*(I) — L™(M™=m™):>(]), Finally,

n/m
Jo (HL o F) (g (t)dt . S (Hopmg) (8) £ (2)dt

m oo u =
” " HL 970 ||9||L1(I 970 ||9||L1(1)
||Hn/mgHLn/(n m)1(] ||f||Ln/m 0]
< sup - S Ml
470 1911 21.(r)
Hence, the proof is complete. O]

Additional results involving H,, /,, and H), Jm require the supremum operator 75, ., defined
by

(T f)(t) := ™™ sup s™"f*(s), with f € M(I) and t € I.

t<s<1

Remark 2.8.3. Note that (7),/,,f)(t) is non-increasing in ¢. Indeed, let t; < t; < 1. We
have

t;m/n sup Sm/nf*(S) Stl—m/n sup Sm/nf*(s) Stl—m/n sup Sm/”f*(3>’

to<s<1 ta<s<1 t1<s<1
that is (10, /m f)(t2) < (Toymf)(t1).
Lemma 2.8.4. The operators T,,/,, have the following endpoint mapping properties:
Toujm = L™ (I) — LM™2(T), (2.10)

and
Tojm : LN(I) — LY(I). (2.11)

Proof. Let us prove (2.10)

t
— m/n—1 —m/n m/n rx
[y — Sup ¢ /0 s sup y f*(y)ds

t
< sup "/t / sT™™ sup Y™ (y)ds
0<t<1 0 0<y<1

R psmeoe 1y -
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Now, let us prove (2.11). It sufficies to verify HTn/meLl < || fll;1, for f € D(I). Given such
an f # 0, define

(RF)(t) = sup s™/"f*(s),

t<s<1

and set A={k e N : (Rf)(rr) > (Rf)(rg-1)}, where 7 is given by

Tk
/ gy — gk,
0 n—m

that is, r, = 27™/(»=m) k =0,1,... Then, A is non-empty. Take k € A and define

. :{ 0 if (Rf)(t) = (Rf)(re), t € (0,7&];
F min {r; ; (Rf)(r;) = (Rf)(rx)} otherwise.

Note that,
Rf(0) = sup s™/"f*(s) = sup s™/"f*(s) = sup sup s"™/"f*(s)
0<s<1 0<s<1 O<u<l u<s<l
= sup Rf(u) = sup Rf(u) = Rf(ry).
O<u<1 O0<u<ry
Thus,

(RF)(t) = (Rf)(re), ke At [z,

Moreover, by the definition of A, sup,, <,., t™/"f*(t) is attained in [ry,75—1) when k € A.
Therefore, for every k € A and t € [z ,7x_1), we have

(RF)() < (Rf)(ri) = sup  s™"f*(s) < ri/0 f5(ry).

rp<s<rg—1
So,
1
HTn/meLl < Z/ (Rf)(t)t~™/"dt +/ (Rf)(t)t~™/"dt
keA Tko
Thk—1
< Zrm/n rk / t_m/ndt S Zrk_lf*(rk)
keA 0 keA
>3 t)t < ||fll )
keA T’“+1
where kg = max {k € A}. O

We continue with some further properties of T, /y,

Theorem 2.8.5. Let X (I) be an r.i. space. Then,

1 T YOy 2= 677 O]y -
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The following two lemmas are essential to the proof of Theorem 2.8.5.
Lemma 2.8.6. Forall f € M(I) andt € I
(Toymf)™ (1) < (Toym f™) (1)-

Proof. Given f € M (I)and t € I, set

fu(s) = min[f(s), f*(®)], f'(s) =max[f(s) — f*(t),0], s € (0,1).
Then,

(fe)"(s) = min [f*(s), f* @), (f)"(s) = (f*(5) = [*(8)) X0 (),

and so, f*(s) = (f1)*(s) + (f*)*(s), s € 1. Since, (Tp/m f)(t) is noncreasing in ¢,

*ok ]- ! —m/n m/n px
(Tomf)* = [ 57" sup ™" (g)ds
0 s<y<1
1 [ -m/n m/n * L[ -m/n m/n( ptyx
<= s sup ™" (f) (y)ds+ = [ s sup y"™"(f*)"(y)ds
t 0 s<y<1 t 0 s<y<1
=1+1I.
Since,
1 t
I = —/ s7™™ sup ™™ min [ (y), f*(t)] ds
L Jo s<y<1
1 t
— ;/ s~™" max {sup Y™ (t), sup y™"f* (y) | ds
0 s<y<t t<y<1
1 t
B _/ s sup Y™™ (y)ds
t Jo t<y<1
n n
= t—m/n Su m/n f - Tn m t 9
n—m tgygly Fw n—m( /f)()
and
1 [ —m/n m/n( pty* 1 ' t
==/ s sup y""(f) (y)ds < <~ [ (Tumf*) (s)ds
tJo s<y<1 tJo
I
<5 [ s
0
1

_ 2/0 [F7(s) — f(8)] ds < £~ (1),

We conclude that, for f € M (1), t € I,
(Tn/mf) " (t> é f** (t) + (Tn/mf)(t) é (Tn/mf**) <t)
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Lemma 2.8.7. Let X(I) be an r.i. spaces. Then,

sup Sm/nf** (S)
t<s<1

 tel

X(I)

lxar

Proof. We only need to prove

[ i < [ ) () s

0<y<1

with C' > 0 independent of f € M (I), since in that case by the Hardy-Littlewood-Pélya
principle we will obtain the result:

S || By (g™ () S ||

m/n pEx
tiljgls f(s) ||X(I) HX(I)'

X(I)

To this end, fix f € M, (I) and t € (0, 1) and take f, and f* as in the proof of Lemma 2.8.6.
Then

sup ¥/ (y) = sup y™" [(£)7(y) + (F)* ()]

s<y<1 s<y<1
< sup y™(f) () + sup g™ () (y)-
s<y<1 s<y<1

Now,
o) - 0, 0<y<t,
() @):{ i[f’g{“(t)—f*(t)], eyl

Hence, for 0 < s <t

sup y™/"(f)**(y) < max {Sup y™ " (y) . sup ym/”ltf**(t)} < sup y""f*(y),

s<y<1 s<y<t t<y<1 s<y<t
and so
t Y
/ sup ™" (fH)* (y)ds < sup ym/”_l/ f*(2)dzds
0 s<y<l1 0 s<y<t 0

m/n1d>( t* d)

S(/O S y YAV f*(s)ds
ﬁm/n

< 2o [

But, since fftg < fg g" and g (5)* (s) = g* (3),
[ Qs Q) Gz

2
t
_2—m/ntm/n/ f*<8)d8,
0
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which yields

/ Csup (1) (s < g / o) (L) ds

s<y<1
To prove

S

/Ot sup y™" (f;)™ (y)ds < C/Ot (") (§> ds

s<y<1

we will show there is a constant C' > 0 so that, for each f € M, (1),

Y 1
sup y™"™ (f)* (y) < C sup ym/”l/ I (g) dz, 0<s<1,0<t< 3 (2.12)
/

s<y<1 t<y<l1

and, moreover

s Yy
Sm/nf** <f) _ Sm/n—l/ I <E> dz>C! sup ym/”_l/ fr <E> dz, (2.13)
2 0 2 t<y<1 t 2

on a set of measure al least ¢. This will suffice, since the right-hand side of (2.12) does not
depend on s. Let us prove (2.12):

(™) = F*(D)x0n W) + Bf*(t) - / ' f*(z)dz] o)

whence
LY
sup 3" ()" ) <€)+ sy [ e
s<y<1 t<y<1 t
y
< (Z—m/n-i-l + 1) sup ym/n—lym/n—l/ f* <E> dZ,
t<y<1l t 2
since

Y 2t
m/n—1 * z > m/n—1 * E > m/n—1ym/n px*
sup y /t f <2> > (2t) /t f <2> dz > 2 tmIm ().

t<y<l1

Thus, (2.12) holds with C' = (27™/"*1+-1). Now, let’s prove (2.13). Next, suppose y € (t,1]

is such that
) Yo
sup ym/n_l/ I (z) dz:yén/n_l/ e (3) s
t<y<1 t 2 t 2

We consider two cases.
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e Let yo < 2¢. First note that ¢ < yo implies (Q?JO)m/nil < (%o +t)m/n71. Next, since
Yo/2 <t and f* is decreasing,

[r @[ r (e

Altogether, for yy < s < yo + t, we have

_ 2m/n sup ym/n—l f* <E> dz.

t<y<1 t

o Let yg > 2t. For yg —t < s < 1y, we have

s Yo—t Yo
0 2 0 2 t 2

Y z
= sup ym/”l/ fr <§> dz.
t

t<y<1

Therefore, the proof is complete. O
Proof. (Theorem 2.8.5). By Lemma 2.8.6 we have (1),/,f)*(t) < (Tn/mf*)(t). Then by

Lemma 2.8.7 we have

sup Sm/nf**(s)
t<s<1

[ ™ (T O 1y < " (Tagn f IOy =

S Hsm/nf**(s)HX(I) :

X(1)



Chapter 3

Sobolev spaces

3.1 Introduction

In this chapter, we present a brief description of those aspects of distributions that are
relevant for our purposes. Of special importance is the notion of weak or distributional
derivative of an integrable function. We also define the Sobolev spaces and collect their most
important properties. We conclude this chapter proving the Sobolev embedding theorem.
Such theorem tells us that W!'LP(R") — L(R™) for certain values of ¢ depending on p and
n.

3.2 Definitions and basic properties

Consider an open set {2 C R™ and fix a compact set K C 2. We define
Di() ={f € C™(Q) :supp f C K}.

We say that ¢p — ¢ in Di(Q2) if DY¢r — D¢ uniformly for every o € N™.

Definition 3.2.1. Let Q2 C R"™ be an open subset. A distribution on () is a linear mapping
u : D(Q) — C such that for every compact set, K C Q, uip, () € Dr(2)'. We denote D'(Q)
the complex linear space of all distributions on ).

Remark 3.2.2. Let f € L (Q) and (¢, f) = [, f(z)p(x)dz. Then uy = (., f) belongs to
D'(Q2). Indeed, let K C Q be a compact subset and let {gbk} € Di(Q2) such that ¢, — 0 in
Di(2) (i.e Dy — 0 uniformly for every ao € N") ; we have

[ o@s@s| <ol [ s

Then us(¢r) — 0; hence u; € D'(Q). The linear mapping f € Li,. — (., f) € D(Q) is one
to one, so we may consider L{ _(Q) C D’'(2) and therefore LP(Q) C D'(Q)
since LP(Q2) C LL () for 1 < p < co.

¢k7 ’_

35



3.2. Definitions and basic properties 36

Definition 3.2.3. Let a = (ay,...a,) € N and f € L} (), we define the distributional
derwatives of f, D, as follows

| D t@eta)ds = (1) [ f@)Do()s o€ D),
Q Q

where |a| = a; + ... + .

Definition 3.2.4. Let Q2 C R"™ be an open set, 1 < p < oo and m € N. The Sobolev space of
order m € N is defined by

WmLP(Q) :={u € LP(Q) ; Du € LP(Q), || < m},
where D*u represent the distributional derivatives of u.

Theorem 3.2.5. Let  C R"™ an open set, 1 < p < oo and m € N. The space W™LP(Q2) is
a Banach space with the norm

> 0<jal<m 10Ul oy » if 1 <p < oo,

[llyym o) = { maxo<a|<m | D] ooy, i p = 00

Proof. Let {u,} be a Cauchy sequence in W™LP(€2). Then {D%u,} is a Cauchy sequence in
LP(Q2) for 0 < |a| < m. Since LP(Q2) is complete, there exit u,u®* € LP(Q2), such that u,, — u
and D%u,, — u® in LP()) norm as n — oco. We claim that u, — u in D’(§2). Indeed, for any
¢ € D(Q2) we have

/Q |un(2) — w(@)|[p(2)| dz < 4]l [un = ull, =0

as n — oo. Similary D%u,, — u® in D’(Q). It follows that

lim [ D%, (z)¢(z)dr = lim(—l)o‘/un(a:)Dagb(x)dz = (—1)a/u(m)Da¢(m)dm

- /Q Dau(x)a;a:)da:.

Thus u, = D% in the distributional sense on Q for 0 < |a| < m, whence u belongs to
W LP(€2). Moreover, we have limy, o0 |[un — ullyym gy = 0, and so the space W™LF(Q) is
complete. [

Proposition 3.2.6. Let 1 < p < oco. Then D(R") is dense in W™LP(R™).

Proof. Let be ¢ € D(R") such that [, ¢(x)dx = 1. For every € > 0, we consider ¢.(z) :=
e "¢p(x/e). Let f € WMLP(R™), and set f. := f % ¢.. We have f. € C°(R"); moreover
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f*¢. — fin LP-norm as ¢ — 0. Indeed,
* Q¢ - pd =

[Veoo) - sorars [ ([

< [ ([ 150~ @l oy ) do
n RTL
1/p'
< ([ o)
Rn

= [ F = ey -0y
= /Rn HTsyf - fHLp(Rn) ¢(y)dy

fla—y) - f(a)] qzse(y)dy) -

then by the Lebesque dominated convergence and the fact that ||7.,f — f||p — 0ase — 0,
we obtain the desire result. Moreover, D*f. — D®f in LP-norm, as ¢ — 0, Va € N” such
that 1 < |a| < m. Note that Vi) € D(R")

D iyt = (-0 [ ([ e~ gpo.tnay) Doty

n

]Rn

=0 [ ([ s - ppretade) oty

— / (/ D2 f(z — y)w(x)da:) e (y)dy
- / D°f s gulw)(e)d

Thus, we have D*f. — Df, since D*f € LP. Note that the functions {f.} give the re-
quired aproximation, but they not have compact support. So we need to introduce the

two-paremetrer family
{7-5(77)fs} € D<Rn) 75 €€ RJF;

with n € D(R™) such that n(0) = 1. Fix € > 0, if we prove,
D*(rs(n)f:) = D*(f:)

in LP-norm as § — 0 for all 0 < || < m, where 75(n)(z) is the dilation operador defined by
75(n)(x) :=n(éz), 6 € RY;
we will complete the proof. Indeed, if |a| = 0 since
limn(0x) .(x) = fo(x) and [n(o2) ()] < |£.(2)] ac.
using the Lebesgue dominated convergence we obtain the desire result. Next, if 1 < |a| < m,

lim D(n(0z) fe(x)) = D*fe(x) and |D*(n(0z) fo(2))] < [fo(2)] + D" fe(@)] a-e.
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Then, by the Lebesgue dominated convergence, we obtain the desire result. Therefore, the
proof is complete. O

The following example shows that the proposition is not true for an arbitrary domain
Q C R

Example 3.2.7. Let Q = {(z,y) € R? : 0 < |2] < 1,0 <y < 1}. Let u be a function de-

fined on 2.
1 ifz>0

“(33’9)2{ 0 ifz <0,

Denote K = €. Suppose that there exists ¢ € C'(K) such that [lu — ¢[ly1 ) < & Let
L=A{(z,y) :—1<2<0,0<y<1}, R={(z,y) :0<2<1,0<y<1}.

We have [[@l 1y < |61y < € and similarly [[1 —¢l|,. ) < € from which we obtain

[l ry > 1 —c. Let &(z) = fol ¢(x,y)dy, by the Integral Mean Value Theorem, we know
that there exists @ and b with —1 < a < 0 and 0 < b < 1 such that ®(a) < € and ®(b) > 1—-¢.
fOo<e<1/2

b
1—2e < ®(b) — ®(a) = / @' (z)de < / D2 (x,y)| drdy < 27| Dogl| ey
a o

Hence, 1 < (2 + 21/ p,), which is impossible for small €. The problem with this domain is
that lie on both sides of part of its boundary. The condition which is called the segment
condition prevents this from happening and guarantees that D(R") is dense in W™LP(Q)
for 1 <p < 0.

3.3 Riesz potencials

Definition 3.3.1. Let 0 < a < n and f € D(R™). We define the Riesz potencials by

1 nta ‘ 22T (o)2)
L (f)(z) = 700) Jan |z =y fy)dy, with y(a) = T(n/2 = a/2) (3.1)
with (o) = %

Remark 3.3.2. Since the Riesz potencials are integral operators it is natural to inquire about
their actions on the spaces LP(R™). We formulate the following problem: given a,0 < v < n
for what pairs p and ¢, is the operator f — I,(f) bounded from LP(R") to L%(R™). Suppose
that we had an estimate

||]a(f>||LQ(]R") <C ||fHLq(Rn) )
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for some positive indices p,q and all f € LP(R™). Then p and ¢ must be related by

In fact, let f € D(R™) non-negative. Consider the dilation operador defined by

75(f)(x) = f(6x), 6 € RT.

Then
1 vt iy — [ e s
L)@ =~ [ o=l g0y = = [ o= 2o )y
= (L/ |0z — z|_"+°‘ f(2)0~ %y = 6°1s(Iof)(x);
thus
Ha(ms(P)l, = 0 Il fll, = 6" afll, < Cllmsfll, = C57| £,
Hence

1o fll, < Co-Hrrtateln g

Suppose now that 1/p > 1/q + a/n, letting 6 — oo obtain that I,(f) = 0.Similary, if
1/p < 1/q+ a/n letting 6 — 0, we obtain that || f||, = co. Thus, this inequality is possible
only if 1/¢g=1/p — a/n.

Theorem 3.3.3. Let0<a<n,1<p<qg<oo, 1/g=1/p—a/n. If f € L}(R"), then
Al
o 1) > N < (FH)

Proof. Let be K(x) = |z|™""®, we consider the transformation f — K % f (which differs
from f — I,f by a contant multiple). We decompose K as K; + K, where

_ [ K(x), if|z|<p
() = { 0 if |z| > p

_ [ K(z), iff|z|>p
L E i

with u a fixed positive constant which need not to be specified. Note that K; € L'(R") and
K., € L*. Suppose that Hsz =1.Since K * f = K, * f + K * f, we have

{z : [Kx fl)] > 20 < o o [Kyx f(2)] > A+ Ko o [Koo x f] (2) > A}
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However
1Ky flly BT IAE K pe
o Ko fo)| > M| € =2 < = T = e
since
1Kol = [ el de = e
z[<p
Next
1Ko flloo < 1Kol 1F1], = 1 Kscll, = e/,
since

a5 )
sy = ([ el )
|z|>p

Now, if /7 = A, we obtain ||[Ky|, = A Take g = ¢A™%™ to have this value; then
| Koo * fll, < Aand so |[{z : |Kw * f(x)] > A} = 0. Finally

lw:W*NM>%Hs%?:dw:4£¥)

Hence, the mapping f — K * f is of weak type (p,q), in particular when p = 1. O

Theorem 3.3.4. Let0<a<n and 1 <p<q<oo with1/q=1/p— a/n. Then,

Haflly < Ap g £l -

Proof. 1t follows from Theorem 3.3.3 and the Marcinkiewicz interpolation theorem. ]

3.4 Sobolev embedding theorem

In this section, we will study the Sobolev embedding theorem. It asserts that:
e if 1 <p < mn,then W'LP(R") — LI(R") where p* = np/(n — p);
e if p=mn, then W!LP(R") — LI(R"), for every p < q < oc;

e if p > n, then W' LP(R") — L>®(R").

Embeddings: 1 <p<n
Theorem 3.4.1. Letn > 2. If1 <p <n, then

pn

WLLP(R™) — L (R"), where p* = :
n—p

To prove this theorem, we need the following lemma. It gives an appropriate way of
expressing a function in terms of its partial derivates. Its proof can be found in [27].
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Lemma 3.4.2. Let f € D(R") then

fa) = S [ Dile— v,

Wn-1 57 Jre i

where w,_, 1s the area of the sphere S"!.

Proof. (Theorem 3.4.1) Assume that f € D(R™). By Lemma 3.4.2 we have

n

OIS . Dif(x =)yl dy =Y 1 (D, f) ().

j=1 j=1

Hence, we get

11 S /
Rn

Now, let f € WILP(R™). Since D(R") is dense in W!*(R"), there exists {fi.} € D(R") such
that || fr — f||W1,p(Rn) — 0. Hence, we get

n

S5 (Df) (a)

Jj=1

q n n
a3 [ 10D, @) do S Y 1D -
j=17R" j=1

1 = Firll poany D IDs fr — Dj firll 1o my »
j=1

and so the sequence {fx} also converges in LI(R™) norm and this limit is equal f. Thus
f € LY(R"™) and

1 oz = DI Fll oy < 1l Loy -
j=1

This shows that f € L4(R") and the inclusion mapping of W!LP(R") into L?(R™) is contin-
uous. [

At the end of fifties, Gagliardo [12] and Nirenberg [22] extended Theorem 3.4.1 to the
case p = 1. Note that the argument used in Theorem 3.4.1 does not work in case p = 1
beucase Theorem 3.3.4 fails for p = 1. A different idea is neeeded and it is contained in the
next lemma, which is proved in [19]. We use the notation Zj, for the vector in R"~! obtained
from a given x € R™ by removing its kth coordenate, that is

A~ n—1
Tp= (21,0, Th1, Thg1 -+ ,Tn) ER"T

Lemma 3.4.3. Let n > 2. Assume that the functions g € L'(R"™ ) k = 1,... ,n are
non-negative. Then

n n 1/(n—1)
[ Mot o< (1] [ a@as |
" k=1 k=17 R
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Proof. The proof is by induction on n. If n = 2, let
g(x) == g1(22)ga(z1) With 2 = (21, 25) € R?.

Using Tonelli’s theorem we get

/RQg(x)dx = </R gl(l'g)dl'g) (/R gg(l'l)dl’l) .

Assume next that the result is true for n and let us prove it for n + 1. Let

n+1
z) = [[ (&) V", with g, € L'(R").
k=1

Fix x,.1 € R. Integrating both sides of the previous identity with respect to xy,... ,z, and
using Holder’s inequality, we get

1-1/n
/ g(x)d:v/ni < </ 9n+1(9€n+1 d$n+1> (/ Hgk Uk > Tnt1) /(" 1)dy>

where y = (x1,... ,2,). Since x,4 is fixed, by induction hypothesis we have
n 1-1/n n 1/n
(/ Hgk(?ﬁc 7$n+1)1/(n_l)dy) < <H/ Ir (U » $n+1)d@c) .
R" g i JRae
Thus

[ stz < ([ gatemians) (H / gk@k,xm)dsz) .
n n k1 Rn—l

Integrating both sides of the previous identity with respect x,, 1 and using Holder’s inequality

we get
n+1 1/n
/ x)dx < <H/ k(T d.rk> .

Theorem 3.4.4. Letn > 2 and p = 1. Then,
WILHR™) < L™ (R™).

Proof. Let f € D(R™), we have

\f(:c)|§%/R|Dkf(x)|dxkzgk(:c}) k=1.... .n



Chapter 3. Sobolev spaces

43

Applying Lemma 3.4.3 we obtain

n n 1/(n—1)
|fa)[ ) de < / Hgk@)l/(”—”dwé (H / dwk)
Rn n Rn— 1

k=1
1/(n—1
= 2n/n D H“Dkf“L/l((Rn)’

hence

1/n
(H 1Dk 11 )> :

1/n
If we use the fact that (H?Zl aj> < % Z;_l a;j if a; > 0; then as consequence we have

N | —

Ln Rn S

I/

1 n
||f||L”’(]R") < om Z ”DkaLl(R”) . (3-2)
k=1

Now, let f € WL (R™). Since D(R") is dense in W1-1(R"), there exists { f,,} € D(R") such
that [|f — fillw1pi@ny — 0, as m — co. Hence, by (3.2) we have

1 n
||fm - fm’HLn' S % Z ||Dkfm - Dkfm’HLl(Rn) s
k=1

hence f € L™ (R"), and
1 1
||f||Ln’(Rn) < m ”DkaLl(Rn) < m ||f||W1L1(R”) :

k=1

O
Corollary 3.4.5. Let n > 2. Let k be a positive integer such that 1 < k < n — 1. Suppose
1 <p<n/k. Then,

LIP(R™) — [P (R” ith pt = — 2
WD) < (R, with p’ = 0

Proof. The proof proceeds by induction on k. Note that Theorem 3.4.1 and Theorem 3.4.4

establish the case k = 1. Now, assume that

“UHL%—I(RW) 3 HUHW’C*lLP(R")? v e Wk_le(Rn>7

Let u € W*LP(R"); we take v = D;u 1 < j <n we obtain

where q_1 = — k ——
HDju||qu—1(Rn) S HDJ'UHWk—le(Rn)-
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Therefore,
n n
||UHW1L‘U€*1(R7I) = Z ”DjuHL‘lk—1(Rn) é Z Z HDaD]'uHLP(]Rn) é ”u”WkLP(R“) :
j=1 =1 0<|a|<k—1

Now, since kp < n, we have q,_; < n and so

”UHLq(R") < ||u||W1quf1(R") N HUHWqu(Rn)v

where ¢ = =L = 1L O
n—qg—1 n—kp

Embeddings: p=n

We have seen that for a given function u € W!'LP(R") and 1 < p < n, then

[l o gy = Nl oeny

where p* = np/(n — p). Note that when p tends to n, p* tends to co and so one would be
tempted to say that if u € WIL"(R") then u € L>*(R™). The following example shows that
this is false if n > 1.

Example 3.4.6. Put n = 2 and define u(z) := loglog (1 + |:cl|) . Let us prove that u €

W1IL? (B(0,1)). Indeed, it suffices to prove that for all k = 0,... ,n there is a positive
constant, ¢ > 0, such that

<c|[Dr¢ll, Vo € D(B(0,1)). (3.3)

/ u(z)Dyo(x)dx
B(0,1)
Indeed, if (3.3) holds the lineal form

»€D(B0,1) = (—1)’“/ u(z) Dy (x)da

B(0,1)

defined in a dense subspace of L? (B(0, 1)) is continuous for the L? norm; therefore by Hahn-
Banach’s Theorem it extends to a continuous lineal form F in L? (B(0,1)). Then, by Riesz’s
Theorem there exits g € L* (B(0,1)) such that

(F,6) = / g(@)d(a)da Vo € L* (B(0,1)),

in particular
1 [u@Dota)ds = [ gwpote)ds vo €D (50.1)

and so u € W'L?*(B(0,1)).
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Now we prove that u € W'L? (B(0,1)), let ¢ € D(B(0,1))

/ u(z)Dyo(x)dx
B(0,1)

< /B @D b

1/2
< ( / |u<x>\2dx) R
B(0,1)

Since
1 1\ 2
/ lu(z)|” dz = 27r/ r (loglog (1 + —)> dr
B(0,1) 0
:27r/ log? log3(1+t dt<27r/ log(1 +1) 1—|—t
1 t
1+4+¢
§27r/ (+)dt_2 /( ) e
1 3
we have
| u@)Di(w)ds| < Dbl o
B(0,1)

Hence, v € W'L? ((B(0,1)) but u ¢ L*> ((B(0,1)) beucase u(x) — oo when |z| — 0.
However, we have the following result which is proved in [19].

Theorem 3.4.7. If n < q < oo, then
W'LM(R") — LY(R™).

Proof. Let u € D(R") and v := |u|" where t > 1, by Theorem 3.4.4 we have

, 1/n/ , 1/n’
( u(a)| dx) _ ( o(@)" dx)
Rn Rn

S [ IDw@lde Y [ jute) ! D) ds
k=17 R" k=17 R"
1/n’ n
t—1)n’
< ([ un " ar) (ZHDW“L"(R")>’
" k=1

where in the last inequality we have used Holder’s inequality. Hence

tn' 1/(m'0) (t—1)n’ /'ty [ n 1/t
( ) dx) < ( () D" dw) S 1Dl
Rn R™ L
< (HU’HL(tl)"'(R") + Z HDkuHL"(R”)) )

k=1
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where we have used Young’s inequality with exponent ¢ and /(¢ — 1). Taking ¢t = n yields

H“HLn?/(nfl)(Rn) < Hu”WlL"(R")'
Now, assume u € W'L"/(=1(R") and let {u;} € D(R™) such that u; — win W!L»/(=D(R");
then we get
ls = wjll gz /en vy @y & N1 = Wsllyr oy 5
thus u; — u in L™*/~D(R") and so the embedding W'L"(R") < L"/("=1(R") is continu-
ous. Now, we claim that
WILMR"™) — LY(R")
is continuous for all n < g < n?/(n —1). We denote n?/(n — 1) = ¢;. Indeed, assume that
n < q<q and write 1/¢ = A/n+ (1 — X)/q, for some 0 < A < 1. Then

A (1-2)
el gy < (Il ngeny) (Hallzongeny) < 1l gy + ol oo
where we have used Young’s inequality with exponents 1/A and (1/))". Therefore

||u||LQ(]R") < ”uHL"(]R") + ||u||Lq1(]R") < HUHL"(]R") + ||u||W1L"(]R") < HUHWlL"(R")’
which shows our assertion. Taking ¢ = n 4+ 1 and using what we just proved gives that the
emdedding
W'L"(R") — Li(R™)
is continuous for all n < ¢ < n(n+1)/(n — 1). We proceed in this fashion taking t = n + 2,
n + 3, etc. ]
Corollary 3.4.8. Let n > 2. Let k be non-negative integer such that 1 < k < n — 1. If
kp = n, then
WFLP(R™) — LYR"), n/k < q < oc.

Proof. Assume that u € W*L"/*¥(R"), and so u € WF"LL"/*¥(R") and D;ju € Wk=1L"/k(R")
forall j =1,...,n. Since n/k < n/(k — 1) by Corollary 3.4.5, we obtain v € L"(R") and
Dju e L"(R") for all j =1,...,n. Therefore u € W'L"(R"™), and so by the Theorem 3.4.7

u € LI(R") for all n < ¢ < oo0. In other words, we have the following inequality for all
n<g<oo

ull oy S Nllirpngny = el prggny + D I1D5ull o gny
j=1

n
é ||u||Wk*1Ln/P(Rn) + Z HD]uHm/kfan/k(Rn)
j=1
S ||u||WkL"/k(R") + Z ||Daul|Ln/k(Rn)
0<|e|<k
< HUHWkLn/k(R")'

Therefore the proof is complete. O



47 Chapter 3. Sobolev spaces

Embeddings: n < p < o
Theorem 3.4.9. (Morrey’s Theorem) Let n < p < co. Then,

WLLP(R™) < L°(R™M). (3.4)
Moreover

sup M <C ||U||W1Lp(Rn) , where a:=1— 2' (3:5)

z ,y€R" x#y ’ ’ p

Proof. We start by proving (3.5). Let @) be an open cube containing 0 whose edges have
length r and are parallel to coordinate axis. Given x € (), we have

() — u(0) = /0 %u(tm)dt

and so
lu(z) — u(0 |</ Z|azk| | Dyu(tz)| dt <7‘/ Z|Dku(t$)|dt.
=1

Let ug be the measure of u on Q, ie.

1
ug = @/Qu(at)da:,

we have

lug — u(0 |</|Q’ (Z/ |Dkutx|dt>dx— t”(Z/ | Dyu(y |dy>

Since tQ) C @ for 0 < t < 1, using Holder’s inequality we have

/ |Dku(y)| dy S ||Dku||LP(Rn) tn/p’rn/p/'
tQ

Thus,

I-n/p ™

lug —u(0) < T—= > IDxull oy - (3.6)
P k=1

By translation, (3.6) is valid for all cube , @, whose sides have length and its edges are

parallel to coordinate axes; that is for all z € )

rl-n/p
lug —u(@) < 3 Z [ Dl o gy - (3.7)

Pkl

Then, we obtain

rl-n/p

Z [ Dxul] Lo gny -

k=1

bl
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Next, for any two points, z, y € R", there exist a cube of side r = 2|z — y| containing = and
y, hence

|u(y) — u(z)] -
Sup T 1-n/p S c Dku n S u ny -
z ,yER™ -ty |CE _ y|1fn/p ; H HL;D(]R ) H HWlLP(R )

Thus, it follows (3.5) for all u € D(R™). Now, we show (3.4). Given u € D(R"), x € R" and
cube of edge r = 1 which contains z by (3.7) we have

lu(@)] £ lugl + Y 1 Dxtl pony S llulliw ogan) -
k=1
Hence ||u||L°°(R”) ~ ||u||W1LP(]R”)‘ -
Corollary 3.4.10. Let k be integer such that 1 <k <n—1. Ifn/k < p < 0o, we then
WHELP(R™) < L=(R™).

Remark 3.4.11. The previous results can be formulated in term of functions in W*LP (),
where  is a domain which satifies certain properties. For more details see [1] and [21].



Chapter 4

Orlicz spaces and Lorentz spaces

4.1 Introduction

Let n be positive integer with n > 2 and let 2 C R™ be an open subset. We denote
as W4 LP(Q2) the clousure of D(Q) in W!'LP(Q). Throughout this chapter, we assume that
1| < 0.

In this chapter, present some refinements of Sobolev embeddings theorem. We have seen
in Theorem 3.4.1 that

W ILP(Q) = LP'(Q), with p* =np/(n—p), 1<p<n. (4.1)

Although (4.1) cannot be improved within Lebesgue space, if we consider Lorentz spaces we
have the following improvement

WaLP(Q) < LPP(Q), 1 <p<n. (4.2)

Those embeddings were observed by Peetre [24] and O’Neil [23]. Now, when p = n it is
known that W, L"(2) can be embedded in L(f2) for every n < ¢ < oo (Theorem 3.4.7), and
that Wy L™(Q2) cannot be embedded in L>°(2) (Example 3.4.6). Thus

Wy L™"(Q) — LYQ), n<q<oo. (4.3)

cannot improved within the Lebesgue spaces. However, if we consider Orlicz spaces we have
the following refinement

WEL™MQ) — LE(Q), () = exp(t™). (4.4)

This result was shown, independently, by Pokhozhaev [25], Trudinger [29] and Yudovich
[17]. It turns out that L®() is the smallest Orlicz space that still renders (4.4) true.
This optimality result is due to Hempel, Morris, and Trudinger [15]. It turns out that an
improvement of (4.4) is still possible. If we consider Lorentz Zygmund spaces, we have the
following refinement of (4.4)

W L™(Q) — L= 7HQ). (4.5)
This embedding is due to Brézis-Waigner [3] and independently to Hansson [14]. It can be
also derived from capacity estimates of Maz'ya [21].

49
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4.2 Sobolev embeddings into Orlicz spaces
In this section we will prove the Sobolev embedding

WILM(Q) — L2(Q), ®(t) = exp(t™).
First we prove the following result which will be useful later.

Lemma 4.2.1. Let x € R". If 0 < s < n, then

[l ureay < 2 g,

where a(n) is the volume of the unit n-ball.

Proof. Let B (x,r) be the ball such that |B (x,r)| = |2] . Observe that for each
y € Q\ B(xz,r)and z € B(z,r)\ Q, we have |z — y|* < |z — 2", and beucase

[Q\ B (z,r)| =B (z,r)\Q],

it therefore follows that

/ |os—y|—8dys/ o — 2| dz
ANB(z,r) B(z,r)\Q

—s+n
[re=says [ je-sfras = ST
Q B(z,r) —s5+n

where a(n) is the measure of the unit n-ball. But a(n)r™ = || and hence

s/n 1-s/n
/ o=yl dy < 2 L
Q - —s+n

Consequently,

Theorem 4.2.2. Let n > 1. Then,
WELM(Q) < LT(Q), ®(t) = exp(t").

Proof. 1t is sufficient to prove the theorem for functions v € D(£2). By Lemma 3.4.2 we know

that
|Dku
S / |
k=

r—yl"
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Suppose s > 1 and v € L* (), then

[ o vt |dx<z//|v ||Dku 0414,
< Z [ 1Dty ( / L?')d) "

Ix—yl

1/n’
</ PR dm)
n D n 1/n
([ [ e ’“<x>'dxdy
~ (=1
1 aJao |z —y|

k=
1/n’
(/ / P (1/8) dxdy)
By Lemma 4.2.1 we obtain

// | POy < 510V Ky / o) dz < Kas |90 o] g
Xr —

with K; = oz(n)(”sfl)/sn. Also
1/s
L@ /|Dku (/ |l —y|" lz—y|" " )

| Dru(y)|” [v(2)]
// nl/sddx<||v

< Ko 107 o], / | Duly)|" dy
Q

n 1/(ns
= I ||Dku||Ln(Q) v 2] /) )

L' ()

with Ky = a(n)®=D/6n) Tt follows from these estimates that
n/ 1/s
[ @ @) de < Kool D2 5 1 Ditlsn 1211
k=1

with K3 = K./ K3™. We have

fQ|u )| |v(x)| dz

n 1/s
||’U < K5 L’ ”uHWlL” (Q) |Q| /

[u Ls(Q) —

L' ()

Setting s = nj/(n — 1), we obtain

@ de < 100 () (K g
Q - n — ]_ 5 W()an(Q)
. k (n—1)/n
] n
~ 19 (s (KSe =1 r\u\\W1L3m>)

nj/(n—1)

nj/(n—1).
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Note that E 5 (%) converges. Now, let
. 4! en/(n—
J=1

A= max{l |Q|Z (W)J}

o\
K =eK;A <n — 1) [l zne -

)\ 1 i Ny
Q K - Anj/(nfl) en/(n—1) A en/(n—1)

since A > 1 and nk/(n —1) > 1. Expanding ®(¢) = exp(#"') in power series, i.c.

and

Then

o

1
d(t) = Z j‘tm/(n D,

we obtain
ru<x>\) 1 / (!u(x)\)””(”” 1 ( )J’
O | — |dx = — — <1.
Lo (M) e =g [ ("% i3 <
Hence u € L*(Q) and [|ul| o) < K. O

Corollary 4.2.3. Let n > 1 and ®(t) = exp(t™) then
WHLP(R™) — L®(R™).

Proof. 1t follows from Theorem 4.2.2, taking |supp u| = || where u € D(R"). O

4.3 Sobolev embeddings into Lorentz spaces

Now, we will prove

np
n—op

WELA(Q) = D' #(Q), 1<p<n, p =

Throughout this section, we present results proved in [20]. We first establish the weak version
of the Sobolev-Gagliardo-Niremberg inequality.
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Lemma 4.3.1. For every u € Wy L'(Q) and A > 0, the estimate
M{r €2 fule)) 2 MDY £ S [ 1Diata)]do,
k=19

holds, i.e. WAL*(Q) < L">(9).

Proof. Fix u € D(2). We denote by G the set {x € Q :|u(x)] > A}. Let K C G be a
compact set. Then, using Lemma 3.4.2, Lemma 4.2.1 and Fubini’s theorem we have

1 1 Du Kl/” =
|K|sx/|u<x>|dxsk/( R )d S [ ipatla
K

Thus, since |K| < oo,

AE 5 / Dyuly)| dy.
k=1

If one takes the supremum over all such that K C G, the lemma is proved for u € D(f2).
The general case follows by standard approximation arguments. O]

Corollary 4.3.2. For every u € WILY(R"™) and X > 0, the estimate
M{z €R™ < Ju(z)] 2 A" S Z [ Dgu()] da

holds.

Lemma 4.3.3. Let 1 < p <n and u € WS LP(Q). We denote t;, = |Q| 2% and a;, = u*(t},),
k € N. Then

S8 (- a)y £ [ D) ds
k=1 j=179

Proof. If p > 1, using Holder’s inequality we obtain

1/p
AM{z e :ful@)] > M) (Z/ | Dj(u |pdf€> ({z € Q : fu(z)] > 0}

(4.6)
With the convention & 77 = 0 this also holds for p = 1. Now, given 0 < a < b < oo, we use a
smooth function ¢® on R such that

Wi (s) =0 for s € (—o00,al,
0< (¢h) (s) <2 forse(a,b),
Wi(s)=b—a for s € [b,00).
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o4

Applying (4.6) to the function ¢ (Ju(z)|) and A = b — a, we arrive at

n 1/p
(b—a) ({z € :Ju(z)| > b})"™ S (Z / s |D;(w)(x)|” dx>

=1

x (Hz € Q : Ju(z)] > a})"".
Then, if we take a = a; and b = ag,, we obtain

n 1/p
(a1 — ) (o € Q : Ju(@)] 2 ap )™ £ (Z / e |Dj<u><x>|pd:v)

X ({z € Q : Jul@)] > ap})",

but, since |[{x € Q : |u(z)| > ar}| < tp < {z € Q :|u(z)| > ar}|, we obtain

A

n 1/p
1/n’ 1/p
1 (g —an) 5 (S0 / D) (@) de ) i,
ap<|u(z)|<ak41

j=1

that is (recall that 2tx.; = tx),

n 1/p
5 (ap —ar) S (Z / . | Dj(u) ()] dfﬁ) )
ap<|u(z)|<ag4+1

j=1

where the convention ni = 0 is used. We raise this estimate to the power p and sum over k.

We obtain
S (s — ) <3 (z
k=1 Jj=1 \k

=1

finishing the proof.

D;(u)(x)|? dx <n D.(u)(z)|” dz,
/ak<|U(:Jc)|<ak+1| ]( )( )| ) _;/ﬂ| ]( )( )|

[]

Corollary 4.3.4. Let 1 < p <n and u € D(R"). Denote t;, = 2' % |supp u| and a;, = u*(t;)

with k € N. Then, S35 7% (aps1 — an)’ £ 320, fyy IDju() P do.
Lemma 4.3.5. The inequality

(a+b)P <(1+e)PtaP+ (1+1/e)P 1P, 1< p< oo,
holds for arbitrary a,b € R™ and ¢ > 0.

Proof. 1t follows from the fact that ¢ — tP is a convex function and therefore

(a+0b) = [A§+ (1-2) (%)r <A(§) +a-w (%)p

whenever 0 < A < 1. Taking A = @ establishes the result.
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Theorem 4.3.6. Assume that 1 < p <n. Then

12
/ /P ( t<Z/ |Dyu(z)|” de,
0

for allu € W}LP(Q), i.e. WILP(Q) — LP"P(Q)

Proof. Fix u € D(Q). Let t;, and a; have the same meaning as in Lemma 4.3.3. Given € > 0,
Lemma 4.3.7 yields

1" _
Ay < (1 - g) (ars1 — ax)’ + (1 +e)" " af.

Hence, taking into account that a; = u*(t;) = 0,
. -1
2/ Z tifl aj, = Z tp/p aj, = Z t%ﬁ py < (1 +¢)° Z t%ﬁ aj,
k=1 k=1

1\ &
+ (1 + g) th{fl (ak+1 — ak)p.

k=1

Choosing € > 0 so small that (1 + €)p_1 < 2°/7" "and by Lemma 4.3.3 we obtain

Ztﬁi’a TS / Dyu()” de.
j=1

The sum on the right is an infinite Riemann sum, i.e.
Lorler Ip* p 1
2—p/P / tp/p u* =9 —p/p” th p k t (tk’—l _ tk) ,
0 k

therefore

1€2] dt
/ PP (u* <Z/ |Dju(z)|” d.
0
Finally, by standard approximation arguments we extend the result to all functions u €
WLP(Q). O
Corollary 4.3.7. Assume that 1 < p <n. Then

/ 2P (0¥ dt<AZ/ | Dyu(z)|P dz,
0

for all w € WILP(R™), i.e. WILP(R™) < LPP(R™).

Proof. To prove this corollary apply Corollary 4.3.4 and the reasoning of the previous theo-
rem. O

Note that, thanks to Proposition 2.5.3 and the inequality p < p*, Theorem 4.3.6 give us
a non-trivial improvement of the range space in Wi LP(2) < LP" ().
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4.4 Sobolev embeddings into Lorentz Zygmund spaces
In this section, we will prove Now, we are going to show

Wy L™ (Q) — L™ 1(Q).
Throughout this section, we present results proved in [20].

Remark 4.4.1. Note that

oww) N e\ ae
/0 (log(%)) ?N/O <log(§)> t’

it follows from [4, Theorem 3.1].

Theorem 4.4.2. We have

/01 (1:;(2 ) %ézl/”)“ z)[" de, (A7)

for allu € W}L™(Q), i.e. WEL™M(Q) «— L®"71(Q).

Proof. Let u € D(Q2). We fix such u and assume that ¢, and a; have the same meaning as
in Lemma 4.3.3. Given m € N (using a; = 0)

n m—1 m—1 n m—1
gy Z Qg1 — O o I 1
(k+ 1)1 fn-t (k+1)» < F\kt (k1))

Hence, passing to limit for m — oo

S 1 1 = a ay 2. al  (apy1 — ax)
Tk < n < k+1 k < k+1
222t (- ) SRR SX e

QA
R
[]s
=
N
R
|
S
z
~—
Ay
3
RS
[~
=
—|—§3
=
3
~
Z
3

iu*(tk)”_iaﬁ<§:( )< A "d
o = 2 = 2 (e —a)" Z/ﬂ |Dju(z)|” d,

k=1 k=1 k=1 j=1

which is a discrete version of (4.7). Finally, by standard truncation and approximation
argument, we extend the result to all u € W] L"(Q). O

A further improvement of Wy L™(Q2) — L°>>™~1(Q) is possible.
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Definition 4.4.3. We define W,(Q2) for 1 < p < oo as the family of all measurable functions

on Q) for which
1 * (t * P dt 1/p h
lully: @ = (fo (ur (L) —u(t) 7) < 00, when p < o0,
supgosoq (U () —u*(t)), when p = oo.
Theorem 4.4.4. Let n > 1, then
Wy L™ (Q) < W,(9).
Proof. Note that, for p = n for Lemma 4.3.3 reads as
S (@ — )" <A / Dju(a)|" da,
k=1 j=179

which is just a discrete version of (4.4.4) .

(4.4.4)

]

Since W,, € L>®"71(Q) (see Remark 4.4.5 bellow), Theorem 4.4.4 improves Remark 4.4.2;
but W,,(£2) is not an r.i. space beucase it is not a linear set (see Remark 4.4.5 bellow).

Remark 4.4.5. The W,(Q2) space has the follwing properties:
L |Ixellw, ) = (log 2)P for every measurable £ C Q and 1 < p < oo.
2. L>(Q2) € W,(Q).
3. For 1 < p < oo each interger-valued u € W,(2) is bounded.
4. For 1 < p < oo, W,(Q) is not a linear set.

5. For 1 < p < oo W,(Q2) C L>**1Q).






Chapter 5

Optimal Sobolev embeddings on
rearrangement invariant spaces

5.1 Introduction

Let n be an integer, n > 2, and let m be an integer satisfying 1 < m < n — 1. Let 2 be a
bounded subset of R” such that |Q2] = 1 (if its measure is different from 1, everything can
be modified by the change of variables ¢t — |€2|t). Denote by |D™u| the eucledian length of,
D™y = (g‘;—g) 0<al<m’ the vector of all derivates of order m or less, whenever such derivates
exits on © in the weak sense.

In this chapter we study of optimality in Sobolev embeddings on rearrangement invariant
spaces. This problem can be formulated as follows. We are interesting in determining those

rearrangement invariant Banach spaces such that
WX (2) — Y(Q). (5.1)

We would like to know that X (€2) and Y (£2) in (5.1) are optimal; in the sense that X ()
cannot be replaced by an larger r.i. space and Y () cannot be replaced by an smaller one.
Kerman and Pick [18] solved this problem. The central part of their work may be summarized
as follows. They developed a method that enable us to reduce the Sobolev embedding
(5.1) to boundedness of certain weighted Hardy operator; and then used it to characterize
the largest rearrangement invariant Banach domain space and the smallest rearrangement
invariant Banach range space in the Sobolev embedding (5.1).

5.2 Reduction Theorem

In this section, we will prove our main theorem (Theorem 5.2.1) which is known as Reduc-
tion Theorem. Its proof can be found in [18].

Theorem 5.2.1. Let X(2) and Y (2) be an r.i. spaces. Then,
W5 X(Q) = Y(Q),

29
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if and only if there is a positive constant Cy such that

s)s™"Lds

< Oy ||f||X(1) , feX()

Y (I)
iy Hypm : X(I) — Y(I).

When m = 1, Theorem 5.2.1 was proved in [10] and the case m = 2 was studied in
[6]. Finally, Kerman and Pick [18] proved our version of Reduction Theorem for all m using
results from interpolation theory.

The necessity part of Theorem 5.2.1
Theorem 5.2.2. Let X(Q2) and Y () be an r.i. spaces. Suppose that Wi X (Q) — Y (Q).

Then, there is a positive constant Cy such that

s)s™"Lds

< Cfllx@. feX).

Y (1)

Proof. We may suppose, without loss of generality that 0 € ). Let o be a positive number
not exceeding 1/2, and so small that the ball centered at 0 and having measure o is contained
in 2. Given any non-negative function f € X (I) with supp f C [0, 0], define

ww)i= [ [ gt dy = g (G,
nlz|™ Jt1 to tm—1

for all x € R™. Note that u has compact support in 2. Moreover induction in ¢ € N, shows
that any /" order derivative of u is a linear combination of terms of the form

Toy - Ta gD (|2 C) |z, k+i=jn—0,0<i,j,<L.
From this we conclude that any /" order derivative of u is in absolute value, dominated by
a constant multiple of

L

Z D (|2 )| |2,

and hence,

m

(D Z M|l G|l

Now, if 1 </<m-—1

199 (Co |2[")] = / / / Flta)tnm ™ty . diy,
nlx|™ Jteiq tm—1
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and
9™ (Co |2[™)| 2 £ (Cp || ||

Since we are assuming that suppf C [0,0] C [0, 1], we have

1 1,1 1

ww) = [ [ [ [ s,y = g (€.

n|x|n t1 to tm—1

Moreover, when j =1,... ,m — 1 we have on applying Fubini’s theorem m — j — 1 times
1 .
$OColel) 5 [ He)s s
Chlx|™

Hence,

1

m m—1
D)) £ 32 10" (e 12" S £ (Calol™) + 3 la] ™ / f(s)s~ s,
(=1

=1 Cnlzl"
Thus,
m—1 1
10" alley £ 1y + 3 [ [ fs)swvmintas)| (5:2)
j=1 t X(I)

Considere the linear operator T" defined as

Tf(t) =t—m/m /1 f(s)s77tmnlgs  f e M, (I).

The operator T is bounded in L(I), since

1 1
_ / t]m/n/ f(s)sfjer/nfldS
L(1) 0 t

1
~ / F()ds = | Fll s -

1
t]m/n/ f(S)Sijer/nildS
t

Moreover, T" is bounded on L*([), since

1
= sup tj_m/”/ f(s)s_j+m/”_1ds
¢

Leo (1) 0<t<1
1
< ”fHLOO(I) sup ijm/”/ S*J+m/n71d8
o<1 ¢

S Ml gy -

1
tj—m/n/ f(S)S_j+m/n_1d8
t
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A theorem by Calderén (see [2, Theorem I11.2.12]) then ensures that 7" is bounded on X (1),
le.

1
tj—m/n/ f(s)s—j+m/n—1d8
t

Therefore, from (5.2) it follows that

|||DmU|HX(Q) < ||f||Y(1)
whence u € Wi X (2). Next, by hypothesis

D™l ) = 1wl

~

— /1/1,_./1 Fltp)t™™mnat,, . dty
=|| [ spsmemn

/2t f(s)s~1Hm/m(1 —t/s)m tds

/1 f(s)s™Hm/nds

S lxw-
X()

<l

(1)

Y (1)

Qv

Y (I)

%

Y (I)

Thus,

m/n ldS

S = » (5.3)

Y(I)
for every non-negative f € X (I ) with supp f C [0, 0] . Now, let f be any function from X (I).
Then

1
s)sm/n—lds < / X[o,o](s)f(s)sm/"_lds
Y(I) t ()
1

+ X[G,I](S)f(é”)é”m/n*lds B (5.4)

K Y1)

We have
! 1
‘/ Ve ()7 s < omnt | [ ps)sminas
! Y(I) t v

1
< o™ 1y / £(s)ds
0

< o™ Iy gy I £ Il - (5.5)

On estimating the first term on the right-hand side of (5.4) by (5.3) (with f replaced by
X[0,0].f) and the second term by (5.5), the proof is complete. O
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The sufficiency part of Theorem 5.2.1

The following lemma is a generalization of the Pdlya-Szego principle. Its proof may be found
in [8].

Lemma 5.2.3. Let u € D(R™). Then,

t o dut\ " !
/ yl/n _ (s) < n—lKgl/”/ |Dul" (s)ds, t € R*,
0 dy 0

where K, = 72T (n/2 +1)7".

Now, we recall the definition of the m-dimensional Hausdorff measure and some important
result such as coarea formula and isoperimetric theorem. Next, we will prove Lemma 5.2.3.

Definition 5.2.4. For each m >0, e >0 and E C R", let
H” = inf {Z a(m)2 " diam(A;))™  E C UZX,A;, diam A; < 5} :
i=1

Since HI" is decreasing in €, we may define the m-dimensional Hausdorff measure as

H™(E) = lim H™ (E).

e—0

The following theorem is known as coarea formula. A proof of this formula appears
in [11].

Theorem 5.2.5. Let u : R — R be a Lipschitz continuous function and let f : R" — R
be an integrable function. Then,

[ st [T([ )

The following theorem is known as isoperimetric theorem in R™.
Theorem 5.2.6. Let £ C R" be a measurable subset with finite measure. Then,
H"Y(OF) > nK, |E|" ",
where K, is the measure of the unit n-dimensional ball.

Proof. (Lemma 5.2.3). Let u € D(R"). The following inequality

/ |Du(z)| dz => nK}Y"a'/™ (u*(a) — u* (b)), (5.6)
{zeR™ :u* (b)<|u(z)|<u*(a)}
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holds if 0 < a < b < suppu. In fact,

/ | Du(z)|dz
{zeR™ wu* (b)<|u(z)|<u*(a)}

u*(a)
= / Hpo1 ({z € R™ : |u(z)| =t})dt
w (b)

u*(a) ,
> nK}/”/ {z € R : u(z)| > £}V dt

wr (b)
> KV |[{z e R : |u(z)] > u* (@)} (u*(a) — u*(b))

> nKYmat™ (u*(a) — u* (b)).

Moreover, we have

H{z e R" ;u*(b) < |u(z)| < u*(a)}] <b—a. (5.7)
Now, we claim that the following inequality
d |Du(x)|dx > —nKi/”sl/"’di(s), (5.8)

ds {zeR™ :|u(z)|>u*(s)} ds

holds for almost every s € R.. In fact, the right hand side of (5.8) is zero if s > |[suppu].
If 0 < s < |suppu| the left hand side of (5.8) is equal to

1

lim 2 / Du(z)| dz
h=0 I J (pern e (s4h)<|u(a)| <u* (s)}
1
> lim nK "™ Z(u*(s) — u*(s + h))
h—0 h
cdu*
— _ Kl/n 1/n' 2% )
it/ O
Thus,
b
sdu*
/ —nKngt/n i(s)ds < / | Du(x)| dz.
a ds {zeR™ :u*(b)<|u(z)|<u*(a)}

Then, by (5.7) and Hardy-Littlewood inequality, we obtain for every countable family
{(a;,b;)} of disjoint intervals in (0, |suppu|),

’ du*

2 (bi—a;)
/ —n KMt (5)ds < / | Dul|" (r)dr.
U(ai ,b;) ds 0

The last estimate yields,
° 1/n _1/n/ du*]” 1/n _1/n/ du* ° *
—nK,/"s —| (s)ds = sup | —nK,/"s'" —(s)ds < | Dul" (r)dr,
0 ds |E|=s JE ds 0

since every measurable set £ C (0, |suppu|) can be approximated from outside by sets of
the form U (a;, b;). O
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Now, we are going to link the Sobolev embedding to the Hardy operator H,,,; for this
we require the following theorem which is a description of the K functional (see Section 2.7)
for the couple (WL (), Wit L>(f2)) . Tts proof may be found in [9].

Theorem 5.2.7. Let ) C R"™ be an open subset. Then,
t
K(uu,W?L%Q)JMTLmGD)&a/]Dmm*@yﬁ,t>0,
0

with u € W"LY(Q) + W™ L ().

We can identify the Sobolev spaces Wi LP4(€2) as interpolation spaces between WL ()
and Wi L™ ().

Corollary 5.2.8. Let 1 < p < o0 and 1 < q < oco. Then, up to equivalence of norms,
W LPA(Q) coincides with the interpolation spaces (WL (Q) , W L>®(Q))

1/p'.q "

Remark 5.2.9. Let 1 <py<p; <o and 1 < qy,q < co. Theorem 2.7.10 yields,

K (t,u, Wit LPo©(Q) , Wi LP(Q2))

te /40 1 Va
> (/ (st/Po=1/a0 | Dy (5))™ ds) + (/ (st | pmy) (5))" ds) :
0 ¢

@

where = = pio — pil. Moreover, if 1 <p; <ocand 1 < ¢ < o0

Q=

t(l
K (t,u, W"LY(Q), W LP+4(Q)) %/ | D" ul" (s)ds
0

1 /a1
+1 (/ (sl/pl_l/ql | D™ u|* (s))q1 ds) ,
¢

(&3

where é =1- pil. Indeed, it suffices to verify

t&
K (t,u, WJ"LY(Q), W LP24(Q)) g/ | D™ ul" (s)ds
0

1 /a1
+1 (/ (Sl/pl_l/ql | D™ u|” (s))ql ds) :
¢

«

Fixt > 0. Let u = g+h be any representation of u with g € W"L'(Q) and h € W[ LP12(Q).
Then,

te o o
hz/ m%v@@g/ W%V@@+/ D™ B (s)ds
0 0 0
< D™ glllpr + D™ A or.an
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and

1 1/q
I, = (/ (st/Prmt e Dyt (S))q1 ds)
¢

(%

1 1/q1 1 1/q1
([ o) ([ s o)
t t

(&3 (3

St D™ gl + D™ Al s

IN

Therefore,
L+t S (1D | r + D™ v
and, taking the infimum over all such representations u = g 4+ h, we conclude that
L+th K (t,u, WLY(Q), WL (Q)) .
Theorem 5.2.10. For any u € WL () and t € I, we have

¢ ¢ 1
/ sy (s)ds / s~m/mn (/ | D" ul* (y)ym/"_ldy) ds.
0 0 s/2

To prove this theorem we require some results.

Lemma 5.2.11. We have
WLH(Q) < LV =m(Q), (5.9)

Moreover,

W™ Q) < L°(Q). (5.10)

Proof. Let us prove (5.9). The proof proceeds by induction on m. Note that Theorem 4.3.6
establish the case m = 1. Suppose it has been proved for m — 1, that is

[0l < C || D™ 0|1+ v € D).
Set v=Dju,j=1,2,... ,n Then

IDulll g snmens < CHID™ull[ 1 -

/f l/q lds < /f 1/‘1 Lds
na/(n—q),1

S llpons feEMLU

1 , * ,
/t <—51/" OZLS (s)> s~V ds

By Lemma 5.2.3, we get ||t fng/m-ou1 = || Dul|l 101 - Now, taking ¢ = n/(n —m+ 1), we get
[wll prsnmys < C DUl psinmsny < C D™ ]|y

and the result follows. O]

Now,let0<q<n

l/n ldS

So, for all u € D(Q)

,—du*(s)
ds

SC"SI/"

||U”an/<n—q>,1 =

Lna/(n—q),1 Ll
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Proof. (Theorem 5.2.10) Let
Xo(Q) = WPLMQ), Yo(Q) = LY0=m1(Q) | X,(Q) = WL/ ™1(Q), Vi(Q) = L¥(Q),
By Lemma 5.2.11, we have
WrLYQ) < LV =™1(Q) and WRLY™H(Q) — L=(Q),

i.e., the operador Sobolev embedding is an admisible operador with respect to the compatible

couple (Wg"L'(€2), WgnL™™1(2)) and (L™ ®=™:1(Q), L>(2)) and Theorem 2.7.5
K (t,u, LM=m™2(Q), L2(Q)) < CK (Ct,u, W"LH(Q) , W" L™ ™H(Q))
with u € WJ"L'(Q). Then, by Remark 2.7.11 we have
¢/ (n=m)
K (t,u, L""=mHQ) L=(Q)) ~ / sT™/My*(s)ds,
0
and by Remark 5.2.9

K (Ct,u, W"LY(Q) , W L™ (Q))

(Ctyn/(n=m) 1
~ / |D™ul" (s)ds + C’t/ |D™u|" (s5)s™" tds
0 (Ctyn/ (nm)

Then replacing (Ct)™" (=™ by ¢ , we get

t
/ S —m/n *( )dS
0

<C </t|Dm )" (s )ds+0t1*m/n /lypmu\*( ) m/n1d5>

t
/2
SC’{ / m/n= LI D™ ul* (y )dyds+/ / | D™ ul" ( m/” 1dyds]
0 /2

t
§C’/ sm/”/ |D™ul* (y)y™ " dyds,
0 s/2

thus, the proof is complete. O
Theorem 5.2.12. Let X () be an r.i. space. Then, the functional

HfHZ(Q) = HH;z/mf* = Htm/nf** H , f e M(Q),
1s an r.i. norm, being, in fact, the smallest r.i. norm satzsfymg

v & Wz, | €MD), (5.11)

Moreover ||| 1y » the associate norm of ||-[| 5, is the largest r.i. norm satisfying

HHn/mf”?(]) ~ ||f||Y(1)a feMy(I). (5.12)

| /\

x'(1)

12
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Proof. We claim that [|-[| ;q, is an r.i. norm. Indeed,

e the positivity and homogeneity are clear;

1f + gl 20y = [ (f + 9)* Ol ) < W20 + 9l 2y - ¥ f 9 € M(Q);
let {fj} oy such that f; 1 f. So (f; )** T f** and hence

Htm/n<f])**(t) ., tm/nf**(t) _,
that is, ||fj||z(Q) T2 Q)

fo H, . xr)(t)dt < fo t)dt < HgHX ) » for all g € M. (). Hence,

) )

let f e M(Q),

1
[£7/7 7 (1) || < >—¥L—/xﬂWWFWW%CﬁW)
I ( 0

i[ﬁ@ﬁzéﬂ%t

and so [, f(t)dt S || fll 20

oy =Wl £ € M)

o 15l 0y = || Ho S

Let us prove (5.11),

[ s < [ )i = ()0 < (e Ve e T

and so,

‘ n/m X/(I) < ||fHZ(Q)
Finally, let us prove (5.12). Suppose that g € M([I), we have

1 s
[ sottmr] = | [ s ([ o) as) / F(5)Hl g (5)ds
0
H X'(1) HfHY(I) < HQHZ(I) Hf“?([)
Therefore,
1
|4, sup / g(t)Hn/mf(t)dt‘ < sup |gliz 1fll=a < 1l -
lgllzn<t1J0 lglizy<t
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Theorem 5.2.13. Let X (§2) and Y (Q2) be an r.i. spaces. Suppose that,
Hym + X(I) — Y (). (5.13)
Then, WX (2) — Y (Q).
Proof. By Theorem 5.2.12, the functional
||f||Z(Q) = HH;L/mf*

is an r.i. norm. Moreover, when (5.13) holds, Theorem 5.2.12 ensures

X'(1)°

||U||Y(Q) < Hu”Z’(Q)‘

Note that Hardy-Littlewood-Pélya Principle and Theorem 5.2.10 imply
1 1 1
/ £ ()R () dt < / t—m/"/ | D™l s™ " Ydsh* (t)dt,
0 0 t/2

Taking h*(t) = sup,,; s™/"g*(s), we get

/01 uw(t)(Toymg) (t)dt < /01 (/tl | D™ ul* sm/”lds) (T jmg) (t)dt.

/2

Now,

Jy (g ()t _ . JEw* (8) (T pmg) (8t

el = sup lgllzay g% l9llzr)
B (o 1Dl ()57 ) (T, ong) (0
g#0 ||9||7(1)
Joa VDl ()57 ds | T
o0 l9liz
S /1 | D™ ul* (s)s™/" s
t/2 Z'(I)

in the last inequality we used T5,/,, is bounded on Z(I) (Theorem 2.8.5). Now, since

)

Z'(1)

1 1
/ | D™ul* (s)s™/" s / | D™ul* (s)s™/" s
t t

/2

<
Z'(I)

we get

1
/ |D™ul* (5)s™/" s
t

~ |||Dmu|||x(9)-

ully ey < lull oy S \ B
7'(I)
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5.3 Optimal range and optimal domain of r.i. norms

Now, we show how Theorem 5.2.1 can be used to characterize the smallest r.i. domain norm
and the largest r.i. range norm in the Sobolev embedding

W' X(Q) = Y(Q).
Note that Theorem 5.2.1 implies the following chain of equivalent statements
W X(Q) = Y (Q) & | Hum |y £ 1 f 0
& |[H) o f |y/(1) < s
& || H), S X0 < M flly o -

The first equivalence is Theorem 5.2.1. We claim

1t ) & M sy & 1Hopmd ey = 1 5
Indeed,
1 !
(Hojm f)(5)g(s)ds Jo (H,,,9)(s) f (s)ds
[l = s 22 —sup 00T
970 ”g”ya 970 HgHy(I)
| Il
n/m Y’(I) X(I)
< sup < Il
g#0 ||g||?’([)
Moreover
SHH D) a()ds N Hapmgllg e 1l
_ / ()
H n/mJ X"y — sup < sup
970 HgHX(I) 970 ||9||Y(I)

S Il

The last equivalence; the implication =) is restriction to monotone functions, while the
converse one follows from the estimate

[ atsrts < [ s

In practice, one starts with a Sobolev space W{" X (Q2), and then finds its optimal range
space Yx(€2). The description of Yx () is given by the following theorem.

Theorem 5.3.1. Let X(Q) be an r.i. space. Let Yx () be the r.i. space whose associate
space Y{ () has norm

1/llyg @ = 1 H0ym
Then the Sobolev embedding W(]”X(Q) — Yx(Q) holds, and Yx(§2) is the optimal (i.e., the

largest possible) such an r.i. space.

, feM(Q).

X0’
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Now, it is natural to ask if there is an optimal domain space, Xy (2), whose Sobolev
space, W[ Xy (€2), (possibly bigger that W X (€2)) is the largest that still imbeds into Y (2).
We will prove the existence of such Xy (€2). The fact that d, = d; will be denoted by f ~ h

Theorem 5.3.2. Let Y () be an r.i. space. Assume that Y () < L™=m)1(Q). Then the
function space Xy () generated by the norm

1%y ) = ?}ilz HHn/mh”?(I) , J e M(I),h e Mi(I),

1s an r.i. space such that

Hym o Xy (1) = Y ().
Moreover, ||| x, () is the smallest such r.i. norm.

Proof. Let’s prove |||y, q) is an r.i. norm. The positivity and homogeneity of |||y, o
are clear. Next, when h ~ f 4 g, there exists hy ~ f and hy ~ g so that h = hy + h,.
From this observation we get the subadditivity of [|-|| v, () - Suppose that f; T f. Now, when
h ~ f; there exists a measure preserving transformation 7" such that h = f; o T, and hence
h < fipnoT =k~ fi, 50 [[fillx, @ < fi1llx, @ - Further, h ~ f once more means
h = f oT for some measure-preserving transformation 7. We then have h; = fjoT 1 foT,
0 Fillxy oy T 1y q - Again,

< 00,

Y(I)

n m/n
Ity = || 0 = #77)

while

1%y ) =

/1 f(s)s™n1ds
¢

%/Qf(s)ds feMi(I).

/1 f(s)s™/m=1ds
¢

2|
vy

Ln/(nfm),l([)

O

The following proposition proves that the formula for Xy (Q2) can be improved if Y (2)
satisfies some properties.

Proposition 5.3.3. Let Y(Q) be an r.i space such that Y () — L™T=™:1(Q). Suppose
Tyjm =Y (I) = Y'(I). Then

1
1flle, ) H [ s
t

Y1)
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Proof. Since Y (Q) ¢ L™=™)1(Q), by Theorem 5.2.12 we have

1
/ h(s)s™" Lds . feMI), he My(I).

Y (I)

”f“Yy(I) = iup

~f

Now,

< sup
Yy o h~f

/tl f*(s)s™/m1 /tl h(s)s™/ " lds

since f* ~ f. Moreover, h ~ f means h* = f*, so will be done if we can prove

1 1
/ h(s)s™ " lds / h*(s)s™" Lds
¢ ¢

Y

Y(I)

S
vy

. heMy(I).

Y(I)

We have

fol g*(t) ftl h(s)s™/ " dsdt

= sup
vy 9>0 ”9”7’(1)

g ()Rt
= sup
g>0 ||9||?’(1)
1
T img ) (DR dt
gsupfo( ymg)™* (£)h(t)

g>0 ||g||?’(1)

1
Tmg) = (O RS(O)E/dt
< qup o Tm) (1)
g>0 HQHY’(I)

1

T ) (DR ()™ dt
< qup Jo Tom)“ (1" (1)
g9>0 ||Tn/mg‘

1
/ h*(s)s™" Lds
t

1
/ h(s)s™" Lds
t

(™M (Topmg)™ (2) 1)

Y'(1)

A

vy

Combining Theorem 5.3.1 and Theorem 5.2.12.

Theorem 5.3.4. Let X () be an r.i. space. Set

||f||y)/((sz) = ||H7/L/mf*

with h € M (I) and f € M(2). Then, both |||y, ) and || x, () are optimal in
X
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Remark 5.3.5. Observe that

||fHY)/((Q) = HH7/’L/mf*

X'’
and so, since ||-||;« is the largest r.i. norm
1l o S 777

hence Yy (Q) C L "=™):1(Q). Moreover, by Theorem 5.3.2

Y x (I)

1
o = | [ smetas

5.4 Examples
Given m € N, 1 <m <n—1,n > 2 and two r.i spaces X (£2), Y () such that
Wy X () = Y(),

we want to find the optimal pair in the Sobolev embedding. To solve this problem, we start
with r.i. space X(€2) and then find its optimal range partner Yx(£2). Thus, the embedding

WX (Q) — Yx () = Y(Q),

has an optimal range, but it does not necessarily have an optimal domain. We take one
more step in order to get the optimal domain r.i. partner for Yx(2), let us call it Xy, (Q).
Altogether, we have

Wi X(Q) = W5 Xy (Q) = Yx(Q) = Y(Q),

and W[ Xy, (€2) now can be either equivalent to WJ".X (£2) or strictly larger. In any case,
after these two steps, the couple (Xy, (2),Yx(Q2)) forms an optimal pair in the Sobolev
embedding and no further iterations of the process can bring anything new.

Example 5.4.1. Let 1 < p < n/m. Let X(Q) = LP(Q2) and Y (Q2) = LP"(Q). We know, by
Theorem 3.4.1

p
n—mp

W LP(Q) — LF(Q), p* =

Now, we want the optimal pair in the Sobolev embedding. First, we construct the optimal
range space; by Theorem 5.3.4 we have

Hf”y;((g) = Htm/nf**(t)”Lp’(I)

1 N 1/p
= ([ @) @) = 1l
0
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and so Yx(Q) = LP"?(Q). Thus,
WLP(Q) < LFP(Q) < LP7(Q)
Note that p < p*, so by Proposition 2.5.3 we have
LP7P(Q) < LP" ().

Given Yx(Q) = LP (), we find its optimal domain r.i. partner. By Remark 5.3.5 we know

s)s™" s

11y, @)

Lr*p(I)

Note that Hf”XyX(Q) R | fll o) - Indeed,

1 1 P 1/p

(/ (tm/”/ f*(s)sm/”lds) dt)

Lp*m([) 0 t
1 1
/ /=1 ( / (f*<s))Psmp/nds) it
t
/ f mp/n/ t—mp/n—ldtds
z/ f*(s)Fds,
0

hence, HfHXyX(Q) S 1l o) - Let us prove that || f[| .0y S HfHXY . Note that,

t 1 "
0 s 0
t)Pd
Lnp/(n—mp).p(] (/ f t)

Therefore, || f| x,. () = ||f||LP(Q) - We conclude that
X

s)s™"Lds

QA

thus,

m/n 1d8

W LP(Q) < LF P(Q) — LY (Q).
Example 5.4.2. Let X(Q) = L'(Q) and Y(Q) = L™"=™)(Q). By Theorem 3.4.4
Wy LM Q) < L0 (@),
We construct the optimal range space

||f||y;((sz) = Htm/nf**(t)HLoo(I) = [|fll /.o
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and so Yy (Q) = L»/(=™):1(Q). Thus,
WL Q) — LY (Q) s LV (M) ()
By Proposition 2.5.3 we have
LY(=mil Q) ey L/ (mm(Q).

Let Yx(Q) = LY®™=™)1(Q) we find its optimal domain r.i. partner. We know

s)sm/"_lds

TS

Ln/(n—m),l(])

t
1 1
/0 g—m/n (/ f*(s)sm/”_lds> dt ~ Hf“Ll(Q)
t

WL (Q) — LY (Q) — LY m(Q)

Therefore,

Example 5.4.3. Let L"™(Q) = X(Q) and Y(Q) = LYQ) n/m < ¢ < oo. To find
(|em/m f==(t) we use the following result which is proved in [10]

Theorem 5.4.4. Let 1 < p < 0o and suppose the weight ¢ on (0,1) satisfies the following
properties

X'y

1. fo t)Pdt < oo,
2. [Y(o(t)P/t7)dt =
3. [T Pdt<CrP(1+f1¢t)pdt) 0<r<l.
Then, the r.i. norm o = o,(¢(t) f**(t)) has dual norm
d'(9) = oy (g"), g€ My(I),

where

()Y <1+/¢ > “b()p L 0<t<l.

Set p = n/(n —m) and put ¢(t) = t™™; note that ¢ satisfies the properties of Theo-
rem 5.4.4 and so || fly, ) = V|| pn/m(r) where

(1) = (L —log(t)) " ¢/ = log(e/t) ",
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that is Yx () = L*"/™~1(Q). Thus,
WrLY™(Q) < LoW™-HQ) < LY(Q), n/m < ¢ < 0.
Moreover, by Theorem 5.3.3

s)s™"Lds

11y, @ =

Loo,n/m;—l(Q) .
Therefore, we get
WILY™(Q) <= WXy, (Q) < L™ Q) — LYQ), n/m < q < oo.

Note that L™™(Q2) < Xy, (Q). To prove it, we require the following result, which can be
found in [4]

Theorem 5.4.5. Let v,w be non-negative mesurables functions on (0,1). Let 0 <p < g <
oo. Then the inequality

(/01 (f*(t))qw(t)dt) v < (/01 (f*(t))pv(t)dt) 1/1,’

holds if and only if
sup (W(1)Y (V(t) ™" < oc.

0<t<1

So,

s)s™"Lds

11y @ =

Loo,n/m;fl(ﬂ)

1 1 n/m
= (/ t7H1 — log(t))~"™/™ (/ f*(s)sm/"lds) dt>
0
/ g </ f*(s)s™m= 1ds> dt (by Theorem 5.4.5)

/f it = | Fll ey S 1l

m/n

Example 5.4.6. Given Y (Q2), we find its optimal domain r.i. partner. We know

1
oy | [ (6)smas
t

‘Afwwmﬂk—mmmmn

1
= sup / f*(s)s™" lds
t

L>(9Q) o<t<1
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By Theorem 3.4.9, we know
WEILP(Q) — L>(2), with p > n/m;

and so, WLP(Q) «— WILY™Y(Q) «— L=(Q). Now, given Xy (Q) = L*™1(Q), we find its

optimal range r.i. partner:
|‘f||chy(Q) = HHTII/mf*HL(n—m)/n,oo(I) S Hf”Ll(Q)7

and so, Yy, () < L>(Q). Hence, Yx, (2) = L>®(Q), since L>(2) is the smallest r.i. space.
Therefore,

WILP(Q) — WRLY™(Q) < L®(Q), with p > n/m.

Example 5.4.7. Cianchi in [7], proved that L®(Q2) with ®(¢) = expt™ is the optimal (that
is, the smallest possible) Orlicz range space in

WALM(Q) < LE(9).

However, it turns out that L"(£2) is not optimal as an Orlicz domain space, but such an
optimal Orlicz domain space does not exist at all. This should be understood as follows: for
every Orlicz space L4(£2) such that

WeLA(Q) — L*(Q),
there exists another stricly larger Orlicz space LZ(€2) such that
Wy LB(Q) — L*(Q).
Since L*(Q) — L>(Q), it suffices to prove:
Theorem 5.4.8. There does not exist any largest space L(S)) such that
WiL* — L>(Q).
To prove this result, we require the following theorem, which is proved in [8].
Theorem 5.4.9. The embedding
W LA — L™(Q),

holds if and only if

/OO AS) 4 o (5.14)

Sn’—l—l

where A is the complementary function of A, which is a Young function defined by Z(t) =
sup,so {st — A(s)} fort > 0.
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Proof. (Theorem 5.4.8) The proof of this theorem can be found in [8]. Let A be a Young
functign such that (5.14) holds. We claim that there is another Young function, B, such
that B(t) > A(t) for all ¢ > 0, lim sup,_,., B(t)/A(Bt) = oo for every 8 > 1, and

/OO B(s) ds < oo. (5.15)

Sn’—l—l

For such B we would have L4(Q) & L#(Q) and W L?(Q) < L>=(Q), as required. To prove
our claim, let us set a, = (klog’k)™', k € N. For t € [k!, (k+1)!), we define 7 by the
identity _

A7)

T

—apt™ Y te [k (k+1)). (5.16)

We note that 7 is uniquely defined, since the function Z(t) /t strictly increases from 0 to oco
as t goes from 0 to co. We claim that for every § > 1
Alr) ¢

lim su — = 0. 5.17
e T A(BY) 5:17)

Indeed, assume the contrary. Then, for some § > 1 and K > 0,
K lait” < A(Bt), te [k, (k+1)).

A o0 B(k+1)! ) - 0 k+1)' N(ﬁy)
/1 n+1 ;/ sn+1dszﬂ Z/k' Y+ —1 1Y

k_

But,

> Kﬁ Zaklog k+1

which contradicts (5.14). This proves (5.17). Now, let §; /* 0o be a fixed sequence. Then,
by (5.17), there exits a sequence t; /* oo such that ¢t; > j!, ¢;4,1 > 7; (where 7; correspond
to ¢; in the sence of (5.16)), and
Alry) 4
lim ﬁN—j = (5.18)
e T A(Bjty)
We define, - -
T A(ry)— Aty
By — 4 All) + FEEE =) e (),
A(t) otherwise.
Then, B is a Young function and B(t) > Z( t) for t € (0,00). It follows from (5.18) that,
for every 7 € N, 7; > 2t;, and therefore also A(Tj) > 2A(t ;). Hence, using (5.18), we get

Emp:/Wﬂ+&%§ﬂ% 1 A(r)t,
A(Bjt;) A(Bjt;) ~ 27A(Bity)
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It remains to show (5.15). We have

* B(s) X A(s) e~ Al) —Aly) [Ts -t
/1 Sn,+1ds§/1 Sn,Hds—i-Z p— /tj ) ds.

j=1 J J

Further, using (5.16), ¢t; > j!, and the monotonicity of {a;}, we obtain

= A(ry) — A(t) /Tj s —1; N A(t) 1 -
AN ) < l—n' . '
Z e— e ds_C’Z t _CZa]<oo

j=1 i j=1

Therefore, we get (5.15) on recalling (5.14). The proof is complete. O






Chapter 6

Mixed norms

In this chapter, we focus on the following question: what can we say about the optimal range
space with mixed norm in

WHLHR™) — L (R™™) [LE (R)]?

The innovative part of this chapter are Proposition 6.3 and Proposition 6.5. These results
allow to conclude the partial optimality of LL(R""!) [L (R)] in the above mentioned em-
bedding.

Before discussing our results, we will mention our motivation. But, we first need to
introduce spaces with mixed norm. We denote by

1 n—1 00
Vi=L-(R" ) [LY[R)], 1<k<n,
the spaces with mixed norm
1f1lv, = ¥kl 1 (ga-1y, where W (k) = esssup,, cg [ ()] -

We recall that we use the notation 7, for the vector in R"~! obtained from a given x € R”
by removing its kth coordenate, that is

o~ n—1
Tp = (21, .., The1, Thg1 -+ ,Tn) E R

Now, we present a brief history about our point of departure. In Chapter 3, we have
proved that if 1 < p < n, then

WILP(R™) — LF'(R"), p* = - (6.1)

The first proof of (6.1) [26] did not apply to the case p = 1, but later Gagliardo [12] and
Nirenberg [22] found a method of proof which worked in the exceptional case. Gagliardo’s

idea was to observe that
WIL'R™) — Vi, 1<k <n, (6.2)

and to deduce from this that f € L™ (R™).
Now, let us prove (6.2).

81
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Lemma 6.1. Let n > 2. Then,
WIL'R™) = Vi, 1<k<n. (6.3)

Remark 6.2. Note that

e <3| %) - 7eP®

Indeed, let f € D(R). From

() = / L )iy = / jf< )i,

one deduces |f(z)| < [7 ‘dy and |f(z)| < [ ‘dy, and adding gives

207 < [ |

(v >\dy.

Hence,

Il <3| 2|

Proof. (Lemma 6.1) Fix 1 < k <n. Let f € D(R"). Then, by Remark 6.2, we have

sup /(o) < 5 [ |Def(@)] o
Hence,
I = [ swplf@ldos < [ D@l de = 105 sy < W lrss-
Therefore, the proof is complete. [

Lemma 6.2 motivates us to formulate the following problem. Let X (R"!) and Y (R) be
r.i. spaces. We want to find the optimal range space with mixed norm in the the Sobolev
embedding

WL'R") = Xg(R*) [Ye, (R)].
We begin to solve this problem. First, we take X (R") = L'(R") and we prove that
WL (R") < L (R [L®(R)],

has the optimal range space with mixed norm; that is, we prove the following proposition.
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Proposition 6.3. Let n > 2. Let Y(R) be an r.i. space. Assume that
W!'LYR") — L (R") [V, (R)]. (6.4)
Then, L>(R) — Y (R).

Proof. Let us prove that 1 € Y(R). Let k € N, &k > 1. Let ¢ € D(R) be non-negative
function with support in the ball centered at 0 with radius 1, and [, ¢(z)dz = 1. Let
8 € D(R) be a function defined as follows

L ry
993:/— =) X B, xr —y)dy.
(@)= [ 32 (§) xmos/ma =)

Note that 6(z) = 1 for all x € B(0,1/2), 6(z) = 0 for all x ¢ B(0,1) and 0 < #(x) < 1 for

all z € B(0,1). Let ¢ € D(R"!) be non-negative function with support in the ball centered
at 0 with radius 1, and [g, , ¢(x)dx = 1. Define

Tn

x ~
hi(x,) =6 (E> and gi(T,) = ¢ (?> )
We have
HthLl(]R) <k and ||h;c||L1(R) <A

Moreover

n—1
HngLl(R"—l) = k"' and Z ’|Di¢kHL1(Rn—1) < A(n —1E"2,

i=1

Now, consider fi(z) = hy(zn)gr (Z,), © € R™. Let us prove that f, € W'L'(R"). Indeed,

||fk||W1L1(Rn) = ||h;c||L1(]R) ||gk||L1(R”*1) + ||hk||L1(]R) Z ||Digk||L1(R”*1)
i=1
< AE 4 (n = DEY = nAk"M
Then, by (6.4), we obtain
1lly ) 119kl 1 n—1y < nAk"
and so [|hg/[y gy < n. Since hy converges almost everywhere to 1, by Fatou’s Lemma we get

18y ey < Biminf [y ) < o

Therefore, the proof is complete. O
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Remark 6.4. Note that, if we replace W'L'(R") in (6.4) by W'L'(R"), Proposition 6.3
does not hold. Indeed, take Y(R) = L'(R) then

1l ey S NDflpr ey + 1Nl gy »
but L>® ¢ L.
Second, we take L>°(R) = Y(R) and we prove that
WILHR™) — Lo (R") [L2 (R)],
has the optimal range space with mixed norm; that is, we prove the following proposition.
Proposition 6.5. Let n > 2. Let X(R"™') be an r.i. space. Assume that
WAL(R™) o X, (R™) [L2 (R)] . (6.5)
Then, L*(R"1) — X(R"1).

Proof. Let k € N, k > 1. Let ¢ € D(R"!) be non-negative function with support in the ball
centered at 0 with radius 1, and [g, , ¢(2)dz = 1. Let 6 € D(R" ') be the function defined
as follows

_ 1 (¥
O0(z) = /Rnl qn—1 <Z> XB(0,3/4)(* — y)dy.

Note that 0(z) = 1 for all x € B(0,1/2), §(z) =0 for all z ¢ B(0,1) and 0 < fO(x) < 1

for all z € B(0,1). Now, let ¢ € D(R) be non-negative function such that suppvy C B(0,1
and consider

~—~—

I 1y
n(z) = /sto <Z> XB(0,3/2)(® — y)dy.
Define
(o) = (k). and (7)< (7)0 (5.

where h € D(R"!). We have

1
HngLl(R) < 7 Hg/kHLl(R) <A and ||9k||Loo(R) =1

Moreover,

sl vy < PN oy 1OC/R) | s vy = (1Bl 1 en-ry 5
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and

n

S 1Dl sy < S (1D3N sy OGN gy + 1l sy 1D/ gy
j=1

J=1

<

<.
I M:
o

A
(1D + s Wil )
We define fi(2) = u (25) gi(x,), 2 € R™. Let us prove that f, € WL (R"). In fact,

HJkHW' 1LY(R™) — HukHLl(R"—l) HgllgHLl(R) HDjukHLl Rn—1 Hgk“Ll(R)
( )
j=1

- A
< Aoy + Y (r 1D3Hl s sy + ||h||L1(Rn1>) -
j=1

Then, by (6.5)

A — A
el o1 Nl ey < ARl gagosy + 5 D (k— 2 y— ||h||L1<Rn-1>) -
j=1

Since u; converges almost everywhere to h, by Fatou’s Lemma
Il vy < Vit sy < Al gaosy
Hence,
17l gn-1y < AllAl a1y b € DR™).

Finally, by standard approximation argument, we extend the result to all h € L'(R"™1).
Hence, the proof is complete. O]

Proposition 6.3 and Proposition 6.5 allow us to conclude that L (R*™') [L2° (R)] is the
partial optimal range space. Now, our aim for a future research is to prove that it is the
optimal range space with mixed norm. In other words, we would like to prove that

WLYR") = Ly (R") [L (R)] — Xz (R [Ya, (R)],
for any rearrangement invariant Banach space with mixed norm such that

WLYR") — Xz (R [Yz, (R)].
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