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Chapter 1

Introduction

We study the optimality of rearrangement invariant Banach spaces in Sobolev embeddings.
In other words, we would like to know that the rearrangement invariant Banach range
space and the rearrangement invariant Banach domain space are optimal in the Sobolev
embedding, in the sense that domain space cannot be replaced by a larger rearrangement
invariant Banach space and range space cannot be replaced a smaller one. Before commenting
on a brief description of the central part of this work, we will present some facts about
rearrangement invariant Banach spaces.

Let n be a positive integer with n ≥ 2. Let Ω ⊂ Rn be an open subset with |Ω| = 1.
Let f be a real-valued measurable function in Ω. The decreasing rearrangement of f is the
function f ∗ on [0,∞) defined by

f ∗(t) = inf {λ > 0 ; |x ∈ Ω ; |f(x)| > λ| ≤ t} , 0 < t < |Ω| .

A set of real-valued measurables functions in Ω is called a rearrangement invariant Banach
space if it is a linear space equipped with a norm ‖·‖X(Ω) satisfying the following properties:

• if 0 ≤ f ≤ g a.e. and g ∈ X(Ω), then f ∈ X(Ω) and ‖g‖X(Ω) ≤ ‖f‖X(Ω) ;

• if 0 ≤ fn ↑ f a.e. and f ∈ X(Ω), then ‖fn‖X(Ω) ↑ ‖f‖X(Ω) ;

• ‖χE‖X(Ω) < ∞ for every E ⊆ Ω such that |E| < ∞; here, χE denotes the chacteristic
function of the set E.

• for every E ⊆ Ω with |E| <∞, there exists a constant C such that∫
E

f(x)dx ≤ C ‖f‖X(Ω) , for all f ∈ X(Ω);

• if f ∈ X(Ω) and f ∗ = g∗, then g ∈ X(Ω) and ‖g‖X(Ω) = ‖f‖X(Ω) .

According to a fundamental result of Luxemburg [2, Theorem II.4.10] to every rearrange-
ment invariant Banach space X(Ω) there corresponds a rearrangement invariant Banach
space X (0, |Ω|) such that

‖f‖X(Ω) = ‖f ∗‖X(0,|Ω|) , for every f ∈ X(Ω).
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As examples of rearrangement invariant Banach spaces let us mention Lebesgue, Orlicz,
Lorentz and Lorentz-Zygmund spaces. For a detailed treatment of the theory of rearrange-
ment invariant Banach spaces, we refer to [2] and [13].

Fix m ∈ N. Let X(Ω) be a rearrangement invariant Banach space. The Sobolev space
WmX(Ω) is defined as

WmX(Ω) :=
{
f : Ω→ R ;Dαf is defined and ‖Dαu‖X(Ω) <∞, 0 ≤ |α| ≤ m

}
,

where Dαf = ∂αf
∂xα

(α = (α1, . . . , αn) ∈ Nn) represents the distributional derivate of f . This
space is a Banach space with respect to the norm given by

‖f‖WmX(Ω) =
∑

0≤|α|≤m

‖Dαf‖X(Ω) ,

The notation Wm
0 X(Ω) is employed for the closure of D(Ω) in WmX(Ω), where D(Ω) is the

set of C∞(Ω) functions with compact support in Ω. The Sobolev embedding theorem states
that:

• if 1 ≤ p < n, then

W 1
0L

p(Ω) ↪→ Lp
∗
(Ω), where p∗ = (n− p)/pn; (1.1)

• if p = n, then
W 1

0L
p(Ω) ↪→ Lq(Ω), for every 1 ≤ q <∞; (1.2)

• if p > n, then
W 1

0L
p(Ω) ↪→ L∞(Ω). (1.3)

For more information on Sobolev spaces and Sobolev embeddings theorem, we refer to [1],
[19], [21] and [27].

Let m ∈ N with 1 ≤ m ≤ n − 1. We study the optimality of rearrangement invariant
Banach spaces in Sobolev embeddings. In other words, we want to solve the following
problem: Given two rearrangement invariant Banach spaces X(Ω) and Y (Ω) such that

Wm
0 X(Ω) ↪→ Y (Ω), (1.4)

we want to find the optimal pair of rearrangement invariant Banach spaces in the Sobolev
embedding (1.4). To solve this problem, we start with the rearrangement invariant Banach
space X(Ω) and then find the smallest rearrangement invariant Banach space YX(Ω) that
still renders (1.4) true. Thus, the embedding

Wm
0 X(Ω) ↪→ YX(Ω) ↪→ Y (Ω),

has an optimal range, but does not necessarily have an optimal domain; that is X(Ω) could
be replaced by a larger rearrangement invariant Banach space without losing (1.4). We take
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one more step in order to get the optimal domain partner for YX(Ω), let us call it XYX (Ω).
Altogether, we have

Wm
0 X(Ω) ↪→ Wm

0 XYX (Ω) ↪→ YX(Ω) ↪→ Y (Ω),

and Wm
0 XYX (Ω) can be either equivalent to Wm

0 X(Ω) or strictly larger. In any case, after
two steps, the pair (XYX (Ω), YX(Ω)) forms an optimal pair in the Sobolev embedding and
no futher iterations of the process can bring anything new.

Before commenting on our main theorem, let us discuss some refinements of Sobolev
embeddings.

The embedding (1.1), which is known as classical Sobolev embedding, cannot be improved
in the context of Lebesgue spaces; in other words, if we replace Lp(Ω) by a larger Lebesgue
space Lq with q < p, the resulting embedding does not hold. Likewise, if we replace Lp

∗
(Ω)

by smaller Lebesgue space Lr(Ω) with r > p∗, then again the resulting embedding does not
hold. However, if we consider Lorentz spaces, we have the following refinement of (1.1):

W 1
0L

p(Ω) ↪→ Lp
∗,p(Ω). (1.5)

This embedding was observed by Peetre [24] and O’Neil [23]. Now, when p = n it is known
that the Sobolev space W 1

0L
n(Ω) can be embedded in every Lq(Ω) with 1 ≤ q < ∞, and

it cannot be embedded in L∞(Ω). So, (1.5) is optimal within the Lebesgue spaces, where
no improvement is available. However, if we consider Orlicz spaces, LΦ(Ω), we have the
following refinement

W 1
0L

n(Ω) ↪→ LΦ(Ω), Φ(t) = exp(tn
′
). (1.6)

This result was shown, independently, by Pokhozhaev [25], Trudinger [29] and Yudovich [17].
It turns out that LΦ(Ω) is the smallest Orlicz space that still renders (1.6). This optimally
is due to Hempel, Morris and Trudinger [15]. An improvement of (1.6) is possible, but we
need to introduce the Lorentz-Zymund spaces. Equipped with these spaces, we have

W 1
0L

n(Ω) ↪→ L∞,n;−1(Ω). (1.7)

This embedding is due to Brézis-Waigner [3] and Hansson [14].
The study of the optimality in Sobolev embeddings can be formulated as follows. We are

interesting in determining those rearrangement invariant Banach spaces such that

Wm
0 X(Ω) ↪→ Y (Ω), m ∈ N,with 1 ≤ m ≤ n− 1. (1.8)

We would like to know that X(Ω) and Y (Ω) are optimal. Kerman and Pick [18] solved this
problem. The central part of their work may be summarized as follows. They developed
a method that enables us to reduce the Sobolev embedding (1.8) to the boundedness of
certain weighted Hardy operator; and then used it to characterize the largest rearrangement
invariant Banach domain space and the smallest rearrangement invariant Banach range space
in the Sobolev embedding (1.8). Their method allows us to conclude that:

• if 1 ≤ p < n, the couple
(
Lp(Ω), Lp

∗,p(Ω)
)

forms an optimal pair for the Sobolev
embedding (1.1);
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• if p = n, the range space L∞,n;−1(Ω) is an optimal rearrangement invariant Banach
space in the Sobolev embedding (1.7), but the domain space Ln(Ω) is not optimal,
since it can be replaced by a strictly larger space XYX (Ω) equipped with the norm

‖f‖XYX (Ω) =

∥∥∥∥∫ 1

Ω

s1/n−1u∗(s)ds

∥∥∥∥
L∞,n;−1(Ω)

;

• if p > n, the couple (Ln,1(Ω), L∞(Ω)) forms an optimal pair for the Sobolev embed-
ding (1.3).

The contents of this work are as follows. In Chapter 2, we first provide some definitions
and results about rearrangement invariant Banach space. In particular, we define and con-
sider some properties of Lorentz spaces, Lorentz Zygmund spaces and Orlicz spaces. This
chapter also contains definitions and results from interpolation theory. For a detailed treat-
ment of interpolation theory, we refer to [2]. This chapter also includes some properties of
Hardy operator and its dual, which will be usefull to prove the main theorem of this work.
For these properties see [18].

In Chapter 3, we present a brief description of those aspects of distributions that are
relevant for our purposes. Of special importance is the notion of weak or distributional
derivative of an integrable function. For a detailed treatment of distributions, we refer to
[5]. In Chapter 3, we also define Sobolev space and collect its most important properties.
We conclude this chapter proving the Sobolev embeddings theorem, that is, we prove the
embeddings (1.1), (1.2) and (1.3). These proofs can be found in [19] and [27].

In Chapter 4, we prove (1.5) and (1.7). Concerning the proofs, they can be found in [20].
Moreover, we prove (1.6). This proof can be found in [1].

In Chapter 5, we study the optimality of Sobolev embeddings in the context of rearrange-
ment invariant Banach spaces. The central part of this chapter is the following theorem,
which is known as Reduction Theorem.

Theorem 5.2.1 Let X(Ω) and Y (Ω) be rearrangement invariant Banach spaces. Then,

Wm
0 X(Ω) ↪→ Y (Ω), m ∈ N, 1 ≤ m ≤ n− 1,

if and only if there is a positive constant C such that∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (0,1)

≤ C ‖f‖X(0,1) , f ∈ X(0, 1).

When m = 1, this theorem was proved in [10] and the case m = 2 was studied in [6].
Finally, Kerman and Pick [18] proved our version of Reduction Theorem using results from
interpolation theory. In Chapter 5, we also use Theorem 5.2.1 to determine the largest
rearrangement invariant Banach domain space and the smallest rearrangement invariant
Banach range space. To conclude this chapter, we apply Kerman and Pick’s theorem to find
the optimal pair of (1.1), (1.2) and (1.3).
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In Chapter 6, we focus on the following question: what can we say about the optimal
range space with mixed norm in

Ẇ 1L1(Rn) ↪→ L1
x̂n(Rn−1)

[
L∞xn(R)

]
?

The innovative part of this chapter are Proposition 6.3 and Proposition 6.5. These results
allow to conclude that L1(Rn)

[
L∞xn(R)

]
is the partial optimal range space.

Before discussing our results, we will mention our motivation. But, we first need to
introduce spaces with mixed norm. We denote by

Vk = L1
x̂k

(Rn−1)
[
L∞xk(R)

]
, 1 ≤ k ≤ n,

the spaces with mixed norm

‖f‖Vk = ‖Ψk‖L1(Rn−1) , where Ψ (x̂k) = ess supxk∈R |f(x)| .

We present a brief history of our point of departure. The first proof of (1.1) [26] did not
apply to the case p = 1, but later Gagliardo [12] and Nirenberg [22] found a method of proof
which worked in the exceptional case. Gagliardo’s idea was to observe that

W 1L1(Rn) ↪→ Vk, 1 ≤ k ≤ n, (1.9)

and to deduce from this that f ∈ Ln′(Rn).
The embedding (1.9) motivates us to formulate above question: Let X(Rn−1) and Y (R)

be rearrangement invariant Banach spaces such that

Ẇ 1L1(Rn) ↪→ Xx̂n(Rn−1) [Yxn(R)] .

We want to find its optimal range space with mixed norm. In Chapter 6, we begin to solve
this problem. First, we take X(Rn) = L1(Rn), and we prove that

ẆL1(Rn) ↪→ L1
x̂n(Rn−1)

[
L∞xn(R)

]
.

has the optimal range space with mixed norm (see Proposition 6.3). Second, we take
Y (R) = L∞(R), and we prove that

ẆL1(Rn) ↪→ L1
x̂n(Rn−1)

[
L∞xn(R)

]
,

has the optimal range space with mixed norm (See Proposition 6.5). These results allows us
to conclude that L1

x̂n
(Rn−1)

[
L∞xn(R)

]
is the partial optimal range space.





Chapter 2

Preliminaries

In this chapter, we first provide some definitions and results about rearrangement invariant
Banach space. In particular, we define and consider some properties of Lorentz spaces,
Lorentz Zygmund spaces and Orlicz spaces. Next, we present some definitions and results
from interpolation theory. This chapter also contains some properties of Hardy operator and
its dual, which will appear in Chapter 5.

For any measurable subset E of Rn, we define

M(E) := {f : E → R ; f is measurable} ,

and denote by M+(E) the class of non-negative functions in M(E). We recall the notation
X / Y, which means X is no bigger than a constant times Y, with the constant independent
of all function involved.

2.1 The distribution function

Definition 2.1.1. Let f ∈M(Rn), the distribution function of f is the function df defined
on [0 ,∞) as follows:

df (λ) = |{x ∈ Rn : |f(x)| > λ}| .

The distribution function df provides information about the size of f but not about the
behavior of f itself near any point. For instance, a function and any of its translates have the
same distribution function. It follows from Definition 2.1.1 that df is a decreasing function
of λ (not necessarily strictly).

Example 2.1.2. Recall that simple functions are finite linear combinations of characteristic
fuctions of sets of finite measure. Now, we compute the distribution function df of a non-
negative simple function

f(x) =
N∑
j=1

ajχEj(x), (2.1)

11
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where the sets Ej are pairwise disjoint and a1 > . . . > aN > 0. If λ ≥ a1, then df (λ) = 0.
However, if a2 ≤ λ < a1 then |f(x)| > λ when x ∈ E1. In general, if aj+1 ≤ λ < aj, then
|f(x)| > λ when x ∈ E1 ∪ . . . ∪ Ej. Setting Bj =

∑j
k=1 |Ek| we have

df (α) =
N∑
j=1

Bjχ [aj+1 ,aj )(α), where aN+1 = 0.

6

-

6

-

E3 E2 E1

a1

0

f(x)

B3

B2

B1

df (λ)

a3 a2 a1

a3

a2

λ

Figure 2.1: The graph of a simple function f =
∑3

k=1 akχEk and its distribution function

df (λ). Here Bj =
∑j

k=1 |Ek| .

We now state some properties about the distribution function df .

Lemma 2.1.3. Let f, g ∈M(Rn). Then for all α , β > 0 we have:

1. if |g| ≤ |f | a.e. then dg ≤ df ;

2. dcf (α) = df (α/ |c|), for all c ∈ R+;

3. df+g(α + β) ≤ df (α) + dg(β);

Proof. See [2, Theorem II.1.3].

2.2 Decreasing rearrangements

Definition 2.2.1. Let f ∈ M(Rn). The decreasing rearrangement of f is the function f ∗

on [0 ,∞) defined by

f ∗(t) = inf {s > 0 : df (s) ≤ t} .
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We adopt the convention inf ∅ = ∞, thus having f ∗(t) = ∞ whenever df (α) > t for all
α ≥ 0. Note that f ∗ is decreasing.

Example 2.2.2. Consider the simple function of Example 2.1.2,

f(x) =
N∑
j=1

ajχEj(x),

where the sets Ej are pairwise disjoint and a1 > . . . > aN > 0. We saw in Example 2.1.2
that

df (α) =
N∑
j=1

Bjχ [aj+1 ,aj ),

where Bj =
∑j

k=1 |Ek| and aN+1 = 0. Observe that for 0 ≤ t < B1 the smallest s > 0 with
df (s) ≤ t is a1. Similarly, for B1 ≤ t < B2 the smallest s > 0 with df (s) ≤ t is a2. Arguing
this way, we obtain

f ∗(t) =
N∑
j=1

ajχ [Bj−1 ,Bj )(t), where B0 = 0.

6

-

6

-

a1

a2

f(x)

E3 E2 E1

-�

-�

-�

a1

a2

a3

f ∗(t)

B1 B2 B3 t

a3

Figure 2.2: The graph of a simple function f(x) and its decreasing rearrangement f ∗(t).

Example 2.2.3. It is sometimes more usefull to section functions into horrizontal blocks
rather than vertical ones. Thus, the simple function in (2.1) may be represented also as
follows

f(x) =
n∑
k=1

bkχFk(x) (2.2)
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where the coefficients bk are positive and the sets Fk each have finite measure and form an
increasing sequenece F1 ⊂ F2 ⊂ . . . ⊂ Fn. Comparison with (2.1) shows that

bk = ak − ak+1, Fk = ∪kj=1Ej, k = 1 , 2 , . . . , n.

Thus

f ∗(t) =
n∑
k=1

bkχ[ 0 ,|Fk|) (t).

Lemma 2.2.4. Suppose f and g belong to M(Rn) and let α be any scalar.

1. f ∗ is a right-continuous function on [0 ,∞) ;

2. if |g| ≤ |f | a.e. then g∗ ≤ f ∗;

3. (αf)∗ = |α| f ∗;

4. (f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2); (t1 , t2 ≥ 0);

5. df (f
∗(t)) ≤ t for all 0 ≤ t <∞;

6. f and f ∗ have the same distribution function.

The following lemma is useful in proving other properties of f ∗, since it allows us to
reduce these proofs to the case when f is a simple funcion.

Lemma 2.2.5. Let {fm} ∈ M(Rn), such that for all x ∈ Rn, |fm(x)| ≤ |fm+1(x)|, m ≥ 1.
If f is a measurable function satisfying

|f(x)| = lim
m→∞

|fm(x)| , x ∈ Rn,

then for each t > 0, f ∗m(t) ↑ f ∗(t).

Proof. It follows from Lemma 2.2.4 that f ∗m(t) ≤ f ∗m+1(t) ≤ f ∗(t) for m ≥ 1. Let

` = lim
m→∞

f ∗m(t).

Since f ∗m(t) ≤ `, we have

dfm(`) ≤ dfm (f ∗(t)) ≤ t, thus df (`) = lim
m→∞

dfm(`) ≤ t.

Hence, f ∗(t) ≤ `. But, from the inequality f ∗m(t) ≤ f ∗(t) we obtain ` ≤ f ∗(t). It therefore
follows that ` = f ∗(t) and the lemma is proved.

Proposition 2.2.6. Let f ∈M(Ω). If 0 < p <∞, then∫
Rn
|f(x)|p dx =

∫ ∞
0

f ∗(t)pdt.

Moreover, if p =∞, ‖f‖∞ = f ∗(0).
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Proof. In view of Lemma 2.2.5, we will prove this property for an arbitary non-negative
simple function f. Using Example 2.2.2 we have∫

Rn
|f(x)|p dx =

N∑
j=1

apj |Ej| =
∫ ∞

0

N∑
j=1

apjχ [Bj−1 ,Bj )(t)dt =

∫ ∞
0

(f ∗(t))p dt.

We continue with some properties of f ∗.

Theorem 2.2.7. If f and g belong to M+(Rn), then∫
Rn
|f(x)| |g(x)| dx ≤

∫ ∞
0

f ∗(s)g∗(s)ds. (2.3)

To prove this theorem we require the following lemma. Its proof can be found in [2].

Lemma 2.2.8. Let g be a non-negative simple function and let E be an arbitrary measurable
subset of Rn. Then ∫

E

g(x)dx ≤
∫ |E|

0

g∗(s)ds.

Proof. (Theorem 2.2.7) It is enough to establish (2.3) for non-negative functions f and g.
There is no loss of generality in assuming f and g to be simple. In that case, we may write

f(x) =
m∑
j=1

ajχEj(x),

where E1 ⊂ E2 ⊂ . . . ⊂ Em and aj > 0 , j = 1 , 2 , . . . ,m. Then

f ∗(t) =
m∑
j=1

ajχ [0 ,|Ej |) (t).

Hence, by Lemma 2.2.8,∫
Rn
f(x)g(x)dx =

m∑
j=1

aj

∫
Ej

g(x)dx ≤
m∑
j=1

aj

∫ |Ej |
0

g∗(s)ds

=

∫ ∞
0

m∑
j=1

ajχ [0 ,|Ej | )(s)g
∗(s)ds =

∫ ∞
0

f ∗(s)g∗(s)ds

Definition 2.2.9. Let f be a Lebesgue-measurable function on Rn. Then f ∗∗ will denote the
maximal function of f ∗ defined by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds (t > 0) .
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Some properties of the maximal function, f ∗∗, are listed in the following lemma, which
is proved in [2].

Lemma 2.2.10. Suppose f, g and {fn} belong to M(Rn) and let α be any scalar. Then f ∗∗

is non-negative, decreasing and continuous on (0 ,∞) . Furthermore, the following properties
hold:

• f ∗∗ ≡ 0 if and only if f ≡ 0 a.e;

• f ∗ ≤ f ∗∗;

• if |g| ≤ |f | a.e. then g∗∗ ≤ f ∗∗;

• (αf)∗∗ = |α| f ∗∗;

• (f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t)

• if |fn| ↑ |f | a.e. then f ∗∗n ↑ f ∗∗.

2.3 Rearrangement invariant Banach function spaces

Definition 2.3.1. A rearrangement-invariant (r.i.) Banach function norm ρ on M+(Rn)
satisfies the following axioms

• ρ(f) ≥ 0 with ρ(f) = 0 if and only if f = 0 a.e. on Rn;

• ρ(cf) = cρ(f), c ∈ R+;

• ρ(f + g) ≤ ρ(f) + ρ(g);

• fn ↑ f implies ρ(fn) ↑ ρ(f);

• E ⊂ Rn with |E| <∞, then ρ(χE) <∞;

• E ⊂ Rn with |E| <∞, then
∫
E
f(x)dx / ρ(f);

• f ∗ = g∗, then ρ(f) = ρ(g)

Definition 2.3.2. Let ρ be a r.i. Banach functin norm. The collection, X(Rn), of all
function f in M(Rn) for which ρ (|f |) < ∞ is called a rearrangement-invariant Banach
function space. For each f ∈ X(Ω), define

‖f‖X(Rn) = ρ (|f |) .
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Definition 2.3.3. Given a r.i. space X(Rn), the set

X ′ =

{
f ∈M(Rn) ;

∫
Ω

|f(x)g(x)| dx <∞ for every g ∈ X(Rn)

}
,

endowed with the norm

‖f‖X′(Rn) = sup
‖g‖X(Rn)≤1

∫
Rn
|f(x)g(x)| ,

is called the associate space of X(Rn).

Proposition 2.3.4. Let X(Rn) be an r.i. Banach function space. Then the associate X ′(Ω)
is also an r.i. Banach function space. Furthermore,

‖f‖X′(Rn) = sup
‖g‖X(Rn)≤1

∫
Rn
f ∗(t)g∗(t)dt, and ‖f‖X(Rn) = sup

‖g‖X′(Rn)≤1

∫
Rn
f ∗(t)g∗(t)dt.

A basic tool for working with r.i. spaces is the Hardy-Littlewood-Pólya principle:

Theorem 2.3.5. Let X(Rn) be an r.i. Banach function spaces. If f ∗∗(t) ≤ g∗∗(t) for all
t > 0, then ‖f‖X(Rn) ≤ ‖g‖X(Rn) .

To prove this theorem we will use the following result. For this result see [2].

Proposition 2.3.6. Let f1 and f2 be non-negative measurable functions on (0 ,∞) and
suppose ∫ t

0

f1(s)ds ≤
∫ t

0

f2(s)ds,

for all t > 0. Let h be any non-negative decreasing function on (0 ,∞) . Then,∫ ∞
0

f1(s)h∗(s)ds ≤
∫ ∞

0

f2(s)h∗(s)ds.

Proof. (Theorem 2.3.5) By Proposition 2.3.4, it needs only be shown that∫ ∞
0

f ∗(s)h∗(s)ds ≤
∫ ∞

0

g∗1(s)h∗(s)ds,

for every g such that ‖g‖X′(Rn) ≤ 1. But this is an immediate consequence of Proposi-

tion 2.3.6, since
∫ t

0
f ∗(t)dt ≤

∫ t
0
g∗(t)dt and h∗ is non-negative and decreasing.

Theorem 2.3.7. (Luxemburg representation theorem). Let Ω ⊂ Rn be an open subset. Let
ρ be a rearrangement-invariant function norm on M+(Ω). Then, there is a (not necessarily
unique) rearrangement-invariant function norm ρ on M+(I), where I = (0 , |Ω|) , such that

ρ(f) = ρ(f ∗), ∀f ∈M+(Ω).
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Furthemore, if σ is any rearrangement-invariant function norm on M+(I) which represent
ρ, in the sense that

ρ(f) = σ(f ∗), f ∈M+(Ω),

then the associate norm ρ′ of ρ is representaed in the same way by the associate norm σ′ of
σ, that is

ρ′(g) = σ′(g), g ∈M+(I).

2.4 Orlicz spaces

Now, we recall the definition of Orlicz spaces. For a detailed treatment of Orlicz spaces, we
refer to [2].

Definition 2.4.1. Let φ : [0 ,∞)→ [0 ,∞] be increasing and left-continuous function with
φ(0) = 0. Suppose on (0 ,∞) that φ is neither identically zero nor identically infinite. Then
the function Φ defined by

Φ(s) =

∫ s

0

φ(u)du, (s ≥ 0)

is said to be a Young’s function.

Remark 2.4.2. Note that a Young’s function is convex on the interval where it is finite.
Indeed, given s , t ≥ 0 and λ ∈ (0 , 1) we have

Φ (λs+ (1− λ)t) =

∫ λs+(1−λ)t

0

φ(r)dr =

∫ s

0

φ(r)dr +

∫ λs+(1−λ)t

s

φ(r)dr

= λ

∫ s

0

φ(r)dr + (1− λ)

∫ s

0

φ(r)dr +

∫ λs+(1−λ)t

s

φ(r)dr. (2.4)

Since φ is increasing and left continuous we have∫ λs+(1−λ)t

s

φ(r)dr ≤ (1− λ)(t− s)φ (λs+ (1− λ)t)

∫ t

λs+(1−λ)t

φ(r)dr ≥ λ(t− s)φ (λs+ (1− λ)t) .

Then, comparing the two previous inequalities we obtain

λ

∫ λs+(1−λ)t

s

φ(r)dr ≤ (1− λ)

∫ t

λs+(1−λ)t

φ(r)dr,
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and so, ∫ λs+(1−λ)t

s

φ(r)dr = λ

∫ λs+(1−λ)t

s

φ(r)dr + (1− λ)

∫ λs+(1−λ)t

s

φ(r)dr

≤ (1− λ)

∫ λs+(1−λ)t

s

φ(r)dr + (1− λ)

∫ t

λs+(1−λ)t

φ(r)dr

= (1− λ)

∫ t

s

φ(r)dr. (2.5)

Finally, plugging (2.5) in (2.4), we obtain

Φ (λs+ (1− λ)t) ≤ λ

∫ s

0

φ(r)dr + (1− λ)

∫ t

0

φ(r)dr = λΦ(s) + (1− λ)Φ(t).

Moreover, note that lims→∞Φ(s)/s =∞. Indeed, for all t > 0 we have

Φ(t)

t
=

1

t

∫ t

0

φ(s)ds ≥ 1

t

∫ t

t/2

φ(s)ds ≥ 1

2
φ

(
t

2

)
,

and then, letting t→∞, we obtain the desired result.

Definition 2.4.3. Let Φ be a Young’s function. The Luxemburg norm ρΦ is defined by

ρΦ(f) = inf
{
k > 0 : MΦ(kf) ≤ 1

}
, f ∈M(Rn), (2.6)

where

MΦ(kf) =

∫
Rn

Φ

(
|f(x)|
k

)
dx.

Remark 2.4.4. If ρΦ(f) > 0, the infimun in (2.6) is attained. Indeed, we denote

A =

{
k > 0 :

∫
Rn

Φ

(
|f(x)|
k

)
dx ≤ 1

}
.

Let {kn} ∈ A be a decreasing sequence. We claim that limn kn = ρΦ(f). In fact, given ε > 0,
there exists kn such that kn − ρΦ(f) < ε, since ρΦ(f) is the infimum of A. Then, if n < N
we have

kN − ρΦ(f) < kn − ρΦ(f) < ε,

and so limn kn = ρΦ(f). Thus Φ (|f(x)| /kn) ↑ Φ
(
|f(x)| /ρφ(f)

)
, beucase Φ is left-continuous.

Finally, we obtain, by monotone convergence,∫
Rn

Φ

(
|f(x)|
ρφ(f)

)
dx ≤ 1.

Therefore ρΦ(f) ∈ A and

ρΦ(f) = min

{
k > 0 :

∫
Rn

Φ

(
|f(x)|
k

)
dx ≤ 1

}
.
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In order to show that ρΦ is an r.i. norm, we shall need the following preliminary result.

Lemma 2.4.5. If Φ is a Young’s function, then

f = 0 a.e. ⇔ MΦ(kf) ≤ 1, ∀ k > 0.

Proof. Suppose f = 0 a.e. Then ρΦ(f) = 0 and so MΦ(kf) ≤ 1 for all k > 0. Conversely,
suppose that MΦ(kf) ≤ 1 for all k > 0, but for some ε > 0 we have |f | ≥ ε on a set E of
positive measure. Then

MΦ(kf) ≥
∫
E

Φ(kε)dx = |E|Φ(kε).

Since Φ(s) ↑ ∞ as s ↑ ∞, we therefore obtain the contradiction that MΦ(kf) ↑ ∞ as
k ↑ ∞.

Theorem 2.4.6. If Φ is a Young’s function, then ρΦ is an r.i. norm.

Proof. We need to verify the following properties:

• ρΦ(f) = 0 ⇔ f = 0 a.e. Indeed, it follows from Lemma 2.4.5.

• ρΦ(αf) = αρφ(f) ∀α > 0. It is suffices to consider ρΦ(f) > 0. We have∫
Ω

Φ

(
α |f(x)|
αρΦ(f)

)
dx =

∫
Ω

Φ

(
|f(x)|
ρΦ(f)

)
dx ≤ 1,

hence ρΦ (αf) ≤ αρΦ(f). On the other hand, since
∫

Ω
Φ
(
α|f(x)|
ρΦ(αf)

)
dx ≤ 1, we have

ρΦ(f) ≤ ρΦ (αf) /α.

• ρφ (f + g) ≤ ρΦ(f) + ρΦ(g), for all f , g ∈M(Rn). Indeed, let γ = ρΦ(f) + ρΦ(g) <∞
and let α = ρΦ(f)/γ and β = ρΦ(g)/γ with α + β = 1. By (2.6),

MΦ
(
f/ρΦ(f)

)
≤ 1 and MΦ

(
g/ρΦ(g)

)
≤ 1.

Since Φ is convex, we have

MΦ

(
f + g

γ

)
= MΦ

(
αf

ρΦ(f)
+

βg

ρΦ(g)

)
≤ αMΦ

(
f

ρΦ(f)

)
+ βMΦ

(
g

ρΦ(g)

)
≤ α + β = 1.

Hence, we conclude that ρΦ (f + g) ≤ γ = ρΦ(f) + ρΦ(g).

• 0 ≤ g ≤ f a.e. ⇒ ρΦ(g) ≤ ρΦ(f). Indeed, 0 < ρΦ(f) <∞. Then

MΦ

(
g

ρΦ(f)

)
≤MΦ

(
f

ρΦ(f)

)
,

and ρΦ(g) < ρΦ(f).
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• 0 ≤ fn ↑ f a.e. ⇒ ρΦ(fn) ↑ ρΦ(f). Indeed, by the above property, the sequence ρΦ(fn)
is increasing. Let αn = ρΦ(fn) and put α = supαn. Since ρΦ(f) ≥ αn for each n, it
follows that ρΦ(f) ≥ α. We must show ρΦ(f) ≤ α. This is clear for α = 0 or α = ∞,
so we may assume that 0 < αn <∞ for all n ≥ 1. In this case

MΦ

(
fn
α

)
≤MΦ

(
fn
αn

)
≤ 1,

and the monotone convergence theorem shows that the quantity on the left converges
to MΦ

(
f
α

)
. Hence MΦ

(
f
α

)
≤ 1, and therefore ρΦ(f) ≤ α.

• Let E ⊂ Rn any measurable subset. Let b denote the measure of E (we may assume
b > 0). We claim that,

ρΦ(χE) <∞.

Indeed, the Young’s function Φ is not identically infinite on (0 ,∞) , and it is continuous
on the interval where it is finite. Since Φ(0) = 0, it follows that there is a number k > 0
for which Φ(k) ≤ 1/b. Then MΦ(kχE) = bΦ(k) ≤ 1 and hence ρΦ(χE) ≤ 1/k <∞.

• Let E be a subset of Rn of measure b > 0. Let f ∈M(Rn) with 0 < ρΦ(f) <∞. With
k = 1/ρΦ(|f |), Jensen’s inequality gives

Φ

(
1

b

∫
E

k |f(x)| dx
)
≤ 1

b

∫
E

Φ (k |f(x)|) dx ≤ 1

b
MΦ(kf) ≤ 1

b
.

Hence, since Φ increases to ∞, there is a constant c ,which depends on Φ and b, such
that

1

b

∫
E

k |f(x)| dx ≤ c ⇒
∫
E

|f(x)| dx ≤ cbρΦ(f).

• The rearrangement-invariance follows from the fact that MΦ(f) = MΦ(g) whenever f
and g are equimesurables. The latter property needs only be established with g = f ∗.
There is no loss of generality in assuming f to be a simple function. In that case,
we may write f(x) =

∑N
j=1 ajχEj(x), where the sets Ej are pairwise disjoint and

a1 > . . . > aN . Then,

f ∗(t) =
N∑
j=1

ajχ [Bj−1 ,Bj )(t), where Bj =
N∑
j=1

|Ej| and B0 = 0.

So,

MΦ(f) =

∫
Rn

Φ

(
N∑
j=1

ajχEj(x)

)
dx =

N∑
j=1

|Ej|Φ(aj),
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and

MΦ(f ∗) =

∫ ∞
0

Φ

(
N∑
j=1

ajχ [Bj−1 ,Bj )(t)

)
dx =

N∑
j=1

∫ Bj

Bj−1

Φ(aj)dx

=
N∑
j=1

(Bj −Bj−1)Φ(aj) =
N∑
j=1

|Ej|Φ(aj).

Hence, MΦ(f) = MΦ(f ∗).

Definition 2.4.7. Let Φ be a Young’s function. The Orlicz space is the rearrangement
invariant Banach function space of those f ∈M(Rn) for which the Luxemburg norm

‖f‖LΦ = ρΦ(f),

is finite.

Example 2.4.8. If we take φ(u) = pup−1, where 1 ≤ p <∞, then Φ(u) = up and the Orlicz
space LΦ(Rn) is the Lp(Rn).

2.5 Lorentz spaces

This section contains definition and some results from Lorentz spaces that will appear later
on. For more information on Lorentz spaces see [2] and [13].

Definition 2.5.1. Given f ∈M(Rn) and 0 < p, q ≤ ∞, define

‖f‖Lp,q(Rn) =

{ (∫∞
0

[
t1/pf ∗(t)

]q dt
t

)1/q
, 0 < q <∞,

sup0<t<∞
(
t1/pf ∗(t)

)
, q =∞.

The set of all f ∈M(Rn) with ‖f‖Lp,q(Rn) <∞ is denoted by Lp,q(Rn) and is called Lorentz
space.

Remark 2.5.2. Using the notation of Example 2.2.2, when 0 < q <∞ we have

‖f‖Lp,q(Rn) =

(
p

q

)1/q [
aq1B

q/p
1 + aq2

(
B
q/p
2 −Bq/p

1

)
+ . . .+ aqN

(
B
q/p
N −B

q/p
N−1

)]1/q

.

It follows that the only simple function with finite ‖·‖L∞,q(Rn) norm is identically equal to
zero; for this reason we have that L∞,q(Rn) = {0} , for any 0 < q <∞

The next result shows that, for any fixed p, the Lorentz spaces increase as the second
exponent q increases.
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Proposition 2.5.3. Suppose 0 < p <∞ and 1 ≤ q ≤ r ≤ ∞. Then

Lp,q(Rn) ↪→ Lp,r(Rn).

Proof. Suppose r =∞. Using the fact that f ∗ is decreasing, we have

t1/pf ∗(t) =

(
p

q

∫ t

0

[
s1/pf ∗(t)

]q ds
s

)1/q

≤
(
p

q

∫ t

0

[
s1/pf ∗(s)

]q ds
s

)1/q

≤
(
p

q

)1/q

‖f‖Lp,q(Rn) .

Hence, taking the supremum over all t > 0, we obtain

‖f‖Lp,∞(Rn) ≤
(
p

q

)1/q

‖f‖Lp,q(Rn) .

Now, suppose r <∞, we have

‖f‖Lp,r(Rn) =

(∫ ∞
0

[
t1/pf ∗(t)

]r−q+q dt
t

)1/r

≤ ‖f‖1−q/r
Lp,∞(Rn) ‖f‖

q/r
Lp,q(Rn)

≤
(
p

q

)(r−q)/rq

‖f‖Lp,q(Rn) .

Note that ‖·‖Lp,q(Rn) , does not satisfy the triangle inequality if p < q ≤ ∞..

Example 2.5.4. Consider f(t) = t and g(t) = 1−t defined on [0 , 1] . Then f ∗(λ) = g∗(λ) =
1 − λ. A calculation shows that the triangle inequality for these functions with respect to
the norm ‖·‖Lp ,q(Rn) would be equivalent to

p

q
≤ 2

Γ(q + 1)Γ(p/q)

Γ(q + 1 + q/p)
.

So, if we take q = 2 and p = 4, we will obtain 2 ≤ 1/12.

However, there is the following result.

Theorem 2.5.5. Suppose 1 ≤ q ≤ p <∞ or p = q =∞. Then,
(
Lp,q(Rn) , ‖·‖Lp,q(Rn)

)
is a

rearrangement-invariant Banach function space.

Proof. The result is clear when p = q = 1 or p = q = ∞ since Lp ,q(Rn) reduces to the
Lebesgue spaces L1(Rn) and L∞(Rn), respectively. Hence, we may assume that 1 < p <∞
and 1 ≤ q ≤ p. We have

‖f + g‖Lp,q(Rn)=sup‖h‖
Lq
′=1

∫ ∞
0

(f + g)∗(t)h∗(t)dt,
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The hypothesis q ≤ p implies that h∗(t)t1/p−1/q is decreasing. Hence, since∫ t

0

(f + g)∗(t) ≤
∫ t

0

(f ∗ + g∗)dt,

we may apply Proposition 2.3.6 and then Hölder’s inequality to obtain∫ ∞
0

t1/p−1/q(f + g)∗(t)h∗(t)dt ≤
∫ ∞

0

t1/p−1/q(f ∗(t) + g∗(t))h∗(t)dt

≤
(∫ ∞

0

tq/p−1(f ∗(t))qdt

)1/q

‖h‖q′

+

(∫ ∞
0

tq/p−1(g∗(t))qdt

)1/q

‖h‖q′

= ‖f‖Lp,q(Rn) + ‖g‖Lp,q(Rn) ,

since ‖h‖q′ = 1. This establishes the triangle inequality for ‖·‖Lp,q(Rn) . The remaining prop-
erties of a r.i. Banach function norm are easy to verify.

Although the restriction q ≤ p in the previous result is necessary, it can be avoided in
the case p > 1 by replacing ‖·‖Lp,q(Rn) with an equivalent functional which is a norm for all
q ≥ 1.

Definition 2.5.6. Suppose 1 < p ≤ ∞ and 0 < q ≤ ∞. The Lorentz space L(p,q)(Rn) consist
of all Lebesgue-measurables functions on Rn,f, for which the quantity

‖f‖L(p,q)(Rn) =

{ (∫∞
0

[
t1/pf ∗∗(t)

]q dt
t

)1/q
, 0 < q <∞,

sup0<t<∞
(
t1/pf ∗∗(t)

)
, q =∞,

is finite.

The following inequality is knwon as Hardy’s inequality.

Theorem 2.5.7. (Hardy’s inequality) Let ψ be a non-negative measurable function on (0 ,∞)
and suppose −∞ < λ < 1 and 1 ≤ q ≤ ∞. Then,{∫ ∞

0

(
tλ

1

t

∫ t

0

ψ(s)ds

)q
dt

t

}
≤ 1

1− λ

{∫ ∞
0

(
tλφ(t)

)q dt
t

}1/q

,

with the modification if q =∞.

Proof. Writing ψ(s) = s−λ/q
′
sλ/q

′
ψ(s) and applying Hölder’s inequality, we obtain

1

t

∫ t

0

ψ(s)ds ≤
(

1

t

∫ t

0

s−λds

)1/q′ (
1

t

∫ t

0

sλq/q
′
ψ(s)qds

)1/q

= (1− λ)−1/q′t(1−λ)(q−1)/q

(∫ t

0

sλ(q−1)ψ(s)qds

)1/q

.
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Hence, ∫ ∞
0

(
tλ

1

t

∫ t

0

ψ(s)ds

)q
dt

t
≤ (1− λ)1−q

∫ ∞
0

tλ−2

∫ t

0

sλ(q−1)ψ(s)qdsdt

= (1− λ)1−q
∫ ∞

0

sλ(q−1)ψ(s)q
∫ ∞
s

tλ−2dtds.

Lemma 2.5.8. If 1 < p ≤ ∞ and 0 < q ≤ ∞, then

‖f‖Lp,q(Rn) ≤ ‖f‖L(p,q)(Rn) ≤ p′ ‖f‖Lp,q(Rn) , f ∈M(Rn); (2.7)

if q =∞, the corresponding integral in (2.7) is replaced by the supremum in the usual way.

Proof. The first inequality in (2.7) follows from Lemma 2.2.10. The second follows from
Hardy’s inequality (Theorem 2.5.7).

Theorem 2.5.9. If 1 < p <∞, 1 ≤ q ≤ ∞ or if p = q =∞, then
(
L(p,q)(Rn) , ‖·‖(p,q)

)
is a

rearrangement invariant Banach function space.

Let us determine the associate spaces L(p,q)(Rn).

Theorem 2.5.10. Suppose 1 < p <∞, 1 ≤ q ≤ ∞ (or p = q = 1 or p = q =∞). Then the
associate spaces of L(p,q)(Rn) is, up to equivalence of norms, the Lorentz space Lp

′,q′(Rn)

Proof. See [2].

2.6 Lorentz Zygmund spaces

In this section, we define the Lorentz-Zygmund spaces. For more details on these space see
[2].

Definition 2.6.1. Let Ω ⊂ Rn be a subset with |Ω| = 1. Suppose 0 < p , q ≤ ∞ and
−∞ < α < ∞. The Lorentz-Zygmund space Lp,q;α(Ω) consist of all Lebesgue measurable
functions f on Ω for which

‖f‖p,q;α =

{ (∫ 1

0

[
t1/p

(
log e

t

)α
f ∗(t)

]q dt
t

)1/q

, 0 < q <∞,
sup0<t<1

[
t1/p

(
log e

t

)α
f ∗(t)

]
, q =∞,

is finite.

Example 2.6.2. For α = 0, Lp ,q ;α(Ω) coincides with the usual Lorentz space Lp ,q(Ω).
Moreover, LΦ(Ω) = L∞ ,∞ ;−1(Ω) with Φ(t) = exp(tn

′
) and Lp ,p ;0(Ω) = Lp(Ω).
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2.7 Interpolation spaces

This section contains definitions and results from interpolation theory that will appear later
on. For a detailed treatment of interpolation spaces, we refer to [2].

Definition 2.7.1. A pair (X0 , X1) of Banach spaces X0 and X1 is called a compatible couple
if there is some Hausdorff topological vector space in which each of X0 and X1 is continuously
embedded.

Any pair (X , Y ) of Banach spaces for which X is continuously embedded in Y (or vice
versa) is a compatible couple, beucase we may choose for the Hausdorff space the space Y
itself.

Theorem 2.7.2. Let (X0 , X1) be a compatible couple. Then X0 + X1 and X0 ∩ X1 are
Banach spaces under the norms

‖f‖X0+X1
= inf

f=f0+f1

{
‖f0‖X0

+ ‖f1‖X1

}
, and ‖f‖X0∩X1

= max
{
‖f‖X0

, ‖f‖X1

}
,

respectively.

Proof. See [2, Theorem V.1.3].

Definition 2.7.3. Let (X0 , X1) be a compatible couple of Banach spaces. The Peetre
K-functional is defined for each f ∈ X0 +X1 and t > 0 by

K (f, t;X0, X1) = inf
{
‖f0‖X0

+ t ‖f1‖X1
: f = f0 + f1

}
,

where the infimum extends over all representations f = f0 + f1 of f with f0 ∈ X0 and
f1 ∈ X1.

Example 2.7.4. Consider the compatiple couple (L1(Ω) , L∞(Ω)) . Then

K(f, t;L1(Ω), L∞(Ω)) =

∫ t

0

f ∗(s)ds.

Theorem 2.7.5. Let T be an admisible linear operator with respect to compatible couples
(X0 , X1) and (Y0 , Y1) . Then

K(Tf, t;Y0, Y1) ≤M0K(f, tM1/M0;X0, X1)

for all f in X0 +X1 and all t > 0.

Proof. The admisible operator T satisfies

‖Tfi‖Yi ≤Mi ‖fi‖Xi , fi ∈ Xi , i = 0, 1.
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If f ∈ X0 + X1 and f = f0 + f1 is any decomposition of f with fi ∈ Xi (i = 0 , 1), then
Tf = Tf0 + Tf1 and Tfi ∈ Yi, (i = 0 , 1). Hence,

K(Tf, t;Y0, Y1) ≤ ‖Tf0‖X0
+ t ‖Tf1‖Y1

≤M0

(
‖f0‖X0

+ t
M0

M1

‖f1‖X1

)
.

Taking the infimum over all such representations f = f0 + f1 of f , we obtain

K(Tf, t;Y0, Y1) ≤M0K(f, tM1/M0;X0, X1).

Definition 2.7.6. Let (X0 , X1) be a compatible couple. The space (X0 , X1)θ,q consist of all
f in X0 +X1 for which the functional

‖f‖θ,q =

{ (∫∞
0

[
t−θK(f, t)

]q dt
t

)1/q
, 0 < θ < 1 , 1 ≤ q <∞,

supt>0 t
−θK(f, t), 0 ≤ θ ≤ 1 , q =∞,

is finite where K(f, t) = K(f, t,X0, X1).

Theorem 2.7.7. Let (X0 , X1) be a compatible couple of Banach spaces. Then (X0 , X1)θ,q
endowed with the norm ‖·‖θ,q is a Banach space.

X0 ∩X1 ↪→ (X0 , X1)θ,q ↪→ X0 +X1.

Example 2.7.8. An important example is the case X0 = L1(Ω), X1 = L∞(Ω) for which the
corresponding interpolation spaces are the Lorentz spaces: for 1 < p < ∞ and 1 ≤ q ≤ ∞
one write

Lp,q(Ω) =
(
L1(Ω) , L∞(Ω)

)
1/p′,q

.

Remark 2.7.9. Let (X0 , X1) be a compatible couple and consider two interpolation spaces

Xθ0 = (X0 , X1)θ0 ,q0 , Xθ1 = (X0 , X1)θ1 ,q1 ,

where 0 < θ0 < θ1 < 1 and 1 ≤ q0 , q1 < ∞. Then
(
Xθ0 , Xθ1

)
is itself a compatible

couple. The following theorem relates the K-functional of the underlying couples (X0 , X1)
and

(
Xθ0 , Xθ1

)
. Its proof may be found in [16]. We shall write

K(f , t) = K(f, t;X0, X1), and K(f, t) = K(f, t;Xθ0 , Xθ1).

Theorem 2.7.10. Let (X0 , X1) be a compatible couple and consider two interpolation spaces

Xθ0 = (X0 , X1)θ0 ,q0 , Xθ1 = (X0 , X1)θ1 ,q1 ,

where 0 < θ0 < θ1 < 1 and 1 ≤ q0 , q1 ≤ ∞. Then

K(f, t) ≈

(∫ 1/ν

0

(
s−θ0K(f, t)

)q0 ds
s

)1/q0

+ t

(∫ ∞
1/ν

(
s−θ1K(f, t)

)q1 ds
s

)1/q1

,

where ν = θ1 − θ0.



2.8. Weighted Hardy operators 28

Remark 2.7.11. With the same technique we can estimate K(f, t) in the two extreme
cases K(f, t;X0, Xθ1) and K(f, t;Xθ1 , X1). The result in these two cases is

K(f, t;X0, Xθ1) ≈ t

(∫ ∞
t1/θ1

(
s−θ1K(f, s)

)q1 ds
s

)1/q1

K(f, t;Xθ0 , X1) ≈

(∫ t1/(1−θ0)

0

(
s−θ0K(f, s)

)q0 ds
s

)1/q0

.

2.8 Weighted Hardy operators

Let n ≤ 2 and 1 ≤ m ≤ n − 1. We establish properties of Weighted Hardy operadors.
Throughout this section we present results proved in [18].

Lemma 2.8.1. Let Hn/m and H ′n/m be the associate weighted Hardy operators defined by

(Hn/mf)(t) :=

∫ 1

t

f(s)sm/n−1ds (H ′n/mf)(t) := tm/n−1

∫ t

0

f(s)ds,

f ∈M+(I) , t ∈ I = (0 , 1) . Then,

Hn/m : L1(I)→ Ln/(n−m),1(I), Hn/m : Ln/m,1(I)→ L∞(I), (2.8)

and

H ′n/m : L1(I)→ Ln/(n−m),∞(I), H ′n/m : Ln/m,∞(I)→ L∞(I). (2.9)

Remark 2.8.2. Note that Hn/mf is nonincreasing in t. Indeed, let t1 < t2 ∈ I. Then,

Hn/m(t2) =

∫ 1

t2

f(s)sm/n−1ds <

∫ 1

t1

f(s)sm/n−1ds = Hn/m(t1).

Proof. (Lemma 2.8.1). Let us prove (2.8).

∥∥Hn/mf
∥∥
Ln/(n−m),1(I)

=

∫ 1

0

(
Hn/mf(t)

)∗∗
t−m/ndt =

∫ 1

0

t−m/n−1

(∫ t

0

(
Hn/mf

)
(y)dy

)
/
∫ 1

0

s−m/n
(∫ 1

s

f(t)tm/n−1dt

)
ds ≈

∫ 1

0

f(t)dt = C ‖f‖L1(I) .

Hence, Hn/m : L1(I)→ Ln/(n−m),1(I). Now,

∥∥Hn/mf
∥∥
L∞(I)

= sup
0<t<1

(
Hn/mf

)∗
(t) ≤

∫ 1

0

f(s)sm/n−1ds ≤
∫ 1

0

f ∗(s)sm/n−1ds = ‖f‖Ln/m,1(I).
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Therefore, Hn/m : Ln/m,1(I)→ L∞(I). Let us prove (2.9).

∥∥H ′n/mf∥∥Ln/(n−m),∞(I)
= sup

g 6=0

∫ 1

0
(H

′

n/mf)(t)g(t)dt

‖g‖Ln/m,1(I)

= sup
g 6=0

∫ 1

0
(Hn/mg)(t)f(t)dt

‖g‖Ln/m,1(I)

≤ sup
g 6=0

∥∥Hn/mg
∥∥
L∞(I)

‖f‖L1(I)

‖g‖Ln/m,1(I)

/ ‖f‖L1(I) .

Therefore, H ′n/m : L1(I)→ Ln/(n−m),∞(I). Finally,

∥∥H ′n/m∥∥L∞(I)
= sup

g 6=0

∫ 1

0
(H ′n/mf)(t)g(t)dt

‖g‖L1(I)

= sup
g 6=0

∫ 1

0
(Hn/mg)(t)f(t)dt

‖g‖L1(I)

≤ sup
g 6=0

∥∥Hn/mg
∥∥
Ln/(n−m),1(I)

‖f‖Ln/m,∞(I)

‖g‖L1(I)

/ ‖f‖Ln/m,∞(I) .

Hence, the proof is complete.

Additional results involving Hn/m and H ′n/m require the supremum operator Tn/m defined
by

(Tn/mf)(t) := t−m/n sup
t≤s<1

sm/nf ∗(s), with f ∈M(I) and t ∈ I.

Remark 2.8.3. Note that (Tn/mf)(t) is non-increasing in t. Indeed, let t1 ≤ t2 < 1. We
have

t
−m/n
2 sup

t2≤s<1
sm/nf ∗(s) ≤ t

−m/n
1 sup

t2≤s<1
sm/nf ∗(s) ≤ t

−m/n
1 sup

t1≤s<1
sm/nf ∗(s),

that is (Tn/mf)(t2) ≤ (Tn/mf)(t1).

Lemma 2.8.4. The operators Tn/m have the following endpoint mapping properties:

Tn/m : Ln/m,∞(I)→ Ln/m,∞(I), (2.10)

and
Tn/m : L1(I)→ L1(I). (2.11)

Proof. Let us prove (2.10)

∥∥Tn/mf∥∥Ln/m,∞(I)
= sup

0<t<1
tm/n−1

∫ t

0

s−m/n sup
s≤y<1

ym/nf ∗(y)ds

≤ sup
0<t<1

tm/n−1

∫ t

0

s−m/n sup
0≤y<1

ym/nf ∗∗(y)ds

≈ ‖f‖Ln/m,∞(I) .
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Now, let us prove (2.11). It sufficies to verify
∥∥Tn/mf∥∥L1 ≤ ‖f‖L1 , for f ∈ D(I). Given such

an f 6= 0, define

(Rf)(t) = sup
t≤s<1

sm/nf ∗(s),

and set A = {k ∈ N : (Rf)(rk) > (Rf)(rk−1)} , where rk is given by∫ rk

0

t−m/ndt =
n

n−m
2−k;

that is, rk = 2−nk/(n−m), k = 0, 1, . . . Then, A is non-empty. Take k ∈ A and define

zk =

{
0 if (Rf)(t) = (Rf)(rk), t ∈ (0 , rk ];
min {rj ; (Rf)(rj) = (Rf)(rk)} otherwise.

Note that,

Rf(0) = sup
0≤s<1

sm/nf ∗(s) = sup
0<s≤1

sm/nf ∗(s) = sup
0<u<1

sup
u<s≤1

sm/nf ∗(s)

= sup
0<u<1

Rf(u) = sup
0<u<rk

Rf(u) = Rf(rk).

Thus,

(Rf)(t) = (Rf)(rk), k ∈ A , t ∈ [zk , rk] .

Moreover, by the definition of A, suprk≤t<1 t
m/nf ∗(t) is attained in [rk , rk−1 ) when k ∈ A.

Therefore, for every k ∈ A and t ∈ [zk , rk−1 ) , we have

(Rf)(t) ≤ (Rf)(rk) = sup
rk≤s<rk−1

sm/nf ∗(s) ≤ r
m/n
k−1 f

∗(rk).

So, ∥∥Tn/mf∥∥L1(I)
≤
∑
k∈A

∫ rk−1

zk

(Rf)(t)t−m/ndt+

∫ 1

rk0

(Rf)(t)t−m/ndt

≤
∑
k∈A

r
m/n
k−1 f

∗(rk)

∫ rk−1

0

t−m/ndt ≤
∑
k∈A

rk−1f
∗(rk)

/
∑
k∈A

∫ rk

rk+1

f ∗(t)dt ≤ ‖f‖L1(I) ,

where k0 = max {k ∈ A} .

We continue with some further properties of Tn/m

Theorem 2.8.5. Let X(I) be an r.i. space. Then,∥∥tm/n(Tn/mf
∗∗)(t)

∥∥
X(I)

/
∥∥tn/mf ∗∗(t)∥∥

X(I)
.
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The following two lemmas are essential to the proof of Theorem 2.8.5.

Lemma 2.8.6. For all f ∈M(I) and t ∈ I(
Tn/mf

)∗∗
(t) ≤

(
Tn/mf

∗∗) (t).

Proof. Given f ∈M+(I) and t ∈ I, set

ft(s) = min [f(s), f ∗(t)] , f t(s) = max [f(s)− f ∗(t) , 0] , s ∈ (0 , 1) .

Then,

(ft)
∗(s) = min [f ∗(s), f ∗(t)] , (f t)∗(s) = (f ∗(s)− f ∗(t))χ(0,t)(s),

and so, f ∗(s) = (ft)
∗(s) + (f t)∗(s), s ∈ I. Since, (Tn/mf)(t) is noncreasing in t,(

Tn/mf
)∗∗

(t) =
1

t

∫ t

0

s−m/n sup
s≤y<1

ym/nf ∗(y)ds

≤ 1

t

∫ t

0

s−m/n sup
s≤y<1

ym/n(ft)
∗(y)ds+

1

t

∫ t

0

s−m/n sup
s≤y<1

ym/n(f t)∗(y)ds

= I + II.

Since,

I =
1

t

∫ t

0

s−m/n sup
s≤y<1

ym/n min [f ∗(y), f ∗(t)] ds

=
1

t

∫ t

0

s−m/n max

[
sup
s≤y<t

ym/nf ∗(t) , sup
t≤y<1

ym/nf ∗(y)

]
ds

=
1

t

∫ t

0

s−m/n sup
t≤y<1

ym/nf ∗(y)ds

=
n

n−m
t−m/n sup

t≤y<1
ym/nf ∗(y) =

n

n−m
(
Tn/mf

)
(t),

and

II =
1

t

∫ t

0

s−m/n sup
s≤y<1

ym/n(f t)∗(y)ds ≤ 1

t

∫ 1

0

(
Tn/mf

t
)

(s)ds

≤ 1

t

∫ 1

0

(f t)∗(s)ds

=
1

t

∫ t

0

[f ∗(s)− f ∗(t)] ds ≤ f ∗∗(t).

We conclude that, for f ∈M+(I), t ∈ I,(
Tn/mf

)∗∗
(t) / f ∗∗(t) + (Tn/mf)(t) /

(
Tn/mf

∗∗) (t).
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Lemma 2.8.7. Let X(I) be an r.i. spaces. Then,∥∥∥∥ sup
t≤s<1

sm/nf ∗∗(s)

∥∥∥∥
X(I)

/
∥∥tm/nf ∗∗(t)∥∥

X(I)
, t ∈ I.

Proof. We only need to prove∫ t

0

sup
0≤y<1

ym/nf ∗∗(y)ds ≤ C

∫ t

0

(
ym/nf ∗∗(y)

)∗ (s
2

)
ds.

with C > 0 independent of f ∈ M+(I), since in that case by the Hardy-Littlewood-Pólya
principle we will obtain the result:∥∥∥∥ sup

t≤s<1
sm/nf ∗∗(s)

∥∥∥∥
X(I)

/
∥∥E1/2(ym/nf ∗∗(y))

∥∥
X(I)

/
∥∥sm/nf ∗∗(s)∥∥

X(I)
.

To this end, fix f ∈M+(I) and t ∈
(
0 , 1

3

)
and take ft and f t as in the proof of Lemma 2.8.6.

Then

sup
s≤y<1

ym/nf ∗∗(y) = sup
s≤y<1

ym/n
[
(ft)

∗∗(y) + (f t)∗∗(y)
]

≤ sup
s≤y<1

ym/n(ft)
∗∗(y) + sup

s≤y<1
ym/n(f t)∗∗(y).

Now,

(f t)∗∗(y) =

{
f ∗∗(y)− f ∗(t), 0 < y < t,
t
y

[f ∗∗(t)− f ∗(t)] , t ≤ y < 1.

Hence, for 0 < s ≤ t

sup
s≤y<1

ym/n(f t)∗∗(y) ≤ max

[
sup
s≤y<t

ym/nf ∗∗(y) , sup
t≤y<1

ym/n−1tf ∗∗(t)

]
≤ sup

s≤y≤t
ym/nf ∗∗(y),

and so ∫ t

0

sup
s≤y<1

ym/n(f t)∗∗(y)ds ≤
∫ t

0

sup
s≤y≤t

ym/n−1

∫ y

0

f ∗(z)dzds

≤
(∫ t

0

sup
s≤y≤t

ym/n−1ds

)(∫ t

0

f ∗(s)ds

)
≤ n

m
tm/n

∫ t

0

f ∗(s)ds.

But, since
∫ 2t

t
g ≤

∫ t
0
g∗ and g

( ·
2

)∗
(s) = g∗

(
s
2

)
,∫ t

0

(
ym/nf ∗∗(y)

)∗ (s
2

)
ds ≥

∫ 2t

t

(s
2

)m/n
f ∗∗
(s

2

)
ds ≥ 2−m/ntm/n+1f ∗∗(t)

= 2−m/ntm/n
∫ t

0

f ∗(s)ds,
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which yields ∫ t

0

sup
s≤y<1

ym/n
(
f t
)∗∗

(y)ds ≤ n

m
2m/n

∫ t

0

(
ym/nf ∗∗(y)

)∗ (s
2

)
ds.

To prove ∫ t

0

sup
s≤y<1

ym/n (ft)
∗∗ (y)ds ≤ C

∫ t

0

(
ym/nf ∗∗(y)

)∗ (s
2

)
ds

we will show there is a constant C > 0 so that, for each f ∈M+(I),

sup
s≤y<1

ym/n (ft)
∗∗ (y) ≤ C sup

t≤y<1
ym/n−1

∫ y

t

f ∗
(z

2

)
dz, 0 < s < 1 , 0 < t <

1

3
, (2.12)

and, moreover

sm/nf ∗∗
(s

2

)
= sm/n−1

∫ s

0

f ∗
(z

2

)
dz ≥ C−1 sup

t≤y<1
ym/n−1

∫ y

t

f ∗
(z

2

)
dz, (2.13)

on a set of measure al least t. This will suffice, since the right-hand side of (2.12) does not
depend on s. Let us prove (2.12):

(ft)
∗∗(y) = f ∗(t)χ(0,t)(y) +

[
t

y
f ∗(t) +

1

y

∫ y

t

f ∗(z)dz

]
χ [t ,1 )(y),

whence

sup
s≤y<1

ym/n(ft)
∗∗(y) ≤ tm/nf ∗(t) + sup

t≤y<1
ym/n−1

∫ y

t

f ∗(z)dz

≤ (2−m/n+1 + 1) sup
t≤y<1

ym/n−1ym/n−1

∫ y

t

f ∗
(z

2

)
dz,

since

sup
t≤y<1

ym/n−1

∫ y

t

f ∗
(z

2

)
≥ (2t)m/n−1

∫ 2t

t

f ∗
(z

2

)
dz ≥ 2m/n−1tm/nf ∗(t).

Thus, (2.12) holds with C = (2−m/n+1 +1). Now, let’s prove (2.13). Next, suppose y0 ∈ (t , 1]
is such that

sup
t≤y<1

ym/n−1

∫ y

t

f ∗
(z

2

)
dz = y

m/n−1
0

∫ y0

t

f ∗
(z

2

)
dz.

We consider two cases.
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• Let y0 ≤ 2t. First note that t < y0 implies (2y0)m/n−1 ≤ (y0 + t)m/n−1 . Next, since
y0/2 ≤ t and f ∗ is decreasing,∫ y0

0

f ∗
(z

2

)
dz ≥ 2

∫ y0

t

f ∗
(z

2

)
dz.

Altogether, for y0 < s < y0 + t, we have

sm/n−1

∫ s

0

f ∗
(z

2

)
dz ≥ (y0 + t)m/n−1

∫ y0

0

f ∗
(z

2

)
dz ≥ 2m/ny

m/n−1
0

∫ y0

t

f ∗
(z

2

)
dz

= 2m/n sup
t≤y<1

ym/n−1

∫ y

t

f ∗
(z

2

)
dz.

• Let y0 ≥ 2t. For y0 − t < s < y0, we have

sm/n−1

∫ s

0

f ∗
(z

2

)
dz ≥ y

m/n−1
0

∫ y0−t

0

f ∗
(z

2

)
dz ≥ y

m/n−1
0

∫ y0

t

f ∗
(z

2

)
dz

= sup
t≤y<1

ym/n−1

∫ y

t

f ∗
(z

2

)
dz.

Therefore, the proof is complete.

Proof. (Theorem 2.8.5). By Lemma 2.8.6 we have (Tn/mf)∗∗(t) ≤ (Tn/mf
∗∗)(t). Then by

Lemma 2.8.7 we have∥∥tm/n(Tn/mf)∗∗(t)
∥∥
X(I)
≤
∥∥tm/n(Tn/mf

∗∗)(t)
∥∥
X(I)

=

∥∥∥∥ sup
t≤s<1

sm/nf ∗∗(s)

∥∥∥∥
X(I)

/
∥∥sm/nf ∗∗(s)∥∥

X(I)
.



Chapter 3

Sobolev spaces

3.1 Introduction

In this chapter, we present a brief description of those aspects of distributions that are
relevant for our purposes. Of special importance is the notion of weak or distributional
derivative of an integrable function. We also define the Sobolev spaces and collect their most
important properties. We conclude this chapter proving the Sobolev embedding theorem.
Such theorem tells us that W 1Lp(Rn) ↪→ Lq(Rn) for certain values of q depending on p and
n.

3.2 Definitions and basic properties

Consider an open set Ω ⊂ Rn and fix a compact set K ⊂ Ω. We define

Dk(Ω) = {f ∈ C∞(Ω) : supp f ⊂ K} .

We say that φk → φ in Dk(Ω) if Dαφk → Dαφ uniformly for every α ∈ Nn.

Definition 3.2.1. Let Ω ⊂ Rn be an open subset. A distribution on Ω is a linear mapping
u : D(Ω)→ C such that for every compact set, K ⊂ Ω, u|Dk(Ω) ∈ Dk(Ω)′. We denote D′(Ω)
the complex linear space of all distributions on Ω.

Remark 3.2.2. Let f ∈ L1
loc(Ω) and 〈φ , f〉 =

∫
Ω
f(x)φ(x)dx. Then uf = 〈. , f〉 belongs to

D′(Ω). Indeed, let K ⊂ Ω be a compact subset and let {φk} ∈ Dk(Ω) such that φk → 0 in
Dk(Ω) (i.e Dαφk → 0 uniformly for every α ∈ Nn) ; we have

|〈φk , f〉| =
∣∣∣∣∫
K

φk(x)f(x)dx

∣∣∣∣ ≤ ‖φk‖∞ ∫
K

f(x)dx.

Then uf (φk) → 0; hence uf ∈ D′(Ω). The linear mapping f ∈ L1
loc → 〈. , f〉 ∈ D(Ω) is one

to one, so we may consider L1
loc(Ω) ⊂ D′(Ω) and therefore Lp(Ω) ⊂ D′(Ω) for 1 ≤ p ≤ ∞,

since Lp(Ω) ⊂ L1
loc(Ω) for 1 ≤ p ≤ ∞.

35



3.2. Definitions and basic properties 36

Definition 3.2.3. Let α = (α1 , . . . αn) ∈ Nn and f ∈ L1
loc(Ω), we define the distributional

derivatives of f , Dα, as follows∫
Ω

Dαf(x)φ(x)dx = (−1)|α|
∫

Ω

f(x)Dαφ(x)dx ∀φ ∈ D(Ω),

where |α| = α1 + . . .+ αn.

Definition 3.2.4. Let Ω ⊂ Rn be an open set, 1 ≤ p ≤ ∞ and m ∈ N. The Sobolev space of
order m ∈ N is defined by

WmLp(Ω) := {u ∈ Lp(Ω) ;Dαu ∈ Lp(Ω) , |α| ≤ m} ,

where Dαu represent the distributional derivatives of u.

Theorem 3.2.5. Let Ω ⊂ Rn an open set, 1 ≤ p ≤ ∞ and m ∈ N. The space WmLp(Ω) is
a Banach space with the norm

‖u‖WmLp(Ω) =

{ ∑
0≤|α|≤m ‖Dαu‖Lp(Ω) , if 1 ≤ p <∞,

max0≤|α|≤m ‖Dαu‖L∞(Ω) , if p =∞.

Proof. Let {un} be a Cauchy sequence in WmLp(Ω). Then {Dαun} is a Cauchy sequence in
Lp(Ω) for 0 ≤ |α| ≤ m. Since Lp(Ω) is complete, there exit u , uα ∈ Lp(Ω), such that un → u
and Dαun → uα in Lp(Ω) norm as n→∞. We claim that un → u in D′(Ω). Indeed, for any
φ ∈ D(Ω) we have ∫

Ω

|un(x)− u(x)| |φ(x)| dx ≤ ‖φ‖p′ ‖un − u‖p → 0

as n→∞. Similary Dαun → ua in D′(Ω). It follows that

lim
n→∞

∫
Ω

Dαun(x)φ(x)dx = lim
n→∞

(−1)α
∫

Ω

un(x)Dαφ(x)dx = (−1)α
∫

Ω

u(x)Dαφ(x)dx

=

∫
Ω

Dαu(x)φ(x)dx.

Thus uα = Dαu in the distributional sense on Ω for 0 ≤ |α| ≤ m, whence u belongs to
WmLp(Ω). Moreover, we have limn→∞ ‖un − u‖WmLp(Ω) = 0, and so the space WmLp(Ω) is
complete.

Proposition 3.2.6. Let 1 ≤ p <∞. Then D(Rn) is dense in WmLp(Rn).

Proof. Let be φ ∈ D(Rn) such that
∫
Rn φ(x)dx = 1. For every ε > 0, we consider φε(x) :=

ε−nφ(x/ε). Let f ∈ WmLp(Rn), and set fε := f ∗ φε. We have fε ∈ C∞(Rn); moreover
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f ∗ φε → f in Lp-norm as ε→ 0. Indeed,∫
Rn
|f ∗ φε(x)− f(x)|p dx ≤

∫
Rn

(∫
Rn
|f(x− y)− f(x)|φε(y)dy

)p
dx

≤
∫
Rn

(∫
Rn
|f(x− y)− f(x)|p φε(y)dy

)
dx

×
(∫

Rn
φε(y)dy

)1/p′

=

∫
Rn
‖τyf − f‖Lp(Rn) φε(y)dy

=

∫
Rn
‖τεyf − f‖Lp(Rn) φ(y)dy

then by the Lebesque dominated convergence and the fact that ‖τεyf − f‖p → 0 as ε → 0,
we obtain the desire result. Moreover, Dαfε → Dαf in Lp-norm, as ε → 0, ∀α ∈ Nn such
that 1 ≤ |a| ≤ m. Note that ∀ψ ∈ D(Rn)∫

Rn
Dαfε(x)ψ(x)dx = (−1)|α|

∫
Rn

(∫
Rn
f(x− y)φε(y)dy

)
Dαψ(x)dx

= (−1)|α|
∫
Rn

(∫
Rn
f(x− y)Dαψ(x)dx

)
φε(y)dy

=

∫
Rn

(∫
Rn
Dα
xf(x− y)ψ(x)dx

)
φε(y)dy

=

∫
Rn
Dαf ∗ φε(x)ψ(x)dx.

Thus, we have Dαfε → Dαf, since Dαf ∈ Lp. Note that the functions {fε} give the re-
quired aproximation, but they not have compact support. So we need to introduce the
two-paremetrer family

{τδ(η)fε} ∈ D(Rn) , δ , ε ∈ R+,

with η ∈ D(Rn) such that η(0) = 1. Fix ε > 0, if we prove,

Dα(τδ(η)fε)→ Dα(fε)

in Lp-norm as δ → 0 for all 0 ≤ |α| ≤ m, where τδ(η)(x) is the dilation operador defined by

τδ(η)(x) := η(δx), δ ∈ R+;

we will complete the proof. Indeed, if |α| = 0 since

lim
δ→0

η(δx)fε(x) = fε(x) and |η(δx)fε(x)| ≤ |fε(x)| a.e.,

using the Lebesgue dominated convergence we obtain the desire result. Next, if 1 ≤ |a| ≤ m,

lim
δ→0

Dα(η(δx)fε(x)) = Dαfε(x) and |Dα(η(δx)fε(x))| ≤ |fε(x)|+ |Dαfε(x)| a.e.
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Then, by the Lebesgue dominated convergence, we obtain the desire result. Therefore, the
proof is complete.

The following example shows that the proposition is not true for an arbitrary domain
Ω ⊂ Rn.

Example 3.2.7. Let Ω = {(x , y) ∈ R2 : 0 < |x| < 1 , 0 < y < 1} . Let u be a function de-
fined on Ω.

u(x , y) =

{
1 if x > 0
0 if x < 0.

Denote K = Ω. Suppose that there exists φ ∈ C1(K) such that ‖u− φ‖W 1 ,p(Ω) < ε. Let

L = {(x , y) : −1 ≤ x ≤ 0 , 0 ≤ y ≤ 1} , R = {(x , y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1} .

We have ‖φ‖L1(L) ≤ ‖φ‖Lp(L) < ε and similarly ‖1− φ‖L1(R) < ε, from which we obtain

‖φ‖L1(R) > 1 − ε. Let Φ(x) =
∫ 1

0
φ(x , y)dy, by the Integral Mean Value Theorem, we know

that there exists a and b with −1 < a < 0 and 0 < b < 1 such that Φ(a) < ε and Φ(b) > 1−ε.
If 0 < ε < 1/2

1− 2ε < Φ(b)− Φ(a) =

∫ b

a

Φ
′
(x)dx ≤

∫
Ω̄

|Dxφ(x , y)| dxdy ≤ 21/p′ ‖Dxφ‖Lp(Ω) .

Hence, 1 < ε(2 + 21/p′), which is impossible for small ε. The problem with this domain is
that lie on both sides of part of its boundary. The condition which is called the segment
condition prevents this from happening and guarantees that D(Rn) is dense in WmLp(Ω)
for 1 ≤ p <∞.

3.3 Riesz potencials

Definition 3.3.1. Let 0 < α < n and f ∈ D(Rn). We define the Riesz potencials by

Iα(f)(x) =
1

γ(α)

∫
Rn
|x− y|−n+α f(y)dy, with γ(α) =

πn/22αΓ(α/2)

Γ(n/2− α/2)
. (3.1)

with γ(α) = πn/22αΓ(α/2)
Γ(n/2−α/2)

.

Remark 3.3.2. Since the Riesz potencials are integral operators it is natural to inquire about
their actions on the spaces Lp(Rn). We formulate the following problem: given α , 0 < α < n
for what pairs p and q, is the operator f → Iα(f) bounded from Lp(Rn) to Lq(Rn). Suppose
that we had an estimate

‖Iα(f)‖Lq(Rn) ≤ C ‖f‖Lq(Rn) ,
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for some positive indices p , q and all f ∈ Lp(Rn). Then p and q must be related by

1

q
=

1

p
− α

n
.

In fact, let f ∈ D(Rn) non-negative. Consider the dilation operador defined by

τδ(f)(x) = f(δx), δ ∈ R+.

Then

Iα(τδf)(x) =
1

γ(α)

∫
Rn
|x− y|−n+α f(δy)dy =

1

γ(α)

∫
Rn
|x− z/δ|−n+α f(z)δ−ndy

=
1

γ(α)

∫
Rn
|δx− z|−n+α f(z)δ−αdy = δατδ(Iαf)(x);

thus

‖Iα(τδ(f))‖q = δ−α ‖τδIαf‖q = δ−α−n/q ‖Iαf‖q ≤ C ‖τδf‖p = Cδ−n/p ‖f‖p .

Hence

‖Iαf‖q ≤ Cδ−1/p+1/q+α/n ‖f‖p .

Suppose now that 1/p > 1/q + α/n, letting δ → ∞ obtain that Iα(f) = 0.Similary, if
1/p < 1/q + α/n letting δ → 0, we obtain that ‖f‖p = ∞. Thus, this inequality is possible
only if 1/q = 1/p− α/n.

Theorem 3.3.3. Let 0 < α < n , 1 ≤ p < q <∞, 1/q = 1/p− α/n. If f ∈ L1(Rn), then

|{x : |Iαf(x) > λ|}| ≤
(
A ‖f‖1

λ

)q
.

Proof. Let be K(x) = |x|−n+α , we consider the transformation f → K ∗ f (which differs
from f → Iαf by a contant multiple). We decompose K as K1 +K∞ where

K1(x) =

{
K(x), if |x| ≤ µ
0 if |x| > µ

K∞(x) =

{
K(x), if |x| > µ
0 if |x| ≤ µ

with µ a fixed positive constant which need not to be specified. Note that K1 ∈ L1(Rn) and
K∞ ∈ Lp

′
. Suppose that ‖f‖pp = 1. Since K ∗ f = K1 ∗ f +K∞ ∗ f, we have

|{x : |K ∗ f(x)| > 2λ}| ≤ |{x : |K1 ∗ f(x)| > λ}|+ |{x : |K∞ ∗ f | (x) > λ}|
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However

|{x : |K1 ∗ f(x)| > λ}| ≤
‖K1 ∗ f‖pp

λp
≤
‖K1‖p1 ‖f‖

p
p

λp
=
‖K1‖p1
λp

= c
µα

λp
,

since

‖K1‖1 =

∫
|x|≤µ
|x|−n+α dx = cµα.

Next
‖K∞ ∗ f‖∞ ≤ ‖K∞‖p′ ‖f‖p = ‖K∞‖p′ = cµ−n/q,

since

‖K∞‖p′ =

(∫
|x|>µ
|x|(−n+α)p′ dx

)1/p′

= cµ−n/q.

Now, if cµ−n/q = λ, we obtain ‖K∞‖p′ = λ. Take µ = cλ−q/m to have this value; then
‖K∞ ∗ f‖∞ ≤ λ and so |{x : |K∞ ∗ f(x)| > λ}| = 0. Finally

|{x : |K ∗ f(x)| > 2λ}| ≤ cµα

λ

p

= cλ−q = c

(‖f‖p
λ

)q
Hence, the mapping f → K ∗ f is of weak type (p , q), in particular when p = 1.

Theorem 3.3.4. Let 0 < α < n and 1 < p < q <∞ with 1/q = 1/p− α/n. Then,

‖Iαf‖q ≤ Ap ,q ‖f‖p .

Proof. It follows from Theorem 3.3.3 and the Marcinkiewicz interpolation theorem.

3.4 Sobolev embedding theorem

In this section, we will study the Sobolev embedding theorem. It asserts that:

• if 1 ≤ p < n, then W 1Lp(Rn) ↪→ Lq(Rn) where p∗ = np/(n− p);

• if p = n, then W 1Lp(Rn) ↪→ Lq(Rn), for every p ≤ q <∞;

• if p > n, then W 1Lp(Rn) ↪→ L∞(Rn).

Embeddings: 1 ≤ p < n

Theorem 3.4.1. Let n ≥ 2. If 1 < p < n, then

W 1Lp(Rn) ↪→ Lp
∗
(Rn), where p∗ =

pn

n− p
.

To prove this theorem, we need the following lemma. It gives an appropriate way of
expressing a function in terms of its partial derivates. Its proof can be found in [27].
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Lemma 3.4.2. Let f ∈ D(Rn) then

f(x) =
1

ωn−1

n∑
j=1

∫
Rn

Dj(x− y)yj
|y|n

dy,

where ωn−1 is the area of the sphere Sn−1.

Proof. (Theorem 3.4.1) Assume that f ∈ D(Rn). By Lemma 3.4.2 we have

|f(x)| /
n∑
j=1

∫
Rn
|Djf(x− y)| |y|−n+1 dy =

n∑
j=1

I1 (Djf) (x).

Hence, we get

‖f‖qLq(Rn) /
∫
Rn

∣∣∣∣∣
n∑
j=1

I1 (Djf) (x)

∣∣∣∣∣
q

dx /
n∑
j=1

∫
Rn
|I1 (Djf) (x)|q dx /

n∑
j=1

‖Djf‖pLp(Rn) .

Now, let f ∈ W 1Lp(Rn). Since D(Rn) is dense in W 1 ,p(Rn), there exists {fk} ∈ D(Rn) such
that ‖fk − f‖W 1 ,p(Rn) → 0. Hence, we get

‖fk − fk′‖Lq(Rn) /
n∑
j=1

‖Djfk −Djfk′‖Lp(Rn) ,

and so the sequence {fk} also converges in Lq(Rn) norm and this limit is equal f. Thus
f ∈ Lq(Rn) and

‖f‖Lq(Rn) /
n∑
j=1

‖Djf‖Lp(Rn) / ‖f‖W 1Lp(Rn) .

This shows that f ∈ Lq(Rn) and the inclusion mapping of W 1Lp(Rn) into Lq(Rn) is contin-
uous.

At the end of fifties, Gagliardo [12] and Nirenberg [22] extended Theorem 3.4.1 to the
case p = 1. Note that the argument used in Theorem 3.4.1 does not work in case p = 1
beucase Theorem 3.3.4 fails for p = 1. A different idea is neeeded and it is contained in the
next lemma, which is proved in [19]. We use the notation x̂k for the vector in Rn−1 obtained
from a given x ∈ Rn by removing its kth coordenate, that is

x̂k = (x1 , . . . , , xk−1 , xk+1 , . . . , xn) ∈ Rn−1.

Lemma 3.4.3. Let n ≥ 2. Assume that the functions gk ∈ L1(Rn−1) k = 1 , . . . , n are
non-negative. Then∫

Rn

n∏
k=1

gk(x̂k)
1/(n−1)dx ≤

(
n∏
k=1

∫
Rn−1

gk(x̂k)dx̂k

)1/(n−1)

.
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Proof. The proof is by induction on n. If n = 2, let

g(x) := g1(x2)g2(x1) with x = (x1 , x2) ∈ R2.

Using Tonelli’s theorem we get∫
R2

g(x)dx =

(∫
R
g1(x2)dx2

)(∫
R
g2(x1)dx1

)
.

Assume next that the result is true for n and let us prove it for n+ 1. Let

g(x) =
n+1∏
k=1

gi(x̂i)
1/n, with gi ∈ L1(Rn).

Fix xn+1 ∈ R. Integrating both sides of the previous identity with respect to x1 , . . . , xn and
using Hölder’s inequality, we get

∫
Rn
g(x)dx̂n+1 ≤

(∫
Rn
gn+1(x̂n+1)dx̂n+1

)1/n
(∫

Rn

n∏
k=1

gk(ŷk , xn+1)1/(n−1)dy

)1−1/n

where y = (x1 , . . . , xn). Since xn+1 is fixed, by induction hypothesis we have(∫
Rn

n∏
k=1

gk(ŷk , xn+1)1/(n−1)dy

)1−1/n

≤

(
n∏
k=1

∫
Rn−1

gk(ŷk , xn+1)dŷk

)1/n

.

Thus ∫
Rn
g(x)dx̂n+1 ≤

(∫
Rn
gn+1(x̂n+1)dx̂n+1

)1/n
(

n∏
k=1

∫
Rn−1

gk(ŷk , xn+1)dŷk

)1/n

.

Integrating both sides of the previous identity with respect xn+1 and using Hölder’s inequality
we get ∫

Rn
g(x)dx ≤

(
n+1∏
k=1

∫
Rn
gk(x̂k)dx̂k

)1/n

.

Theorem 3.4.4. Let n ≥ 2 and p = 1. Then,

W 1L1(Rn) ↪→ Ln
′
(Rn).

Proof. Let f ∈ D(Rn), we have

|f(x)| ≤ 1

2

∫
R
|Dkf(x)| dxk ≡ gk(x̂k) k = 1 , . . . , n.
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Applying Lemma 3.4.3 we obtain∫
Rn
|f(x)|n/(n−1) dx ≤

∫
Rn

n∏
k=1

gk(x̂k)
1/(n−1)dx ≤

(
n∏
k=1

∫
Rn−1

gk(x̂k)dx̂k

)1/(n−1)

≤ 1

2n/(n−1)

n∏
k=1

‖Dkf‖1/(n−1)

L1(Rn) ;

hence

‖f‖Ln′ (Rn) ≤
1

2

(
n∏
k=1

‖Dkf‖L1(Rn)

)1/n

.

If we use the fact that
(∏n

j=1 aj

)1/n

≤ 1
n

∑n
j=1 aj if aj ≥ 0; then as consequence we have

‖f‖Ln′ (Rn) ≤
1

2n

n∑
k=1

‖Dkf‖L1(Rn) . (3.2)

Now, let f ∈ W 1L1(Rn). Since D(Rn) is dense in W 1 ,1(Rn), there exists {fm} ∈ D(Rn) such
that ‖f − fm‖W 1L1(Rn) → 0, as m→∞. Hence, by (3.2) we have

‖fm − fm′‖Ln′ ≤
1

2n

n∑
k=1

‖Dkfm −Dkfm′‖L1(Rn) ,

hence f ∈ Ln′(Rn), and

‖f‖Ln′ (Rn) ≤
1

2n

n∑
k=1

‖Dkf‖L1(Rn) ≤
1

2n
‖f‖W 1L1(Rn) .

Corollary 3.4.5. Let n ≥ 2. Let k be a positive integer such that 1 ≤ k ≤ n − 1. Suppose
1 ≤ p < n/k. Then,

W 1Lp(Rn) ↪→ Lp
∗
(Rn), with p∗ =

np

n− kp
.

Proof. The proof proceeds by induction on k. Note that Theorem 3.4.1 and Theorem 3.4.4
establish the case k = 1. Now, assume that

‖v‖Lqk−1 (Rn) / ‖v‖Wk−1Lp(Rn) , v ∈ W
k−1Lp(Rn),

where qk−1 = np
n−kp+p . Let u ∈ W kLp(Rn); we take v = Dju 1 ≤ j ≤ n we obtain

‖Dju‖Lqk−1 (Rn) / ‖Dju‖Wk−1Lp(Rn) .
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Therefore,

‖u‖W 1Lqk−1 (Rn) =
n∑
j=1

‖Dju‖Lqk−1 (Rn) /
n∑
j=1

∑
0≤|α|≤k−1

‖DαDju‖Lp(Rn) / ‖u‖WkLp(Rn) .

Now, since kp < n, we have qk−1 < n and so

‖u‖Lq(Rn) / ‖u‖W 1Lqk−1 (Rn) / ‖u‖WkLq(Rn) ,

where q = nqk−1

n−qk−1
= np

n−kp .

Embeddings: p = n

We have seen that for a given function u ∈ W 1Lp(Rn) and 1 ≤ p < n, then

‖u‖Lp∗ (Rn) / ‖u‖W 1Lp(Rn) ,

where p∗ = np/(n − p). Note that when p tends to n, p∗ tends to ∞ and so one would be
tempted to say that if u ∈ W 1Ln(Rn) then u ∈ L∞(Rn). The following example shows that
this is false if n > 1.

Example 3.4.6. Put n = 2 and define u(x) := log log
(

1 + 1
|x|

)
. Let us prove that u ∈

W 1L2 (B(0 , 1)) . Indeed, it suffices to prove that for all k = 0 , . . . , n there is a positive
constant, c > 0, such that∣∣∣∣∫

B(0 ,1)

u(x)Dkφ(x)dx

∣∣∣∣ ≤ c ‖Dkφ‖2 ∀φ ∈ D (B(0 , 1)) . (3.3)

Indeed, if (3.3) holds the lineal form

φ ∈ D (B(0 , 1))→ (−1)k
∫
B(0 ,1)

u(x)Dkφ(x)dx

defined in a dense subspace of L2 (B(0 , 1)) is continuous for the L2 norm; therefore by Hahn-
Banach’s Theorem it extends to a continuous lineal form F in L2 (B(0 , 1)) . Then, by Riesz’s
Theorem there exits g ∈ L2 (B(0 , 1)) such that

〈F , φ〉 =

∫
g(x)φ(x)dx ∀φ ∈ L2 (B(0 , 1)) ,

in particular

(−1)k
∫
u(x)Dkφ(x)dx =

∫
g(x)φ(x)dx ∀φ ∈ D (B(0 , 1))

and so u ∈ W 1L2 (B(0 , 1)) .
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Now we prove that u ∈ W 1L2 (B(0 , 1)), let φ ∈ D (B(0 , 1))∣∣∣∣∫
B(0 ,1)

u(x)Dkφ(x)dx

∣∣∣∣ ≤ ∫
B(0 ,1)

|u(x)| |Dkφ(x)| dx

≤
(∫

B(0 ,1)

|u(x)|2 dx
)1/2

‖Dkφ‖L2(B(0,1)) .

Since ∫
B(0 ,1)

|u(x)|2 dx = 2π

∫ 1

0

r

(
log log

(
1 +

1

r

))2

dr

= 2π

∫ ∞
1

log2 log(1 + t)

t3
dt ≤ 2π

∫ ∞
1

log(1 + t)

t3
dt

≤ 2π

∫ ∞
1

(1 + t)

t3
dt = 2π lim

b→∞

∫ b

1

(1 + t)

t3
dt = C,

we have ∣∣∣∣∫
B(0 ,1)

u(x)Dkφ(x)dx

∣∣∣∣ ≤ c ‖Dkφ‖L2(B(0,1)) .

Hence, u ∈ W 1L2 ((B(0 , 1)) but u /∈ L∞ ((B(0 , 1)) beucase u(x)→∞ when |x| → 0.

However, we have the following result which is proved in [19].

Theorem 3.4.7. If n ≤ q <∞, then

W 1Ln(Rn) ↪→ Lq(Rn).

Proof. Let u ∈ D(Rn) and v := |u|t where t > 1, by Theorem 3.4.4 we have(∫
Rn
|u(x)|tn

′
dx

)1/n′

=

(∫
Rn
|v(x)|n

′
dx

)1/n′

/
n∑
k=1

∫
Rn
|Dkv(x)| dx ≈

n∑
k=1

∫
Rn
|u(x)|t−1 |Dku(x)| dx

/

(∫
Rn
|u(x)|(t−1)n′ dx

)1/n′
(

n∑
k=1

‖Dku‖Ln(Rn)

)
,

where in the last inequality we have used Hölder’s inequality. Hence(∫
Rn
|u(x)|tn

′
dx

)1/(n′t)

/

(∫
Rn
|u(x)|(t−1)n′ dx

)1/(n′t)
(

n∑
k

‖Dku‖Ln(Rn)

)1/t

/

(
‖u‖L(t−1)n′ (Rn) +

n∑
k=1

‖Dku‖Ln(Rn)

)
,
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where we have used Young’s inequality with exponent t and t/(t− 1). Taking t = n yields

‖u‖Ln2/(n−1)(Rn) / ‖u‖W 1Ln(Rn) .

Now, assume u ∈ W 1Ln
2/(n−1)(Rn) and let {ui} ∈ D(Rn) such that ui → u inW 1Ln

2/(n−1)(Rn);
then we get

‖ui − uj‖Ln2/(n−1)(Rn) / ‖ui − uj‖W 1Ln(Rn) ;

thus ui → u in Ln
2/(n−1)(Rn) and so the embedding W 1Ln(Rn) ↪→ Ln

2/(n−1)(Rn) is continu-
ous. Now, we claim that

W 1Ln(Rn) ↪→ Lq(Rn)

is continuous for all n ≤ q ≤ n2/(n − 1). We denote n2/(n − 1) = q1. Indeed, assume that
n < q < q1 and write 1/q = λ/n+ (1− λ)/q1 for some 0 < λ < 1. Then

‖u‖Lq(Rn) ≤
(
‖u‖Ln(Rn)

)λ (
‖u‖Lq1 (Rn)

)(1−λ)

≤ ‖u‖Ln(Rn) + ‖u‖Lq1 (Rn) ,

where we have used Young’s inequality with exponents 1/λ and (1/λ)′ . Therefore

‖u‖Lq(Rn) ≤ ‖u‖Ln(Rn) + ‖u‖Lq1 (Rn) / ‖u‖Ln(Rn) + ‖u‖W 1Ln(Rn) / ‖u‖W 1Ln(Rn) ,

which shows our assertion. Taking t = n + 1 and using what we just proved gives that the
emdedding

W 1Ln(Rn) ↪→ Lq(Rn)

is continuous for all n ≤ q ≤ n(n+ 1)/(n− 1). We proceed in this fashion taking t = n+ 2,
n+ 3, etc.

Corollary 3.4.8. Let n ≥ 2. Let k be non-negative integer such that 1 ≤ k ≤ n − 1. If
kp = n, then

W kLp(Rn) ↪→ Lq(Rn), n/k ≤ q <∞.

Proof. Assume that u ∈ W kLn/k(Rn), and so u ∈ W k−1Ln/k(Rn) and Dju ∈ W k−1Ln/k(Rn)
for all j = 1 , . . . , n. Since n/k < n/(k − 1) by Corollary 3.4.5, we obtain u ∈ Ln(Rn) and
Dju ∈ Ln(Rn) for all j = 1 , . . . , n. Therefore u ∈ W 1Ln(Rn), and so by the Theorem 3.4.7
u ∈ Lq(Rn) for all n ≤ q < ∞. In other words, we have the following inequality for all
n ≤ q <∞

‖u‖Lq(Rn) / ‖u‖W 1Ln(Rn) = ‖u‖Ln(Rn) +
n∑
j=1

‖Dju‖Ln(Rn)

/ ‖u‖Wk−1Ln/p(Rn) +
n∑
j=1

∥∥Dju
∥∥
Wk−1Ln/k(Rn)

≤ ‖u‖WkLn/k(Rn) +
∑

0≤|α|≤k

‖Dau‖Ln/k(Rn)

≤ ‖u‖WkLn/k(Rn) .

Therefore the proof is complete.
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Embeddings: n < p <∞
Theorem 3.4.9. (Morrey’s Theorem) Let n < p <∞. Then,

W 1Lp(Rn) ↪→ L∞(Rn). (3.4)

Moreover

sup
x ,y∈Rn ,x 6=y

|u(x)− u(y)|
|x− y|α

≤ C ‖u‖W 1Lp(Rn) , where α := 1− n

p
. (3.5)

Proof. We start by proving (3.5). Let Q be an open cube containing 0 whose edges have
length r and are parallel to coordinate axis. Given x ∈ Q, we have

u(x)− u(0) =

∫ 1

0

d

dt
u(tx)dt,

and so

|u(x)− u(0)| ≤
∫ 1

0

n∑
k=1

|xk| |Dku(tx)| dt ≤ r

∫ 1

0

n∑
k=1

|Dku(tx)| dt.

Let uQ be the measure of u on Q, i.e.

uQ =
1

|Q|

∫
Q

u(x)dx,

we have

|uQ − u(0)| ≤
∫
Q

r

|Q|

(
n∑
k=1

∫ 1

0

|Dku(tx)| dt

)
dx =

1

rn−1

∫ 1

0

t−n

(
n∑
k=1

∫
tQ

|Dku(y)| dy

)
dt.

Since tQ ⊂ Q for 0 < t < 1, using Hölder’s inequality we have∫
tQ

|Dku(y)| dy ≤ ‖Dku‖Lp(Rn) t
n/p′rn/p

′
.

Thus,

|uQ − u(0)| ≤ r1−n/p

1− n
p

n∑
k=1

‖Dku‖Lp(Rn) . (3.6)

By translation, (3.6) is valid for all cube , Q, whose sides have length and its edges are
parallel to coordinate axes; that is for all x ∈ Q

|uQ − u(x)| ≤ r1−n/p

1− n
p

n∑
k=1

‖Dku‖Lp(Rn) . (3.7)

Then, we obtain

|u(y)− u(x)| ≤ 2r1−n/p

1− n
p

n∑
k=1

‖Dku‖Lp(Rn) .
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Next, for any two points, x, y ∈ Rn, there exist a cube of side r = 2 |x− y| containing x and
y, hence

sup
x ,y∈Rn ,x 6=y

|u(y)− u(x)|
|x− y|1−n/p

≤ c

n∑
k=1

‖Dku‖Lp(Rn) ≤ ‖u‖W 1Lp(Rn) .

Thus, it follows (3.5) for all u ∈ D(Rn). Now, we show (3.4). Given u ∈ D(Rn), x ∈ Rn and
cube of edge r = 1 which contains x by (3.7) we have

|u(x)| / |uQ|+
n∑
k=1

‖Dku‖Lp(Rn) / ‖u‖W 1Lp(Rn) .

Hence ‖u‖L∞(Rn) / ‖u‖W 1Lp(Rn) .

Corollary 3.4.10. Let k be integer such that 1 ≤ k ≤ n− 1. If n/k < p <∞, we then

W kLp(Rn) ↪→ L∞(Rn).

Remark 3.4.11. The previous results can be formulated in term of functions in W kLp(Ω),
where Ω is a domain which satifies certain properties. For more details see [1] and [21].



Chapter 4

Orlicz spaces and Lorentz spaces

4.1 Introduction

Let n be positive integer with n ≥ 2 and let Ω ⊂ Rn be an open subset. We denote
as W 1

0L
p(Ω) the clousure of D(Ω) in W 1Lp(Ω). Throughout this chapter, we assume that

|Ω| <∞.
In this chapter, present some refinements of Sobolev embeddings theorem. We have seen

in Theorem 3.4.1 that

W 1
0L

p(Ω) ↪→ Lp
∗
(Ω), with p∗ = np/(n− p), 1 ≤ p < n. (4.1)

Although (4.1) cannot be improved within Lebesgue space, if we consider Lorentz spaces we
have the following improvement

W 1
0L

p(Ω) ↪→ Lp
∗,p(Ω), 1 ≤ p < n. (4.2)

Those embeddings were observed by Peetre [24] and O’Neil [23]. Now, when p = n it is
known that W 1

0L
n(Ω) can be embedded in Lq(Ω) for every n ≤ q <∞ (Theorem 3.4.7), and

that W 1
0L

n(Ω) cannot be embedded in L∞(Ω) (Example 3.4.6). Thus

W 1
0L

n(Ω) ↪→ Lq(Ω), n ≤ q <∞. (4.3)

cannot improved within the Lebesgue spaces. However, if we consider Orlicz spaces we have
the following refinement

W 1
0L

n(Ω) ↪→ LΦ(Ω), Φ(t) = exp(tn
′
). (4.4)

This result was shown, independently, by Pokhozhaev [25], Trudinger [29] and Yudovich
[17]. It turns out that LΦ(Ω) is the smallest Orlicz space that still renders (4.4) true.
This optimality result is due to Hempel, Morris, and Trudinger [15]. It turns out that an
improvement of (4.4) is still possible. If we consider Lorentz Zygmund spaces, we have the
following refinement of (4.4)

W 1
0L

n(Ω) ↪→ L∞ ,n ;−1(Ω). (4.5)

This embedding is due to Brézis-Waigner [3] and independently to Hansson [14]. It can be
also derived from capacity estimates of Maz’ya [21].

49
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4.2 Sobolev embeddings into Orlicz spaces

In this section we will prove the Sobolev embedding

W 1
0L

n(Ω) ↪→ LΦ(Ω), Φ(t) = exp(tn
′
).

First we prove the following result which will be useful later.

Lemma 4.2.1. Let x ∈ Rn. If 0 ≤ s < n, then∫
Ω

|x− y|−s dy ≤ α(n)s/n

n− s
|Ω|1−s/n ,

where α(n) is the volume of the unit n-ball.

Proof. Let B (x , r) be the ball such that |B (x , r)| = |Ω| . Observe that for each
y ∈ Ω \B (x , r) and z ∈ B (x , r) \ Ω, we have |x− y|−s ≤ |x− z|−s , and beucase

|Ω \B (x , r)| = |B (x , r) \ Ω| ,

it therefore follows that∫
Ω\B(x ,r)

|x− y|−s dy ≤
∫
B(x ,r)\Ω

|x− z|−s dz.

Consequently, ∫
Ω

|x− y|−s dy ≤
∫
B(x ,r)

|x− z|−s dz =
α(n)r−s+n

−s+ n
,

where α(n) is the measure of the unit n-ball. But α(n)rn = |Ω| and hence∫
Ω

|x− y|−s dy ≤ α(n)s/n |Ω|1−s/n

−s+ n
.

Theorem 4.2.2. Let n > 1. Then,

W 1
0L

n(Ω) ↪→ LΦ(Ω) , Φ(t) = exp(tn
′
).

Proof. It is sufficient to prove the theorem for functions u ∈ D(Ω). By Lemma 3.4.2 we know
that

|u(x)| /
n∑
k=1

∫
Ω

|Dku(y)|
|x− y|n−1dy.
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Suppose s > 1 and v ∈ Ls′(Ω), then∫
Ω

|u(x)| |v(x)| dx /
n∑
k=1

∫
Ω

∫
Ω

|v(x)| |Dku(y)|
|x− y|n−1 dxdy

/
n∑
k=1

∫
Ω

|Dku(y)|

(∫
Ω

|v(x)|

|x− y|
(n−1)
s

dx

)1/n

dy

×

(∫
Ω

|v(x)|
|x− y|n−(1/s)

dx

)1/n′

/
n∑
k=1

(∫
Ω

∫
Ω

|Dku(x)|n |v(x)|
|x− y|(n−1)/s

dxdy

)1/n

×

(∫
Ω

∫
Ω

|v(x)|
|x− y|n−(1/s)

dxdy

)1/n′

By Lemma 4.2.1 we obtain∫
Ω

∫
Ω

|v(x)|
|x− y|n−(1/s)

dydx ≤ s |Ω|1/snK1

∫
Ω

|v(x)| dx ≤ K1s |Ω|1/(sn)+1/s ‖v‖Ls′ (Ω) .

with K1 = α(n)(ns−1)/sn. Also∫
Ω

∫
Ω

|Dku(y)|n |v(x)|
|x− y|(n−1)/s

dydx ≤ ‖v‖Ls′ (Ω)

∫
Ω

|Dku(y)|n
(∫

Ω

1

|x− y|n−1dx

)1/s

≤ K2 |Ω|1/(ns) ‖v‖s′
∫

Ω

|Dku(y)|n dy

= K2 ‖Dku‖nLn(Ω) ‖v‖Ls′ (Ω) |Ω|
1/(ns) ,

with K2 = α(n)(ns−1)/(sn). It follows from these estimates that∫
Ω

|u(x)| |v(x)| dx ≤ K3 ‖v‖Ls′ (Ω)

n∑
k=1

s1/n′ ‖Dku‖Ln(Ω) |Ω|
1/s ,

with K3 = K
1/n′

1 K
1/n
2 . We have

‖u‖Ls(Ω) = sup
v 6=0

∫
Ω
|u(x)| |v(x)| dx
‖v‖Ls′ (Ω)

≤ K5s
1/n′ ‖u‖W 1

0L
n(Ω) |Ω|

1/s .

Setting s = nj/(n− 1), we obtain∫
Ω

|u(x)|nj/(n−1) dx ≤ |Ω|
(

nj

n− 1

)j (
K5 ‖u‖W 1

0L
n(Ω)

)nj/(n−1)

= |Ω|
(

j

en/(n−1)

)k(
K5e

[
n

n− 1

](n−1)/n

‖u‖W 1Ln0 (Ω)

)nj/(n−1).
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Note that
∞∑
j=1

1

j!

(
j

en/(n−1)

)j
converges. Now, let

Ã = max

{
1 , |Ω|

∞∑
j=1

1

j!

(
j

en/(n−1)

)j}

and

K = eK5Ã

(
n

n− 1

)(n−1)/n

‖u‖W 1
0L

n(Ω) .

Then ∫
Ω

(
|u(x)|
K

)nj/(n−1)

dx ≤ |Ω|
Ãnj/(n−1)

(
j

en/(n−1)

)j
<
|Ω|
Ã

(
j

en/(n−1)

)j
since Ã ≥ 1 and nk/(n− 1) > 1. Expanding Φ(t) = exp(tn

′
) in power series, i.e.

Φ(t) =
∞∑
j=1

1

j!
tnj/(n−1),

we obtain∫
Ω

Φ

(
|u(x)|
K

)
dx =

∞∑
j=1

1

k!

∫
Ω

(
|u(x)|
K

)nj/(n−1)

dx <
|Ω|
Ã

∞∑
j=1

1

j!

(
j

en/(n−1)

)j
≤ 1.

Hence u ∈ LΦ(Ω) and ‖u‖LΦ(Ω) ≤ K.

Corollary 4.2.3. Let n > 1 and Φ(t) = exp(tn
′
) then

W 1Lp(Rn) ↪→ LΦ(Rn).

Proof. It follows from Theorem 4.2.2, taking |suppu| = |Ω| where u ∈ D(Rn).

4.3 Sobolev embeddings into Lorentz spaces

Now, we will prove

W 1
0L

p(Ω) ↪→ Lp
∗,p(Ω), 1 ≤ p < n , p∗ =

np

n− p
.

Throughout this section, we present results proved in [20]. We first establish the weak version
of the Sobolev-Gagliardo-Niremberg inequality.
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Lemma 4.3.1. For every u ∈ W 1
0L

1(Ω) and λ > 0, the estimate

λ (|{x ∈ Ω : |u(x)| ≥ λ}|)1/n′ /
n∑
k=1

∫
Ω

|Dku(x)| dx,

holds, i.e. W 1
0L

1(Ω) ↪→ Ln
′,∞(Ω).

Proof. Fix u ∈ D(Ω). We denote by G the set {x ∈ Ω : |u(x)| ≥ λ} . Let K ⊂ G be a
compact set. Then, using Lemma 3.4.2, Lemma 4.2.1 and Fubini’s theorem we have

|K| ≤ 1

λ

∫
K

|u(x)| dx /
1

λ

∫
K

(
n∑
k=1

∫
Ω

Dku(y)

|x− y|n−1dy

)
dx /

|K|1/n

λ

n∑
k=1

∫
Ω

|Dku(y)| dy.

Thus, since |K| <∞,

λ |K|1/n
′
/

n∑
k=1

∫
Ω

|Dku(y)| dy.

If one takes the supremum over all such that K ⊂ G, the lemma is proved for u ∈ D(Ω).
The general case follows by standard approximation arguments.

Corollary 4.3.2. For every u ∈ W 1L1(Rn) and λ > 0, the estimate

λ (|{x ∈ Rn : |u(x)| ≥ λ}|)1/n′ /
n∑
k=1

∫
Rn
|Dku(x)| dx,

holds.

Lemma 4.3.3. Let 1 ≤ p ≤ n and u ∈ W 1
0L

p(Ω). We denote tk = |Ω| 21−k and ak = u∗(tk),
k ∈ N. Then

∞∑
k=1

t
p/p∗

k (ak+1 − ak)p /
n∑
j=1

∫
Ω

|Dju(x)|p dx.

Proof. If p > 1, using Hölder’s inequality we obtain

λ (|{x ∈ Ω : |u(x)| ≥ λ}|)1/n′ /

(
n∑
j=1

∫
Ω

|Dj(u)(x)|p dx

)1/p

(|{x ∈ Ω : |u(x)| > 0}|)1/p′ .

(4.6)
With the convention 1

1′
= 0 this also holds for p = 1. Now, given 0 < a < b < ∞, we use a

smooth function ϕba on R such that
ϕba(s) = 0 for s ∈ (−∞ , a ] ,

0 <
(
ϕba
)′

(s) < 2 for s ∈ (a , b) ,
ϕba(s) = b− a for s ∈ [b ,∞) .
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Applying (4.6) to the function ϕba (|u(x)|) and λ = b− a, we arrive at

(b− a) (|{x ∈ Ω : |u(x)| ≥ b}|)1/n′ /

(
n∑
j=1

∫
a<|u(x)|<b

|Dj(u)(x)|p dx

)1/p

× (|{x ∈ Ω : |u(x)| > a}|)1/p′ .

Then, if we take a = ak and b = ak+1 we obtain

(ak+1 − ak) (|{x ∈ Ω : |u(x)| ≥ ak+1}|)1/n′ /

(
n∑
j=1

∫
ak<|u(x)|<ak+1

|Dj(u)(x)|p dx

)1/p

× (|{x ∈ Ω : |u(x)| > ak}|)1/p′ ,

but, since |{x ∈ Ω : |u(x)| > ak}| ≤ tk ≤ |{x ∈ Ω : |u(x)| ≥ ak}|, we obtain

t
1/n′

k+1 (ak+1 − ak) /

(
n∑
j=1

∫
ak<|u(x)|<ak+1

|Dj(u)(x)|p dx

)1/p

t
1/p′

k ,

that is (recall that 2tk+1 = tk),

t
1/p∗

k+1 (ak+1 − ak) /

(
n∑
j=1

∫
ak<|u(x)|<ak+1

|Dj(u)(x)|p dx

)1/p

,

where the convention 1
n∗

= 0 is used. We raise this estimate to the power p and sum over k.
We obtain

∞∑
k=1

tp/p
∗

(ak+1 − ak)p ≤
n∑
j=1

(
∞∑
k=1

∫
ak<|u(x)|<ak+1

|Dj(u)(x)|p dx

)
≤

n∑
j=1

∫
Ω

|Dj(u)(x)|p dx,

finishing the proof.

Corollary 4.3.4. Let 1 ≤ p ≤ n and u ∈ D(Rn). Denote tk = 21−k |suppu| and ak = u∗(tk)

with k ∈ N. Then,
∑∞

k=1 t
p/p∗

k (ak+1 − ak)p /
∑n

j=1

∫
Ω
|Dju(x)|p dx.

Lemma 4.3.5. The inequality

(a+ b)p ≤ (1 + ε)p−1ap + (1 + 1/ε)p−1 bp, 1 ≤ p <∞,

holds for arbitrary a , b ∈ R+ and ε > 0.

Proof. It follows from the fact that t→ tp is a convex function and therefore

(a+ b)p =

[
λ
a

λ
+ (1− λ)

(
b

1− λ

)]p
≤ λ

(a
λ

)p
+ (1− λ)

(
b

1− λ

)p
,

whenever 0 < λ < 1. Taking λ = 1
(1+ε)

establishes the result.
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Theorem 4.3.6. Assume that 1 ≤ p < n. Then∫ |Ω|
0

tp/p
∗

(u∗(t))p dt /
n∑
k=1

∫
Ω

|Dku(x)|p dx,

for all u ∈ W 1
0L

p(Ω), i.e. W 1
0L

p(Ω) ↪→ Lp
∗,p(Ω)

Proof. Fix u ∈ D(Ω). Let tk and ak have the same meaning as in Lemma 4.3.3. Given ε > 0,
Lemma 4.3.7 yields

apk+1 ≤
(

1 +
1

ε

)p−1

(ak+1 − ak)p + (1 + ε)p−1 apk.

Hence, taking into account that a1 = u∗(t1) = 0,

2p/p
∗
∞∑
k=1

t
p/p∗

k+1 a
p
k =

∞∑
k=1

t
p/p∗

k apk =
∞∑
k=1

t
p/p∗

k+1 a
p
k+1 ≤ (1 + ε)p−1

∞∑
k=1

t
p/p∗

k+1 a
p
k

+

(
1 +

1

ε

)p−1 ∞∑
k=1

t
p/p∗

k+1 (ak+1 − ak)p .

Choosing ε > 0 so small that (1 + ε)p−1 < 2p/p
∗
, and by Lemma 4.3.3 we obtain

∞∑
k=1

t
p/p∗

k+1 (u∗(tk))
p /

n∑
j=1

∫
Ω

|Dju(x)|p dx.

The sum on the right is an infinite Riemann sum, i.e.

2−p/p
∗
∫ |Ω|

0

tp/p
∗
u∗(t)

dt

t
= 2−p/p

∗
∞∑
k=1

t
p/p∗

k (u∗(tk))
p 1

tk
(tk−1 − tk) ,

therefore ∫ |Ω|
0

tp/p
∗

(u∗(t))
dt

t
/

n∑
j=1

∫
Rn
|Dju(x)|p dx.

Finally, by standard approximation arguments we extend the result to all functions u ∈
W 1

0L
p(Ω).

Corollary 4.3.7. Assume that 1 ≤ p < n. Then∫ ∞
0

tp/p
∗

(u∗(t))p dt ≤ A

n∑
k=1

∫
Rn
|Dku(x)|p dx,

for all u ∈ W 1Lp(Rn), i.e. W 1Lp(Rn) ↪→ Lp
∗,p(Rn).

Proof. To prove this corollary apply Corollary 4.3.4 and the reasoning of the previous theo-
rem.

Note that, thanks to Proposition 2.5.3 and the inequality p < p∗, Theorem 4.3.6 give us
a non-trivial improvement of the range space in W 1

0L
p(Ω) ↪→ Lp

∗
(Ω).
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4.4 Sobolev embeddings into Lorentz Zygmund spaces

In this section, we will prove Now, we are going to show

W 1
0L

n(Ω) ↪→ L∞,n;−1(Ω).

Throughout this section, we present results proved in [20].

Remark 4.4.1. Note that∫ 1

0

(
u∗(t)

log
(

1
t

))n
dt

t
≈
∫ 1

0

(
u∗(t)

log
(
e
t

))n
dt

t
,

it follows from [4, Theorem 3.1].

Theorem 4.4.2. We have∫ 1

0

(
u∗(t)

log
(

1
t

))n
dt

t
/

n∑
j=1

∫
Ω

|Dju(x)|n dx, (4.7)

for all u ∈ W 1
0L

n(Ω), i.e. W 1
0L

n(Ω) ↪→ L∞ ,n ;−1(Ω).

Proof. Let u ∈ D(Ω). We fix such u and assume that tk and ak have the same meaning as
in Lemma 4.3.3. Given m ∈ N (using a1 = 0)

0 ≤ anm
mn−1

=
m−1∑
k=1

(
ank+1

(k + 1)n−1
− ank
kn−1

)
=

m−1∑
k=1

ank+1 − ank
(k + 1)n−1

−
m−1∑
k=1

ank

(
1

kn−1
− 1

(k + 1)n−1

)
.

Hence, passing to limit for m→∞
∞∑
k=1

ank
kn

/
∞∑
k=1

ank

(
1

kn−1
− 1

(k + 1)n−1

)
/

∞∑
k=1

ank+1 − ank
(k + 1)n−1

/
∞∑
k=1

an−1
k+1(ak+1 − ak)

(k + 1)n−1

/

(
∞∑
k=1

(ak+1 − ak)n
)1/n( ∞∑

k=1

ank+1

(k + 1)n

)1/n
′

.

Recalling that a1 = 0, we have

∞∑
k=1

u∗(tk)
n

kn
=
∞∑
k=1

akn
kn

/
∞∑
k=1

(ak+1 − ak)n /
n∑
j=1

∫
Ω

|Dju(x)|n dx,

which is a discrete version of (4.7). Finally, by standard truncation and approximation
argument, we extend the result to all u ∈ W 1

0L
n(Ω).

A further improvement of W 1
0L

n(Ω) ↪→ L∞,n;−1(Ω) is possible.
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Definition 4.4.3. We define Wp(Ω) for 1 ≤ p ≤ ∞ as the family of all measurable functions
on Ω for which

‖u‖Wp(Ω) =

{ (∫ 1

0

(
u∗
(
t
2

)
− u∗(t)

)p dt
t

)1/p

<∞, when p <∞,
sup0<t<1

(
u∗
(
t
2

)
− u∗(t)

)
, when p =∞.

Theorem 4.4.4. Let n > 1, then

W 1
0L

n (Ω) ↪→ Wn(Ω). (4.4.4)

Proof. Note that, for p = n for Lemma 4.3.3 reads as

∞∑
k=1

(ak+1 − ak)n ≤ A

n∑
j=1

∫
Ω

|Dju(x)|n dx,

which is just a discrete version of (4.4.4) .

Since Wn ( L∞,n;−1(Ω) (see Remark 4.4.5 bellow), Theorem 4.4.4 improves Remark 4.4.2;
but Wn(Ω) is not an r.i. space beucase it is not a linear set (see Remark 4.4.5 bellow).

Remark 4.4.5. The Wp(Ω) space has the follwing properties:

1. ‖χE‖Wp(Ω) = (log 2)1/p for every measurable E ⊂ Ω and 1 ≤ p <∞.

2. L∞(Ω) ( Wn(Ω).

3. For 1 ≤ p <∞ each interger-valued u ∈ Wp(Ω) is bounded.

4. For 1 < p <∞, Wp(Ω) is not a linear set.

5. For 1 < p <∞ Wp(Ω) ( L∞ ,p ;−1(Ω).





Chapter 5

Optimal Sobolev embeddings on
rearrangement invariant spaces

5.1 Introduction

Let n be an integer, n ≥ 2, and let m be an integer satisfying 1 ≤ m ≤ n − 1. Let Ω be a
bounded subset of Rn such that |Ω| = 1 (if its measure is different from 1, everything can
be modified by the change of variables t→ |Ω| t). Denote by |Dmu| the eucledian length of,
Dmu =

(
∂αu
∂xα

)
0≤|α|≤m, the vector of all derivates of order m or less, whenever such derivates

exits on Ω in the weak sense.
In this chapter we study of optimality in Sobolev embeddings on rearrangement invariant

spaces. This problem can be formulated as follows. We are interesting in determining those
rearrangement invariant Banach spaces such that

Wm
0 X(Ω) ↪→ Y (Ω). (5.1)

We would like to know that X(Ω) and Y (Ω) in (5.1) are optimal; in the sense that X(Ω)
cannot be replaced by an larger r.i. space and Y (Ω) cannot be replaced by an smaller one.
Kerman and Pick [18] solved this problem. The central part of their work may be summarized
as follows. They developed a method that enable us to reduce the Sobolev embedding
(5.1) to boundedness of certain weighted Hardy operator; and then used it to characterize
the largest rearrangement invariant Banach domain space and the smallest rearrangement
invariant Banach range space in the Sobolev embedding (5.1).

5.2 Reduction Theorem

In this section, we will prove our main theorem (Theorem 5.2.1) which is known as Reduc-
tion Theorem. Its proof can be found in [18].

Theorem 5.2.1. Let X(Ω) and Y (Ω) be an r.i. spaces. Then,

Wm
0 X(Ω) ↪→ Y (Ω),

59
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if and only if there is a positive constant C2 such that∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (I)

≤ C2 ‖f‖X(I) , f ∈ X(I)

i.e., Hn/m : X(I) → Y (I).

When m = 1, Theorem 5.2.1 was proved in [10] and the case m = 2 was studied in
[6]. Finally, Kerman and Pick [18] proved our version of Reduction Theorem for all m using
results from interpolation theory.

The necessity part of Theorem 5.2.1

Theorem 5.2.2. Let X(Ω) and Y (Ω) be an r.i. spaces. Suppose that Wm
0 X(Ω) ↪→ Y (Ω).

Then, there is a positive constant C2 such that∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (I)

≤ C2 ‖f‖X(I) , f ∈ X(I).

Proof. We may suppose, without loss of generality that 0 ∈ Ω. Let σ be a positive number
not exceeding 1/2, and so small that the ball centered at 0 and having measure σ is contained
in Ω. Given any non-negative function f ∈ X(I) with supp f ⊂ [0, σ] , define

u(x) :=

∫ ∞
Cn|x|n

∫ ∞
t1

∫ ∞
t2

. . .

∫ ∞
tm−1

f(tm)t−m+m/n
m dtm . . . dt1 = g (Cn |x|n) ,

for all x ∈ Rn. Note that u has compact support in Ω. Moreover induction in ` ∈ N, shows
that any `th order derivative of u is a linear combination of terms of the form

xα1 . . . xαig
(j) (|x|nCn) |x|k , k + i = jn− ` , 0 < i , j ,≤ `.

From this we conclude that any `th order derivative of u is in absolute value, dominated by
a constant multiple of

∑̀
j=1

∣∣g(j) (|x|nCn)
∣∣ |x|jn−` ,

and hence,

|(Dmu) (x)| ≤
m∑
`=1

∣∣g(`) (|x|nCn)
∣∣ |x|jn−` .

Now, if 1 ≤ ` ≤ m− 1∣∣g(`) (Cn |x|n)
∣∣ =

∫ ∞
Cn|x|n

∫ ∞
t`+1

. . .

∫ ∞
tm−1

f(tm)t−m+m/n
m dtm . . . d`+1,
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and ∣∣g(m) (Cn |x|n)
∣∣ ≈ f (Cn |x|n) |x|−nm+m .

Since we are assuming that suppf ⊂ [0, σ] ⊂ [0, 1] , we have

u(x) :=

∫ 1

Cn|x|n

∫ 1

t1

∫ 1

t2

. . .

∫ 1

tm−1

f(tm)t−m+m/n
m dtm . . . dt1 = g (Cn |x|n) .

Moreover, when j = 1 , . . . ,m− 1 we have on applying Fubini’s theorem m− j − 1 times

g(`) (Cn |x|n) /
∫ 1

Cn|x|n
f(s)s−j+m/n−1ds.

Hence,

|Dmu(x)| /
m∑
`=1

∣∣g(`) (|x|)
∣∣ |x|`n−m / f (Cn |x|n) +

m−1∑
`=1

|x|`n−m
∫ 1

Cn|x|n
f(s)s−`+m/n−1ds.

Thus,

‖|Dmu|‖X(Ω) / ‖f‖X(I) +
m−1∑
j=1

∥∥∥∥tj−m/n ∫ 1

t

f(s)s−j+m/n−1ds

∥∥∥∥
X(I)

. (5.2)

Considere the linear operator T defined as

Tf(t) = tj−m/n
∫ 1

t

f(s)s−j+m/n−1ds, f ∈M+(I).

The operator T is bounded in L1(I), since∥∥∥∥tj−m/n ∫ 1

t

f(s)s−j+m/n−1ds

∥∥∥∥
L1(I)

=

∫ 1

0

tj−m/n
∫ 1

t

f(s)s−j+m/n−1ds

≈
∫ 1

0

f(s)ds = ‖f‖L1(I) .

Moreover, T is bounded on L∞(I), since∥∥∥∥tj−m/n ∫ 1

t

f(s)s−j+m/n−1ds

∥∥∥∥
L∞(I)

= sup
0<t<1

tj−m/n
∫ 1

t

f(s)s−j+m/n−1ds

≤ ‖f‖L∞(I) sup
0<t<1

tj−m/n
∫ 1

t

s−j+m/n−1ds

/ ‖f‖L∞(I) .
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A theorem by Calderón (see [2, Theorem III.2.12]) then ensures that T is bounded on X(I),
i.e. ∥∥∥∥tj−m/n ∫ 1

t

f(s)s−j+m/n−1ds

∥∥∥∥
X(I)

/ ‖f‖X(I) .

Therefore, from (5.2) it follows that

‖|Dmu|‖X(Ω) / ‖f‖X(I) ,

whence u ∈ Wm
0 X(Ω). Next, by hypothesis

‖|Dmu|∗‖X(I) ' ‖u
∗‖Y (I)

=

∥∥∥∥∫ 1

t

∫ 1

t1

. . .

∫ 1

tm−1

f(tm)t−m+m/ndtm . . . dt1

∥∥∥∥
Y (I)

=

∥∥∥∥∫ 1

t

f(s)s−m+m/n (s− t)m−1

(m− 1)!
ds

∥∥∥∥
Y (I)

'

∥∥∥∥∫ 1

2t

f(s)s−1+m/n(1− t/s)m−1ds

∥∥∥∥
Y (I)

'

∥∥∥∥∫ 1

t

f(s)s−1+m/nds

∥∥∥∥
Y (I)

Thus, ∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (I)

/ ‖f‖X(I) , (5.3)

for every non-negative f ∈ X(I) with supp f ⊂ [0, σ] . Now, let f be any function from X(I).
Then ∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (I)

≤
∥∥∥∥∫ 1

t

χ[0,σ](s)f(s)sm/n−1ds

∥∥∥∥
Y (I)

+

∥∥∥∥∫ 1

t

χ[σ,1](s)f(s)sm/n−1ds

∥∥∥∥
Y (I)

. (5.4)

We have ∥∥∥∥∫ 1

t

χ[σ,1](s)f(s)sm/n−1ds

∥∥∥∥
Y (I)

≤ σm/n−1

∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (I)

≤ σm/n−1 ‖1‖Y (I)

∫ 1

0

f(s)ds

≤ σm/n−1 ‖1‖Y (I) ‖1‖X′(I) ‖f‖X(I) . (5.5)

On estimating the first term on the right-hand side of (5.4) by (5.3) (with f replaced by
χ[0,σ]f) and the second term by (5.5), the proof is complete.



63 Chapter 5. Optimal Sobolev embeddings on rearrangement invariant spaces

The sufficiency part of Theorem 5.2.1

The following lemma is a generalization of the Pólya-Szegö principle. Its proof may be found
in [8].

Lemma 5.2.3. Let u ∈ D(Rn). Then,∫ t

0

[
y1/n

′
(
−du

∗

dy

)]∗
(s) ≤ n−1K−1/n

n

∫ t

0

|Du|∗ (s)ds, t ∈ R+,

where Kn = πn/2Γ (n/2 + 1)−1 .

Now, we recall the definition of them-dimensional Hausdorff measure and some important
result such as coarea formula and isoperimetric theorem. Next, we will prove Lemma 5.2.3.

Definition 5.2.4. For each m ≥ 0, ε > 0 and E ⊂ Rn, let

Hm
ε = inf

{
∞∑
i=1

α(m)2−mdiam(Ai)
m : E ⊂ ∪∞i=1Ai , diamAi < ε

}
.

Since Hm
ε is decreasing in ε, we may define the m-dimensional Hausdorff measure as

Hm(E) = lim
ε→0
Hm
ε (E).

The following theorem is known as coarea formula. A proof of this formula appears
in [11].

Theorem 5.2.5. Let u : Rn → R be a Lipschitz continuous function and let f : Rn → R
be an integrable function. Then,∫

Rn
f(x) |Du(x)| dx =

∫ ∞
0

(∫
{x∈Rn :|u(x)|=t}

f(x)Hn−1(dx)

)
dt.

The following theorem is known as isoperimetric theorem in Rn.

Theorem 5.2.6. Let E ⊂ Rn be a measurable subset with finite measure. Then,

Hn−1(∂E) ≥ nKn |E|1−1/n ,

where Kn is the measure of the unit n-dimensional ball.

Proof. (Lemma 5.2.3). Let u ∈ D(Rn). The following inequality∫
{x∈Rn :u∗(b)<|u(x)|<u∗(a)}

|Du(x)| dx =≥ nK1/n
n a1/n′(u∗(a)− u∗(b)), (5.6)
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holds if 0 ≤ a < b < suppu. In fact,∫
{x∈Rn :u∗(b)<|u(x)|<u∗(a)}

|Du(x)|dx

=

∫ u∗(a)

u∗(b)

Hn−1 ({x ∈ Rn : |u(x)| = t}) dt

≥ nK1/n
n

∫ u∗(a)

u∗(b)

|{x ∈ Rn : |u(x)| ≥ t}|1/n
′
dt

≥ nK1/n
n |{x ∈ Rn : |u(x)| ≥ u∗(a)}|1/n

′
(u∗(a)− u∗(b))

≥ nK1/n
n a1/n′(u∗(a)− u∗(b)).

Moreover, we have
|{x ∈ Rn ;u∗(b) < |u(x)| < u∗(a)}| ≤ b− a. (5.7)

Now, we claim that the following inequality

d

ds

∫
{x∈Rn :|u(x)|>u∗(s)}

|Du(x)| dx ≥ −nK1/n
n s1/n′ du

∗

ds
(s), (5.8)

holds for almost every s ∈ R+. In fact, the right hand side of (5.8) is zero if s ≥ |suppu| .
If 0 ≤ s < |suppu| the left hand side of (5.8) is equal to

lim
h→0

1

h

∫
{x∈Rn :u∗(s+h)<|u(x)|≤u∗(s)}

|Du(x)| dx

≥ lim
h→0

nK1/n
n s1/n′ 1

h
(u∗(s)− u∗(s+ h))

= −nK1/n
n s1/n′ du

∗

ds
(s).

Thus, ∫ b

a

−nK1/n
n s1/n′ du

∗

ds
(s)ds ≤

∫
{x∈Rn :u∗(b)<|u(x)|<u∗(a)}

|Du(x)| dx.

Then, by (5.7) and Hardy-Littlewood inequality, we obtain for every countable family
{(aj , bj)} of disjoint intervals in (0 , |suppu|) ,∫

∪(ai ,bi)

−nK1/n
n s1/n′ du

∗

ds
(s)ds ≤

∫ ∑
(bi−ai)

0

|Du|∗ (r)dr.

The last estimate yields,∫ s

0

[
−nK1/n

n s1/n′ du
∗

ds

]∗
(s)ds = sup

|E|=s

∫
E

−nK1/n
n s1/n′ du

∗

ds
(s)ds ≤

∫ s

0

|Du|∗ (r)dr,

since every measurable set E ⊂ (0 , |suppu|) can be approximated from outside by sets of
the form ∪ (ai , bi) .
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Now, we are going to link the Sobolev embedding to the Hardy operator Hn/m; for this
we require the following theorem which is a description of the K functional (see Section 2.7)
for the couple (Wm

0 L
1(Ω) ,Wm

0 L
∞(Ω)) . Its proof may be found in [9].

Theorem 5.2.7. Let Ω ⊂ Rn be an open subset. Then,

K
(
t , u ,Wm

0 L
1(Ω) ,Wm

0 L
∞(Ω)

)
≈
∫ t

0

|Dmu|∗ (s)ds, t > 0,

with u ∈ Wm
0 L

1(Ω) +WmL∞0 (Ω).

We can identify the Sobolev spaces Wm
0 L

p,q(Ω) as interpolation spaces between Wm
0 L

1(Ω)
and Wm

0 L
∞(Ω).

Corollary 5.2.8. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then, up to equivalence of norms,
Wm

0 L
p,q(Ω) coincides with the interpolation spaces (Wm

0 L
1(Ω) ,Wm

0 L
∞(Ω))1/p′,q .

Remark 5.2.9. Let 1 < p0 < p1 <∞ and 1 ≤ q0 , q1 <∞. Theorem 2.7.10 yields,

K (t , u ,Wm
0 L

p0,q0(Ω) ,Wm
0 L

p1,q1(Ω))

≈
(∫ tα

0

(
s1/p0−1/q0 |Dmu|∗ (s)

)q0
ds

)1/q0

+

(∫ 1

tα

(
s1/p1−1/q1 |Dmu|∗ (s)

)q1
ds

)1/q1

,

where 1
α

= 1
p0
− 1

p1
. Moreover, if 1 < p1 <∞ and 1 ≤ q1 <∞

K
(
t , u ,Wm

0 L
1(Ω) ,Wm

0 L
p1,q1(Ω)

)
≈
∫ tα

0

|Dmu|∗ (s)ds

+ t

(∫ 1

tα

(
s1/p1−1/q1 |Dmu|∗ (s)

)q1
ds

)1/q1

,

where 1
α

= 1− 1
p1
. Indeed, it suffices to verify

K
(
t , u ,Wm

0 L
1(Ω) ,Wm

0 L
p1,q1(Ω)

)
'
∫ tα

0

|Dmu|∗ (s)ds

+ t

(∫ 1

tα

(
s1/p1−1/q1 |Dmu|∗ (s)

)q1
ds

)1/q1

.

Fix t > 0. Let u = g+h be any representation of u with g ∈ Wm
0 L

1(Ω) and h ∈ Wm
0 L

p1,q1(Ω).
Then,

I1 =

∫ tα

0

|Dmu|∗ (s)ds ≤
∫ tα

0

|Dmg|∗ (s)ds+

∫ tα

0

|Dmh|∗ (s)ds

/ ‖|Dmg|‖L1 + t ‖|Dmh|‖Lp1,q1 ,
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and

I2 =

(∫ 1

tα

(
s1/p1−1/q1 |Dmu|∗ (s)

)q1
ds

)1/q1

≤
(∫ 1

tα

(
s1/p1−1/q1 |Dmg|∗∗ (s)

)q1
ds

)1/q1

+

(∫ 1

tα

(
s1/p1−1/q1 |Dmh|∗∗ (s)

)q1
ds

)1/q1

/ t−1 ‖|Dmg|‖L1 + ‖|Dmh|‖Lp1,q1 .

Therefore,

I1 + tI2 / ‖|Dmg|∗‖L1 + t ‖|Dmh|‖Lp1,q1 ,

and, taking the infimum over all such representations u = g + h, we conclude that

I1 + tI2 / K
(
t , u ,Wm

0 L
1(Ω) ,Wm

0 L
p1,q1(Ω)

)
.

Theorem 5.2.10. For any u ∈ Wm
0 L

1(Ω) and t ∈ I, we have∫ t

0

s−m/nu∗(s)ds /
∫ t

0

s−m/n
(∫ 1

s/2

|Dmu|∗ (y)ym/n−1dy

)
ds.

To prove this theorem we require some results.

Lemma 5.2.11. We have
Wm

0 L
1(Ω) ↪→ Ln/(n−m),1(Ω). (5.9)

Moreover,
Wm

0 L
n/m,1(Ω) ↪→ L∞(Ω). (5.10)

Proof. Let us prove (5.9). The proof proceeds by induction on m. Note that Theorem 4.3.6
establish the case m = 1. Suppose it has been proved for m− 1, that is

‖v‖Ln/(n−m+1),1 ≤ C
∥∥∣∣Dm−1v

∣∣∥∥
L1 , v ∈ D(Ω).

Set v = Dju, j = 1 , 2 , . . . , n. Then

‖|Du|‖Ln/(n−m+1),1 ≤ C ‖|Dmu|‖L1 .

Now, let 0 < q < n∥∥∥∥∫ 1

t

f(s)s1/n−1ds

∥∥∥∥
Lnq/(n−q),1

≈
∫ 1

0

f(s)s1/q−1ds /
∫ 1

0

f ∗(s)s1/q−1ds

≤ ‖f‖Lq,1 , f ∈M+(I).

So, for all u ∈ D(Ω)

‖u‖Lnq/(n−q),1 =

∥∥∥∥∫ 1

t

(
−s1/n

′ du∗

ds
(s)

)
s−1/n′ds

∥∥∥∥
Lnq/(n−q),1

≤ C

∥∥∥∥s1/n′−du∗(s)
ds

∥∥∥∥
Lq,1

.

By Lemma 5.2.3, we get ‖u‖Lnq/(n−q),1 / ‖|Du|‖Lq,1 . Now, taking q = n/(n−m+ 1), we get

‖u‖Ln/(n−m),1 ≤ C ‖|Du|‖Ln/(n−m+1) ≤ C ‖|Dmu|‖L1 .

and the result follows.
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Proof. (Theorem 5.2.10) Let

X0(Ω) = Wm
0 L

1(Ω) , Y0(Ω) = Ln/(n−m),1(Ω) , X1(Ω) = Wm
0 L

n/m,1(Ω) , Y1(Ω) = L∞(Ω).

By Lemma 5.2.11, we have

Wm
0 L

1(Ω) ↪→ Ln/(n−m),1(Ω) and Wm
0 L

n/m,1(Ω) ↪→ L∞(Ω),

i.e., the operador Sobolev embedding is an admisible operador with respect to the compatible
couple

(
Wm

0 L
1(Ω) ,Wm

0 L
n/m,1(Ω)

)
and

(
Ln/(n−m),1(Ω) , L∞(Ω)

)
and Theorem 2.7.5

K
(
t , u , Ln/(n−m),1(Ω) , L∞(Ω)

)
≤ CK

(
Ct , u ,Wm

0 L
1(Ω) ,Wm

0 L
n/m,1(Ω)

)
,

with u ∈ Wm
0 L

1(Ω). Then, by Remark 2.7.11 we have

K
(
t , u , Ln/(n−m),1(Ω) , L∞(Ω)

)
≈
∫ tn/(n−m)

0

s−m/nu∗(s)ds,

and by Remark 5.2.9

K
(
Ct , u ,Wm

0 L
1(Ω) ,Wm

0 L
n/m,1(Ω)

)
≈
∫ (Ct)n/(n−m)

0

|Dmu|∗ (s)ds+ Ct

∫ 1

(Ct)n/(n−m)

|Dmu|∗ (s)sm/n−1ds

Then replacing (Ct)n/(n−m) by t , we get∫ t

0

s−m/nu∗(s)ds

≤ C

(∫ t

0

|Dmu)|∗ (s)ds+ Ct1−m/n
∫ 1

t

|Dmu|∗ (s)sm/n−1ds

)
≤ C

[∫ t

0

s−m/n
∫ s

s/2

ym/n−1dy |Dmu|∗ (s)ds+

∫ 1

t

|Dmu|∗ (y)ym/n−1dy

∫ t

0

s−m/nds

]
≤ C

[∫ t

0

s−m/n
∫ s

s/2

ym/n−1 |Dmu|∗ (y)dyds+

∫ t

0

s−m/n
∫ 1

s

|Dmu|∗ (y)ym/n−1dyds

]
≤ C

∫ t

0

s−m/n
∫ 1

s/2

|Dmu|∗ (y)ym/n−1dyds,

thus, the proof is complete.

Theorem 5.2.12. Let X(Ω) be an r.i. space. Then, the functional

‖f‖Z(Ω) :=
∥∥H ′n/mf ∗∥∥X′(I) =

∥∥tm/nf ∗∗(t)∥∥
X
′
(I)
, f ∈M(Ω),

is an r.i. norm, being, in fact, the smallest r.i. norm satisfying∥∥H ′n/mf∥∥X′(I) / ‖f‖Z(I) , f ∈M+(I). (5.11)

Moreover ‖·‖Z′(Ω) , the associate norm of ‖·‖Z(Ω), is the largest r.i. norm satisfying∥∥Hn/mf
∥∥
Z
′
(I)

/ ‖f‖X(I) , f ∈M+(I). (5.12)
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Proof. We claim that ‖·‖Z(Ω) is an r.i. norm. Indeed,

• the positivity and homogeneity are clear;

• ‖f + g‖Z(Ω) =
∥∥tm/n(f + g)∗∗(t)

∥∥
X
′
(I)
≤ ‖f‖Z(Ω) + ‖g‖Z(Ω) , ∀ f , g ∈M(Ω);

• let {fj}j∈N such that fj ↑ f. So (fj)
∗∗ ↑ f ∗∗ and hence∥∥tm/n(fj)

∗∗(t)
∥∥
X
′
(I)
↑
∥∥tm/nf ∗∗(t)∥∥

X
′
(I)
,

that is, ‖fj‖Z(Ω) ↑ ‖f‖Z(Ω) ;

•
∫ 1

0
g(t)(H ′n/mχI)(t)dt ≤

∫ 1

0
g(t)dt ≤ ‖g‖X′(I) , for all g ∈M+(Ω). Hence,

‖χΩ‖Z(Ω) =
∥∥H ′n/mχI∥∥X′(I) ≤ 1;

• let f ∈M(Ω),∥∥tm/nf ∗∗(t)∥∥
X
′
(I)
≥ 1

‖χI‖X(I)

∫ 1

0

χI(t)t
m/nf ∗∗(t)dt ' Cf ∗∗(1)

=

∫ 1

0

f ∗(t)dt ≥
∫

Ω

f(t)dt,

and so
∫

Ω
f(t)dt / ‖f‖Z(Ω) ;

• ‖f ∗‖Z(Ω) =
∥∥∥H ′n/mf ∗∥∥∥

X
′
(I)

= ‖f‖Z(Ω) , f ∈M(Ω).

Let us prove (5.11),∫ t

0

f(s)ds ≤
∫ t

0

f ∗(s)ds ⇒ (H ′n/mf)(t) ≤ (H ′n/mf
∗)(t) , ∀ t ∈ I

and so, ∥∥H ′n/mf∥∥X′(I) ≤ ‖f‖Z(Ω) .

Finally, let us prove (5.12). Suppose that g ∈M(I), we have∣∣∣∣∫ 1

0

g(t)Hn/mf(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

f(s)sm/n−1

(∫ s

0

g(t)dt

)
ds

∣∣∣∣ =

∣∣∣∣∫ 1

0

f(s)H ′n/mg(s)ds

∣∣∣∣
≤
∥∥H ′n/mg∥∥X′(I) ‖f‖X(I) ≤ ‖g‖Z(I) ‖f‖X(I) .

Therefore,∥∥Hn/mf
∥∥
Z
′
(I)

= sup
‖g‖Z(I)≤1

∣∣∣∣∫ 1

0

g(t)Hn/mf(t)dt

∣∣∣∣ ≤ sup
‖g‖Z(I)≤1

‖g‖Z(I) ‖f‖X(I) ≤ ‖f‖X(I) .
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Theorem 5.2.13. Let X(Ω) and Y (Ω) be an r.i. spaces. Suppose that,

Hn/m : X(I) → Y (I). (5.13)

Then, Wm
0 X(Ω) ↪→ Y (Ω).

Proof. By Theorem 5.2.12, the functional

‖f‖Z(Ω) :=
∥∥H ′n/mf ∗∥∥X′(I) ,

is an r.i. norm. Moreover, when (5.13) holds, Theorem 5.2.12 ensures

‖u‖Y (Ω) / ‖u‖Z′(Ω) .

Note that Hardy-Littlewood-Pólya Principle and Theorem 5.2.10 imply∫ 1

0

t−m/nu∗(t)h∗(t)dt ≤
∫ 1

0

t−m/n
∫ 1

t/2

|Dmu|∗ sm/n−1dsh∗(t)dt,

Taking h∗(t) = supt≤s<1 s
m/ng∗(s), we get∫ 1

0

u∗(t)(Tn/mg)(t)dt ≤
∫ 1

0

(∫ 1

t/2

|Dmu|∗ sm/n−1ds

)
(Tn/mg)(t)dt.

Now,

‖u∗‖Z′(I) = sup
g 6=0

∫ 1

0
u∗(t)g∗(t)dt

‖g‖Z(I)

≤ sup
g 6=0

∫ 1

0
u∗(t)(Tn/mg)(t)dt

‖g‖Z(I)

≤ sup
g 6=0

∫ 1

0

(∫ 1

t/2
|Dmu|∗ (s)sm/n−1ds

)
(Tn/mg)(t)dt

‖g‖Z(I)

sup
g 6=0

∥∥∥∫ 1

t/2
|Dmu|∗ (s)sm/n−1ds

∥∥∥
Z
′
(I)

∥∥Tn/mg∥∥Z(I)

‖g‖Z(I)

/

∥∥∥∥∫ 1

t/2

|Dmu|∗ (s)sm/n−1ds

∥∥∥∥
Z
′
(I)

.

in the last inequality we used Tn/m is bounded on Z(I) (Theorem 2.8.5). Now, since∥∥∥∥∫ 1

t/2

|Dmu|∗ (s)sm/n−1ds

∥∥∥∥
Z
′
(I)

≤
∥∥∥∥∫ 1

t

|Dmu|∗ (s)sm/n−1ds

∥∥∥∥
Z
′
(I)

,

we get

‖u‖Y (Ω) / ‖u‖Z′(Ω) /

∥∥∥∥∫ 1

t

|Dmu|∗ (s)sm/n−1ds

∥∥∥∥
Z
′
(I)

/ ‖|Dmu|‖X(Ω) .
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5.3 Optimal range and optimal domain of r.i. norms

Now, we show how Theorem 5.2.1 can be used to characterize the smallest r.i. domain norm
and the largest r.i. range norm in the Sobolev embedding

Wm
0 X(Ω) ↪→ Y (Ω).

Note that Theorem 5.2.1 implies the following chain of equivalent statements

Wm
0 X(Ω) ↪→ Y (Ω)⇔

∥∥Hn/mf
∥∥
Y (I)

/ ‖f‖X(I)

⇔
∥∥H ′n/mf∥∥X′(I) / ‖f‖Y ′(I)

⇔
∥∥H ′n/mf ∗∥∥X′(I) / ‖f‖Y ′(I) .

The first equivalence is Theorem 5.2.1. We claim∥∥Hn/mf
∥∥
Y (I)

/ ‖f‖X(I) ⇔
∥∥H ′n/mf∥∥X′(I) / ‖f‖Y ′(I) .

Indeed,

∥∥Hn/mf
∥∥
Y (I)

= sup
g 6=0

∫ 1

0
(Hn/mf)(s)g(s)ds

‖g‖Y ′(I)
= sup

g 6=0

∫ 1

0
(H ′n/mg)(s)f(s)ds

‖g‖Y ′(I)

≤ sup
g 6=0

∥∥∥H ′n/mg∥∥∥
X
′
(I)
‖f‖X(I)

‖g‖Y ′(I)
/ ‖f‖X(I) .

Moreover ∥∥H ′n/mf∥∥X′(I) = sup
g 6=0

∫ 1

0
(H ′n/mf)(s)g(s)ds

‖g‖X(I)

≤ sup
g 6=0

∥∥Hn/mg
∥∥
Y (I)
‖f‖Y ′(I)

‖g‖X(I)

/ ‖f‖Y ′(I) .

The last equivalence; the implication ⇒) is restriction to monotone functions, while the
converse one follows from the estimate∫ t

0

g(s)ds ≤
∫ t

0

g∗(s)ds.

In practice, one starts with a Sobolev space Wm
0 X(Ω), and then finds its optimal range

space YX(Ω). The description of YX(Ω) is given by the following theorem.

Theorem 5.3.1. Let X(Ω) be an r.i. space. Let YX(Ω) be the r.i. space whose associate
space Y ′X(Ω) has norm

‖f‖Y ′X(Ω) =
∥∥H ′n/mf ∗∥∥X′(I) , f ∈M(Ω).

Then the Sobolev embedding Wm
0 X(Ω) ↪→ YX(Ω) holds, and YX(Ω) is the optimal (i.e., the

largest possible) such an r.i. space.
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Now, it is natural to ask if there is an optimal domain space, XY (Ω), whose Sobolev
space, Wm

0 XY (Ω), (possibly bigger that Wm
0 X(Ω)) is the largest that still imbeds into Y (Ω).

We will prove the existence of such XY (Ω). The fact that dh = df will be denoted by f ∼ h

Theorem 5.3.2. Let Y (Ω) be an r.i. space. Assume that Y (Ω) ↪→ Ln/(n−m),1(Ω). Then the
function space XY (Ω) generated by the norm

‖f‖XY (I) = sup
f∼h

∥∥Hn/mh
∥∥
Y (I)

, f ∈M(I) , h ∈M+(I),

is an r.i. space such that

Hn/m : XY (I)→ Y (I).

Moreover, ‖·‖XY (Ω) is the smallest such r.i. norm.

Proof. Let’s prove ‖·‖XY (Ω) is an r.i. norm. The positivity and homogeneity of ‖·‖XY (Ω)

are clear. Next, when h ∼ f + g, there exists hf ∼ f and hg ∼ g so that h = hf + hg.
From this observation we get the subadditivity of ‖·‖XY (Ω) . Suppose that fj ↑ f. Now, when
h ∼ fj there exists a measure preserving transformation T such that h = fj ◦ T, and hence
h ≤ fj+1 ◦ T = k ∼ fj+1, so ‖fj‖XY (Ω) ≤ ‖fj+1‖XY (Ω) . Further, h ∼ f once more means
h = f ◦ T for some measure-preserving transformation T. We then have hj = fj ◦ T ↑ f ◦ T,
so ‖fj‖XY (Ω) ↑ ‖f‖XY (Ω) . Again,

‖χI‖XY (I) =
∥∥∥ n
m

(1− tm/n)
∥∥∥
Y (I)

<∞,

while

‖f‖XY (I) ≥
∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Y (I)

'

∥∥∥∥∫ 1

t

f(s)sm/n−1ds

∥∥∥∥
Ln/(n−m),1(I)

≈
∫

Ω

f(s)ds f ∈M+(I).

The following proposition proves that the formula for XY (Ω) can be improved if Y (Ω)
satisfies some properties.

Proposition 5.3.3. Let Y (Ω) be an r.i space such that Y (Ω) ↪→ Ln/(n−m),1(Ω). Suppose

Tn/m : Y
′
(I)→ Y

′
(I). Then

‖f‖XY (I) ≈
∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
Y (I)

.
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Proof. Since Y (Ω) ⊂ Ln/(n−m),1(Ω), by Theorem 5.2.12 we have

‖f‖XY (I) = sup
h∼f

∥∥∥∥∫ 1

t

h(s)sm/n−1ds

∥∥∥∥
Y (I)

, f ∈M(I) , h ∈M+(I).

Now, ∥∥∥∥∫ 1

t

f ∗(s)sm/n−1

∥∥∥∥
Y (I)

≤ sup
h∼f

∥∥∥∥∫ 1

t

h(s)sm/n−1ds

∥∥∥∥
Y (I)

,

since f ∗ ∼ f. Moreover, h ∼ f means h∗ = f ∗, so will be done if we can prove∥∥∥∥∫ 1

t

h(s)sm/n−1ds

∥∥∥∥
Y (I)

/

∥∥∥∥∫ 1

t

h∗(s)sm/n−1ds

∥∥∥∥
Y (I)

, h ∈M+(I).

We have∥∥∥∥∫ 1

t

h(s)sm/n−1ds

∥∥∥∥
Y (I)

= sup
g>0

∫ 1

0
g∗(t)

∫ 1

t
h(s)sm/n−1dsdt

‖g‖Y ′(I)

= sup
g>0

∫ 1

0
g∗∗(t)h(t)tm/ndt

‖g‖Y ′(I)

≤ sup
g>0

∫ 1

0
(Tn/mg)∗∗(t)h(t)tm/ndt

‖g‖Y ′(I)

≤ sup
g>0

∫ 1

0
(Tn/mg)∗∗(t)h∗(t)tm/ndt

‖g‖Y ′(I)
(tm/n(Tn/mg)∗∗(t) ↓)

/ sup
g>0

∫ 1

0
(Tn/mg)∗∗(t)h∗(t)tm/ndt∥∥Tn/mg∥∥Y ′(I)

/

∥∥∥∥∫ 1

t

h∗(s)sm/n−1ds

∥∥∥∥
Y (I)

.

Combining Theorem 5.3.1 and Theorem 5.2.12.

Theorem 5.3.4. Let X(Ω) be an r.i. space. Set

‖f‖Y ′X(Ω) :=
∥∥H ′n/mf ∗∥∥X′(I) , and ‖f‖XYX (Ω) := sup

h∼f∗

∥∥Hn/mh
∥∥
Y X(I)

,

with h ∈M+(I) and f ∈M(Ω). Then, both ‖·‖YX(Ω) and ‖·‖XYX (Ω) are optimal in

Wm
0 XYX (Ω)→ YX(Ω).
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Remark 5.3.5. Observe that

‖f‖Y ′X(Ω) =
∥∥H ′n/mf ∗∥∥X′(I) ,

and so, since ‖·‖L∞ is the largest r.i. norm

‖f‖Y ′X(Ω) /
∥∥tm/nf ∗∗∥∥

L∞(I)
≈ ‖f‖Ln/m,∞(Ω)

hence YX(Ω) ⊂ Ln/(n−m),1(Ω). Moreover, by Theorem 5.3.2

‖f‖XYX (Ω) ≈
∥∥∥∥∫ 1

t

h∗(s)sm/n−1ds

∥∥∥∥
Y X(I)

5.4 Examples

Given m ∈ N, 1 ≤ m ≤ n− 1, n ≥ 2 and two r.i spaces X(Ω), Y (Ω) such that

Wm
0 X(Ω) ↪→ Y (Ω),

we want to find the optimal pair in the Sobolev embedding. To solve this problem, we start
with r.i. space X(Ω) and then find its optimal range partner YX(Ω). Thus, the embedding

Wm
0 X(Ω) ↪→ YX(Ω) ↪→ Y (Ω),

has an optimal range, but it does not necessarily have an optimal domain. We take one
more step in order to get the optimal domain r.i. partner for YX(Ω), let us call it XYX (Ω).
Altogether, we have

Wm
0 X(Ω) ↪→ Wm

0 XYX (Ω) ↪→ YX(Ω) ↪→ Y (Ω),

and Wm
0 XYX (Ω) now can be either equivalent to Wm

0 X(Ω) or strictly larger. In any case,
after these two steps, the couple (XYX (Ω) , YX(Ω)) forms an optimal pair in the Sobolev
embedding and no further iterations of the process can bring anything new.

Example 5.4.1. Let 1 < p < n/m. Let X(Ω) = Lp(Ω) and Y (Ω) = Lp
∗
(Ω). We know, by

Theorem 3.4.1

Wm
0 L

p(Ω) ↪→ Lp
∗
(Ω), p∗ =

p

n−mp

Now, we want the optimal pair in the Sobolev embedding. First, we construct the optimal
range space; by Theorem 5.3.4 we have

‖f‖Y ′X(Ω) =
∥∥tm/nf ∗∗(t)∥∥

Lp′ (I)

=

(∫ 1

0

(
tm/nf ∗∗(t)

)p′
dt

)1/p′

= ‖f‖Lnp/(np−n+mp),p′ (Ω)
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and so YX(Ω) = Lp
∗,p(Ω). Thus,

Wm
0 L

p(Ω) ↪→ Lp
∗,p(Ω) ↪→ Lp

∗
(Ω)

Note that p < p∗, so by Proposition 2.5.3 we have

Lp
∗,p(Ω) ↪→ Lp

∗
(Ω).

Given YX(Ω) = Lp
∗,p(Ω), we find its optimal domain r.i. partner. By Remark 5.3.5 we know

‖f‖XYX (Ω) ≈
∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
Lp∗,p(I)

.

Note that ‖f‖XYX (Ω) ≈ ‖f‖Lp(Ω) . Indeed,∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
Lp
∗,p(I)

=

(∫ 1

0

(
t−m/n

∫ 1

t

f ∗(s)sm/n−1ds

)p
dt

)1/p

/
∫ 1

0

t−mp/n−1

(∫ 1

t

(f ∗(s))psmp/nds

)
dt

=

∫ 1

0

f ∗(s)psmp/n
∫ s

0

t−mp/n−1dtds

≈
∫ 1

0

f ∗(s)pds,

hence, ‖f‖XYX (Ω) / ‖f‖Lp(Ω) . Let us prove that ‖f‖Lp(Ω) / ‖f‖XYX (Ω) . Note that,∫ t

0

(∫ 1

s

f ∗(u)um/n−1du

)
ds ≥

∫ t

0

f ∗(u)um/ndu ' f ∗(t)tm/n+1;

thus, ∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
Lnp/(n−mp),p(I)

'

(∫ 1

0

f ∗(t)pdt

)1/p

.

Therefore, ‖f‖XYX (Ω) ≈ ‖f‖Lp(Ω) . We conclude that

Wm
0 L

p(Ω) ↪→ Lp
∗,p(Ω) ↪→ Lp

∗
(Ω).

Example 5.4.2. Let X(Ω) = L1(Ω) and Y (Ω) = Ln/(n−m)(Ω). By Theorem 3.4.4

Wm
0 L

1(Ω) ↪→ Ln/(n−m)(Ω),

We construct the optimal range space

‖f‖Y ′X(Ω) =
∥∥tm/nf ∗∗(t)∥∥

L∞(I)
= ‖f‖Ln/m,∞(Ω)
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and so YX(Ω) = Ln/(n−m),1(Ω). Thus,

Wm
0 L

1(Ω) ↪→ Ln/(n−m),1(Ω) ↪→ Ln/(n−m)(Ω)

By Proposition 2.5.3 we have

Ln/(n−m),1(Ω) ↪→ Ln/(n−m)(Ω).

Let YX(Ω) = Ln/(n−m),1(Ω), we find its optimal domain r.i. partner. We know

‖f‖XYX (Ω) ≈
∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
Ln/(n−m),1(I)∫ 1

0

t−m/n
(∫ 1

t

f ∗(s)sm/n−1ds

)
dt ≈ ‖f‖L1(Ω)

Therefore,

Wm
0 L

1(Ω) ↪→ Ln/(n−m),1(Ω) ↪→ Ln/(n−m)(Ω)

Example 5.4.3. Let Ln/m(Ω) = X(Ω) and Y (Ω) = Lq(Ω) n/m ≤ q < ∞. To find∥∥tm/nf ∗∗(t)∥∥
X
′
(I)
, we use the following result which is proved in [10]

Theorem 5.4.4. Let 1 < p < ∞ and suppose the weight φ on (0, 1) satisfies the following
properties

1.
∫ 1

0
φ(t)pdt <∞,

2.
∫ 1

0
(φ(t)p/tp)dt =∞,

3.
∫ r

0
φ(t)pdt ≤ Crp

(
1 +

∫ 1

r
φ(t)p

tp
dt
)

, 0 < r < 1.

Then, the r.i. norm % = %p(φ(t)f ∗∗(t)) has dual norm

%′(g) ≈ %p′ (ψg
∗), g ∈M+(I),

where

ψ(t)p
′
= (p′ − 1)

(
1 +

∫ 1

t

φ(s)p

sp
ds

)−p′
φ(t)p

tp
, 0 < t < 1.

Set p = n/(n − m) and put φ(t) = tm/n; note that φ satisfies the properties of Theo-
rem 5.4.4 and so ‖f‖YX(Ω) ≈ ‖ψf ∗‖Ln/m(I) where

ψ(t) ≈ (1− log(t))−1 t−m/n = log(e/t)−1t−m/n;
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that is YX(Ω) = L∞,n/m;−1(Ω). Thus,

Wm
0 L

n/m(Ω) ↪→ L∞,n/m;−1(Ω) ↪→ Lq(Ω), n/m ≤ q <∞.

Moreover, by Theorem 5.3.3

‖f‖XYX (Ω) ≈
∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
L∞,n/m;−1(Ω)

.

Therefore, we get

Wm
0 L

n/m(Ω) ↪→ Wm
0 XYX (Ω) ↪→ L∞,n/m;−1(Ω) ↪→ Lq(Ω), n/m ≤ q <∞.

Note that Ln/m(Ω) ↪→ XYX (Ω). To prove it, we require the following result, which can be
found in [4]

Theorem 5.4.5. Let v, w be non-negative mesurables functions on (0 , 1). Let 0 < p ≤ q <
∞. Then the inequality(∫ 1

0

(f ∗(t))q w(t)dt

)1/q

/

(∫ 1

0

(f ∗(t))p v(t)dt

)1/p

,

holds if and only if

sup
0<t<1

(W (t))1/q (V (t))−1/p <∞.

So,

‖f‖XYX (Ω) ≈
∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
L∞,n/m;−1(Ω)

=

(∫ 1

0

t−1(1− log(t))−n/m
(∫ 1

t

f ∗(s)sm/n−1ds

)n/m
dt

)m/n

/
∫ 1

0

t−m/n
(∫ 1

t

f ∗(s)sm/n−1ds

)
dt (by Theorem 5.4.5)

≈
∫ 1

0

f ∗(t)dt = ‖f‖L1(Ω) / ‖f‖Ln/m(Ω) .

Example 5.4.6. Given Y (Ω), we find its optimal domain r.i. partner. We know

‖f‖XY (Ω) ≈
∥∥∥∥∫ 1

t

f ∗(s)sm/n−1ds

∥∥∥∥
L∞(Ω)

= sup
0<t<1

∫ 1

t

f ∗(s)sm/n−1ds

=

∫ 1

0

f ∗(s)sm/n−1ds = ‖f‖Ln/m,1 (Ω).
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By Theorem 3.4.9, we know

W p
0L

p(Ω) ↪→ L∞(Ω), with p > n/m;

and so, Wm
0 L

p(Ω) ↪→ Wm
0 L

n/m,1(Ω) ↪→ L∞(Ω). Now, given XY (Ω) = Ln/m,1(Ω), we find its
optimal range r.i. partner:

‖f‖Y ′XY (Ω) =
∥∥H ′n/mf ∗∥∥L(n−m)/n,∞(I)

≤ ‖f‖L1(Ω) ;

and so, YXY (Ω) ↪→ L∞(Ω). Hence, YXY (Ω) ≈ L∞(Ω), since L∞(Ω) is the smallest r.i. space.
Therefore,

Wm
0 L

p(Ω) ↪→ Wm
0 L

n/m,1(Ω) ↪→ L∞(Ω), with p > n/m.

Example 5.4.7. Cianchi in [7], proved that LΦ(Ω) with Φ(t) = exp tn
′

is the optimal (that
is, the smallest possible) Orlicz range space in

W 1
0L

n(Ω) ↪→ LΦ(Ω).

However, it turns out that Ln(Ω) is not optimal as an Orlicz domain space, but such an
optimal Orlicz domain space does not exist at all. This should be understood as follows: for
every Orlicz space LA(Ω) such that

W 1
0L

A(Ω) ↪→ LΦ(Ω),

there exists another stricly larger Orlicz space LB(Ω) such that

W 1
0L

B(Ω) ↪→ LΦ(Ω).

Since LΦ(Ω) ↪→ L∞(Ω), it suffices to prove:

Theorem 5.4.8. There does not exist any largest space LA(Ω) such that

W 1
0L

A ↪→ L∞(Ω).

To prove this result, we require the following theorem, which is proved in [8].

Theorem 5.4.9. The embedding

W 1
0L

A ↪→ L∞(Ω),

holds if and only if ∫ ∞
1

Ã(s)

sn′+1
ds <∞. (5.14)

where Ã is the complementary function of A, which is a Young function defined by Ã(t) =
sups≥0 {st− A(s)} for t ≥ 0.
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Proof. (Theorem 5.4.8) The proof of this theorem can be found in [8]. Let A be a Young
function such that (5.14) holds. We claim that there is another Young function, B, such

that B̃(t) ≥ Ã(t) for all t > 0, lim supt→∞ B̃(t)/Ã(βt) =∞ for every β > 1, and∫ ∞
1

B̃(s)

sn′+1
ds <∞. (5.15)

For such B we would have LA(Ω) & LB(Ω) and W 1
0L

B(Ω) ↪→ L∞(Ω), as required. To prove
our claim, let us set ak = (k log2 k)−1, k ∈ N. For t ∈ [k! , (k + 1)!) , we define τ by the
identity

Ã(τ)

τ
= akt

n′−1, t ∈ [k! , (k + 1)!) . (5.16)

We note that τ is uniquely defined, since the function Ã(t)/t strictly increases from 0 to ∞
as t goes from 0 to ∞. We claim that for every β > 1

lim sup
t→∞

Ã(τ)

τ

t

Ã(βt)
=∞. (5.17)

Indeed, assume the contrary. Then, for some β > 1 and K > 0,

K−1akt
n′ ≤ Ã(βt), t ∈ [k! , (k + 1)!) .

But, ∫ ∞
1

Ã(s)

sn′+1
ds =

∞∑
k=1

∫ β(k+1)!

βk!

Ã(s)

sn′+1
ds = β−n

∞∑
k=1

∫ (k+1)!

k!

Ã(βy)

yn′+1
dy

≥ 1

Kβn′

∞∑
k=1

ak log(k + 1) =∞,

which contradicts (5.14). This proves (5.17). Now, let βj ↗ ∞ be a fixed sequence. Then,
by (5.17), there exits a sequence tj ↗ ∞ such that tj ≥ j!, tj+1 > τj (where τj correspond
to tj in the sence of (5.16)), and

lim
j→∞

Ã(τj)

τj

tj

Ã(βjtj)
=∞. (5.18)

We define,

B̃(t) =

{
Ã(tj) +

Ã(τj)−Ã(tj)

τj−tj (t− tj) t ∈ (tj, τj) ,

Ã(t) otherwise.

Then, B̃ is a Young function and B̃(t) ≥ Ã(t) for t ∈ (0 ,∞) . It follows from (5.18) that,

for every j ∈ N, τj > 2tj, and therefore also Ã(τj) > 2Ã(tj). Hence, using (5.18), we get

B̃(2tj)

Ã(βjtj)
=
Ã(tj) +

Ã(τj)−Ã(tj)

τj−tj tj

Ã(βjtj)
≥ 1

2

Ã(τj)tj

τjÃ(βjtj)
↗∞.
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It remains to show (5.15). We have∫ ∞
1

B̃(s)

sn′+1
ds ≤

∫ ∞
1

Ã(s)

sn′+1
ds+

∞∑
j=1

Ã(τj)− Ã(tj)

τj − tj

∫ τj

tj

s− tj
sn′+1

ds.

Further, using (5.16), tj ≥ j!, and the monotonicity of {aj} , we obtain

∞∑
j=1

Ã(τj)− Ã(tj)

τj − tj

∫ τj

tj

s− tj
sn′+1

ds ≤ C
∞∑
j=1

Ã(tj)

τj
t1−n

′

j ≤ C
∞∑
j=1

aj <∞.

Therefore, we get (5.15) on recalling (5.14). The proof is complete.





Chapter 6

Mixed norms

In this chapter, we focus on the following question: what can we say about the optimal range
space with mixed norm in

Ẇ 1L1(Rn) ↪→ L1
x̂n(Rn−1)

[
L∞xn(R)

]
?

The innovative part of this chapter are Proposition 6.3 and Proposition 6.5. These results
allow to conclude the partial optimality of L1

x̂n
(Rn−1)

[
L∞xn(R)

]
in the above mentioned em-

bedding.
Before discussing our results, we will mention our motivation. But, we first need to

introduce spaces with mixed norm. We denote by

Vk = L1
x̂k

(Rn−1)
[
L∞xk(R)

]
, 1 ≤ k ≤ n,

the spaces with mixed norm

‖f‖Vk = ‖Ψk‖L1(Rn−1) , where Ψ (x̂k) = ess supxk∈R |f(x)| .

We recall that we use the notation x̂k for the vector in Rn−1 obtained from a given x ∈ Rn

by removing its kth coordenate, that is

x̂k = (x1 , . . . , , xk−1 , xk+1 , . . . , xn) ∈ Rn−1.

Now, we present a brief history about our point of departure. In Chapter 3, we have
proved that if 1 ≤ p < n, then

W 1Lp(Rn) ↪→ Lp
∗
(Rn), p∗ =

np

n− p
. (6.1)

The first proof of (6.1) [26] did not apply to the case p = 1, but later Gagliardo [12] and
Nirenberg [22] found a method of proof which worked in the exceptional case. Gagliardo’s
idea was to observe that

W 1L1(Rn) ↪→ Vk, 1 ≤ k ≤ n, (6.2)

and to deduce from this that f ∈ Ln′(Rn).
Now, let us prove (6.2).

81
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Lemma 6.1. Let n ≥ 2. Then,

W 1L1(Rn) ↪→ Vk, 1 ≤ k ≤ n. (6.3)

Remark 6.2. Note that

‖f‖L∞(R) ≤
1

2

∥∥∥∥ dfdx
∥∥∥∥
L1(R)

, f ∈ D(R).

Indeed, let f ∈ D(R). From

f(x) =

∫ x

−∞

df

dx
(y)dy = −

∫ ∞
x

df

dx
(y)dy,

one deduces |f(x)| ≤
∫ x
−∞

∣∣ df
dx

(y)
∣∣ dy and |f(x)| ≤

∫∞
x

∣∣ df
dx

(y)
∣∣ dy, and adding gives

2 |f(x)| ≤
∫
R

∣∣∣∣ dfdx(y)

∣∣∣∣ dy.
Hence,

‖f‖L∞(R) ≤
1

2

∥∥∥∥ dfdx
∥∥∥∥
L1(R)

.

Proof. (Lemma 6.1) Fix 1 ≤ k ≤ n. Let f ∈ D(Rn). Then, by Remark 6.2, we have

sup
xk

|f(x)| ≤ 1

2

∫
R
|Dkf(x)| dxk.

Hence,

‖f‖Vk =

∫
Rn−1

sup
xk

|f(x)| dxx̂k ≤
∫
Rn
|Dkf(x)| dx = ‖Dkf‖L1(Rn) ≤ ‖f‖W 1L1(Rn) .

Therefore, the proof is complete.

Lemma 6.2 motivates us to formulate the following problem. Let X(Rn−1) and Y (R) be
r.i. spaces. We want to find the optimal range space with mixed norm in the the Sobolev
embedding

ẆL1(Rn) ↪→ Xx̂n(Rn−1) [Yxn(R)] .

We begin to solve this problem. First, we take X(Rn) = L1(Rn) and we prove that

Ẇ 1L1(Rn) ↪→ L1
x̂n(Rn−1) [L∞(R)] ,

has the optimal range space with mixed norm; that is, we prove the following proposition.
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Proposition 6.3. Let n ≥ 2. Let Y (R) be an r.i. space. Assume that

Ẇ 1L1(Rn) ↪→ L1
x̂n(Rn−1) [Yxn(R)] . (6.4)

Then, L∞(R) ↪→ Y (R).

Proof. Let us prove that 1 ∈ Y (R). Let k ∈ N, k ≥ 1. Let ϕ ∈ D(R) be non-negative
function with support in the ball centered at 0 with radius 1, and

∫
R ϕ(x)dx = 1. Let

θ ∈ D(R) be a function defined as follows

θ(x) =

∫
R

1

4
ϕ
(y

4

)
χB(0,3/4)(x− y)dy.

Note that θ(x) = 1 for all x ∈ B(0, 1/2), θ(x) = 0 for all x /∈ B(0, 1) and 0 ≤ θ(x) ≤ 1 for
all x ∈ B(0, 1). Let φ ∈ D(Rn−1) be non-negative function with support in the ball centered
at 0 with radius 1, and

∫
Rn−1 φ(x)dx = 1. Define

hk(xn) = θ
(x
k

)
and gk(x̂n) = φ

(
x̂n
k

)
.

We have

‖hk‖L1(R) ≤ k and ‖h′k‖L1(R) ≤ A.

Moreover

‖gk‖L1(Rn−1) = kn−1 and
n−1∑
i=1

‖Diφk‖L1(Rn−1) ≤ A(n− 1)kn−2.

Now, consider fk(x) = hk(xn)gk (x̂n), x ∈ Rn. Let us prove that fk ∈ Ẇ 1L1(Rn). Indeed,

‖fk‖Ẇ 1L1(Rn) = ‖h′k‖L1(R) ‖gk‖L1(Rn−1) + ‖hk‖L1(R)

n∑
i=1

‖Digk‖L1(Rn−1)

≤ Akn−1 + (n− 1)kn−1 = nAkn−1.

Then, by (6.4), we obtain

‖hk‖Y (R) ‖gk‖L1(Rn−1) ≤ nAkn−1,

and so ‖hk‖Y (R) ≤ n. Since hk converges almost everywhere to 1, by Fatou’s Lemma we get

‖1‖Y (R) ≤ lim inf
k→∞

‖hk‖Y (R) <∞.

Therefore, the proof is complete.
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Remark 6.4. Note that, if we replace Ẇ 1L1(Rn) in (6.4) by W 1L1(Rn), Proposition 6.3
does not hold. Indeed, take Y (R) = L1(R) then

‖f‖L1(Rn) ≤ ‖Df‖L1(Rn) + ‖f‖L1(Rn) ,

but L∞ 6⊂ L1.

Second, we take L∞(R) = Y (R) and we prove that

Ẇ 1L1(Rn) ↪→ L1
x̂n(Rn−1)

[
L∞xn(R)

]
,

has the optimal range space with mixed norm; that is, we prove the following proposition.

Proposition 6.5. Let n ≥ 2. Let X(Rn−1) be an r.i. space. Assume that

Ẇ 1L1(Rn) ↪→ Xx̂n(Rn−1)
[
L∞xn(R)

]
. (6.5)

Then, L1(Rn−1) ↪→ X(Rn−1).

Proof. Let k ∈ N, k ≥ 1. Let ϕ ∈ D(Rn−1) be non-negative function with support in the ball
centered at 0 with radius 1, and

∫
Rn−1 ϕ(x)dx = 1. Let θ ∈ D(Rn−1) be the function defined

as follows

θ(x) =

∫
Rn−1

1

4n−1
ϕ
(y

4

)
χB(0,3/4)(x− y)dy.

Note that θ(x) = 1 for all x ∈ B(0, 1/2), θ(x) = 0 for all x /∈ B(0, 1) and 0 ≤ θ(x) ≤ 1
for all x ∈ B(0, 1). Now, let ψ ∈ D(R) be non-negative function such that suppψ ⊂ B(0, 1)
and consider

η(x) =

∫
R

1

4
ϕ
(y

4

)
χB(0,3/4)(x− y)dy.

Define

gk(xn) = η(k xn), and uk (x̂n) = h (x̂n) θ

(
x̂n
k

)
,

where h ∈ D(Rn−1). We have

‖gk‖L1(R) ≤
1

k
, ‖g′k‖L1(R) ≤ A and ‖gk‖L∞(R) = 1.

Moreover,

‖uk‖L1(Rn−1) ≤ ‖h‖L1(Rn−1) ‖θ(·/k)‖L∞
x̂n

(Rn−1) = ‖h‖L1(Rn−1) ,
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and

n∑
j=1

‖Djuk‖L1(Rn−1) ≤
n∑
j=1

(
‖Djh‖L1(Rn−1) ‖θ(·/k)‖L1(Rn−1) + ‖h‖L1(Rn−1) ‖Djθ(·/k)‖L1(Rn−1)

)
≤

n∑
j=1

(
‖Djh‖L1(Rn−1) +

A

kn−1
‖h‖L1(Rn−1)

)
.

We define fk(x) = uk (xx̂n) gk(xn), x ∈ Rn. Let us prove that fk ∈ Ẇ 1L1(Rn). In fact,

‖fk‖Ẇ 1L1(Rn) = ‖uk‖L1(Rn−1) ‖g
′
k‖L1(R) +

n∑
j=1

‖Djuk‖L1(Rn−1) ‖gk‖L1(R)

≤ A ‖h‖L1(Rn−1) +
n∑
j=1

(
A

kn−1
‖Djh‖L1(Rn−1) + ‖h‖L1(Rn−1)

)
.

Then, by (6.5)

‖uk‖X(Rn−1) ‖gk‖L∞(R) ≤ A ‖h‖L1(Rn−1) +
A

k

n∑
j=1

(
A

kn−1
‖Djh‖L1(Rn−1) + ‖h‖L1(Rn−1)

)
.

Since uk converges almost everywhere to h, by Fatou’s Lemma

‖h‖X(Rn−1) ≤ lim inf
k→∞

‖uk‖X(Rn−1) ≤ A ‖h‖L1(Rn−1) .

Hence,

‖h‖X(Rn−1) ≤ A ‖h‖L1(Rn−1) , h ∈ D(Rn−1).

Finally, by standard approximation argument, we extend the result to all h ∈ L1(Rn−1).
Hence, the proof is complete.

Proposition 6.3 and Proposition 6.5 allow us to conclude that L1
x̂n

(Rn−1)
[
L∞xn(R)

]
is the

partial optimal range space. Now, our aim for a future research is to prove that it is the
optimal range space with mixed norm. In other words, we would like to prove that

ẆL1(Rn) ↪→ L1
x̂n(Rn−1)

[
L∞xn(R)

]
↪→ Xx̂n(Rn−1) [Yxn(R)] ,

for any rearrangement invariant Banach space with mixed norm such that

ẆL1(Rn) ↪→ Xx̂n(Rn−1) [Yxn(R)] .
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