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For N,D,H € N consider the Laurent polynomials

-D —D
f1 I:.CUl—H, f2 = T2 Xy —H, f3 = T3 Ty —H,

. —D +1 +1
and the associated equation system

fi=0, ... [ fn=0
The solution set Z C (C*)™ has only one point, namely

(H, HHD7 H1+D+D2’ L H1+D+-~+DN—1) c (@*)N

For N =5, D=3, H:=2

7 = {(2; 16 8,192 1,009,511,627,776:

2,658,455,991,569,831,745,807,614,120,560,689,152)} C (C*)°



Heights of points of TV

For m=(my,...,my) €Z" the height
h(m) = logmax{0,mq, ..., my}

is a measure for the complexity of writing down &.

In the example
deg(Z)=1 ,  h(Z)=1+D+---+ D" log(H)
For N:=5, D:=3, H:=2wehave h(Z)=_83.8"7.

Set TV := (Q*)" for the algebraic torus of dimension N. The

previous defn is compatible with the group law : for &k € N we
set

k] TN — TN (... ty) — (), th)
for the multiplication by k over T : then

h([k]m) =k h(m)

How does this extends to O-dimensional varieties ?



Llet X C TV be a 0-dimensional Q-variety. Consider the
(primitive) Chow form

ChX:yH(UO+U1£1+---+UN§N> e ZUs, ..., Uy]
Eez

which is well-defined up to 4. Set

Pnaive(X ) := h(Chyx) = log max { }Coeffs of Chx‘}

This is linear up to a bounded function : there exists ¢ > 0 st

Proaive([E] X) = ck + O(1) : k>0
then the height of X is defined as
1
h(X) = kl}lﬁrgo z Ponaive([K] X)

This is the normalized (or Neron-Tate) height of points of T
introduced by [Weil 51]; this approach is due to [Neron65] for
points in Abelian varieties

It is linear :

h([k] X) = kh(X)
For £ € (Q*)Y
h(§) = logmax{q,mq,...,my}

1
where £ = — (ml, ...,my) is an irredundant expression for &
q

In general

|W(X) —h(Chx)| < log(N+1)#X



Intersection theory on PV

Let
Fi,....Fy EC[SBQ,...,ZCN]

be homogeneous polynomials, then (Bézout theorem, 1764)
N
#Z(Fy,.. Fy)o <[] des(F)
i—=1

For an equidimensional variety X C PV  the degree is

deg(X) = #(X N Z(0y,.. ., 1,))

for generic linear forms ¢y, ..., ¢, and n = dim(X).

For dim(X') = 0 the degree equals its cardinality
deg(X) = #X
For a hypersurface Z(f) defined by a squarefree polynomial

deg (Z(f)) = deg(f)

This notion can be extended to arbitrary varieties. For Z c PV
we set

deg(2) = Y deg(Z)

where Z; C PV is the jth equidimensional component of Z.
Then

deg(X NY) < deg(X) deg(Y)

4



Intersection theory on toric varieties

Let
Fi,...,Fy ¢ Z[ajlﬂ,...,xﬁ]

be Laurent polynomials, and let Zy C (C*)" be the set of isola-
ted zeroes of the equation system

Fr=0, ... JFE,=0
Then (Bernstein-Kushnirenko thm 1975)

#2Zy < Zf(f) < MV(Qi,...,Qn)

§E€Z

where /(&) is the intersection multiplicity of Fy,..., Fiy at &;

Qi = NP(f;) = Conv(Supp(F})) € RY
is the Newton polytope of F}: and Q := NP(fy,..., fxy) C RY

The mized volume MV (Q1, ..., Qx) € N can be defined as

S =0 Vol (Y Q)

Jc{12,...N} jeJ

For the unmixed case Q1 = ..., Qn = @

MV(Q1, ..., Qn) = N!Volg (Q)



In the example

-D _
fi=x1—H, fo=x02y"—H, ..., fn::xNlezl—H

Let ey,...,exy bethe standard basis of RY, then

Q1 = Conv(ey,0), @2 = Conv(es — Dey,0),
.., @Q,=Conv(ey —Den_1,0) CRY
Then
MV(Q1,...,Qn) =1

and so

#7 < 1 < DV

For N . =2, D =3



Heights of subvarieties of PV

Let's compactify the torus through the standard inclusion

iv TV = PY (. ty) = (Lot ty)

The multiplication [k] extends to the k-power map

k] : PV — PV ; ¥)

, (mo:ian) e (xg e 2y

Let X C PV be an equidimensional Q-variety of dimension n
and let
Chx EZ[U(),...,Un]

be its (primitive) Chow form, where n := dim(X). This is a ho-

mogeneous polynomial in each group of variables  U; = {Uj, . ..

of partial degree

degy (Chy) = deg(X)

Set

Prnaive(X ) == h(Chx) = log max { }Coeffs of Chx‘}

for the naive height of X (proposed by [Weil 50], reappears in
the '80  [Nesterenko 83], [Philippon 86])

; Uln}



Then there exists ¢ > 0 st for k > 0

hnaive([k] X)
deg([k] X)

The normalized (or Neron-Tate) height of X is defined as

=ck+O(1)

hX) = deg(X) klf;lo% };:;gve(([[kk]] j(( >>

eR,
[Zhang 95], [David-Philippon 98]
Then

h(kX)
deg (K] X)  deg (X)

This can be compared with the naive height as

|W(X) = h(Chyx)| < 2(n+1)log(N +1)

Vanishing

hMX)=0 iff X = Uf\il X; where each X; = w; H
is the translated of an algebraic group H by a torsion point w

The ™ =" implication is equivalent to the Bogomolov conjecture,
solved by [Zhang95]




Examples

e dim(X)=0

This height was first introduced by A. Weil (1951) as
X) =) h(E)

ceX
with
1
h(€> = [K : @] U;;@ U:I;CU 1Og nmax {‘U(f())’w S ‘O-(fN)’U}
where

K is a number field such that £ € (K*)V;
[K : Q) is the extension degree of K ;

Mg = {oo} U {p; p prime} is the canonical set of absolute
values of Q;

| - |00 is the ordinary absolute value;
| - |, is the p-adic absolute value defined by

)

], = po);

C, is the completion of the algebraic closure of Q, ;

o runs over all inclusions of K into C,.



Examples (cont.)

e dim(X)>0

There is no general algorithm for computing h(X'). Moreover we

don't know which is its arithmetic nature in the general case (is
it a period a la Kontsevich-Zagier ?)

For X = Z(f) the height equals the Mahler measure of f

B =mif) = [ loelf] e day

the integral being w.r. to the unitary Haar measure over the
compact torus

For plenty of f € Z[x™!, y*!] this is related to special values of
Dirichlet L functions and of L functions of elliptic curves

E.g. [Smyth8]]

3v/3
m(l+z+y) = EL(X—&?)
. 1 1 1
with L(X_3,2):1_§+E_§+...

This is a very active area of research : work of D. Boyd, C. De-
ninger, F. Rodriguez Villegas, V. Maillot, . ..
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More examples : monomials varieties

Joint work with P. Philippon

Let A= {(ap, ), ..., (an,an)} CZ"x Q" st
(a1 — ap, ..., ay —ag), = Z"
Let
oA TP =PV s (ags™ e ay s™Y)

and set

X4 =puTr) cPV

for the associated monomial variety When a; = 1 for all 7 this
IS a projective toric variety

The dimension and degree are
dim(X4) =n : deg(X 4) = n! Volge(Q)

where () := Conv(ay,...,ay) C R"

E.g. Let S C P! be the surface associated to the monomial map
(s,t) = (1:s:t:s°t:st?)

its degree is

deg(.S) = 2! Volgn(Q) = 5
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Thm. (Philippon-S. 03)
Let v € Mg and set

Qy = COHV((CL(), log |avlw), - - -, (an, log |aN|U)) c R
for the v-adic polytope of A, and set
E,: Q) —R

for the parameterization of its upper convex envelope w.r. to
Q) := Conv(ag, ...,ay) C R"; then set

E = ZE

Then
Xy = (n—l—l)!/E dxy---dry
Q

E.g. Let A:={(0,1),(1,5),(2,7),(3,1)} CZ x Q*; then
X 4 C P3is (the closure of) the image of the map

s+ (1:55:7s%: 8
Set

Qs = Conv((0,0),(1,log(5)), (2,10g(7)), (3,0)) C R

then

M(X 4) = 2! Volga+1(Qs) = 2 (log(5) + log(7))
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Cor. B
hXa) € (log@)),
= either h(X4) =0 or h(X4) ¢ Q (by Baker's theorem)

For A symmetric that is when

=1 Xa =Xy
then n 1)
h(XA) = e 5 : Z VOanH(QU)
veMg

Idea of the proof. Set H,...(X 4; D) for the Hilbert function
of X 4 then

Moo (X 4 D) = # (D On Z“) — Volgn(Q) D" + O(D"™})
VO]RH(Q)

which implies that deg(X 4) = '
n!

. For the height : set

1% = 1(X4) N Z[xo, ..., xx]D

which is a lattice of I§ = I4 @ R. We can compute the
arithmetic Hilbert function of X 4, which is defined as

Huar( X3 D) := Vol (I/T5)
By the “theorem of arithmetic amplitude” of [Gillet-Soulé 93] and

[Randriam 01] we can read the height from the asymptotics of
this function

h(X
Harith<X.,4; D) = ﬁ Dn-i-l + O(Dn—l—l)
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The “arithmetic”’” Bézout theorem

Let X C PV beequidimensionaland [ =" f, 2% € Z|[xy,...,zN
a homogeneous polynomial ; then

h(XNZ(f) < hX)deg(f)+deg(X) ha(f)
where  hi(f) :=log (>, |fal) s the height associated with

the ¢'-norm [Philippon 86]

For homogeneous polynomials Fi, ..., Fx € Zlxg,...,xy] of
degree D, this implies that

W(Z(Fy,...,Ey)) < D¥US h(F)

Thm. ([Bost-Gillet-Soulé 94], [Philippon 95])
Let X, Y C P¥ be (any) varieties; then

h(XNY) < h(X) deg(Y)+deg(X) h(Y)+(N+1) log(N+1)
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The “arithmetic” Bernstein-Kushnirenko theorem

Thm. ([S. 02] based on work of [Maillot 97])
Let
F,... Fy € Zxtt, ... 23]

be Laurent polynomials, and let Z, C T be the set of isolated
points of the equation system

Fr=0, ..., Fy=0
Let Qo CRY be an arbitrary convex polytope; then

N

h(eg(Z) < ) MV(Qo.-.., Qi1, Qit1s- .- Qn) ha(F))

1=1

The inclusion iy : TV < PV corresponds to the standard poly-
tope S := Conv(0, ey, ..., en) Hence in the example this gives

N
h(ps(Z)) < Z MV(S, Q1, ..., Qi-1, Qit1, - - -, QN) ha(fi)
i—1

= (1+D+---+D" Y log(H +1)
while in fact

WZ)=(1+D+---+D"") log(H)
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On the other hand, set
Qo = Conv((), e, eo—Dej,es—Dey,....ey—D eN_l) c RV

then  MV(Qo, Q1,...,Qi—1,Qit1,...,Qn) = 1 for all i

and so the previous thm gives

N
h(eg(Z)) < ) MV(Qu Q1. ., Qi1 Qisr, - Qn) ha(f)
i-1

= (N+1) log(H + 1)

In fact
©0o,(Zy)=(1:H:---: H)

which shows that  hg,(Zy) = log(H)

Some applications

e This gives an a priori estimate for the size of the output

= certificates and precises the application of modular methods
in polynomial equation solving (as e.g. in the Magma package
Kronecker [Lecerf 99])

e Sometimes this allows to compress the output (by an appro-

priate choice of Q)

e Estimates for the height of the polynomials in Hilbert's Nullstellensatz
[Berenstein-Yger96]|, [Krick-Pardo-S.01]
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