MARTIN SOMBRA Talk at FoCM 2005, Santander

On the size of the solutions of sparse polynomial systems

Joint work with Patrice Philippon (Paris)

1. Root counting over the torus (C*)"

Let
f=0t-D)+t-1)2z—t2? g={t-1)+2(t-1)s-2t2*> €C[t, ]

Solve f =g =0:
1

g—f=(t-N-(t-1)r—=i-l=0orz=-—

If t — 1 =0 then f = 22 # 0. Otherwise

f (t, L) (1) (-1 <L)2 (1) 22 (= 1))

t—1 t—1 t—1
hence Card(f =g =0)=3
By the Bernstein-Kushnirenko thm
Card(f = g =0) < MV(P,Q) = Vol(P + Q) — Vol(P) — Vol(Q)

where P := Conv((i,7) : oy j # 0),Q = Conv((¢,5) : fi; #0) C
R? are the Newton polytopes of f and g resp.; generically we have =
instead of <,

In this case MV(P, Q) =5

P=Q




Take any f, g € C[t*!, 2™!] and write them as

f=) at)a? . g=3 i)

JEZ jeZ

with a;(t), 3;(t) € C[t*Y], assume f, g primitive

Set
Qo= Conv(j: o; #0) , Q1:=Conv(j: 53 #0) CR
and for v € P! consider the v-adic Newton polytopes
Qoo = Conv((j, —ord,(a;)) : aj #0) CR?
Q. = Conv((j,—ord,(3;)): B; #0) C R?

with ord, (o) the order of vanishing of a; at v (note that —ord o.1)(c;) =
deg(a;)) and ¥; : Q; — R parametrization of the upper envelope of

Qiv (1=0,1).
Let Z(f,g) == {& € (C*)?: f(&) = g(€) = 0} C (C*)? denote the

solution set and Z; the geometrically isolated points of Z

Thm 1. Suppose ¥y = 91 (and in particular Qg = @)1), then

Card(Z(f, g)y) < 2! Z/ Vo(x) dx

Multiplying «v;(t) and 3(t) by A,
Aj, N

]7]

i A; € C* resp., we have = for generic



Back to the example
f={t=1)+t=-1) 2—tz*, g¢g={t-1)4+2(t-1)*2-2t2* <€Clt,q]

Thm 1 gives the estimate

1
3 = Card(Z <22/ —2(3—1—=)=3
vePl Qo 2

v=(0:1)=infty '
v=(1:1)=1

Q0=Q_1

v=(1:0)=0 v \ne 0,1,infty

Note that the BK thm corresponds to taking the 0-th and oco-th con-
tributions (and that all of the others terms are < 0)




2.Mixed integrals

Llet p: R — R, o : S — R concave functions over convex sets
R,SCR
Set

pBo : R+S — R | r— max{p(y)+o(z) : yE€ R, 2z €S, y+z =z}
concave function over the Minkowski sum R + S

The mixed integral is

MI(p, o) ::/ pHodr —/,odx —/Jdaj
R+5S R S

Very close to the notion of mixed volume of convex sets. Basic prop-
erties:

e symmetric and linear in p and o w.r. H

e if p =0 (and a fortiori R = S) then MI(p, o) = 2! / pdx
R

e monotonicity: if p; < py and 07 < 09 then MlI(p1,01) <
Nﬂ(p2702)

e decomposes following the geometry of R and S:

ZprulM\/ (QY)) +ZwR ) MI(o|gu)

ueR"? u==1

where @, Q, C R* are the convez hull of the graphs of p and
O resp.

wq,(u, 1) == maxxeq,((u, 1), x) support function

W(Qéu’”) C R projection to R of the face of @), in the (u,1)-
direction



Example

rho (-2.1) (0,1)

| | __141.

Ml(p,0) = (pr(—Q, 1) MV(Sy) + pr(l, 1) MV(S3))
+(wpo 31(—1) MI(a|10y) + wi,3(1) MI(a|3y))
= (14+2)+(0+3)=6

Thm 1 ("mixed” version). Write f = > . a;({) g =
> iez Bi(t) @ with ai(t), B;(t) € C[t*!], and assume f, g primitive
Set Q;, Qi v, Vi, as before, then

Card(Z(f, g)o) < Z MI(1 4, P20)

vePl

Multiplying c;(t) and 3(t) by A;, A, € C* resp., we have = for generic
Aj, N

For all v # 0, 0o we have ¥;,, < 0 and so
Ml(ﬁo,va 191,11) S 0
For comparison: the BK thm gives the bound

Card(Z(f, 9)0) < MV(Qo.00, @1,00) = MI(Y0.50, V1,00) +MI(F00, V1 0)




3. General problem

Let A integral domain equipped with a height (complexity measure)
h: A\ {0} — R and field of fractions K. Typical examples

A=17 (h(m)=log|m|) , A=C[i] (h(f)=deg(f))

Let fi,...,f, € Alz7", ..., 25!] which is the height of

——X

Z(fl,...,fn)o C (K )n 7

We consider A = C[t]: fi,..., [, system depending on one parame-
ter ¢



4. Height of varieties over C(t)

Let Y C PY(C(t)) be a C(t)-variety and Y C P!(C) x PN(C)

T
P'(C)
model for Y, that is ) is the Zariski closure of
Ueer {((1: 1), (1)) 1 € C
Then
deg(Y) = deg(r'(n)) for n € P! generic

h(Y) = degpn())
e h(Y) =0 iff Y is constant w.r. P!

For £(t) = (&(t) @ -+ : En(t)) € PY(C(t)) a C(t)-point written in

primitive homogeneous coordinates (£(¢) € Clt] and coprime)

h(€) = max deg(&;(t))

0<j<N

More generally, for Y C PY(C(t)) a 0-dim C(t)-variety, consider

Chy(U) =6(t) - [ [(Uoéo + -+ Unéy) € CH[U]
Eey

its primitive Chow form (or U-resultant), then

deg(Y') = degy(Chy) ,  h(Y) = deg,(Chy)

P"Zﬁ
( y

=D

deg(Y’) = number of points for a generic specialization of ¢
h(Y') = complexity of the description of the curve )



Consider a monomial map of the torus into projective space

Papar s (Clt) )" — PV(C(2))

X = (T1,..., @) — (qgo(t) X0 - n, () X0MN0)
and set
Ao = (agp, ..., a0N,) € (Z")NO+1 , o ap = (o, ..., a0 N,) € ((C(zt)x)]‘fo+1
then pose

height function for C(t)-varieties of ((C(t)x)”

The standard inclusion x — (1 : x) corresponds to Ay = (0, (1,0, ...,0),
(0,1,...,0),...,(0,0,...,1)) € (Z")""! et ay = 1 € (C[t]*)"

Fori:=1,...,n let also

A, = (CLZ"(), N aLNi) € (Zn)Ni—H , Q= (Ozi’o, N @i,Ni) c (C(t)x)Ni+1
anj\cj fori =0,...,nset f; = Zj.\f:io a; j(t)x%i and Q; == Conv(A;) C

R

For each v € P! and 0 < ¢ < n consider the v-adic polytope
Qiy = Conv((am, —ordy(a; ;) : 0 < j < NZ-) c R

and take ¥; ,, : QQ; — R the parametrization of its upper envelope

Thm 1 (general form).
hagoo Z(fro- - fao) O Mgy, Un)

veP!

Multiplying each «; ;(t) by A; ; € C*, we have = for generic ), ;

If fo,..., f, are primitive then Thm 1 is equivalent to

C&l"d(Z(fQ, SN fn)o) S Z Ml(ﬁ(),v; S aﬁn,v)

vePl



5.Some words about the proof

of the case
f=Xt=D+N (=124t 2® |, g= M (t—=1)+N, (t—1)* z+ Ayt 27
Consider the map
(C)Y =P xP? |, (t,x)— (L:t),(t—1:(t—1)7*z:tz?))
and denote X C P! x P? the Zariski closure of its image. Then
Card(Z(f, g)o) < degpa(X)

with = for generic A;, )\;. The generic fiber of X over P! is a variety
alt) - X C P*(C(t))

translate by a point o := (t—1, (t—1)% : t) of a “constant” toric variety
X C PY(C), Zariski closure of the image of the map z — (1 : z : 2?).
We show that

ha-X) =) ex(—ord,(a))

veP!

where ex(7) € Z denotes the Chow weight of X with respect to
T € 7Z? [Mumford 1977]
Chow weights of toric varieties can be explicited, see e.g. [Donaldson
2002], [Philippon-S. 2004]: let @, := Conv((0, 7o), (1,71),(2,73)) C
R? and 9, : Q = [0,2] — R parametrization of the upper envelope
of @), w.r. to (), then

ex(7) = 2! /[02] V. (x)dr

Interesting problems:

e find a Bernstein's type proof, allowing a homothopy continuation
algorithm exploiting the geometry of ¥J; ,

e generalisation to any number of parameter variables



6. Z instead of C|t]

Let f1,..., f. € Z[z7T', ..., 2], which is the complexity of the 0-
dimensional variety

— X

Z(fl,...,fn)o C (@ >n7

For X C P¥(Q) a 0-dim Q-variety we consider h(X) € R its Weil
hetght

Basic properties:

o &= (& -+ &v) € PY a Q-point in primitive homogeneous
coordinates (§; € Z, ged(&, ..., &n) = 1) then

h(€) = max logg|

0<j<N

e Chy(U)=9- H(Ug Eo+ -+ Un&y) € Z[U] primitive Chow
(e X
form of X, then

h(X) — max (log |Coeffs of Chx|)| < log(N + 1) Card(X)

e h(X) >0, and h(X) = 0 iff X is torsion



For:=0,...,n let
.AZ’ = (CLM), ce e a@Ni) c (Zn)Nﬁ_l , Q= (Ozz’jo, cee CYZ',NZ.) — (QX)NH_1
The vectors Ay and « define a monomial map

PAy,o0 - (@X)n — PN(@) , Xt (()5070 x30.0 - ... - Q0. Xao,No)

and a height function h 4, o, := h 0 Y4, for O-dim Q-varieties of the
torus

Also set f; = Zj-v:io i x% and Q; := Conv(A;) C RY

Thm 2. Let Ay € (Z")M* and ay € ZMTL, then

hagoo Z(f1, - fu)o) < ) MWy, .., 0r )

UEM@

where 9, , : (; — R is some concave function defined

Mg ={] |} U{]-|p : pprime} is the canonical set of absolute
values of Q, where | - |, is the ordinary absolute value and |- |, is the
p-adic absolute value defined by

al, =p @%@ | foraeQ”

Should be think of as Spec(Z) compactified with a point oo, analogous
to P}(C) = Spec(C[t]) U (0 : 1)

The integrals cannot be easily calculated for n > 2 though, anyway
the estimate is not exact in the general case. .. Estimating the ¥;,'s
we re-obtain [S. 2002]

n

N;
hag.oo(Z(frs -y fa)o) < (M\/(Qo, Qi Qi Q) Y \%0
=0

1=0



7. Construction of ¥;,

For v = p a prime the construction is the same as before: for eqch
0 <17 < n consider the v-adic polytope

Qi = Conv((am, —log |avijlp:7=0,..., Ni) C R
then 9J;, : (; — R parametrization of its upper envelope

For v = o0, the functions are no longer piecewise affine, but C*°.
Forget the index i: let

N
TN = {t: <t077tN)tj ZO,thzl} CRN+1
7=0

with the “entropy” map

N
e:Tyv—R |, t— _Zti log(t;)
j=0
Let |
X, = { _ — (Jag| X, ..., lay| xV) : x € (R>0)”} c Ty
ijo || x%

a “positive” toric variety and
Ty —Q , t—agty+---+anty
moment map, analytic isomorphism between X, and ()°; then

Voo =0 p1 !

. e




