On the size of the solutions of sparse polynomial systems

Joint work with Patrice Philippon (Paris)

1. Root counting over the torus $(\mathbb{C}^{\times})^n$

Let

$$f = (t-1) + (t-1)^2 x - t x^2, \quad g = (t-1) + 2(t-1)^2 x - 2t x^2 \in \mathbb{C}[t, x]$$

Solve f = g = 0:

$$g - f = (t - 1) - (t - 1)^2 x \Longrightarrow t - 1 = 0 \text{ or } x = \frac{1}{t - 1}$$

If t-1=0 then $f=x^2\neq 0$. Otherwise

$$f\left(t, \frac{1}{t-1}\right) = (t-1) + (t-1)^2 \frac{1}{t-1} - t\left(\frac{1}{t-1}\right)^2 = (t-1)^{-2} \left(2\left(t-1\right)^3 + t\right)$$

hence Card(f = g = 0) = 3

By the Bernstein-Kushnirenko thm

$$\operatorname{Card}(f = q = 0) < \operatorname{MV}(P, Q) = \operatorname{Vol}(P + Q) - \operatorname{Vol}(P) - \operatorname{Vol}(Q)$$

where $P := \operatorname{Conv}((i,j) : \alpha_{i,j} \neq 0), Q := \operatorname{Conv}((i,j) : \beta_{i,j} \neq 0) \subset \mathbb{R}^2$ are the $Newton\ polytopes$ of f and g resp.; generically we have = instead of \leq .

In this case MV(P,Q) = 5

Take any $f,g\in\mathbb{C}[t^{\pm 1},x^{\pm 1}]$ and write them as

$$f = \sum_{j \in \mathbb{Z}} \alpha_j(t) x^j$$
 , $g = \sum_{j \in \mathbb{Z}} \beta_j(t) x^j$

with $\alpha_i(t), \beta_i(t) \in \mathbb{C}[t^{\pm 1}]$, assume f, g primitive

Set

$$Q_0 := \operatorname{Conv}(j : \alpha_j \neq 0)$$
 , $Q_1 := \operatorname{Conv}(j : \beta_j \neq 0)$ $\subset \mathbb{R}$

and for $v \in \mathbb{P}^1$ consider the v-adic Newton polytopes

$$Q_{0,v} := \operatorname{Conv}((j, -\operatorname{ord}_v(\alpha_j)) : \alpha_j \neq 0) \subset \mathbb{R}^2$$

$$Q_{,v} := \operatorname{Conv}((j, -\operatorname{ord}_v(\beta_j)) : \beta_j \neq 0) \subset \mathbb{R}^2$$

with $\operatorname{ord}_v(\alpha_j)$ the order of $\operatorname{vanishing}$ of α_j at v (note that $-\operatorname{ord}_{(0:1)}(\alpha_j) = \operatorname{deg}(\alpha_j)$) and $\vartheta_i: Q_i \to \mathbb{R}$ parametrization of the upper envelope of $Q_{i,v}$ (i=0,1).

Let $Z(f,g):=\{\xi\in(\mathbb{C}^\times)^2: f(\xi)=g(\xi)=0\}\subset(\mathbb{C}^\times)^2$ denote the $solution\ set\ and\ Z_0$ the geometrically isolated points of Z

 ${f Thm}$ 1. Suppose $artheta_0=artheta_1$ (and in particular $Q_0=Q_1$), then

$$\operatorname{Card}(Z(f,g)_0) \le 2! \sum_{v \in \mathbb{P}^1} \int_{Q_0} \vartheta_0(x) \, dx$$

Multiplying $\alpha_j(t)$ and $\beta(t)$ by $\lambda_j,\lambda_j'\in\mathbb{C}^{\times}$ resp., we have = for generic λ_j,λ_j'

Back to the example

$$f = (t-1) + (t-1)^2 x - t x^2, \quad g = (t-1) + 2(t-1)^2 x - 2t x^2 \quad \in \mathbb{C}[t,x]$$

Thm 1 gives the estimate

$$3 = \operatorname{Card}(Z(f, g)_0) \le 2 \sum_{v \in \mathbb{P}^1} \int_{Q_0} \vartheta_0(x) \, dx = 2 \left(3 - 1 - \frac{1}{2} \right) = 3$$

Note that the BK thm corresponds to taking the 0-th and ∞ -th contributions (and that all of the others terms are ≤ 0)

2. Mixed integrals

Let $\rho:R\to\mathbb{R},\quad \sigma:S\to\mathbb{R}$ concave functions over convex sets $R,S\subset\mathbb{R}$ Set

$$\rho \boxplus \sigma : R + S \to \mathbb{R} \ , \qquad x \mapsto \max \{ \rho(y) + \sigma(z) : y \in R, \ z \in S, \ y + z = x \}$$

concave function over the Minkowski sum R+S

The mixed integral is

$$\mathrm{MI}(
ho,\sigma) := \int_{R+S}
ho oxplus \sigma \, dx \ - \int_{R}
ho \, dx \ - \int_{S} \sigma \, dx$$

Very close to the notion of mixed volume of convex sets. Basic properties:

- ullet symmetric and linear in ho and σ w.r. \boxplus
- if $\rho = \sigma$ (and a fortiori R = S) then $MI(\rho, \sigma) = 2! \int_{R} \rho \, dx$
- monotonicity: if $\rho_1 \le \rho_2$ and $\sigma_1 \le \sigma_2$ then $\mathrm{MI}(\rho_1,\sigma_1) \le \mathrm{MI}(\rho_2,\sigma_2)$
- decomposes following the geometry of R and S:

$$MI(\rho, \sigma) = \sum_{u \in \mathbb{R}^n} w_{Q_{\rho}}(u, 1) MV(\pi(Q_{\sigma}^u)) + \sum_{u = \pm 1} w_R(u) MI(\sigma|_{Q^u})$$

where $Q_{\rho}, Q_{\sigma} \subset \mathbb{R}^2$ are the $convex\ hull\ of\ the\ graphs$ of ρ and σ resp.

$$w_{Q_{\rho}}(u,1):=\max_{\mathbf{x}\in Q_{\rho}}\langle (u,1),\mathbf{x}\rangle$$
 support function $\pi(Q_{\sigma}^{(u,1)})\subset\mathbb{R}$ projection to \mathbb{R} of the face of Q_{σ} in the $(u,1)$ -direction

Example

$$\begin{split} \mathrm{MI}(\rho,\sigma) &= (w_{Q_{\rho}}(-2,1)\,\mathrm{MV}(S_1) + w_{Q_{\rho}}(1,1)\,\mathrm{MV}(S_2)) \\ &+ (w_{[0,3]}(-1)\,\mathrm{MI}(\sigma|_{\{0\}}) + w_{[0,3]}(1)\,\mathrm{MI}(\sigma|_{\{3\}})) \\ &= (1+2) + (0+3) = 6 \end{split}$$

Thm 1 ("mixed" version). Write $f = \sum_{j \in \mathbb{Z}} \alpha_j(t) \, x^j, g = \sum_{j \in \mathbb{Z}} \beta_j(t) \, x^j$ with $\alpha_i(t), \beta_j(t) \in \mathbb{C}[t^{\pm 1}]$, and assume f, g primitive Set $Q_i, Q_{i,v}, \vartheta_{i,v}$ as before, then

$$\operatorname{Card}(Z(f,g)_0) \le \sum_{v \in \mathbb{P}^1} \operatorname{MI}(\vartheta_{1,v}, \vartheta_{2,v})$$

Multiplying $\alpha_j(t)$ and $\beta(t)$ by $\lambda_j,\lambda_j'\in\mathbb{C}^{\times}$ resp., we have = for generic λ_j,λ_j'

For all $v \neq 0, \infty$ we have $\vartheta_{i,v} \leq 0$ and so

$$MI(\vartheta_{0,v},\vartheta_{1,v}) \leq 0$$

For comparison: the BK thm gives the bound

$$\operatorname{Card}(Z(f,g)_0) \leq \operatorname{MV}(Q_{0,\infty},Q_{1,\infty}) = \operatorname{MI}(\vartheta_{0,\infty},\vartheta_{1,\infty}) + \operatorname{MI}(\vartheta_{0,0},\vartheta_{1,0})$$

3. General problem

Let A integral domain equipped with a height (complexity measure) $h: A \setminus \{0\} \to \mathbb{R}$ and field of fractions K. Typical examples

$$A = \mathbb{Z}$$
 $(h(m) = \log |m|)$, $A = \mathbb{C}[t]$ $(h(f) = \deg(f))$

Let $f_1,\ldots,f_n\in A[x_1^{\pm 1},\ldots,x_n^{\pm 1}]$ which is the height of

$$Z(f_1,\ldots,f_n)_0\subset (\overline{K}^\times)^n$$
 ?

We consider $A=\mathbb{C}[t]$: f_1,\ldots,f_n system depending on one parameter t

4. Height of varieties over $\mathbb{C}(t)$

Let
$$Y\subset \mathbb{P}^N(\overline{\mathbb{C}(t)})$$
 be a $\mathbb{C}(t)$ -variety and $\mathcal{Y}\subset \mathbb{P}^1(\mathbb{C})\times \mathbb{P}^N(\mathbb{C})$
$$\pi\downarrow \mathbb{P}^1(\mathbb{C})$$

model for Y, that is \mathcal{Y} is the Zariski closure of

$$\cup_{\xi \in Y} \{ ((1:t), \xi(t)) : t \in \mathbb{C} \}$$

Then

$$\deg(Y) = \deg(\pi^{-1}(\eta))$$
 for $\eta \in \mathbb{P}^1$ generic $h(Y) := \deg_{\mathbb{P}^N}(\mathcal{Y})$

 \bullet h(Y) = 0 iff Y is constant w.r. \mathbb{P}^1

For $\xi(t)=(\xi_0(t):\cdots:\xi_N(t))\in\mathbb{P}^N(\overline{\mathbb{C}(t)})$ a $\mathbb{C}(t)$ -point written in primitive homogeneous coordinates $(\xi(t)\in\mathbb{C}[t]$ and coprime)

$$h(\xi) = \max_{0 \le j \le N} \deg(\xi_j(t))$$

More generally, for $Y\subset \mathbb{P}^N(\overline{\mathbb{C}(t)})$ a 0-dim $\mathbb{C}(t)$ -variety, consider

$$\operatorname{Ch}_{Y}(\mathbf{U}) = \delta(t) \cdot \prod_{\xi \in Y} (U_{0} \, \xi_{0} + \dots + U_{N} \, \xi_{N}) \in \mathbb{C}[t][\mathbf{U}]$$

its primitive $Chow\ form\ (or\ \mathbf{U}\text{-}resultant)$, then

$$deg(Y) = deg_{\mathbf{U}}(Ch_Y)$$
 , $h(Y) = deg_t(Ch_Y)$

 $\deg(Y)=$ number of points for a generic specialization of t h(Y)= complexity of the description of the curve $\mathcal Y$

Consider a monomial map of the torus into projective space

$$\varphi_{\mathcal{A}_0,\alpha_0}: (\overline{\mathbb{C}(t)}^{\times})^n \to \mathbb{P}^N(\overline{\mathbb{C}(t)})$$

$$\mathbf{x} = (x_1, \dots, x_n) \mapsto (\alpha_{0,0}(t) \, \mathbf{x}^{a_{0,0}} : \dots : \alpha_{0,N_0}(t) \, \mathbf{x}^{a_{0,N_0}})$$

and set

$$\mathcal{A}_0 := (a_{0,0}, \dots, a_{0,N_0}) \in (\mathbb{Z}^n)^{N_0+1} \quad , \quad \alpha_0 := (\alpha_{0,0}, \dots, \alpha_{0,N_0}) \in (\mathbb{C}(t)^\times)^{N_0+1}$$
 then pose

$$h_{\mathcal{A}_0,\alpha_0} := h \circ \varphi_{\mathcal{A}_0,\alpha_0}$$

height function for $\mathbb{C}(t)$ -varieties of $(\overline{\mathbb{C}(t)}^{\times})^n$

The standard inclusion $\mathbf{x} \mapsto (1 : \mathbf{x})$ corresponds to $\mathcal{A}_0 = (\mathbf{0}, (1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)) \in (\mathbb{Z}^n)^{n+1}$ et $\alpha_0 = \mathbf{1} \in (\mathbb{C}[t]^{\times})^{n+1}$

For $i = 1, \ldots, n$ let also

$$\mathcal{A}_i = (a_{i,0}, \dots, a_{i,N_i}) \in (\mathbb{Z}^n)^{N_i+1} \quad , \quad \alpha_i := (\alpha_{i,0}, \dots, \alpha_{i,N_i}) \in (\mathbb{C}(t)^\times)^{N_i+1}$$
 and for $i = 0, \dots, n$ set $f_i = \sum_{j=0}^{N_i} \alpha_{i,j}(t) \, \mathbf{x}^{a_{ij}}$ and $Q_i := \operatorname{Conv}(\mathcal{A}_i) \subset \mathbb{R}^N$

For each $v \in \mathbb{P}^1$ and $0 \le i \le n$ consider the v-adic polytope

$$Q_{i,v} := \operatorname{Conv}\left((a_{i,j}, -\operatorname{ord}_v(\alpha_{i,j}) : 0 \le j \le N_i\right) \subset \mathbb{R}^{n+1}$$

and take $artheta_{i,v}:Q_i o\mathbb{R}$ the parametrization of its upper envelope

Thm 1 (general form).

$$h_{\mathcal{A}_0,\alpha_0}(Z(f_1,\ldots,f_n)_0) \le \sum_{v \in \mathbb{P}^1} \mathrm{MI}(\vartheta_{0,v},\ldots,\vartheta_{n,v})$$

Multiplying each $\alpha_{i,j}(t)$ by $\lambda_{i,j} \in \mathbb{C}^{\times}$, we have = for generic $\lambda_{i,j}$

If f_0, \ldots, f_n are primitive then Thm 1 is equivalent to

$$\operatorname{Card}(Z(f_0,\ldots,f_n)_0) \leq \sum_{v \in \mathbb{P}^1} \operatorname{MI}(\vartheta_{0,v},\ldots,\vartheta_{n,v})$$

5. Some words about the proof

of the case

$$f = \lambda_0 (t-1) + \lambda_1 (t-1)^2 x + \lambda_2 t x^2 \quad , \quad g = \lambda_0' (t-1) + \lambda_1' (t-1)^2 x + \lambda_2 t x^2$$

Consider the map

$$(\mathbb{C}^{\times})^2 \to \mathbb{P}^1 \times \mathbb{P}^2 \quad , \quad (t, x) \mapsto ((1:t), (t-1:(t-1)^2 x:t x^2))$$

and denote $\mathcal{X} \subset \mathbb{P}^1 imes \mathbb{P}^2$ the Zariski closure of its image. Then

$$\operatorname{Card}(Z(f,g)_0) \le \deg_{\mathbb{P}^2}(\mathcal{X})$$

with = for generic λ_j , λ'_j . The generic fiber of \mathcal{X} over \mathbb{P}^1 is a variety

$$\alpha(t)\cdot X\subset \mathbb{P}^2(\overline{\mathbb{C}(t)})$$

translate by a point $\alpha:=(t-1,(t-1)^2:t)$ of a "constant" toric variety $X\subset \mathbb{P}^N(\mathbb{C})$, Zariski closure of the image of the map $x\mapsto (1:x:x^2)$. We show that

$$h(\alpha \cdot X) = \sum_{v \in \mathbb{P}^1} e_X(-\operatorname{ord}_v(\alpha))$$

where $e_X(\tau) \in \mathbb{Z}$ denotes the $Chow\ weight$ of X with respect to $\tau \in \mathbb{Z}^3$ [Mumford 1977]

Chow weights of toric varieties can be explicited, see e.g. [Donaldson 2002], [Philippon-S. 2004]: let $Q_{\tau} := \operatorname{Conv}((0,\tau_0),(1,\tau_1),(2,\tau_3)) \subset \mathbb{R}^2$ and $\vartheta_{\tau}: Q = [0,2] \to \mathbb{R}$ parametrization of the upper envelope of Q_{τ} w.r. to Q, then

$$e_X(\tau) = 2! \int_{[0,2]} \vartheta_{\tau}(x) \, dx$$

Interesting problems:

- ullet find a Bernstein's type proof, allowing a homothopy continuation algorithm exploiting the geometry of $\vartheta_{i,v}$
- generalisation to any number of parameter variables

6. \mathbb{Z} instead of $\mathbb{C}[t]$

Let $f_1, \ldots, f_n \in \mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, which is the complexity of the 0-dimensional variety

$$Z(f_1,\ldots,f_n)_0\subset(\overline{\mathbb{Q}}^\times)^n$$
 ?

For $X\subset \mathbb{P}^N(\overline{\mathbb{Q}})$ a 0-dim \mathbb{Q} -variety we consider $h(X)\in \mathbb{R}$ its Weilheight

Basic properties:

• $\xi = (\xi_0 : \cdots : \xi_N) \in \mathbb{P}^N$ a \mathbb{Q} -point in primitive homogeneous coordinates $(\xi_j \in \mathbb{Z}, \gcd(\xi_0, \ldots, \xi_N) = 1)$ then

$$h(\xi) = \max_{0 \le j \le N} \log |\xi_j|$$

• $\operatorname{Ch}_X(\mathbf{U}) = \delta \cdot \prod_{\xi \in X} (U_0 \, \xi_0 + \dots + U_N \, \xi_N) \in \mathbb{Z}[\mathbf{U}]$ primitive Chow form of X, then

$$\left|h(X) - \max\left(\log\left|\mathsf{Coeffs\ of\ }\mathrm{Ch}_X\right|\right)\right| \leq \log(N+1)\operatorname{Card}(X)$$

• $h(X) \ge 0$, and h(X) = 0 iff X is torsion

For $i = 0, \ldots, n$ let

$$\mathcal{A}_i = (a_{i,0}, \dots, a_{i,N_i}) \in (\mathbb{Z}^n)^{N_i+1} \quad , \quad \alpha_i := (\alpha_{i,0}, \dots, \alpha_{i,N_i}) \in (\mathbb{Q}^\times)^{N_i+1}$$

The vectors A_0 and α_0 define a monomial map

$$\varphi_{\mathcal{A}_0,\alpha_0}: (\overline{\mathbb{Q}}^{\times})^n \to \mathbb{P}^N(\overline{\mathbb{Q}}) \quad , \quad \mathbf{x} \mapsto (\alpha_{0,0} \, \mathbf{x}^{a_{0,0}} : \cdots : \alpha_{0,N_0} \, \mathbf{x}^{a_{0,N_0}})$$

and a height function $h_{\mathcal{A}_0,\alpha_0}:=h\circ \varphi_{\mathcal{A}_0,\alpha_0}$ for 0-dim $\mathbb Q$ -varieties of the torus

Also set
$$f_i = \sum_{j=0}^{N_i} \alpha_{i,j} \mathbf{x}^{a_{ij}}$$
 and $Q_i := \operatorname{Conv}(\mathcal{A}_i) \subset \mathbb{R}^N$

Thm 2. Let $\mathcal{A}_0 \in (\mathbb{Z}^n)^{N_0+1}$ and $\alpha_0 \in \mathbb{Z}^{N_0+1}$, then

$$h_{\mathcal{A}_0,\alpha_0}(Z(f_1,\ldots,f_n)_0) \leq \sum_{v \in M_{\mathbb{Q}}} \mathrm{MI}(\vartheta_{0,v},\ldots,\vartheta_{n,v})$$

where $\vartheta_{i,v}:Q_i o\mathbb{R}$ is some concave function defined

 $M_{\mathbb{Q}}=\{|\cdot|_{\infty}\}\cup\{|\cdot|_p: p \text{ prime}\}$ is the $canonical\ set$ of absolute values of \mathbb{Q} , where $|\cdot|_{\infty}$ is the ordinary absolute value and $|\cdot|_p$ is the p-adic absolute value defined by

$$|\alpha|_p := p^{-\operatorname{ord}_p(\alpha)}$$
 , for $\alpha \in \mathbb{Q}^{\times}$

Should be think of as $\operatorname{Spec}(\mathbb{Z})$ compactified with a point ∞ , analogous to $\mathbb{P}^1(\mathbb{C}) = \operatorname{Spec}(\mathbb{C}[t]) \cup (0:1)$

The integrals cannot be easily calculated for $n \geq 2$ though, anyway the estimate is not exact in the general case. . . Estimating the $\vartheta_{i,v}$'s we re-obtain [S. 2002]

$$h_{\mathcal{A}_0,\alpha_0}(Z(f_1,\ldots,f_n)_0) \le \sum_{i=0}^n \left(\text{MV}(Q_0,\ldots,Q_{i-1},Q_{i+1},\ldots,Q_n) \sum_{j=0}^{N_i} |\alpha_{i,j}| \right)$$

7. Construction of $\vartheta_{i,v}$

For v=p a prime the construction is the same as before: for eqch $0\leq i\leq n$ consider the v-adic polytope

$$Q_{i,v} := \operatorname{Conv}\Big((a_{i,j}, -\log |\alpha_{i,j}|_p : j = 0, \dots, N_i\Big) \subset \mathbb{R}^{n+1}$$

then $\vartheta_{i,v}:Q_i o \mathbb{R}$ parametrization of its upper envelope

For $v=\infty$, the functions are no longer piecewise affine, but \mathcal{C}^{∞} . Forget the index i: let

$$T_N := \{ \mathbf{t} = (t_0, \dots, t_N) : t_j \ge 0, \sum_{j=0}^N t_j = 1 \} \subset \mathbb{R}^{N+1}$$

with the "entropy" map

$$\varepsilon: T_N \to \mathbb{R}$$
 , $\mathbf{t} \mapsto -\sum_{j=0}^N t_i \log(t_i)$

Let
$$X_{+} := \left\{ \frac{1}{\sum_{j=0}^{N} |\alpha_{j}| \mathbf{x}^{a_{j}}} \left(|\alpha_{0}| \mathbf{x}^{a_{0}}, \dots, |\alpha_{N}| \mathbf{x}^{a_{N}} \right) : \mathbf{x} \in (\mathbb{R}_{>0})^{n} \right\} \quad \subset T_{N}$$

a "positive" toric variety and

$$\mu: T_N \to Q$$
 , $\mathbf{t} \mapsto a_0 t_0 + \dots + a_N t_N$

 $moment\ map$, analytic isomorphism between X_+ and Q° ; then

$$\vartheta_{\infty} := \varepsilon \circ \mu^{-1}$$

$$\downarrow^{\text{T_N}}$$

$$\downarrow^{\text{m}}$$

$$\downarrow^{\text{m}/\{-1\}}$$

$$\downarrow^{\text{o}}$$