The mean height of the solution set of a system of polynomial equations

Martín Sombra

ICREA and Universitat de Barcelona, Spain

Symbolic and numerical algorithms in algebraic geometry

13 December 2021

Based on joint work with Roberto Gualdi (Regensburg)

Systems of polynomial equations

For $n \ge 0$ and $0 \le r \le n$ let

$$f_i \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}], \quad i = r + 1, \dots, n$$

Consider its zero set in $(\overline{K}^{\times})^n$

$$\mathbf{Z} \coloneqq (f_{r+1} = \cdots = f_n = 0)$$

How large is Z?

- K any: degree
- K Diophantine: height

An example

Let

$$f = 1 + x + y$$

and for $\boldsymbol{\omega} = (\omega_1, \omega_2) \in (\overline{\mathbb{Q}}^{\times})^2$ consider the *twist*

$$\omega^* f(x, y) := f(\omega_1 x, \omega_2 y) = 1 + \omega_1 x + \omega_2 y$$

If $\omega \in \mu_{\infty}^2$ then for all $v \in M_{\mathbb{Q}}$ the coefficients of $\omega^* f$ have the same v-adic absolute value as those of f:

$$|\omega_1|_{\mathsf{v}} = |\omega_2|_{\mathsf{v}} = 1$$

An example (cont.)

However, the Weil height of the corresponding zero set

$$(f = \omega^* f = 0) = (1 + x + y = 1 + \omega_1 x + \omega_2 y = 0)$$

depends on ω

For
$$\boldsymbol{\xi} \in (\overline{\mathbb{Q}}^{\times})^2$$

$$\mathsf{h}_{\mathit{Weil}}(\pmb{\xi}) = \frac{1}{\mathsf{Gal}(\pmb{\xi})} \sum_{\nu \in M_{\mathbb{Q}}} \sum_{\pmb{\eta} \in \mathsf{Gal}(\pmb{\xi})} \log \max(1, |\eta_1|_{\nu}, |\eta_2|_{\nu})$$

pprox the bit complexity of $oldsymbol{\xi}$

• if
$$\omega = (\zeta_3, \zeta_3^2)$$
 then $Z = (\zeta_3, \zeta_3^2)$ and $h = 0$

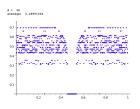
• if
$$\omega' = (-1, i)$$
 then $Z' = (-i, i - 1)$ and $h' = \frac{\log(2)}{2}$

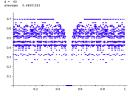
Mean heights

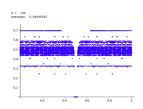
What about the mean of these heights?

$$\lim_{d \to +\infty} \frac{1}{\mu_d^2} \sum_{\omega \in \mu_d^2} \mathsf{h}(f = \omega^* f = 0) = \frac{2\zeta(3)}{3\zeta(2)} = 0.487175\dots$$

Indeed most of them concentrate around this value







Degree of cycles of toric varieties

- $f_i \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}], i = r + 1, \dots, n$ $\leadsto \mathsf{NP}(f_i) \subset \mathbb{R}^n \text{ Newton polytope and } \mathbf{Z}(\mathbf{f}) \text{ r-cycle of } \mathbb{G}^n_{\mathsf{m}}$
- X toric variety with torus \mathbb{G}_{m}^{n}
- D_i nef toric divisor on X, $i=1,\ldots,r$ $\rightsquigarrow \Delta_i \subset \mathbb{R}^n$ lattice polytope

Theorem 1 (Bernstein 1975)

If f is generic then

$$\mathsf{deg}_{D_1,\ldots,D_r}(Z(\boldsymbol{f})) = \mathsf{MV}(\Delta_1,\ldots,\Delta_r,\mathsf{NP}(f_{r+1}),\ldots,\mathsf{NP}(f_n))$$

MV the mixed volume

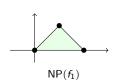
 \mathbb{G}_{m}^{n} the *n*-dimensional algebraic torus

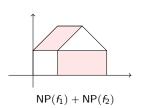
Example

For n = 2 and r = 0 set

$$f_1 = 1 + x_1 + x_1^2 + x_1x_2$$
 and $f_2 = 1 + x_1 + x_2 + x_1x_2$

Hence





and so

$$\mathsf{deg}(\textit{Z}(\textit{f}_{1},\textit{f}_{2})) = \mathsf{MV}(\Delta_{1},\Delta_{2}) = 3$$

"And the reader is likely to discover a new and interesting question by just asking for the arithmetic analogue of her favorite statement in classical algebraic geometry."

Christophe Soulé

Metrics on toric varieties and roof functions

Set $K = \mathbb{Q}$ and let X be a toric variety with torus $\mathbb{G}_{\mathsf{m}}^n$, and let

$$\overline{D} = (D, (\|\cdot\|_{v})_{v \in M_{\mathbb{Q}}})$$

a semipositive toric metrized divisor on X

D nef toric divisor on X

 $\|\cdot\|_{V}$ semipositive and rotation invariant metric on the analytic line bundle $O(D)_{V}^{\mathrm{an}}$

Recall that $D \rightsquigarrow \Delta$

Now we can also construct an adelic family of continuous and concave functions on the polytope

$$\overline{D} \leadsto (\vartheta_v \colon \Delta \to \mathbb{R})_{v \in M_{\mathbb{Q}}}$$

 ϑ_{v} is the v-adic roof function of \overline{D}

Burgos, Philippon and S. 2014

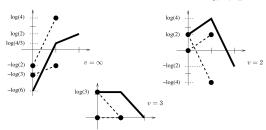
Height of toric varieties

Theorem 2 (Burgos, Philippon and S. 2014)

Let \overline{D}_i SP toric metrized divisor on X, i = 0, ..., n. Then

$$\mathsf{h}_{\overline{D}_0,\ldots,\overline{D}_n}(X) = \sum_{\mathbf{v} \in M_{\mathbb{O}}} \mathsf{MI}(\vartheta_{0,\mathbf{v}},\ldots,\vartheta_{n,\mathbf{v}})$$

MI the mixed integral $h_{\overline{D}_0,...,\overline{D}_n}(X)$ the height of X



and so

$$\mathsf{h}_{\overline{D}_0,\overline{D}_1}(\mathbb{P}^1) = (2\,\log 2 - \log 3) + 2\,\log 2 + \log 3 = 4\,\log 2$$

Ronkin functions

Let

$$\mathbf{f} = \sum_{\mathbf{m} \in \mathbb{Z}^n} \alpha_{\mathbf{m}} \, \mathbf{x}_1^{m_1} \cdots \mathbf{x}_n^{m_n} \in \mathbb{Q}[\mathbf{x}_1^{\pm 1}, \dots, \mathbf{x}_n^{\pm 1}] \backslash \{0\}$$

For each v consider the v-adic Ronkin function $\rho_v : \mathbb{R}^n \to \mathbb{R}$ defined as

$$\begin{split} \rho_{v}(\boldsymbol{u}) &= \text{mean of } \log |f|_{v} \text{ on the fiber at } \boldsymbol{u} \\ &\quad \text{of the } v\text{-}adic \text{ tropicalization } map \; (\mathbb{C}_{v}^{\times})^{n} \to \mathbb{R}^{n} \\ &= \begin{cases} \int_{(S^{1})^{n}} \log |(e^{-\boldsymbol{u}})^{*}f| \; d\text{Haar} & \text{if } v = \infty \\ \\ \min_{\boldsymbol{m}} \langle \boldsymbol{m}, \boldsymbol{u} \rangle - \log |\alpha_{\boldsymbol{m}}|_{v} & \text{if } v \neq \infty \end{cases} \end{split}$$

Passare and Rullgard 2004, Gualdi 2017

Height of hypersurfaces

Then consider its *Legendre-Fenchel dual* $\rho_{\mathbf{v}}^{\vee}:\Delta\to\mathbb{R}$ defined as

$$\rho_{\nu}^{\vee}(\boldsymbol{t}) = \inf_{\boldsymbol{u} \in \mathbb{R}^n} \langle \boldsymbol{t}, \boldsymbol{u} \rangle - \rho_{\nu}(\boldsymbol{u})$$

The adelic family of continuous concave functions on the polytope

$$(\rho_v^{\vee} \colon \Delta \to \mathbb{R})_{v \in M_{\mathbb{Q}}}$$

is the arithmetic analogue of NP(f)

Theorem 3 (Gualdi 2017)

Let \overline{D}_i SP toric metrized divisor on X, i = 0, ..., n - 1. Then

$$\mathsf{h}_{\overline{D}_0,\dots,\overline{D}_{n-1}}(Z(f)) = \sum_{v \in M_{\mathbb{O}}} \mathsf{MI}(\vartheta_{0,v},\dots,\vartheta_{n-1,v},\rho_v^\vee)$$

Limit heights

Conjecture (Gualdi and S.)

- $f_i \in \mathbb{Q}[x_1^{\pm 1}, \dots, x_n^{\pm 1}] \setminus \{0\}, i = r + 1, \dots, n$
- \overline{D}_i SP toric metrized divisor on X, i = 0, ..., r
- $\omega_{\ell} \in (\mu_{\infty}^n)^{n-r}$, $\ell \geqslant 1$, a strict sequence

strict sequence = eventually escapes any proper algebraic subgroup

Then

$$\lim_{\ell \to +\infty} h_{\overline{D}_0, \dots, \overline{D}_r}(Z(\boldsymbol{\omega}_\ell^* \boldsymbol{f})) = \sum_{\boldsymbol{v} \in M_{\mathbb{Q}}} \mathsf{MI}(\vartheta_{0, \boldsymbol{v}}, \dots, \vartheta_{r, \boldsymbol{v}}, \rho_{r+1, \boldsymbol{v}}^{\vee}, \dots, \rho_{n, \boldsymbol{v}}^{\vee})$$

$$\boldsymbol{\omega}_{\ell}^{*}\boldsymbol{f} = (\omega_{\ell,r+1}^{*}f_{r+1}, \dots, \omega_{\ell,n}^{*}f_{n})$$

Limit heights (cont.)

The particular case

$$X = \mathbb{P}^n$$
, $\overline{D}_0 = \overline{H}_{\infty}^{can}$ and $r = 0$

H hyperplane at infinity of \mathbb{P}^n

would imply that

$$\lim_{\ell \to +\infty} \mathsf{h}_{\mathsf{Weil}}(Z(\boldsymbol{\omega}_{\ell}^* \boldsymbol{f})) = \sum_{\boldsymbol{v} \in M_{\mathbb{O}}} \mathsf{MI}(\mathbf{0}_{\Delta}, \rho_{1,\boldsymbol{v}}^{\vee}, \dots, \rho_{n,\boldsymbol{v}}^{\vee})$$

 0_{Δ} the zero function on the standard simplex of \mathbb{R}^n

Limit heights (cont.)

Theorem 4 (Gualdi and S.)

Conjecture 1 holds when n = 2, r = 0 and f_1 , f_2 are affine.

Proof (sketch):

From the definition of heights we construct an adelic family of functions

$$F_{\mathbf{v}} : (\mathbb{C}_{\mathbf{v}}^{\times})^2 \to \mathbb{R} \cup \{-\infty\}, \quad \mathbf{v} \in M_{\mathbb{Q}}$$

such that

$$\mathsf{h}_{\overline{D}_0}(Z(\mathit{f}_1, \boldsymbol{\omega}_{\ell}^*\mathit{f}_2)) = \mathsf{h}_{\overline{D}_0, \overline{D}_1}(Z(\mathit{f}_1)) + \sum_{v} \left(\frac{1}{\# \, \mathsf{Gal}(\boldsymbol{\omega}_{\ell})} \sum_{\boldsymbol{\eta} \in \mathsf{Gal}(\boldsymbol{\omega}_{\ell})} F_v(\boldsymbol{\eta}) \right)$$

with \overline{D}_1 the Ronkin metrized divisor of f_2 :

→ the first term coincides with the RHS (Theorem 2)

Logarithmic adelic equidistribution of torsion points

The second term tends to 0 for $\ell \to +\infty$:

$$\lim_{\ell \to +\infty} \sum_{\nu} \left(\frac{1}{\# \operatorname{Gal}(\omega_{\ell})} \sum_{\boldsymbol{\eta} \in \operatorname{Gal}(\omega_{\ell})} F_{\nu}(\boldsymbol{\eta}) \right) = \sum_{\nu} \int F_{\nu} \, d\nu_{\nu} = \mathbf{0}$$

Proven using

- v-adic distribution of torsion points
- lower bounds for linear forms in logarithms (Baker)
- lower bounds for p-adic linear forms in roots of unity (Tate-Voloch)

A mixed integral computation

Corollary

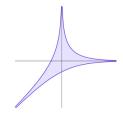
Let $\omega_{\ell} \in \mu_{\infty}^2$, $\ell \geqslant 1$, be a strict sequence. Then

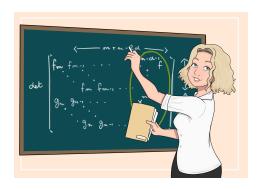
$$\lim_{\ell \to +\infty} \mathsf{h}_{\mathsf{Weil}} \big(Z(1+x+x,1+\omega_{\ell,1}\,x+\omega_{\ell,2}\,x) \big) = \mathsf{MI}(\mathsf{0}_\Delta,\rho_\infty^\vee,\rho_\infty^\vee) = \frac{2\,\zeta(3)}{3\,\zeta(2)}$$

 ho_{∞} the Archimedean Ronkin function of 1+x+y

Indeed, if $v \neq \infty$ then $MI(0_{\Delta}, \rho_{v}^{\vee}, \rho_{v}^{\vee}) = MI(0_{\Delta}, 0_{\Delta}, 0_{\Delta}) = 0$. Else

 \mathcal{A}_{1+x+y} the Archimedean amoeba of 1+x+y





Happy birthday Teresa!