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Systems of polynomial equations

Forn=0and 0 <r<nlet
feK[x1 LooooxFY, i=r+1,...,n

Consider its zero set in (K )"

Z=(fp1=--="f=0)

How |arge is Z7

o K any: degree
@ K Diophantine: height



An example

Let
f=1+x+y

and for w = (w1, ws) € (Q7)? consider the twist

w*f(x,y) = f(wix,way) = 1 + wix + woy

If w € p2, then for all v e Mg the coefficients of w*f have the
same v-adic absolute value as those of f:

|W1|v = |W2‘v =1



An example (cont.)

However, the Weil height of the corresponding zero set
(f=w'f=0)=(1+x+y=1+wix+wy =0)
depends on w

For £ € (Q7)2

Z Z log max(1, |n1lv, |n2]v)

hWe/l
Gal (5) veMg neGal(&)

~ the bit complexity of &

o if w=((3,(3) then Z = ((3,(3) and h =0

log(2)
2

o ifw = (-1,i) then Z/ = (—i,i—1) and K =



What about the mean of these heights?

2
lim Z h(f =0) = 263) _ g ag7175. .
d—+0w0 Md

Indeed most of them concentrate around this value




Degree of cycles of toric varieties

° ﬁeK[xlil,...,x;—Ll], i=r+1,...,n
~» NP(f;) € R" Newton polytope and Z(f) r-cycle of GJ,
G], the n-dimensional algebraic torus

e X toric variety with torus G,

@ D; nef toric divisoron X, i=1,...,r
~ A; < R" lattice polytope

If £ is generic then

degp, . p,(Z(f)) = MV(Ay,..., A, NP(fry1),...,NP(fn))

MV the mixed volume



For n=2and r =0 set
i=l+xi+x2+xx0 and Hh=1+x +x +xx

Hence

A

' .

NP(f1) NP(f) NP(f1) + NP(f)

and so
deg(Z(fi,f2)) = MV(A1,Ay) =3



"And the reader is likely to discover a new and interesting
question by just asking for the arithmetic analogue of her
favorite statement in classical algebraic geometry.”

— CHRISTOPHE SOULE



Metrics on toric varieties and roof functions

Set K = QQ and let X be a toric variety with torus Gy, and let

D= (D, (| |v)vemy)

a semipositive toric metrized divisor on X
D nef toric divisor on X
| - | semipositive and rotation invariant metric

on the analytic line bundle O(D)a"
Recall that D ~~ A

Now we can also construct an adelic family of continuous and
concave functions on the polytope

D~ (0y: A — R)yemy

9, is the v-adic roof function of D Burgos, Philippon and S. 2014



Height of toric varieties

Let D; SP toric metrized divisor on X, i = 0,...,n. Then

hbo,...,ﬁn(x) = Z MI(’&O’V, ct ﬁn,v)
VEM@

MI the mixed integral
50’__'_5”(X) the height of X

log@) -f--
log(2) -f--

/
log@/3) -f--
—log(2)
~log(3)

-log6) -{-

and so

hg, 5, (P!) = (2 log2 — log3) + 2 log2 + log 3 = 4 log 2



Ronkin functions

Let
=D amx™ - e QL X \0}

meZ"

For each v consider the v-adic Ronkin function p,: R" — R
defined as

pv(u) = mean of log|f|, on the fiber at u

of the v-adic tropicalization map (C)" — R"

J log [(e”")*f| dHaar if v =0
(shn

ming,(m, u) — log |am|,  ifv#©

Passare and Rullgard 2004, Gualdi 2017



Height of hypersurfaces

Then consider its Legendre-Fenchel dual p) : A — R defined as
py (t) = inf (t,u) — p,(u)
ueR"
The adelic family of continuous concave functions on the polytope
(p\\// : A - R)VEM@

is the arithmetic analogue of NP(f)

Let D; SP toric metrized divisor on X, i =0,...,n— 1. Then

hﬁo, o Z M 790\,,--' n— lvapv)
veMg




o fieQxith, ... xF\{0}, i=r+1,...,n
o D; SP toric metrized divisor on X, i =0,...,r
® wye (pl)" ", ¢ =1, a strict sequence

strict sequence = eventually escapes any proper algebraic subgroup

o “5,(2(“"; )) = Z MI(ﬂO,V""719r,v”0;/+1,v7"":0r\7/,v)
VEMQ

* * k
@, f= (Wg7,+1fr+17 cee 7wg,nfn)



Limit heights (cont.)

The particular case

J5Can

X=P" Dog=H, and r=0

H hyperplane at infinity of P”
would imply that

Jim haa(Z(@i ) = Y MIO,pYy - i)
oo VEMQ

0 the zero function on the standard simplex of R"



Limit heights (cont.)

Theorem 4

Conjecture 1 holds when n =2, r =0 and f1, f, are affine.

Proof (sketch):
From the definition of heights we construct an adelic family of

functions
F,: (CH? »Ru{-m}, veMy
such that
1
hg,(Z(fi,wih)) = hp, 5, (£(f1)) +2 (7%“;3'(&)() 2 Fy (77)>

neGal(wy)

with D; the Ronkin metrized divisor of fa:

~> the first term coincides with the RHS (Theorem 2)



Logarithmic adelic equidistribution of torsion points

The second term tends to 0 for ¢ — +o0:

eﬂToov<#G;|(w) D H(n))—ZJdeuv—o

neGal(wy) v

Proven using
o v-adic distribution of torsion points
@ lower bounds for linear forms in logarithms (Baker)

@ lower bounds for p-adic linear forms in roots of
unity (Tate-Voloch)



A mixed integral computation

Let wy e pu2, £ > 1, be a strict sequence. Then

1 _ Y vy 2((3)
E—IlToo hwei (Z(1+x+x, 14w 1 X+wp o X)) = MI(0a, ps, p) = 302

poo the Archimedean Ronkin function of 1 + x + y

Indeed, if v # oo then MI(0a, pY, pY) = MI(0a,04,04) = 0. Else

—2 4 2
MI(0a; P, P) = —5 min(0, uy, uo)duy duy = «®) ()

7 ) A, ™ 3¢(2)

A14x+y the Archimedean amoeba of 1 + x +y

7




Happy birthday Teresa!



