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Systems of polynomial equations

For n ě 0 and 0 ď r ď n let

fi P K rx
˘1
1 , . . . , x˘1

n s, i “ r ` 1, . . . , n

Consider its zero set in Gn
m

Z – pfr`1 “ ¨ ¨ ¨ “ fn “ 0q

How large is Z?

K any: degree

K Diophantine: height



An example

Let
f “ 1` x ` y

and for ω “ pω1, ω2q P pQ
ˆ
q2 consider the twist

ω˚f px , yq – f pω1x , ω2yq “ 1` ω1x ` ω2y

If ω P µ2
8 then for all v P MQ the coefficients of ω˚f have the

same v -adic absolute value as those of f



An example (cont.)

However, the Weil height of the corresponding zero set

pf “ ω˚f “ 0q “ p1` x ` y “ 1` ω1x ` ω2y “ 0q

depends on ω:

if ω “ pζ3, ζ
2
3 q then Z “ pζ3, ζ

2
3 q and h “ 0

if ω1 “ p´1, iq then Z 1 “ p´i, i ´ 1q and h1 “
logp2q

2



Mean heights

What about the mean of these heights?

lim
dÑ`8

1

µ2
d

ÿ

ωPµ2
d

hpf “ ω˚f “ 0q “
2 ζp3q

3 ζp2q
“ 0.487175 . . .

Indeed most of them concentrate around this value



Degree of cycles of toric varieties

fi P K rx
˘1
1 , . . . , x˘1

n s, i “ r ` 1, . . . , n
 NPpfi q Ă Rn Newton polytope and Z pf q r -cycle of Gn

m

X toric variety with torus Gn
m

Di nef toric divisor on X , i “ 1, . . . , r
 ∆i Ă Rn lattice polytope

Theorem 1 (Bernstein 1975)

If f is generic then

degD1,...,Dr
pZ pf qq “ MVp∆1, . . . ,∆r ,NPpfr`1q, . . . ,NPpfnqq

MV the mixed volume



“And the reader is likely to discover a new and interesting
question by just asking for the arithmetic analogue of her
favorite statement in classical algebraic geometry.”

— Christophe Soulé



Metrics on toric varieties and roof functions

Set K “ Q and let X be a toric variety with torus Gn
m, and let

D “ pD, p} ¨ }v qvPMQq

be a semipositive toric metrized divisor on X
D nef toric divisor on X

} ¨ }v semipositive and “rotation invariant” metric on OpDqanv

Recall that D  ∆

We can associate to D an adelic family of roof functions

D  pϑv qvPMQ

Each ϑv is a continuous and concave function on ∆

Burgos, Philippon and S. 2014



Height of toric varieties

Theorem 2 (Burgos, Philippon and S. 2014)

Let D i SP toric metrized divisor on X , i “ 0, . . . , n. Then

hD0,...,Dn
pX q “

ÿ

vPMQ

MIpϑ0,v , . . . , ϑn,v q

MI the mixed integral



Ronkin functions

Let
f “

ÿ

mPZn

αm xm1
1 ¨ ¨ ¨ xmn

n P Qrx˘1
1 , . . . , x˘1

n szt0u

For each v consider the v-adic Ronkin function ρv : Rn Ñ R
defined as

ρv puq “ mean of log |f |v on the fiber at u

of the v-adic valuation map pGn
mq

an
v Ñ Rn

Passare and Rullgard 2004, Gualdi 2017

If v “ 8 then ρv puq “

ż

pS1qn
log |pe´uq˚f | dHaar

If v ‰ 8 then ρv puq “ minmxm,uy ´ log |αm|v



Height of hypersurfaces

Then consider its Legendre-Fenchel dual ρ_v : ∆ Ñ R defined as

ρ_v ptq “ inf
uPRn

xt,uy ´ ρv puq

Theorem 3 (Gualdi 2017)

Let D i SP toric metrized divisor on X , i “ 0, . . . , n ´ 1. Then

hD0,...,Dn´1
pZ pf qq “

ÿ

vPMQ

MIpϑ0,v , . . . , ϑn´1,v , ρ
_
v q

The adelic family of continuous concave functions on ∆

pρ_v qvPMQ

is an arithmetic analogue of NPpf q



Limit heights

Conjecture (Gualdi and S.)

fi P Qrx˘1
1 , . . . , x˘1

n szt0u, i “ r ` 1, . . . , n

D i SP toric metrized divisor on X , i “ 0, . . . , r

ω` P pGn
mq

n´r
tors , ` ě 1, a strict sequence

Then

lim
`Ñ`8

hD0,...,Dr
pZ pω˚` f qq “

ÿ

vPMQ

MIpϑ0,v , . . . , ϑr ,v , ρ
_
r`1,v , . . . , ρ

_
n,v q

strict sequence = eventually escapes any proper algebraic subgroup

ω˚` f “ pω
˚
`,r`1fr`1, . . . , ω

˚
`,nfnq



Limit heights (cont.)

The particular case

X “ Pn, D0 “ H
can
8 and r “ 0

H hyperplane at infinity of Pn

would imply that

lim
`Ñ`8

hWeilpZ pω
˚
` f qq “

ÿ

vPMQ

MIp0∆, ρ
_
1,v , . . . , ρ

_
n,v q

0∆ the zero function on the standard simplex of Rn



Limit heights (cont.)

Theorem 4 (Gualdi and S.)

Conjecture 1 holds when n “ 2, r “ 0 and f1, f2 are affine.

Corollary

Let ω` P µ
2
8, ` ě 1, be a strict sequence. Then

lim
`Ñ`8

hWeilpZ p1`x`x , 1`ω`,1 x`ω`,2 xqq “ MIp0∆, ρ
_
8, ρ

_
8q “

2 ζp3q

3 ζp2q

ρ8 the Archimedean Ronkin function of 1` x ` y



A mixed integral computation

Proof of the corollary (sketch): if v ‰ 8 then ρ_v “ 0∆ and so

MIp0∆, ρ
_
v , ρ

_
v q “ MIp0∆, 0∆, 0∆q “ 0

Else

MIp0∆, ρ
_
8, ρ

_
8q “

´2

π2

ż

A1`x`y

minp0, u1, u2qdu1du2 “
4 ζp3q

π2
“

2 ζp3q

3 ζp2q

A1`x`y the Archimedean amoeba of 1` x ` y



Reduction to the hypersurface case

Proof of theorem 4 (sketch):

n “ 2 and r “ 0

f , g affine

D SP toric metrized divisor on P2

ω` P mu2
8, ` ě 1 strict sequence

Let E SP toric metrized divisor on P2. By the arithmetic Bézout

hDpZpf ,ω
˚
` gqq“hD,E pZpf qq`

ř

v
1

# Galv pω`q

ř

η„ω`

ş

Zpf qanv
log }sη˚g }E ,vdMAv

MAv the v-adic Monge-Ampère measure of D|Zpf qanv
sη˚g the global section of OpEq associated to η˚g

Choosing E as the Ronkin metrized divisor of g , the first term
coincides with the RHS in Theorem 4



Logarithmic adelic equidistribution of torsion points

For each v consider the function Fv : pCˆv q2 Ñ RY t´8u defined
as

Fv pxq “

ż

Zpf qanv

log |x˚g |v dMAv

Then the second term tends to 0 for `Ñ `8 if and only if

lim
`Ñ`8

ÿ

v

ż

Fv δGalv pω`q
“

ÿ

v

ż

Fvdνv

This is proven using

p-adic distribution of torsion points

lower bounds for linear forms in logarithms (Baker)

lower bounds for p-adic linear forms in roots of
unity (Tate-Voloch)



Thanks!


