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Systems of polynomial equations

Forn=0and 0 <r<nlet
ﬁeK[xlﬂ,...,x,J,—rl], i=r+1,...,n

Consider its zero set in G,

7= (fy1=--="f=0)

How large is z2

@ K any: degree
@ K Diophantine: height



An example

Let
f=14+x+y

2

and for w = (w1, ws) € (Q)? consider the twist

wf(x,y) = f(wix,way) = 1 + wix + way

If w e u2, then for all v € Mg the coefficients of w*f have the
same v-adic absolute value as those of f



An example (cont.)

However, the Weil height of the corresponding zero set
(Ff=w'f=0=(14+x+y=1+wix+wy=0)

depends on w:

o if w=((3.C2) then Z = (¢:.¢3) and h =0

log(2)
2

o ifw = (—1,i) then Z/ = (—i,i—1) and H' =



What about the mean of these heights?

2
lim Z h(f =0) = 263) _ g ag7175. .
d—+0w0 Md

Indeed most of them concentrate around this value




Degree of cycles of toric varieties

o fie K[xith,...,x¥, i=r+1,....n
~» NP(f;) € R" Newton polytope and Z(f) r-cycle of G,
e X toric variety with torus G/,
@ D; nef toric divisoron X, i=1,...,r
~ A; c R" lattice polytope

If f is generic then

deng,...,D,(Z(f)) = MV(A]-’ 0oo aArv NP(fH‘l)? ccog NP(fn))

MV the mixed volume



"And the reader is likely to discover a new and interesting
question by just asking for the arithmetic analogue of her
favorite statement in classical algebraic geometry.”

— CHRISTOPHE SOULE



Metrics on toric varieties and roof functions

Set K = Q and let X be a toric variety with torus G, and let

D= (D, (| |v)vemy)

be a semipositive toric metrized divisor on X
D nef toric divisor on X

- || semipositive and “rotation invariant” metric on O(D)32"
Recall that D ~~ A
We can associate to D an adelic family of roof functions
5 2 (ﬁv)veM@

Each 1, is a continuous and concave function on A

Burgos, Philippon and S. 2014



Height of toric varieties

Let D; SP toric metrized divisor on X, i = 0,...,n. Then

5,(X) = 2, MI(Wou, .., 0n)

ve MQ

h507"'7

MI the mixed integral
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Ronkin functions

Let
f= > amxi™ X e Qg ... x\{0}

meZ"

For each v consider the v-adic Ronkin function p,: R" — R
defined as

pv(u) = mean of log|f|, on the fiber at u

of the v-adic valuation map (G)5" — R"

Passare and Rullgard 2004, Gualdi 2017

o If v = o0 then p,(u) = J log [(e™")*f| dHaar
(s1)r
o If v # o then p,(u) = ming,{m, u) — log |am|,



Height of hypersurfaces

Then consider its Legendre-Fenchel dual p) : A — R defined as

pu(t) = inf (t.u) = p, ()

Let D; SP toric metrized divisor on X, i =0,...,n— 1. Then

hg,. 5. (Z(F) = > M@y, ..., 00 14, p))
VEMQ

The adelic family of continuous concave functions on A

(p\\// )VGMQ

is an arithmetic analogue of NP(f)



o fie Qxith, ..., xF\O0}, i=r+1,...,n
o D; SP toric metrized divisor on X, i =0,...,r

0 wy € (G)fore, £ =1, a strict sequence

tors:
Then
Jim hp, 5, (Z(wif)) = DT Mo, Drvs P15 P

ve MQ

strict sequence = eventually escapes any proper algebraic subgroup

*k % *
@, f= (wg,r+1ﬂ+1» S 7wg’,,fn)



Limit heights (cont.)

The particular case

J5Can

X=P" Dog=H, and r=0

H hyperplane at infinity of P”
would imply that

Jim haa(Z(@i ) = Y MIO,pYy - i)
oo VEMQ

0 the zero function on the standard simplex of R"



Limit heights (cont.)

Theorem 4
Conjecture 1 holds when n =2, r = 0 and f1, f, are affine.

Let wy € p2,, £ > 1, be a strict sequence. Then

_ 2de)

lim hwe (Z (1+x4x, 1+wen x+we2 x)) = M0, pg, pi0) = 32(2)

{—+00

poo the Archimedean Ronkin function of 1 + x + y



A mixed integral computation

Proof of the corollary (sketch): if v # o then py = 0a and so

Else

-2 , 4¢(3) _ 2¢(3)
MI(0a, P, P :J min(0, uy, up)durduy = = —=
Oa, s P) 2 -A1+x+y( 1, Up)du1 dup 2 3¢02)
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A1y x4y the Archimedean amoeba of 1 4+ x + y




Reduction to the hypersurface case

Proof of theorem 4 (sketch):
en=2andr=0
e f,g affine
o D SP toric metrized divisor on [P?

o wye muZ, £ =1 strict sequence

Let E SP toric metrized divisor on P2. By the arithmetic Bézout

h(Z(FwF 8))=hp 2(Z(N+E, Farirmsy Sy Sz0ry3n 108 Ineglz, AMAL

MA, the v-adic Monge-Ampére measure of 5|Z(f)zvm

s, the global section of O(E) associated to n*g

Choosing E as the Ronkin metrized divisor of g, the first term
coincides with the RHS in Theorem 4



Logarithmic adelic equidistribution of torsion points

For each v consider the function F,: (CX)? — R U {—o0} defined

as

F,(x) = JZ(f) log |x*g|, dMA,

Then the second term tends to 0 for £ — +o0 if and only if

lim ZJFV 5Galv(wg) = ZJdeVV

f—+00

This is proven using
@ p-adic distribution of torsion points
@ lower bounds for linear forms in logarithms (Baker)

@ lower bounds for p-adic linear forms in roots of
unity (Tate-Voloch)



Thanks!



