The mean height of the solution set of a system of polynomial equations

Martín Sombra

ICREA and Universitat de Barcelona, Spain
Number theory web seminar
16 September 2021

For $n \geqslant 0$ and $0 \leqslant r \leqslant n$ let

$$
f_{i} \in K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], \quad i=r+1, \ldots, n
$$

Consider its zero set in \mathbb{G}_{m}^{n}

$$
\begin{gathered}
Z:=\left(f_{r+1}=\cdots=f_{n}=0\right) \\
\text { How large is } Z ?
\end{gathered}
$$

- K any: degree
- K Diophantine: height

An example

Let

$$
f=1+x+y
$$

and for $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}\right) \in\left(\overline{\mathbb{Q}}^{\times}\right)^{2}$ consider the twist

$$
\omega^{*} f(x, y):=f\left(\omega_{1} x, \omega_{2} y\right)=1+\omega_{1} x+\omega_{2} y
$$

If $\boldsymbol{\omega} \in \mu_{\infty}^{2}$ then for all $v \in M_{\mathbb{Q}}$ the coefficients of $\boldsymbol{\omega}^{*} f$ have the same v-adic absolute value as those of f

An example (cont.)

However, the Weil height of the corresponding zero set

$$
\left(f=\omega^{*} f=0\right)=\left(1+x+y=1+\omega_{1} x+\omega_{2} y=0\right)
$$

depends on $\boldsymbol{\omega}$:

- if $\boldsymbol{\omega}=\left(\zeta_{3}, \zeta_{3}^{2}\right)$ then $Z=\left(\zeta_{3}, \zeta_{3}^{2}\right)$ and $h=0$
- if $\boldsymbol{\omega}^{\prime}=(-1, \mathrm{i})$ then $Z^{\prime}=(-\mathrm{i}, \mathrm{i}-1)$ and $h^{\prime}=\frac{\log (2)}{2}$

Mean heights

What about the mean of these heights?

$$
\lim _{d \rightarrow+\infty} \frac{1}{\mu_{d}^{2}} \sum_{\omega \in \mu_{d}^{2}} \mathrm{~h}\left(f=\omega^{*} f=0\right)=\frac{2 \zeta(3)}{3 \zeta(2)}=0.487175 \ldots
$$

Indeed most of them concentrate around this value

Degree of cycles of toric varieties

- $f_{i} \in K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], i=r+1, \ldots, n$
$\rightsquigarrow N P\left(f_{i}\right) \subset \mathbb{R}^{n}$ Newton polytope and $Z(\boldsymbol{f}) r$-cycle of $\mathbb{G}_{\mathrm{m}}^{n}$
- X toric variety with torus $\mathbb{G}_{\mathrm{m}}^{n}$
- D_{i} nef toric divisor on $X, i=1, \ldots, r$
$\rightsquigarrow \Delta_{i} \subset \mathbb{R}^{n}$ lattice polytope

Theorem 1 (Bernstein 1975)

If \boldsymbol{f} is generic then

$$
\operatorname{deg}_{D_{1}, \ldots, D_{r}}(Z(\boldsymbol{f}))=\operatorname{MV}\left(\Delta_{1}, \ldots, \Delta_{r}, \operatorname{NP}\left(f_{r+1}\right), \ldots, \operatorname{NP}\left(f_{n}\right)\right)
$$

MV the mixed volume
"And the reader is likely to discover a new and interesting question by just asking for the arithmetic analogue of her favorite statement in classical algebraic geometry."

Metrics on toric varieties and roof functions

Set $K=\mathbb{Q}$ and let X be a toric variety with torus $\mathbb{G}_{\mathrm{m}}^{n}$, and let

$$
\bar{D}=\left(D,\left(\|\cdot\|_{v}\right)_{v \in M_{\mathbb{Q}}}\right)
$$

be a semipositive toric metrized divisor on X
D nef toric divisor on X
$\|\cdot\|_{v}$ semipositive and "rotation invariant" metric on $O(D)_{v}^{\text {an }}$
Recall that $D \rightsquigarrow \Delta$
We can associate to \bar{D} an adelic family of roof functions

$$
\bar{D} \rightsquigarrow\left(\vartheta_{v}\right)_{v \in M_{\mathbb{Q}}}
$$

Each ϑ_{v} is a continuous and concave function on Δ

Theorem 2 (Burgos, Philippon and S. 2014)

Let \bar{D}_{i} SP toric metrized divisor on $X, i=0, \ldots, n$. Then

$$
\mathrm{h}_{\bar{D}_{0}, \ldots, \bar{D}_{n}}(X)=\sum_{v \in M_{\mathbb{Q}}} \operatorname{MI}\left(\vartheta_{0, v}, \ldots, \vartheta_{n, v}\right)
$$

MI the mixed integral

Let

$$
f=\sum_{\boldsymbol{m} \in \mathbb{Z}^{n}} \alpha_{\boldsymbol{m}} x_{1}^{m_{1}} \cdots x_{n}^{m_{n}} \in \mathbb{Q}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \backslash\{0\}
$$

For each v consider the v-adic Ronkin function $\rho_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
\begin{aligned}
\rho_{v}(\boldsymbol{u})= & \text { mean of } \log |f|_{v} \text { on the fiber at } \boldsymbol{u} \\
& \text { of the } v \text {-adic valuation map }\left(\mathbb{G}_{\mathrm{m}}^{n}\right)_{v}^{\text {an }} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

- If $v=\infty$ then $\rho_{v}(\boldsymbol{u})=\int_{\left(S^{1}\right)^{n}} \log \left|\left(e^{-\boldsymbol{u}}\right)^{*} f\right| d$ Haar
- If $v \neq \infty$ then $\rho_{v}(\boldsymbol{u})=\min _{\boldsymbol{m}}\langle\boldsymbol{m}, \boldsymbol{u}\rangle-\log \left|\alpha_{\boldsymbol{m}}\right|_{v}$

Then consider its Legendre-Fenchel dual $\rho_{v}^{\vee}: \Delta \rightarrow \mathbb{R}$ defined as

$$
\rho_{v}^{\vee}(\boldsymbol{t})=\inf _{\boldsymbol{u} \in \mathbb{R}^{n}}\langle\boldsymbol{t}, \boldsymbol{u}\rangle-\rho_{v}(\boldsymbol{u})
$$

Theorem 3 (Gualdi 2017)

Let $\bar{D}_{i} \mathrm{SP}$ toric metrized divisor on $X, i=0, \ldots, n-1$. Then

$$
\mathrm{h}_{\bar{D}_{0}, \ldots, \bar{D}_{n-1}}(Z(f))=\sum_{v \in M_{\mathbb{Q}}} \operatorname{MI}\left(\vartheta_{0, v}, \ldots, \vartheta_{n-1, v}, \rho_{v}^{\vee}\right)
$$

The adelic family of continuous concave functions on Δ

$$
\left(\rho_{v}^{\vee}\right)_{v \in M_{\mathbb{Q}}}
$$

is an arithmetic analogue of $\operatorname{NP}(f)$

Limit heights

Conjecture (Gualdi and S.)

- $f_{i} \in \mathbb{Q}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \backslash\{0\}, i=r+1, \ldots, n$
- \bar{D}_{i} SP toric metrized divisor on $X, i=0, \ldots, r$
- $\omega_{\ell} \in\left(\mathbb{G}_{\mathrm{m}}^{n}\right)_{\text {tors }}^{n-r}, \ell \geqslant 1$, a strict sequence

Then
$\lim _{\ell \rightarrow+\infty} \mathrm{h}_{\bar{D}_{0}, \ldots, \bar{D}_{r}}\left(Z\left(\boldsymbol{\omega}_{\ell}^{*} \boldsymbol{f}\right)\right)=\sum_{v \in M_{\mathbb{Q}}} \operatorname{MI}\left(\vartheta_{0, v}, \ldots, \vartheta_{r, v}, \rho_{r+1, v}^{\vee}, \ldots, \rho_{n, v}^{\vee}\right)$
strict sequence $=$ eventually escapes any proper algebraic subgroup

$$
\omega_{\ell}^{*} \boldsymbol{f}=\left(\omega_{\ell, r+1}^{*} f_{r+1}, \ldots, \omega_{\ell, n}^{*} f_{n}\right)
$$

Limit heights (cont.)

The particular case

$$
X=\mathbb{P}^{n}, \quad \bar{D}_{0}=\bar{H}_{\infty}^{\mathrm{can}} \quad \text { and } \quad r=0
$$

H hyperplane at infinity of \mathbb{P}^{n}
would imply that

$$
\lim _{\ell \rightarrow+\infty} h_{\text {Weil }}\left(Z\left(\boldsymbol{\omega}_{\ell}^{*} \boldsymbol{f}\right)\right)=\sum_{v \in M_{\mathbb{Q}}} \operatorname{MI}\left(0_{\Delta}, \rho_{1, v}^{\vee}, \ldots, \rho_{n, v}^{\vee}\right)
$$

0_{Δ} the zero function on the standard simplex of \mathbb{R}^{n}

Limit heights (cont.)

Theorem 4 (Gualdi and S.)

Conjecture 1 holds when $n=2, r=0$ and f_{1}, f_{2} are affine.

Corollary

Let $\boldsymbol{\omega}_{\ell} \in \mu_{\infty}^{2}, \ell \geqslant 1$, be a strict sequence. Then

$$
\lim _{\ell \rightarrow+\infty} h_{\text {Weil }}\left(Z\left(1+x+x, 1+\omega_{\ell, 1} x+\omega_{\ell, 2} x\right)\right)=\operatorname{MI}\left(0_{\Delta}, \rho_{\infty}^{\vee}, \rho_{\infty}^{\vee}\right)=\frac{2 \zeta(3)}{3 \zeta(2)}
$$

ρ_{∞} the Archimedean Ronkin function of $1+x+y$

A mixed integral computation

Proof of the corollary (sketch): if $v \neq \infty$ then $\rho_{v}^{\vee}=0_{\Delta}$ and so

$$
\operatorname{MI}\left(0_{\Delta}, \rho_{v}^{\vee}, \rho_{v}^{\vee}\right)=\operatorname{MI}\left(0_{\Delta}, 0_{\Delta}, 0_{\Delta}\right)=0
$$

Else
$\operatorname{MI}\left(0_{\Delta}, \rho_{\infty}^{\vee}, \rho_{\infty}^{\vee}\right)=\frac{-2}{\pi^{2}} \int_{\mathcal{A}_{1+x+y}} \min \left(0, u_{1}, u_{2}\right) d u_{1} d u_{2}=\frac{4 \zeta(3)}{\pi^{2}}=\frac{2 \zeta(3)}{3 \zeta(2)}$
\mathcal{A}_{1+x+y} the Archimedean amoeba of $1+x+y$

Reduction to the hypersurface case

Proof of theorem 4 (sketch):

- $n=2$ and $r=0$
- f, g affine
- \bar{D} SP toric metrized divisor on \mathbb{P}^{2}
- $\boldsymbol{\omega}_{\ell} \in m u_{\infty}^{2}, \ell \geqslant 1$ strict sequence

Let $\bar{E} \mathrm{SP}$ toric metrized divisor on \mathbb{P}^{2}. By the arithmetic Bézout

$$
\mathrm{h}_{\bar{D}}\left(Z\left(f, \omega_{\ell}^{*} g\right)\right)=\mathrm{h}_{\bar{D}, \bar{E}}(Z(f))+\sum_{v} \frac{1}{\# \operatorname{Gal}_{v}\left(\omega_{\ell}\right)} \sum_{\eta \sim \omega_{\ell}} \int_{Z(f)_{v}^{\text {n }}} \log \left\|s_{\eta^{*}}\right\|_{\bar{E}, v} d \mathrm{MA}_{v}
$$

MA_{v} the v-adic Monge-Ampère measure of $\left.\bar{D}\right|_{Z(f)_{v}^{\text {an }}}$
$s_{\eta}{ }^{*}$ g the global section of $O(E)$ associated to $\eta^{*} g$

Choosing \bar{E} as the Ronkin metrized divisor of g, the first term coincides with the RHS in Theorem 4

Logarithmic adelic equidistribution of torsion points

For each v consider the function $F_{v}:\left(\mathbb{C}_{v}^{\times}\right)^{2} \rightarrow \mathbb{R} \cup\{-\infty\}$ defined as

$$
F_{v}(\boldsymbol{x})=\int_{Z(f))^{\mathrm{n}}} \log \left|x^{*} g\right|_{v} d \mathrm{MA}_{v}
$$

Then the second term tends to 0 for $\ell \rightarrow+\infty$ if and only if

$$
\lim _{\ell \rightarrow+\infty} \sum_{v} \int F_{v} \delta_{\operatorname{Gal}_{v}\left(\omega_{\ell}\right)}=\sum_{v} \int F_{v} d \nu_{v}
$$

This is proven using

- p-adic distribution of torsion points
- lower bounds for linear forms in logarithms (Baker)
- lower bounds for p-adic linear forms in roots of unity (Tate-Voloch)

Thanks!

