The zero set
 of the independence polynomial of a graph

Martín Sombra

ICREA and Universitat de Barcelona, Spain

Seminario del CMaLP

12 November 2021

Figure by N. Fagella

Independence polynomials of graphs

Let G be a finite graph
A subset I of V_{G} is independent if $v \nsim v^{\prime}$ for all $v, v^{\prime} \in V_{G}$
V_{G} the vertices of G
The independence polynomial of G is

$$
Z_{G}=\sum_{\substack{I \subset V_{G} \\ \text { independent }}} x^{\# \prime} \in \mathbb{Z}_{\geqslant 0}[x]
$$

$$
Z_{G}=1+4 x+2 x^{2}
$$

Let \mathcal{G} be a (possibly infinite) graph
The neighbour exclusion model or hardcore lattice gas model on \mathcal{G} represents the behavior of large particles at the vertices of \mathcal{G} excluding the presence of other particles at the adjacent ones

An activity parameter $\lambda \in \mathbb{R}_{\geqslant 0}$ determines the probability that a particle appears at a given vertex

- Interaction: for $s, s^{\prime} \in\{0,1\}$

$$
U\left(s, s^{\prime}\right)= \begin{cases}+\infty & \text { if } s=s^{\prime}=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Potential: for $s \in\{0,1\}$

$$
K(s)=-\log (\lambda) s
$$

Fix a finite subgraph $G \subset \mathcal{G}$

- Hamiltonian: for a configuration $\sigma: G \rightarrow\{0,1\}$

$$
\begin{aligned}
H(\sigma, \lambda) & =\sum_{v \sim v^{\prime}} U\left(\sigma(v), \sigma\left(v^{\prime}\right)\right)+\sum_{v} K(\sigma(v)) \\
& = \begin{cases}-\log (\lambda) \# \operatorname{supp}(\sigma) & \text { if } \operatorname{supp}(\sigma) \text { independent } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Partition function:

$$
\sum_{\sigma} \exp (-H(\sigma, \lambda))=Z_{G}(\lambda)
$$

The pressure (or free energy) is defined as

$$
\mathcal{P}_{\mathcal{G}}(\lambda)=\lim _{G \rightarrow \mathcal{G}} \frac{1}{\# V_{G}} \log \left(Z_{G}(\lambda)\right)
$$

Phase transitions (i.e. bifurcations of GIBBS measures) are related to the lost of analycity of \mathcal{P}

\rightsquigarrow EHRENFEST classification

Random independent subsets

$$
\mathcal{G}=\mathbb{Z}^{2}
$$

Figures by P. Winkler

Phase transition

$$
\lambda=1
$$

$$
\lambda=3.787
$$

$$
\lambda=3.792
$$

Figures by P. Winkler

Regular rooted trees

For $d \geqslant 2$ let \mathcal{T} be the regular rooted tree with branching d

The phase transition (birth of a "period 2" Gibbs measure) of the neighbour exclusion model on \mathcal{T} appears at

$$
\lambda_{\text {cr }}=\frac{d^{d}}{(d-1)^{d+1}}
$$

Theorem (Rivera-Letelier and S.)

The pressure function $\mathcal{P}_{\mathcal{T}}$ is real analytic on $(0,+\infty) \backslash\left\{\lambda_{\text {cr }}\right\}$, and infinitely differentiable at $\lambda_{\text {cr }}$

The neighbour exclusion model on \mathcal{T} has a phase transition of infinite order at the point $\lambda_{\text {cr }}$

Recursion

For $k \geqslant-1$ let T_{k} be the subtree of \mathcal{T} at depth $\leqslant k$

$$
k=0 \quad k=1
$$

Set

$$
R_{k}=\frac{Z_{T_{k}}}{Z_{T_{k-1}}^{d}} \in \mathbb{Q}(x)
$$

We have that

$$
Z_{T_{-1}}=1, \quad Z_{T_{0}}=1+x, \quad Z_{T_{k}}=Z_{T_{k-1}}^{d}+x Z_{T_{k-2}}^{d^{2}} \quad \text { for } k \geqslant 1
$$

which implies that

$$
R_{0}=1+x \quad \text { and } \quad R_{k}=1+\frac{x}{R_{k-1}^{d}} \quad \text { for } k \geqslant 1
$$

Complex dynamics

For $\lambda \in \mathbb{C}^{\times}$set

$$
f_{\lambda}: \overline{\mathbb{C}} \longrightarrow \overline{\mathbb{C}}, \quad z \longmapsto 1+\frac{\lambda}{z^{d}}
$$

$\overline{\mathbb{C}}$ the Riemann sphere

- Critical points: 0 and ∞
- $0 \longmapsto \infty \longmapsto 1 \longmapsto 1+\lambda$
- $f_{\lambda}^{-1}(\infty)=\{0\}$

Hence

$$
R_{k}(\lambda)=f_{\lambda}^{k}(1+\lambda)=f_{\lambda}^{k+3}(0)
$$

$$
f^{k}=\overbrace{f \circ \cdots \circ f}^{k}
$$

and so

$$
\begin{aligned}
\Omega_{k} & :=\left(Z_{T_{k}}=0\right)=\left\{\lambda \in \mathbb{C} \mid f_{\lambda}^{k+3}(0)=0\right\} \\
\Omega & :=\bigcup_{k \geq 0} \Omega_{k}=\left\{\lambda \in \mathbb{C} \mid 0 \in \operatorname{Per}\left(f_{\lambda}\right)\right\}
\end{aligned}
$$

Hyperbolic components and zero free regions

A parameter $\lambda \in \mathbb{C}^{\times}$is hyperbolic if all the critical points of f_{λ} converge to attracting cycles

In our case, λ is hyperbolic if and only if f_{λ} has and attracting cycle (Fatou's theorem). Hence if λ is attracting but not superattracting then $\lambda \notin \Omega$

For instance, if we set
$\Lambda:=\left\{\lambda \mid f_{\lambda}\right.$ has an attracting fixed point $\}=\left\{\left.\frac{-d^{d} \alpha}{(d+\alpha)^{d+1}} \right\rvert\, \alpha \in \mathbb{D}\right\}$
then $\Lambda \cap \Omega=\varnothing$

Let $\xi \in \overline{\mathbb{Q}}^{\times}$be an algebraic number of degree n and consider its minimal polynomial

$$
\gamma \prod_{i=1}^{n}\left(x-\xi_{i}\right) \in \mathbb{Z}[x]
$$

The Weil height of ξ is

$$
\mathrm{h}_{\text {Weil }}(\xi)=\frac{1}{n}\left(\log |\gamma|+\sum_{i=1}^{n} \log ^{+}\left|\xi_{i}\right|\right) \in \mathbb{R} \geqslant 0
$$

For instance, for $\xi=\frac{a}{b} \in \mathbb{Q}^{\times}$with $a, b \in \mathbb{Z}$ coprime

$$
\mathrm{h}_{\mathrm{Weil}}(\xi)=\log \max (|a|,|b|)
$$

Arithmetic equidistribution

Theorem (BILU, 1997)

Let $\xi_{k} \in \overline{\mathbb{Q}}^{\times}, k \geqslant 1$, such that $\xi_{k} \neq \xi_{k^{\prime}}$ for all $k \neq k^{\prime}$ and

$$
\lim _{k \rightarrow+\infty} h_{\text {Weil }}\left(\xi_{k}\right)=0
$$

Then

$$
\lim _{k \rightarrow+\infty} \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \cdot \xi_{k}=\operatorname{Haar}_{S^{1}}
$$

Toric version of SzPiro-Ullmo-Zhang equidistibution on Abelian varieties (1997)

For instance, let $d=10$ and $f=-x^{10}+x^{9}+x^{8}+x^{6}+x^{5}-x^{4}+x^{3}-x^{2}+x-1$

$$
d=30 \text { and } f=x^{30}-x^{29}-x^{28}+x^{26}+x^{25}-x^{24}-x^{23}-x^{22}+x^{21}-x^{20}+x^{19}+\cdots
$$

$$
d=100 \text { and } f=-x^{100}-x^{98}+x^{96}+x^{94}-x^{93}+x^{92}-x^{91}-x^{90}+x^{88}-x^{84}+\cdots
$$

The bifurcation locus

The bifurcation locus of the family $\left(f_{\lambda}\right)_{\lambda \in \mathbb{C}^{\times}}$is

$$
B\left(f_{\lambda}\right)=\left\{\lambda \in \mathbb{C} \mid \lambda \mapsto J\left(f_{\lambda}\right) \text { is not continuous }\right\}
$$

It is equipped with the probability measure

$$
\mu_{\mathrm{bif}}=\lim _{k \rightarrow+\infty} \frac{f_{\lambda}^{k}(0)^{*} \omega}{\operatorname{deg}\left(f_{\lambda}^{k}(0)\right.} \quad \text { for } \omega \text { uniform measure on } \overline{\mathbb{C}}
$$

A dynamical height

For $\lambda \in \overline{\mathbb{Q}}^{\times}$set

$$
\mathrm{h}(\lambda)=\lim _{k \rightarrow+\infty} \frac{\mathrm{h}_{\mathrm{Weil}}\left(f_{\lambda}^{k}(0)\right)}{\operatorname{deg}\left(f_{\lambda}^{k}\right)} \in \mathbb{R}_{\geqslant 0}
$$

Theorem (RL-S)

This limit defines a function $h: \overline{\mathbb{Q}}^{\times} \rightarrow \mathbb{R} \geqslant 0$ with

$$
h(\lambda)=0 \text { if and only if } 0 \in \operatorname{PrePer}\left(f_{\lambda}\right)
$$

Moreover

$$
h(\lambda)=\rho(\lambda)+\sum_{p \text { prime }} \log ^{+}|\lambda|_{p}
$$

with $\rho: \mathbb{C}^{\times} \rightarrow \mathbb{R}$ the potential of $\mu_{\text {bif }}$, the normalized bifurcation measure of $\left(f_{\lambda}\right)_{\lambda \in \mathbb{C}^{\times}}$, and $\rho-\log ^{+}$is continuous on $\overline{\mathbb{C}}$
$\rightsquigarrow h$ is a height function (Arakelov geometry)

Quantitative equidistribution

By arithmetic equidistribution (Favre and Rivera-Letelier, 2006):

Corollary

There is a constant $c>0$ such that for every Lipschitz function $\varphi: \mathbb{C} \rightarrow \mathbb{R}$ with compact support we have that

$$
\left|\frac{1}{\Omega_{k}} \sum_{\lambda \in \Omega_{k}} \varphi(\lambda)-\int \varphi d \mu_{\mathrm{bif}}\right| \leqslant c\left(\frac{\log (k)}{k}\right)^{1 / 2} \operatorname{Lip}(\varphi)
$$

In particular

$$
\lim _{k \rightarrow+\infty} \Omega_{k}=\mu_{\text {bif }}
$$

$$
d=2
$$

Figure by N．FAGELLA

$$
d=3
$$

Figure by B. Espigule

Conclusion

This quantitative equidistribution result implies that

$$
\mathcal{P}_{\mathcal{T}}(\lambda)=\lim _{k \rightarrow+\infty} \frac{1}{\# T_{k}} \log \left(Z_{T_{k}}(\lambda)\right)=\int_{\overline{\mathbb{C}}} \log |\lambda-\zeta| d \mu_{\mathrm{bif}}(\zeta)
$$

This is used to prove:

Proposition (RL-S)

There is $c>0$ such that for all $\varepsilon>0$

$$
\mu_{\mathrm{bif}}\left(B\left(\lambda_{\mathrm{cr}}, \varepsilon\right)<\exp \left(\frac{-c}{\varepsilon}\right)\right.
$$

which in turn implies the theorem

Theorem (RL-S)

$\mathcal{P}_{\mathcal{T}}$ is real analytic on $(0,+\infty) \backslash\left\{\lambda_{\text {cr }}\right\}$, and infinitely differentiable at $\lambda_{\text {cr }}$

Thanks!

