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Abstract.
We present bounds for the sparseness in the Nullstellensatz. These bounds can give a much

sharper characterization than degree bounds of the monomial structure of the polynomials in the
Nullstellensatz in case that the input system is sparse. As a consequence we derive a degree bound
which can substantially improve the known ones in case of a sparse system.

In addition we introduce the notion of algebraic degree associated to a polynomial system
of equations. We obtain a new degree bound which is sharper than the known ones when this
parameter is small. We also improve the previous effective Nullstellensätze in case the input
polynomials are quadratic.

Our approach is completely algebraic, and the obtained results are independent of the characteristic
of the base field.
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Introduction

Let k be a field and k be its algebraic closure. We denote the affine n–space over k by
IAn. For a given polynomial system f1, . . . , fs ∈ k[x1, . . . , xn] without common zeros in
IAn, the classical Hilbert’s Nullstellensatz states that there exist g1, . . . , gs ∈ k[x1, . . . , xn]
satisfying the Bézout equation

1 = g1f1 + · · ·+ gsfs. (1)

Let d denote the maximum degree of the polynomials f1, . . . , fs and assume that n ≥ 2.
Then there exist polynomials g1, . . . , gs satisfying the degree bound

deg gifi ≤ max{3, d}n.

This result is due to Kollár [21]. This bound is optimal for d ≥ 3 because of the well–known
example due to Mora–Lazard–Masser–Philippon–Kollár

f1 := xd
1, f2 := x1x

d−1
n − xd

2, . . . , fn−1 := xn−2x
d−1
n − xd

n−1, fn := xn−1x
d−1
n − 1

1Partially supported by CONICET PID 3949/92, UBA CyT EX. 001 and Fundación Antorchas.
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It is easy to verify that in this case deg g1f1 ≥ dn for any solution system g1, . . . , gn of the
Bézout equation.

We note that such a degree bound allows us, given polynomials f1, . . . , fs ∈ k[x1, . . . , xn],
to determine whether the equation (1) is solvable or not. If it is solvable, we can then
actually find a solution, as it reduces the original problem to solving a k–linear system of
equations.

The study of this Bézout identity is the object of much research, due to both its
theoretical and practical importance, mainly in the context of computational algebraic
geometry and diophantine approximation. Thus it has been approached from many points
of view and with different objectives. In this respect we refer to the research papers [2], [4],
[6], [8], [13], [15], [17], [22], [27], [30], [31], [32]. We also refer to the surveys [3], [26], [36]
for a broad introduction to the history of this problem, main results and open questions.

For a Laurent polynomial f =
∑

i∈ZZn ai x
i ∈ k[x1, . . . , xn, x−1

1 , . . . , x−1
n ], the support of

f is defined as the set {i : ai 6= 0} and more generally, the support of a family of Laurent
polynomials f1, . . . , fs is defined as the set of exponents of all the nonzero monomials of
all the fi. The Newton polytope N (f1, . . . , fs) is defined as the convex hull of the support
of f1, . . . , fs. The unmixed volume U(f1, . . . , fs) of the family of Laurent polynomials
f1, . . . , fs is defined as ρ! times the volume of the polytope N (f1, . . . , fs), where ρ denotes
the dimension of this polytope.

The degree of a polynomial is bounded by a nonnegative integer d if and only if its
Newton polytope is contained in d∆, where ∆ denotes the standard simplex conv(0, e1, . . . , en)
in IRn. Thus the notion of Newton polytope gives a sharper characterization of the
monomial structure of a polynomial than just degree. This concept was introduced in
the context of root counting by Bernshtein [5] and Kushnirenko [24], and is now in the
basis of sparse elimination theory. Within this theory, algorithms for elimination problems
are designed to try to exploit the sparseness of the involved polynomials, and sparseness is
then usually measured in terms of the Newton polytope of these polynomials. This is the
point of view introduced by Sturmfels in his foundational work [34] and further explored
in [9], [20], [28], [29], [37] to name a few references.

The sparse aspect in the Nullstellensatz has also been considered by Canny and Emiris,
who obtained a sparse effective Nullstellensatz but only for the case of n + 1 generic n–
variate Laurent polynomials [9]. Here, generic can be interpreted in the following sense:
If one restricts the support of each fi to lie in a fixed set Ai — thus restricting which
monomials are allowed to appear — the coefficient values for which the Canny–Emiris
Nullstellensatz fails lies in a codimension ≥ 1 subvariety of the coefficient space. This
follows easily from recognizing that the failure of their sparse resultant–based derivation
depends on the existency of roots at toric infinity. It should also be pointed out that when
its genericity assumptions hold, the Canny–Emiris Nullstellensatz gives bounds at least as
good as any result stated in the present paper.

We obtain the following result, which in this context can be seen as a bound for the
sparseness of the output polynomials in terms of the sparseness of the input system.

Theorem 1. Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without common zeros in IAn.
Let N denote the Newton polytope of the polynomials x1, . . . , xn, f1, . . . , fs, and let U
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denote the unmixed volume of this polytope. Then there exist g1, . . . , gs ∈ k[x1, . . . , xn]
satisfying

1 = g1f1 + · · ·+ gsfs,

with N (gifi) ⊆ nn+3 U N for i = 1, . . . , s.

Let d := maxi deg fi. We readily derive from the previous result the degree bound

deg gifi ≤ nn+3 d U .

We obtain from this the worst–case bound deg gifi ≤ nn+2 dn+1, as the unmixed volume
of the polynomials x1, . . . , xn, f1, . . . , fn is always bounded by dn. We show however that
our degree bound can considerably improve the usual one in case that the input system is
sparse and d ≥ n (Example 2.12).

We also obtain an analogous result for the case of Laurent polynomials.

Theorem 2. Let f1, . . . , fs ∈ k[x1, . . . , xn, x−1
1 , . . . , x−1

n ] be Laurent polynomials without
common zeros in (k∗)n. Let N denote the Newton polytope of f1, . . . , fs, and let U
denote the unmixed volume of this polytope. Then there exist a ∈ ZZn and g1, . . . , gs ∈
k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] satisfying

1 = g1f1 + · · ·+ gsfs,

with a ∈ n2n+3 U2 N and N (gifi) ⊆ n2n+3 U2 N − a for i = 1, . . . , s.

The proof of both results is similar. It takes as its first step the translation of the
original system of equations over the affine space or the torus into a system of linear
equations over an appropriate toric variety. The resulting system is then solved by
appealing to an effective Nullstellensatz for linear forms in a Cohen–Macaulay graded
ring. This key lemma is proved following for the most part the lines of a previous paper
[33] which in turn is based on previous work of Dubé [11] and Almeida [1]. We introduce
at this time some simplifications into the proofs and techniques involved. In particular we
eliminate the use of estimates for the Hilbert function.

As a by–product, we obtain an effective Nullstellensatz which holds not only for
linear forms, but for arbitrary homogeneous elements in a Cohen–Macaulay graded ring
(Theorem 1.8).

In addition we apply these arguments in two other situations. First we consider
the usual effective Nullstellensatz. Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without
common zeros in IAn. Let di := deg fi and assume that d1 ≥ · · · ≥ ds holds. We obtain
the following improved degree bound:

deg gifi ≤ 2 ds

min{n,s}−1∏

j=1

dj

for the polynomials g1, . . . , gs satisfying the Bézout equation.
For the case when the polynomials f1, . . . , fs are quadratic the best previous known

bound is deg gifi ≤ n 2n+2, which is due to Sabia and Solernó [30]. Our estimate improves
this bound to deg gifi ≤ 2n+1, which is very close to the expected 2n.
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Finally, we obtain another bound for the degrees in the Nullstellensatz. We introduce
the notion of algebraic degree of a polynomial system. Roughly speaking it measures the
degree of the ideals succesively cutted out by the equations f1, . . . , fs. It is the algebraic
analogue of the notion of geometric degree of a system of equations of Giusti et al. [16],
Krick, Sabia and Solernó [23] and Sombra [33]. We refer to Section 3 for the precise
description and comparison between both notions.

Degree bounds have been obtained for the polynomials in the Nullstellensatz which
mainly depend on the geometric degree [15], [23], [33]. We show that a similar bound
holds by replacing the geometric degree of the input polynomial system by the algebraic
degree.

Theorem 3. Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without common zeros in IAn.
Let d := maxi deg fi and let δ denote the algebraic degree of this polynomial system. Then
there exist g1, . . . , gs ∈ k[x1, . . . , xn] satisfying

1 = g1f1 + · · ·+ gsfs,

with deg gifi ≤ min{n, s}2 d δ for i = 1, . . . , s.

Let di := deg fi and assume that d1 ≥ · · · ≥ ds holds. Then the Bézout bound
δ(f1, . . . , fs) ≤ ds

∏min{n,s}−2
i=1 di holds, and therefore we essentially recover from this

result the known bounds for the degrees in the Nullstellensatz. The algebraic degree is
bounded by the geometric degree, and so we also recover the known degree bounds in
the Nullstellensatz which depend on the geometric degree. We show however that the
algebraic degree is much smaller than the geometric degree in some particular instances,
and by force, than the Bézout bound dn−1 (Example 3.20). We conclude that the obtained
degree bound is much sharper in these cases than the known ones.

The outline of the paper is as follows. In Section 1 we obtain the effective Nullstellensatz
for linear forms in a Cohen–Macaulay graded ring. In Section 2 we prove both Theorems
and and we derive some of their consequences. Section 3 is devoted to degree bounds in
the usual Nullstellensatz.

1. An Effective Nullstellensatz over Cohen–Macaulay Graded Rings

Throughout this paper we denote by k be an infinite field and by k its algebraic closure.
All the rings to be considered are Noetherian commutative, and more precisely, finitely
generated k–algebras. The polynomial ring k[x0, . . . , xn] is alternatively denoted by S.

For a homogeneous ideal J in the polynomial ring k[x0, . . . , xn], dimJ denotes the
Krull dimension of k[x0, . . . , xn]/J , and deg J denotes (dimJ − 1)! times the leading
coefficient of the Hilbert polynomial of the graded k–algebra k[x0, . . . , xn]/J .

A graded ring A is Cohen–Macaulay if it contains a regular sequence of homogeneous
elements of length equal to the dimension of A. In particular A is unmixed, and its quotient
with respect to any regular sequence of homogeneous elements is Cohen–Macaulay.

Let I be a homogeneous Cohen–Macaulay ideal in the polynomial ring k[x0, . . . , xn],
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that is, the quotient ring k[x0, . . . , xn]/I is Cohen–Macaulay. Let r := dim I and let
V (I) ⊆ IPn be the variety defined by I in the projective n–space.

Let p ∈ S/I be a homogeneous element which is not a zero–divisor. Let η1, . . . , ηs ∈ S/I
be homogeneous elements of degree one — or for short, linear forms — which define the
empty variety in the open set {p 6= 0} of V (I). In this situation, Hilbert’s Nullstellensatz
implies that p belongs to the radical of the ideal (η1, . . . , ηs), that is, p ∈ √

(η1, . . . , ηs).
Equivalently we have that 1 lies in the ideal (η1, . . . , ηs) spanned by η1, . . . , ηs in the ring
(S/I)p.

We are going to give a bound for the minimal D ∈ IN such that pD falls into the ideal
(η1, . . . , ηs). We state here the main result of this section, and then we derive it from a
series of lemmas.

Main Lemma 1.1 Let I ⊆ k[x0, . . . , xn] be a homogeneous Cohen–Macaulay ideal of
dimension r. Let p ∈ k[x0, . . . , xn]/I be a homogeneous element and η1, . . . , ηs ∈ k[x0, . . . , xn]/I
be linear forms such that p lies in the radical of the ideal (η1, . . . , ηs) and p is not a zero–
divisor. Then

pD ∈ (η1, . . . , ηs)

holds, with D := min{r, s}2 deg I.

Particular cases of this result were obtained by Caniglia, Galligo and Heintz [8, Proposition
10] and Smietanski [32, Lemma 1.44]. As a consequence of this result we derive an effective
Nullstellensatz for Cohen–Macaulay graded rings (Theorem 1.8 and Corollary 1.9).

Let A be a ring and let α1, . . . , αt be elements of A. Then α1, . . . , αt is called a weak
regular sequence if αi is not a zero–divisor in the ring A/(α1, . . . , αi−1) for i = 1, . . . , t. We
note that this definition differs from usual notion of regular sequence only in one point,
namely that it allows αt to be a unit in A/(α1, . . . , αt−1).

By considering generic k–linear combinations of the given linear forms we reduce to
the case when η1, . . . , ηs is a weak regular sequence in (S/I)p and s ≤ r. We assume this
from now on. Next we are going to show that η1, . . . , ηs can be replaced by polynomials
of controlled degree which form a regular sequence in S/I (Corollary 1.3). The following
lemma is a generalization of [19, Remark 4].

Lemma 1.2 Let K ⊆ k[x0, . . . , xn] be a homogeneous unmixed ideal and let ξ1, . . . , ξm ∈
IPn be points lying outside of V (K). Then there exists a homogeneous polynomial g in K
such that deg g ≤ deg K and g(ξi) 6= 0 for all i.

Proof. For each associated prime ideal P of K we take a homogeneous polynomial gP

such that deg gP ≤ deg P and gP (ξi) 6= 0 for i = 1, . . . , m. This is clear from a generic
projection. Let QP be the corresponding P–primary ideal in the decomposition of K. Let
l(QP ) denote the length of QP , that is, the length of (S/QP )P as a S/P–module. Let

g :=
∏

P

g
l(QP )

P ,

where the product is taken over all the associated prime ideals of K. Then g(ξi) 6= 0 for
i = 1, . . . ,m, and we have also that the polynomial g lies in the ideal K by [7, Lemma 1].
The degree bound deg g ≤ ∑

P l(QP ) deg P = deg K holds by [38, Proposition 1.49]. 2
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In the sequel we shall denote by Ji the contraction to the ring S/I of the ideal
(η1, . . . , ηi) ⊆ (S/I)p and by δi the degree of the homogeneous ideal Ji for i = 1, . . . , s.

Corollary 1.3 With the notation of Main Lemma 1.1, there exist homogeneous elements
h1, . . . , hs ∈ S/I satisfying the following conditions:

i) hi ≡ pciηi mod Ji−1 for some ci ≥ 0,

ii) h1, . . . , hs is a regular sequence,

iii) deg hi ≤ deg Ji−1 + deg p− 1,

for i = 1, . . . , s.

Proof. We proceed by induction on i. By assumption p is not a zero–divisor in S/I so that
the canonical morphism S/I → (S/I)p is injective. The fact that η1 is not a zero–divisor
in (S/I)p implies then that η1 is not a zero–divisor in S/I.

Now let i ≥ 2 and assume that the elements h1, . . . , hi−1 are already constructed. Let
Hi−1 denote the ideal spanned by h1, . . . , hi−1 in S/I. Let Hi−1 = (∩j Qj) ∩ (∩l Rl) be
the primary decomposition of Hi−1, with p /∈ √

Qj and p ∈ √
Rl. Our aim is to find a

homogeneous element hi in S/I lying outside of all the associated primary ideals of Hi−1.
We recall that the ideal Hi−1 has no imbedded component as it is spanned by a regular

sequence in a Cohen–Macaulay ring. On the other hand the ideal Ji−1 has the primary
decomposition ∩j Qj and so it follows that V (Rl) 6⊆ V (Ji−1) holds for each l. We
choose a point ξl ∈ V (Rl) − V (Ji−1) and a homogeneous element g ∈ Ji−1 such that
deg g ≤ deg Ji−1 and g(ξl) 6= 0 for each l. The existence of g is guaranteed by the
previous lemma. By eventually multiplying g with linear forms we can suppose without
loss of generality that deg g = ci deg p + 1 holds for some ci ≥ 0. In particular we can
assume that deg g ≤ deg Ji−1 + deg p− 1 holds. Finally we set

hi := ag + pciηi

for some a ∈ k to be determined. Then hi is homogeneous and hi ≡ pciηi mod Ji−1 holds.
Therefore hi does not belong to

√
Qj , as both p and ηi are not zero–divisors modulo Ji−1.

We have also that hi(ξl) = a g(ξl) + (pciηi)(ξl) 6= 0 for a generic choice of a, which forces
hi /∈ √Rl. 2

We fix the following notation. Let h1, . . . , hs ∈ S/I be the homogeneous polynomials
introduced in Corollary 1.3, and let Hi := (h1, . . . , hi) and Li := (η1, . . . , ηi) denote the
homogeneous ideals successively generated by h1, . . . , hs and η1, . . . , ηs respectively.

Let us write hi = li + pci ηi for some li ∈ Ji−1 and ci ≥ 0. Then set γi := δi−1 − δi ,
and let λi :=

∑i
j=1(γj + cj) and µi :=

∑i
j=1((i− j + 1)γj + (i− j)cj) for i = 1, . . . , s.

For an ideal K of S/I we denote by Ku the unmixed part of K, that is, the unmixed
ideal given as the intersection of the primary components of K of maximal dimension.

Lemma 1.4 Let q ∈ Ji for some 1 ≤ i ≤ s. Then pγiq ∈ (Ji−1, ηi)u.
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Proof. Let (∩j Qj) ∩ (∩l Rl) be the primary decomposition of the ideal (Ji−1, ηi)u, with
p /∈ √

Qj and p ∈ √Rl. Then ∩j Qj is the primary decomposition of Ji. Let Ki := ∩l Rl

be the intersection of the other primary components. Then Ki is an unmixed ideal which
lies in the hypersurface {p = 0}.

The ideals (Ji−1, ηi)u and (Ji−1, ηi) have the same degree because they only differ in
an ideal of codimension at least i+1. Then deg(Ji−1, ηi) = δi−1, as ηi is not a zero–divisor
mod Ji−1, and so deg Ki = γi = δi−1 − δi. Therefore pγi lies in the ideal Ki [7, Lemma 1]
and we conclude that pγiq ∈ (∩j Qj) ∩ (∩l Rl) = (Ji−1, ηi)u as stated. 2

The following two statements (Lemmas 1.5 and 1.6) are simple extensions of [11,
Lemmas 6.1 and 6.2].

Lemma 1.5 Let q ∈ Ji for some 1 ≤ i ≤ s. Then pλiq ∈ Hi.

Proof. We proceed by induction on i. First pγ1q ∈ (η1)u by Lemma 1.4. We have also
that (η1)u = (η1) and so the assertion is true for i = 1.

Let i ≥ 2 and assume that the statement holds for i − 1. By Lemma 1.4, pγiq ∈
(Ji−1, ηi)u, that is, pγi q belongs to the intersection of the primary components of dimension
r − i of the ideal (Ji−1, ηi). The intersection of the other primary components is an ideal
of codimension at least i + 1. Then there exists a regular sequence w1, . . . , wi+1 in this
ideal, as S/I is a Cohen–Macaulay ring. We have that wj pγi q ∈ (Ji−1, ηi) and so there
exist uj ∈ Ji−1 and vj ∈ S/I such that wj pγi q = uj + vjηi for j = 1, . . . , i + 1. Then

wj pγi+ci q = pci uj + pci vj ηi = pciuj + vj(hi − li) = (pciuj − vjli) + vjhi.

Therefore pγi+ciuj−vjli ∈ Ji−1 and by the inductive hypothesis pλi−1(pγi+ciuj−vjli)
lies in the ideal Hi−1. Then wj pλi q ∈ Hi holds for j = 1, . . . , i + 1, as λi = λi−1 + γi− ci.

The ideal Hi is spanned by a regular sequence h1, . . . , hi and so it is an unmixed ideal
of dimension r− i. Thus for each associated prime ideal P of Hi there exists some j such
that wj /∈ P . We conclude that pλiq ∈ Hi. 2

Lemma 1.6 Let q ∈ Ji for some 1 ≤ i ≤ s. Then pµiq ∈ Li.

Proof. We shall proceed by induction on i. The case i = 1 follows in the same way as in
the preceding lemma because L1 = H1 and µ1 = λ1.

Let i ≥ 2. Then pλiq lies in Hi by Lemma 1.5. Let us write pλiq = u + v hi for some
u ∈ Hi−1 and v ∈ S/I. Therefore pλiq − v hi ∈ Hi−1 and thus pλiq − pci v ηi lies in the
ideal Ji−1 because Hi−1 ⊆ Ji−1 and hi ≡ pci ηi mod Ji−1. This implies in turn that
pλi−ciq − v ηi ∈ Ji−1.

From the inductive hypothesis we get that pµi−1(pλi−ci q − v ηi) lies in Li−1 and so
pµi−1+λi−ciq ∈ Li. The statement follows from the observation that µi = µi−1 +λi− ci. 2

Proof of Main Lemma 1.1. We can suppose without loss of generality that η1. . . . , ηs is
a weak regular sequence in (S/I)p and that s ≤ r. After Lemma 1.6 it only remains to
bound µs. We make use of the estimates γi, ci ≤ δi−1 and we get the bound

µs =
∑s

j=1((s− j + 1)γj + (s− j)cj)

≤ ∑s
j=1((s− j + 1)δj−1 + (s− j)δj−1) ≤ s2 deg I.

2
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The rest of the section is devoted to the extension of the previous result to the case
when we consider homogeneous elements of arbitrary degree instead of linear forms. First
we establish some generalities about the Veronese imbedding.

Let us denote by N the integer (n+d
d )− 1 and let a0, . . . , aN denote the exponents of

the different monomials of degree d in S. Let

vd : IPn → IPN , x := (x0 : · · · : xn) 7→ (xa0 : · · · : xaN )

be the Veronese map. This is a regular morphism of projective varieties and so its image
is a closed subvariety of IPN . This variety is called the Veronese variety and it is denoted
by vn,d. Let I(vn,d) be its defining ideal and let us denote by S(d) := k[y0, . . . , yN ]/I(vn,d)
its homogeneous coordinate ring. The Veronese map induces an inclusion of k–algebras
id : S(d) ↪→ S defined by yj 7→ xaj for j = 0, . . . , N .

Let J be an ideal of S and J (d) be its contraction to the ring S(d). Identifying the
quotient ring S(d)/J (d) with its image in S/J through the inclusion id : S(d)/J (d) ↪→ S/J
we obtain the decomposition in graded parts

S(d)/J (d) = ⊕j (S/J)d j .

Let hJ(d) and hJ denote the Hilbert functions of J (d) and J respectively. Then hJ(d)(m) =
hJ(dm) for m ∈ IN. It follows that the ideals J (d) and J have the same dimension and
that their degrees are related by the formula deg J (d) = d dim J−1 deg J .

Lemma 1.7 Let J be a homogeneous Cohen–Macaulay ideal in S and let J (d) denote its
contraction to the ring S(d). Then J (d) is a Cohen–Macaulay ideal.

Proof. Let us denote by A and B the quotient rings S(d)/J (d) and S/J respectively. We
identify A with its image in B through the inclusion id. We shall exhibit a regular sequence
of homogeneous elements in A of length equal to the dimension of A.

Let e denote the dimension of the ring B, which is also the dimension of A. Let
β1, . . . , βe be a regular sequence in B of homogeneous elements. Let αi := βd

i for i =
1, . . . , e. Then α1, . . . , αe are elements of A which form a regular sequence in B, by [25,
Theorem 16.1]. We assert that they also form a maximal regular sequence in A. We need
only to prove that αi is not a zero–divisor in A/(α1, . . . , αi−1) for i = 1, . . . , e. Let ζ ∈ A
be an element such that ζ αi ∈ (α1, . . . , αi−1). Then there exist homogeneous elements
ζ1, . . . , ζi−1 ∈ B such that ζ = ζ1α1 + · · · + ζi−1αi−1 because α1, . . . , αi−1 is a regular
sequence in B. An easy verification shows that ζ1, . . . , ζi−1 can be chosen to lie in A, from
which it follows that ζ ∈ (α1, . . . , αi−1). 2

Theorem 1.8 Let I ⊆ k[x0, . . . , xn] be a homogeneous Cohen–Macaulay ideal. Let f1, . . . , fs ∈
k[x0, . . . , xn]/I and p ∈ k[x1, . . . , xn]/I be homogeneous elements such that p lies in the
radical of the ideal (f1, . . . , fs) and p is not a zero–divisor. Let r := dim I and d := maxi fi.
Then

pD ∈ (f1, . . . , fs)

holds, with D := r2 dr deg I.

8



Proof. First we note that the zero locus in V (I) of the polynomials {fi}i equals the zero
locus in V (I) of the polynomials {xd−deg fi

j fi}ij . We have also that xd−deg fi
j fi lies in the

ideal (f1, . . . , fs) for all i and j. Therefore we can suppose without loss of generality that
fi is a homogeneous polynomial of degree d for i = 1, . . . , s. We note however that the
number of input polynomials have been enlarged in this preparative step.

Let id : S(d) ↪→ S be the inclusion of k–algebras induced by the Veronese map and let
I(d) denote the contraction of the ideal I to the ring S(d). Then we have the inclusion
id : S(d)/I(d) ↪→ S/I and the decomposition in graded parts id(S(d)/I(d)) = ⊕j(S/I)dj . We
take a linear form ηi ∈ S(d)/I(d) such that id(ηi) = fi for i = 1, . . . , s, which exists as the
inclusion id is a bijection in degree one. We take also a homogeneous element q ∈ S(d)/I(d)

such that id(q) = pd.
The map vd : V (I) → V (I(d)) is a dominant regular map of projective varieties and

so it is surjective. Therefore the zero locus of the linear forms η1, . . . , ηs lies in the image
of the zero locus of the polynomials f1, . . . , fs. The common zeros of f1, . . . , fs lie in the
hypersurface {pd = 0} of V (I) and we have in addition that vd({pd = 0}) = {q = 0}.
Then the subvariety of V (I(d)) defined by η1, . . . , ηs lies in the hypersurface {q = 0}.

By Lemma 1.7 the ideal I(d) is Cohen–Macaulay, and we have also that q is not a
zero–divisor modulo I(d). Then we are in the hypothesis of the Main Lemma 1.1. As a
consequence we obtain that

q r2 deg I(d) ∈ (η1, . . . , ηs)

holds. Finally we apply the morphism id to the previous expression and we get that

pd r2 (d r−1 deg I) ∈ (f1, . . . , fs)

holds, as deg I(d) = dr−1 deg I. 2

Corollary 1.9 Let I ⊆ k[x1, . . . , xn] be an ideal such that its homogenization Ih in the
ring k[x0, . . . , xn] is Cohen-Macaulay. Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without
common zeros in the affine variety V (I). Then there exist g1, . . . , gs ∈ k[x1, . . . , xn] such
that

1 ≡ g1f1 + · · ·+ gsfs (mod I)

holds, with deg gifi ≤ (r + 1)2 dr+1 deg Ih for i = 1, . . . , s.

Proof. By assumption the ideal Ih is a Cohen–Macaulay homogeneous ideal of dimension
r + 1. We have also that x0 is not a zero–divisor modulo Ih.

Let fh
i denote the homogenization of fi for i = 1, . . . , s. The homogeneous polynomials

fh
1 , . . . , fh

s have no common zero in V (Ih) outside the hyperplane {x0 = 0}. By Theorem
1.8 there exist homogeneous polynomials v1, . . . , vs ∈ S such that

x
(r+1)2 dr+1

0 = v1f
h
1 + . . . + vsf

h
s (mod Ih)

holds, with deg vif
h
i = (r +1)2 dr+1 . The corollary then follows by evaluating x0 := 1. 2

Let the notation be as in Corollary 1.9. In the case when I is the zero ideal, that is,
in the setting of the classic effective Nullstellensatz, we get the degree bound

deg gifi ≤ (r + 1)2 dr+1.
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2. Sparse Effective Nullstellensätze

This section is devoted to our sparse effective Nullstellensätze (Theorems and ) and
the derivation of some of their consequences.

First we introduce notation and state some basic facts from polyhedral geometry and
toric varieties. We refer to the books [14] and [35] for the proofs of these facts and for a
more general background on these subjects.

Let A ⊆ ZZn be a finite set of integer vectors. The convex hull of A as a subset
of IRn is denoted by conv(A). The cone over conv(A) is denoted by pos(A), that is
pos(A) := IR≥0 conv(A). The set A is graded if there exists an integer vector ω ∈ ZZn

such that < a, ω >= 1 holds for every a ∈ A, that is, when the set A lies in an affine
hyperplane which does not contain the origin.

Let ZZA denote the ZZ–module generated by A. Let IRA denote the linear space
spanned by A, so that ZZA is a lattice in IRA. Let ρ denote the dimension of this linear
space. Then we consider the euclidian volume form in IRA, normalized in such a way that
each primitive lattice simplex has unit volume. The normalized volume Vol(A) of the set
A is defined as the volume of its convex hull with respect to this volume form.

We get readily from the definition the bound

Vol(A) ≤ ρ! vol (conv(A)),

where vol (conv(A)) denotes the volume of the convex hull of A with respect to the usual
non–normalized volume form of IRn. Let INA denote the semigroup spanned by A. This
semigroup is always contained in the semigroup pos(A) ∩ ZZA. The set A is said to be
normal or saturated if the equality INA = pos(A) ∩ ZZA holds. A polytope P is said to
be integral if it is the convex hull of a finite set of integer vectors.

An integral simplex is called unimodular if its interior contains no integral vector. Let
P be an integral polytope. A subdivision of P is said to be unimodular if it consists solely
of unimodular integral simplices. For an integral polytope P in IRn, we denote by A(P)
the set {1} × (P ∩ ZZn), which is a graded set of integral vectors in ZZn+1. We note that
the set A(P) is normal in the case when P admits a unimodular subdivision.

With respect to toric geometry, we shall follow the lines of [35]. This point of view
differs from the usual one in algebraic geometry. It is more combinatorial and suits better
for our purposes. Let A = {a1, . . . , aN} in ZZn be again a finite set of integer vectors. We
associate to the set A the morphism

ϕA : k[y1, . . . , yN ] → k[x1, . . . , xn, x−1
1 , . . . , x−1

n ], yi → xai .

The kernel of this map is a prime ideal IA of k[y1, . . . , yN ], called the toric ideal associated
to the set A. This ideal defines an affine toric variety XA as its zero locus in IAN . This
variety is irreducible and its dimension equals the rank of the ZZ–module ZZA.

The k–algebra k[x1, . . . , xn, x−1
1 , . . . , x−1

n ] is the coordinate ring of the torus (k∗)n.
Thus the map ϕA induces a dominant map (k∗)n → XA. The image of this map is called
the torus TA of the affine toric variety XA. This torus equals the open set {y1 · · · yN 6= 0}
of XA.
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The ideal IA is homogeneous if and only if the set A is graded. In this case the set
A defines a projective toric variety YA as the zero locus of the ideal IA in the projective
space IPN−1. The dimension of YA equals then the rank of ZZA minus one, and its degree
equals the normalized volume of the set A.

Let A = {a1, . . . , aN} ⊆ ZZn be a graded set. The intersection of the projective variety
YA with the affine chart {yi 6= 0} ∼= IAN−1 equals the affine toric variety associated to the
set

A− ai := {a1 − ai, . . . , ai−1 − ai, ai+1 − ai, . . . , aN − ai}.
In fact YA is irredundantly covered by the affine varieties XA−ai , where ai runs over the
vertices of the polytope conv(A).

The k–algebra k[y1, . . . , yN ]/IA is isomorphic to the semigroup algebra k[INA]. This
algebra is normal if and only if the set A is normal. We recall Hochster’s theorem that
the k–algebra k[INA] is a Cohen–Macaulay domain when the set A is normal [10].

Let P be an integral polytope of IRn. This polytope determines a fan ∆P and a
complete toric variety XP = X(∆P). This variety comes equipped with an ample Cartier
divisor DP . This Cartier divisor defines then a map ϕP : XP → IPN−1, where N denotes
the cardinality of the set {P ∩ZZn}. The image of this map is the projective variety YA(P),
where the set A(P) is defined as before as {1} × (P ∩ ZZn) [14, Section 3.4]. The divisor
(n− 1)DP is very ample [12], and so the graded set A((n− 1)P) is normal.

Theorem 2.10 Let p, f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials such that p lies in the
radical of the ideal (f1, . . . , fs). Let P be an integral polytope which contains the Newton
polytope of the polynomials 1, x1, . . . , xn, f1, . . . , fs. Assume furthermore that A(P) is
a normal set of integer vectors in ZZn+1. Then there exist D ∈ IN and g1, . . . , gs ∈
k[x1, . . . , xn] such that

pD = g1f1 + · · ·+ gsfs

holds, with D ≤ n! min{n + 1, s}2 vol (P) and N (gifi) ⊆ (1 + deg p)n! min{n +
1, s}2 vol (P) P for i = 1, . . . , s.

Proof. Let B = {b0, . . . , bN} denote the set of integer vectors P ∩ ZZn, so that A(P) =
{1} × B. Assume that b0 = (0, . . . , 0). We consider the morphism of k–algebras

ψ : k[y1, . . . , yN ] → k[x1, . . . , xn], yi 7→ xbi .

The kernel of this morphism is the defining ideal IB−b0 of the affine toric variety XB−b0 .
This affine variety is the intersection of the projective toric variety YA(P) with the affine
cart {y0 6= 0} of IPN . In addition the map ψ induces an isomorphism IAn → XB−b0 .

Let ζi be a polynomial of degree one in k[y1, . . . , yN ] such that ψ(ζi) = fi for i =
1, . . . , s. We take also a polynomial q in k[y1, . . . , yN ] of degree less or equal to the degree
of p such that ψ(q) = p. Then ζ1, . . . , ζs have no common zero in XB−b0 outside the
hypersurface {q = 0}.

Let η1, . . . , ηs, u denote the homogenization of ζ1, . . . , ζs, q in k[y0, . . . , yN ] respectively.
Then the linear forms η1, . . . , ηs have no common zero in YA(P) outside the hypersurface
{y0 u = 0}.

By assumption the set A(P) is normal, and so IA(P) is a Cohen–Macaulay prime
homogeneous ideal of k[y0, . . . , yN ] of dimension less or equal that n + 1. We have also
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that y0 u is not a zero–divisor modulo IA(P). Then we are in the hypothesis of the Main
Lemma 1.1. Let D denote the integer min{n + 1, s}2 deg YA(P). We obtain that there
exist homogeneous elements α1, . . . , αs ∈ k[y0, . . . , yN ]/IA(P) of degree (1 + deg u) D− 1
satisfying

(y0 u)D = α1η1 + · · ·+ αsηs.

Finally we evaluate y0 := 1 and we apply the map ψ to the preceding identity. We get

pD = g1f1 + · · ·+ gsfs,

where we have set gi(x) := αi(1, xb1 , . . . , xbN ) for i = 1, . . . , s. We have the estimates
deg u ≤ deg p and deg YA(P) ≤ n! vol (P). We conclude that D ≤ n! min{n+1, s} vol (P)
and that the polytope N (figi) is contained in ((1 + deg p) n! min{n + 1, s}2 vol (P)) P
for i = 1, . . . , s. 2

We derive from the previous theorem the following degree bound.

Corollary 2.11 Let the notation be as in Theorem 2.10 and d := maxi fi. Then there
exist D ∈ IN and g1, . . . , gs ∈ k[x1, . . . , xn] such that

pD = g1f1 + · · ·+ gsfs

holds, with D ≤ n! min{n + 1, s}2 vol (P) and deg gifi ≤ d (1 + deg p) n! min{n +
1, s, }2 vol (P) for i = 1, . . . , s.

2

We are going to show with an example that this degree bound can be much more
precise than the usual one in case of a sparse input system.

Example 2.12 Let

fi := ai0 + ai1x1 + · · ·+ ainxn + bi1x1 · · ·xn + · · ·+ bid(x1 · · ·xn)d

for i = 1, . . . , s be polynomials without common zeros in IAn. Let Pd := conv(0, e1, . . . , en, d (e1+
· · ·+en)) so that Pd contains the Newton polytope of the polynomials 1, x1, . . . , xn, f1, . . . , fs.
We have the decomposition

Pd = ∪Qij

with Qij := ((j − 1) (e1 + · · ·+ en), e1, . . . , êi, . . . , en, j (e1 + · · ·+ en)) for i = 1, . . . , n and
j = 1, . . . , d. Then Pd is unimodular and so the set A(P) is normal. Thus we are in the
hypothesis of Corollary 2.11 and we conclude that there exist g1, . . . , gs ∈ k[x1, . . . , xn]
such that

1 = g1f1 + · · ·+ gsfs

holds, with N (gifi) ⊆ nd min{n + 1, s}2 Pd , as the volume of Pd equals d/(n − 1)!. In
particular we get the degree bound deg gifi ≤ (n + 1)4 d2, which is much sharper than
the estimate deg gifi ≤ nn dn which follows from direct application of the usual degree
bound.
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Let notation be again as in Theorem 2.10. Let N denote the Newton polytope of the
polynomials 1, x1, . . . , xn, f1, . . . , fs and let U denote the unmixed volume of this polytope.
Assume that n ≥ 2. In this situation we can then take the polytope P to be (n − 1)N .
Then we get the bounds

D ≤ nn+2 U , N (gifi) ⊆ ((1 + deg p) nn+3 U) N .

It is easy to check that these bounds hold also when n = 1. Thus Theorem follows from
this observation in the particular case p = 1. We observe that in this case the condition
0 ∈ P is redundant.

We remark that the naive notion of sparseness, based on counting the number of
nonzero monomials in each polynomial, does not yield better bounds for the degrees in
the Nullstellensatz than the usual ones, in view of the Mora–Lazard–Masser–Philippon–
Kollár example.

We obtain a similar result in the case of Laurent polynomials.

Theorem 2.13 Let p, f1, . . . , fs ∈ k[x−1
1 , . . . , x−1

n , x1, . . . , xn] be Laurent polynomials such
that p lies in the radical of the ideal (f1, . . . , fs). Let P be an integral polytope which
contains the Newton polytope of p, f1, . . . , fs. Let ρ denote its dimension. Assume furthermore
that A(P) is a normal set of integer vectors in ZZn+1. Then there exist D ∈ IN, a ∈ ZZn

and g1, . . . , gs ∈ k[x1, . . . , xn, x−1
1 , . . . , x−1

n ] such that

pD = g1f1 + · · ·+ gsfs

holds, with D ≤ ρ! min{n + 1, s}2 vol (P) , a ∈ (ρ! min{n + 1, s} vol (P))2P and
N (gifi) ⊆ (ρ! min{n + 1, s} vol (P))2 P − a for i = 1, . . . , s.

Proof. As before, we denote by B = {b0, . . . , bN} the set of integer vectors P∩ZZn. Assume
for the moment that b0 = (0, . . . , 0). We consider the morphism

ψ : k[y1, . . . , yN ] → k[x1, . . . , xn, x−1
1 , . . . , x−1

n ], yi 7→ xbi .

The kernel of this morphism is the defining ideal IB−b0 of the affine toric variety XB−b0 . Let
T denote the torus of this toric variety. Then we have that XB−b0 equals the intersection
of the projective variety YA(P) with the affine cart {y0 6= 0} of IPN , and that T is also the
torus of YA(P). We recall that this torus equals the open set {y0 · · · yN = 0} of YA(P).

The map ψ induces a surjection (k∗)n → T . Let ζ1, . . . , ζs, q be elements of degree one
in k[y1, . . . , yN ] such that ψ(ζi) = fi for i = 1, . . . , s and ψ(q) = p. Then ζ1, . . . , ζs have
no common zero in T outside the hyperplane {q = 0}.

Let η1, . . . , ηs, u denote the homogenization of ζ1, . . . , ζs, q in k[y0, . . . , yN ] respectively.
Then the linear forms η1, . . . , ηs have no common zero in YA(P) outside the hypersurface
{y0 · · · yN u = 0}.

Let V (η1, . . . , ηs) denote the subvariety of YA(P) defined by the linear forms η1, . . . , ηs.
By Bézout’s inequality [19], the number of irreducible components of V (η1, . . . , ηs) does not
exceed the degree of YA(P). Let us denote by δ the degree of YA(P), so that δ ≤ ρ! vol (P)
holds. In our situation this implies that V (η1, . . . , ηs) lies in the union of at most δ
hyperplanes. These hyperplanes are defined by variables yi1 , . . . , yil , and eventually also
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by the linear form u, depending on whether η1, . . . , ηs have a common zero in T in the
hyperplane {u = 0} or not. Let Π denote the product of these equations, which is a
polynomial of degree less or equal that δ.

By assumption the set A(P) is normal and so IA(P) is a Cohen–Macaulay prime
homogeneous ideal of k[y0, . . . , yN ] . We have also that Π is not a zero–divisor modulo
this ideal. Thus we are again in the hypothesis of the Main Lemma 1.1. Let E denote the
integer min{n + 1, s}2 deg YA(P). Then there exist homogeneous elements α1, . . . , αs ∈
k[y0, . . . , yN ]/IA(P) of degree (deg Π) · E − 1 such that

ΠE = α1η1 + · · ·+ αsηs

holds. We evaluate y0 := 1 and we apply the map ψ to the preceding identity. We get

pD = g1f1 + · · ·+ gsfs,

where we have set gi(x) := (xbi1 · · ·xbil )−1 αi(1, xb1 , . . . , xbN ) for i = 1, . . . , s and D := E
in the case when u appears as a factor of Π and D := 1 in the other case. Then D ≤
ρ! min{n + 1, s}2 vol (P) holds and the polytope N (gifi) is contained in (ρ! vol (P) E −
1) P − (bi1 + · · ·+ bil) for i = 1, . . . , s. We have that deg Π ≤ deg YA(P) ≤ ρ! vol (P) and
that i1 + . . . + ik ∈ deg YA(P) P.

Now we consider the general case. Let b0 be any integer vector in P, and let Q denote
the polytope P − b0. By the previous considerations there exist D ∈ IN, a0 ∈ ZZn and
g1, . . . , gs ∈ k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] such that

pD = g1f1 + · · ·+ gsfs

holds, with D ≤ ρ! min{n+1, s}2 vol (Q) , a0 ∈ ρ! vol (Q) Q and N (gifi) ⊆ (ρ! min{n+
1, s} vol (Q))2 Q− a0 for i = 1, . . . , s.

Let a be the integer vector a0 + (ρ! min{n + 1, s} vol (P))2 b0. Then a lies in the
polytope (ρ! min{n + 1, s} vol (P))2 P and we have also that N (gifi) ⊆ (ρ! min{n +
1, s} vol (P))2 P − a holds for i = 1, . . . , s as stated. 2

Let notation be as in Theorem 2.13. Let N denote the Newton polytope of p, f1, . . . , fs

and let U denote the unmixed volume of this polytope. Assume in addition that n ≥ 2.
In this situation we can then take the polytope P to be (n− 1)N . We get the bounds

D ≤ nn+2 U , N (gifi) ⊆ (n2n+3 U) N − a.

for some a ∈ (n2n+3 U)N . As before, it is easy to verify that the same bounds hold also
when n = 1. Thus Theorem follows from this observation in the particular case p = 1.

Let q = f/g ∈ k(x1, . . . , xn) be a rational function given as the quotient of two
polynomials without common factors. Then the degree of q is defined as deg q :=
max{deg f, deg g}.

We derive from Theorem 2.13 the following degree bound.

Corollary 2.14 Let notation be as in Theorem 2.13 and d := maxi deg fi. Then there
exist D ∈ IN and g1, . . . , gs ∈ k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] such that

pD = g1f1 + · · ·+ gsfs

holds, with D ≤ ρ! min{n + 1, s}2 vol (P) , a ∈ (ρ! min{n + 1, s} vol (P))2P and
deg(gifi) ≤ d ((1 + deg p)ρ! min{n + 1, s} vol (P))2 for i = 1, . . . , s.
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2

3. Improved Bounds for the Degrees in the Nullstellensatz

In this section we consider the degree bounds in the Nullstellensatz. We shall apply the
methods used in Section 1 in a direct way — without any reference to the Veronese map
— in the setting of the classic effective Nullstellensatz. The proof follows closely the same
lines and so we shall skip some verifications in order to avoid unnecessary repetitions.

Assume that we are given homogeneous polynomials f1, . . . , fs in k[x0, . . . , xn] without
common zeros in the hyperplane {x0 = 0}. In this situation we are going to give a bound
for the minimal D ∈ IN such that xD

0 ∈ (f1, . . . , fs).
We shall assume without loss of generality that s ≤ n+1 and that f1, . . . , fs is a weak

regular sequence in k[x0, . . . , xn]x0 . Let di := deg fi, and we suppose that d2 ≥ · · · ≥ ds

and that ds ≥ d1 hold. As before these polynomials can be obtained as linear combinations
of the original polynomials, eventually multiplied by powers of x0.

Let us denote by Ji the contraction to the ring S of the ideal (f1, . . . , f i) ⊆ Sx0 for
i = 1, . . . , s. We make the convention J0 := (0).

Lemma 3.15 Following the preceding notation, there exist homogeneous polynomials h1, . . . , hs ∈
k[x0, . . . , xn] satisfying the following conditions:

i) hi ≡ xci
0 fi mod Ji−1 for some ci ∈ IN,

ii) h1, . . . , hs is a regular sequence,

iii) deg hi ≤ max {deg Ji−1, deg fi},
for i = 1, . . . , s.

2

We introduce the following notation. Let δi denote the degree of the homogeneous ideal
Ji for i = 0, . . . , s. We recall the Bézout bound δi ≤

∏i
j=1 dj . Then let γi = di δi−1−δi for

i = 1, . . . ,min{n, s} and γn+1 := δn+dn+1−1. We also let δ := max{δi : i = 1, . . . , s−1}
and d := max{di : i = 1, . . . , s−1}. For an ideal I of S we denote by Iu its unmixed part.

Lemma 3.16 Let q ∈ Ji for some 1 ≤ i ≤ s. Then xγi
0 q ∈ (Ji−1, ηi)u.

Proof. The case i ≤ n is exactly as in Lemma 1.4. Thus we only consider the case i = n+1.
The ideal Jn is has dimension one and its degree is δn. Then (Jn, fn+1)m = Sm for

m ≥ δn + dn+1 − 1 as fn+1 is not a zero–divisor modulo Jn [33, Theorem 2.23]. It follows
that x

γn+1

0 ∈ (Jn, fn+1) and in particular x
γn+1

0 q ∈ (Jn, fn+1)u. 2

Now let h1, . . . , hs be the homogeneous polynomials introduced in Lemma 3.15. We
set µi :=

∑i
j=2((i− j +1) γj +(i− j) cj) for i = 1, . . . ,min{n, s} and µn+1 := µn +γn+1,

where ci denotes the integer deg hi − deg fi.
We denote by Li the homogeneous ideal (f1, . . . , fi) for i = 1, . . . , s.
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Lemma 3.17 Let q ∈ Ji for some 1 ≤ i ≤ s. Then xµi
0 q ∈ Li.

Proof. The case i ≤ n is exactly as in Lemma 1.6. Thus we only consider the case i = n+1.
By the previous lemma x

γn+1

0 q ∈ (Jn, fn+1)u = (Jn, fn+1) and so x
γn+1

0 q−u fn+1 ∈ Jn

for some polynomial u ∈ S. We apply then the inductive hypothesis and we obtain that
xµn

0 (xγn+1

0 q − u fn+1) ∈ Ln from which it follows that x
µn+1

0 q ∈ Ln+1. 2

Thus it only remains to bound µs. We shall be concerned with two different types of
bounds. One depends as usual on the number of variables and on the degrees of the input
polynomials, and the other depends also on the degree of some ideals associated to these
polynomials.

Lemma 3.18 Let notation be as before. Then µs ≤ min{n, s}2 d δ. In case deg fi ≥ 2
for i = 1, . . . , s we have that µs ≤ 2

∏min{n,s}
j=1 dj.

Proof. We decompose the integer µs in two terms and we estimate them separately. First
we consider the term

∑s
j=2 (s− j) cj . We have that ci ≤ max{δi−1 − di, 0}. In particular

c2 = 0 as δ1 = d1 and d1 ≤ d2. Then
∑s

j=2 (s− j) cj ≤ ∑s−1
j=3 (s− j) (d1 · · · dj−1 − dj)

≤ (
∑s−1

j=3(s− j)/dj · · · ds−2) d1 · · · ds−2 −
∑s−1

j=2 (s− j) dj

≤ 4 d1 · · · ds−2 − ds−1,

under the assumption di ≥ 2 for i = 1, . . . , s. We have also
∑s−1

j=2 (s − j) cj ≤
∑s−1

j=2 (s −
j) δ = 1

2 (s− 2)(s− 1) δ.
Now we estimate the other term. We consider first the case s ≤ n. Then

∑s
j=2 (s− j + 1) γj =

∑s
j=2 (s− j + 1) (dj δj−1 − δj)

= (s− 1) d2 δ1 +
∑s

j=3 ((s− j + 1) dj − (s− j)) δj−1 − δn

≤ d1 · · · ds − δs,

from which we obtain the bound µs =
∑s

j=2 (s−j+1) γj+
∑s−1

j=2 (s−j) cj ≤ (d1 · · · ds−δs)+
(4 d1 · · · ds−2 − ds−1) ≤ 2 d1 · · · ds. In the case s = n + 1 we have that µn+1 = µn + γn+1

which implies that µn+1 ≤ (2 d1 · · · dn− δn− dn−1)+ (δn + dn+1− 1) ≤ 2 d1 · · · dn. On the
other hand we have also the estimate

∑s
j=2 (s − j + 1) γj ≤ 1

2 (s − 1) s d δ from where we
conclude that µs ≤ 1

2 (s− 1) s d δ + 1
2 (s− 2) (s− 1) δ ≤ (s− 1)2 d δ holds, as stated. 2

Theorem 3.19 Let f1, . . . , fs ∈ k[x0, . . . , xn] be homogeneous polynomials such that x0

lies in the radical of the ideal (f1, . . . , fs). Let di := deg fi for i = 1, . . . , s and assume
that d1 ≥ · · · ≥ ds holds. Then

xD
0 ∈ (f1, . . . , fs)

holds, with D := 2 ds
∏min{n,s}−1

i=1 di.
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Proof. After Lemmas 3.17 and 3.18 it only remains to consider the case when some fi has
degree one.

By assumption f1, . . . , fs are ordered in such a way that d1 ≥ · · · ≥ ds holds. Let r be
maximum such that dr ≥ 2, so that the polynomials fr+1, . . . , fs have all degree one. We
can assume without loss of generality that they are k–linearly independent. We can also
suppose that neither 1 nor x0 lie in the k–linear space spanned by fr+1, . . . , fs as if this is
the case the statement is trivial.

Let y0, . . . , yn+r−s−1 ∈ S be polynomials of degree one which complete fr+1, . . . , fs

to a linear change of variables. We suppose in addition that y0 = x0. Then the natural
inclusion k[y0, . . . , yn+r−s−1] ↪→ k[x0, . . . , xn]/(fr+1, . . . , fs) is an isomorphism. Let vi be
an homogeneous polynomial in k[y0, . . . , yn+r−s−1] such that vi ≡ fi mod (fr+1, . . . , fs)
for i = 1, . . . , r. Then x0 lies in the radical of the ideal (v1, . . . , vr) of k[y0, . . . , yn+r−s−1]
and deg vi ≤ di holds for i = 1, . . . , r.

Let E denote the integer 2
∏r

i=1 deg vi so that E ≤ D := 2 ds
∏min{n,s}−1

i=1 di. Then
xD

0 ∈ (v1, . . . , vr) from where it follows that xD
0 ∈ (f1, . . . , fs) as stated. 2

Then the degree bound announced in the Introduction follows from this result by
homogenizing the input polynomials and by considering the degree of the polynomials in
a representation of xD

0 .

Now we are going to prove Theorem . We introduce the notion of algebraic degree of
a polynomial system.

Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials without common zeros in IAn. Let λ =
(λij)ij ∈ k

s×s be an arbitrary s× s matrix with entries in k. We note by hi(λ) the linear
combinations

∑
j λij fj induced by the matrix λ for i = 1, . . . , s.

Consider the set Γ of s×s matrices such that for any λ in Γ the polynomials h1(λ), . . . , ht−1(λ)
form a regular sequence in k[x1, . . . , xn] and 1 ∈ (h1(λ), . . . , ht(λ)) for some t = t(λ) ≤
min{n, s}. This set is nonempty, and in fact it contains a nonempty open set of k

s×s.
For each λ ∈ Γ and i = 1, . . . , t−1 we denote by Ji(λ) ⊆ k[x0, . . . , xn] the homogenization

of the ideal (h1(λ), . . . , hi(λ)). Then let δ(λ) denote the maximum degree of the homogeneous
ideal Ji(λ) for i = 1, . . . , t− 1.

The algebraic degree of the polynomial system f1, . . . , fs is defined as

δ(f1, . . . , fs) := min {δ(λ) : λ ∈ Γ}.

The notion of geometric degree of [23] and [33] is defined in an analogous way as the
minimum of δ(λ) for λ ∈ Γ, with the additional hypothesis in the definition of Γ that the
ideals Ji(λ) are radical for i = 1, . . . , t − 1. Another difference is that in the case when
the characteristic of k is positive the polynomials hj(λ) are taken as linear combinations
of the polynomials {xj fi}ij .

The notion of geometric degree of [16] is similar to that of [23], [33], the only difference
is that it is not defined as a minimum but as the value of δ(λ) for a generic choice of λ.

Thus the algebraic degree is bounded by the geometric degree, whichever version of the
later one we consider. The following example shows that in fact it can be much smaller.
It is a variant of [23, Example 3].
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Example 3.20 Let us consider the polynomial system

f1 := 1− x1x
d
2, f2 := x2 − xd

3, . . . , fn−1 := xn−1 − xd
n, fn := x2

n

for some d ≥ 2. It is easy to check that these polynomials have no common zero in IAn.
We are going to compute both the geometric degree δg — in the sense of [23], [33] — and
the algebraic degree δa for this particular example. We obtain δg = dn−1 and δa = 2 and
thus we show that δa can be much smaller than δg in some particular instances.

First we consider the geometric degree. The polynomials f1, . . . , fn form a weak regular
sequence, 1 ∈ (f1, . . . , fn) and the ideal (f1, . . . , fi) is radical for i = 1, . . . , n − 1. Then
deg V (f1, . . . , fi) = di for i = 1, . . . , n− 1, from where it follows δg ≤ dn−1.

Let hi :=
∑

j λij fj be k–linear combinations of f1, . . . , fn for i = 1, . . . , l. Assume that
1 ∈ (h1, . . . , hn) and that (h1, . . . , hi) is a radical ideal of dimension n−i for i = 1, . . . , l−1.
We are going to show that l = n and that deg V (h1, . . . , hn−1) ≥ dn−1.

We can assume without loss of generality that the linear combinations hi are in staircase
form in the sense of linear algebra. By this we mean hi = fn(i) +

∑
j>n(i) aijfj with

n(1) < · · · < n(l). For our particular polynomial system, this allows us to eliminate
the variables xn(1), . . . , xn(l) into the equations h1, . . . , hl, as each variable xi does not
appear in fj for j > i. Thus when l ≤ n − 1 the variety defined by h1, . . . , hl can be
parametrized by expressing these variables as rational functions of the other ones. It
follows that (h1, . . . , hl) has dimension at least n − l. We deduce that l = n and that
(h1, . . . , hn−1) is a radical ideal of dimension one.

Next suppose first that h1, . . . hn−1 are invertible linear combinations of f1, · · · , f̂i, . . . , fn

for some 1 ≤ i ≤ n − 1. Then (h1, . . . hn−1) = (f1, . . . , f̂i, . . . , fn) which is not radical,
and thus contradicting our assumptions. Then hi = fi + ai fn for some ai ∈ k, if
we assume again that the linear combinations h1, . . . , hn−1 are in reduced form. We
deduce that the curve V (h1, . . . , hn−1) is parametrized by a rational map t 7→ ϕ(t) =
(ϕ1(t), . . . , ϕn(t)), where ϕi ∈ k(t) is a rational function of degree dn−i for i = 1, . . . , n. We
get that deg V (h1, . . . , hn−1) = dn−1 from where we deduce the lower bound δg ≥ dn−1.
Combining this with the previous estimate we conclude δg = dn−1.

Now we consider the algebraic degree. The polynomials fn, . . . , f1 form a weak regular
sequence and 1 ∈ (fn, . . . , f1). We have that (fn, . . . , fn−i+1) = (x2

n, xn−1, . . . , xn−i+1)
for i = 1, . . . , n from where it follows that δa ≤ 2. In addition, any nontrivial linear
combination h of f1, . . . , fn has degree at least two and so δa ≥ deg h ≥ 2. We conclude
that δa = 2.

We obtain the following degree bound by direct application of Lemmas 3.17 and 3.18.

Theorem 3.21 Let f1, . . . , fs ∈ k[x0, . . . , xn] be homogeneous polynomials such that x0

lies in the radical of the ideal (f1, . . . , fs). Let fa
i denote the affinization of fi for i =

1, . . . , s. Let d := maxi deg fi and let δ denote the degree of the polynomial system
fa
1 , . . . , fa

s . Then
xD

0 ∈ (f1, . . . , fs)

holds, with D := min{n, s}2 d δ.

2
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Then Theorem follows from this result in the same way we derived the previous degree
bound from Theorem 3.19

If we apply this degree bound to the previous example we obtain that there exist
g1, . . . , gn ∈ k[x1, . . . , xn] satisfying

1 = g1f1 + · · ·+ gnfn,

with deg gifi ≤ 2n2 d for i = 1, . . . , s. In fact we have the identity

1 = f1 + x1 xd−1
2 f2 + x1 xd−1

2 xd−1
3 f3 + · · ·+ x1 xd−1

2 · · ·xd−1
n−1 xd−2

n fn
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