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Abstract. We present an upper bound for the height of the mixed sparse resultant,
defined as the logarithm of the maximum modulus of its coefficients. We obtain a
similar estimate for its Mahler measure.

LetA0, . . . ,An ⊂ Zn be finite sets of integer vectors and let ResA0,...,An ∈ Z[U0, . . . , Un]
be the associated mixed sparse resultant — or (A0, . . . ,An)-resultant — which is a
polynomial in n + 1 groups Ui := {Ui a ; a ∈ Ai} of mi := #Ai variables each. We
refer to [Stu94] and [CLO98, Chapter 7] for the definitions and basic facts.
This resultant is widely used as a tool for polynomial equation solving, a fact that
has sparked a lot interest in its computation, see e.g. [CLO98, Sec. 7.6], [EM99],
[D’An02], [JKSS04], while it is also studied from a more theoretical point of view
because of its connections with toric varieties and hypergeometric functions, see e.g.
[GKZ94], [CDS98].

We assume for the sequel that the family of supports A0, . . . ,An is essential (see
[Stu94, Sec. 1]) which does not represent any loss of generality, by [Stu94, Cor. 1.1].
Set A := (A0, . . . ,An), and let LA ⊂ Zn denote the Z-module affinely spanned by the
pointwise sum

∑n
i=0Ai. This is a subgroup of Zn of finite index

[Zn : LA] := #(Zn/LA)

because we assumed that the family A is essential. Also set Qi := Conv(Ai) ⊂ Rn for
the convex hull of Ai for i = 0, . . . n.
We note by MV the mixed volume function as defined in e.g. [CLO98, Sec. 7.4]: this
is normalized so that for a polytope P ⊂ Rn, the mixed volume MV(P, . . . , P ) equals
n! times its Euclidean volume VolRn(P ). We also set Vol(P ) := MV(P, . . . , P ) =
n! VolRn(P ).
Under this notation and assumption, the resultant is a multihomogeneous polynomial
of degree

degUi

(
ResA0,...,An

)
=

1
[Zn : LA]

MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) > 0

with respect to each group of variables Ui, see [PS93, Cor. 2.4].
The absolute height of a polynomial g =

∑
a ca xa ∈ C[x1, . . . , xn] is defined as H(g) :=

max{|ca| ; a ∈ Nn}. Hereby we will be mainly concerned with its (logarithmic) height:

h(g) := log H(g) = log max{|ca| ; a ∈ Nn}.
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2 MARTÍN SOMBRA

The main result of this paper is the following upper bound for the height of the
resultant:

Theorem 1.1.

h
(
ResA0,...,An

) ≤ 1
[Zn : LA]

n∑

i=0

MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) log(#Ai).

We write for short ResA := ResA0,...,An and MVi(A) := 1
[Zn:LA] MV(Q0, . . . , Qi−1, Qi+1,

. . . , Qn) for i = 0, . . . , n. The previous result can thus be rephrased as

H
(
ResA

) ≤
n∏

i=0

(#Ai)MVi(A) .

This improves our previous bound for the unmixed case [Som02, Cor. 2.5] and extends
it to the general case. We remark that the obtained upper bound is polynomial in the
size of the input family of supports A and in the mixed volumes MVi(A) , and hence it
represents a truly substantial improvement over all previous general estimates. These
are the ones which follow either from the Canny-Emiris type formulas (Inequality
(4) in the appendix, see also [KPS01, Prop. 1.7] or [Roj00, Thm. 23]) or from direct
application of the unmixed case (see the inequality (3) below for k = 1).

We also consider the Mahler measure, which is another usual notion for the size of a
n-variate polynomial. The Mahler measure of g ∈ C[x1, . . . , xn] is defined as

m(g) :=
∫

Sn
1

log |g| dµn,

where S1 ⊂ C is the unit circle and dµ is the Haar measure over S1 of total mass 1.
This can be compared with the height: in our case

(1) −
n∑

i=0

MVi(A) log(mi) ≤ m(ResA)− h(ResA) ≤
n∑

i=0

MVi(A) log(mi)

by [KPS01, Lem. 1.1]. We refer to [KPS01, Sec. 1.1.1] for an account on some of the
notions of height of complex polynomials: just note that the height h(g) here coincides
with log |g|∞ in that reference.
We obtain the same estimate as before for the Mahler measure of the resultant.

Theorem 1.2.

m
(
ResA0,...,An

) ≤ 1
[Zn : LA]

n∑

i=0

MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) log(#Ai).

Note that this improves by a factor of 2 the estimate which would derive from direct
application of Theorem 1.1 and the inequalities (1) above.

Both estimates are a consequence of the following:

Lemma 1.3. Let f0 ∈ CA0 , . . . , fn ∈ CAn. Then

log
∣∣ResA0,...,An(f0, . . . , fn)

∣∣ ≤ 1
[Zn : LA]

n∑

i=0

MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) log ||fi||1,

where ||fi||1 :=
∑

a∈Ai
|fi a| denotes the `1-norm of the vector fi = (fi a ; a ∈ Ai).
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Let g =
∑

a ca xa ∈ C[x1, . . . , xn]. Then for a ∈ Nn we have that

ca =
∫

Sn
1

g(z1, . . . , zn)
za1+1
1 · · · zan+1

n

dµn

by Cauchy’s formula and so h(g) ≤ sup
{

log |g(ξ)| ; ξ ∈ Sn
1

}
. Thus Theorem 1.1 is a

consequence of this inequality applied to g := ResA, together with Lemma 1.3.
On the other hand, Theorem 1.2 follows from Lemma 1.3 by a straightforward esti-
mation of the integral in the definition of the Mahler measure.

Proof of Lemma 1.3.– Let k ∈ N. Then let kAi ⊂ Zn denote the pointwise sum of
k copies of Ai, and set kA := (kA0, . . . , kAn). It is easy to verify that kA is also
essential, LkA = LA and Conv(kAi) = k Qi.
We identify each fi ∈ CAi with the corresponding Laurent polynomial fi =

∑
a∈Ai

fi a xa,
and we set fk

i ∈ CkAi for the vector which corresponds to the k-th power of fi. By
the factorization formula for resultants [PS93, Prop. 7.1] we get that

ReskA(fk
0 , . . . , fk

n) = ResA(f0, . . . , fn)kn+1

and so

kn+1 log
∣∣ResA(f0, . . . , fn)

∣∣ ≤ h(ReskA) +
n∑

i=0

MVi(kA) log ||fk
i ||1

≤ h(ReskA) + kn+1
n∑

i=0

MVi(A) log ||fi||1.(2)

The first inequality follows from the straightforward estimate |G(u0, . . . , un)| ≤ H(G)∏n
i=0 ||ui||di

1 for a multihomogeneous polynomial G of degree di in each group of va-
riables, applied to G := ReskA and ui := fk

i . The second one follows from the linearity
of the mixed volume, and the sub-additivity of the `1-norm with respect to polynomial
multiplication (which implies that log ||fk

i ||1 ≤ k log ||fi||1).
Now let B ⊂ Zn be any finite set such that LB = Zn and such that A0, . . . ,An ⊂ B.
Set n(k) := #k B and P := Conv(B) ⊂ Rn. Then the (unmixed) resultant ReskB
is a polynomial in (n + 1)n(k) variables and total degree (n + 1)Vol(k P ) = (n +
1) kn Vol(P ). We have also that LkB = Zn and so we are in the hypothesis of [Som02,
Cor. 2.5], which gives the height estimate

h(ReskB) ≤ 2 (n + 1) log
(
n(k)

)
Vol(k P ) = 2 (n + 1) log

(
n(k)

)
kn Vol(P ).

We have that kAi ⊂ k B for i = 0, . . . , n and so by [Stu94, Cor. 4.2] there exists a
monomial order ≺ such that ReskA divides the initial form init≺(ReskB). This is a
polynomial in (n+1)n(k) variables of degree and height bounded by those of ReskB,
and so

h(ReskA) ≤ h(ReskB) + 2 log
(
(n + 1)n(k) + 1

)
(n + 1) kn Vol(P )

≤ 4 (n + 1) log
(
(n + 1)n(k) + 1

)
kn Vol(P )(3)

by the inequality h(f) ≤ h(g)+2 deg(g) log(n+1), which holds for f, g ∈ Z[x1, . . . , xn]
such that f |g (see [KPS01, Lem. 1.2(1.d)]) applied to f := ReskA and g := init≺(ReskB).

Finally we set B := b + d [0, 1]n ⊂ Rn where [0, 1] denotes the unit interval of R,
for some b ∈ Zn and d ∈ N such that A0, . . . ,An ⊂ b + d [0, 1]. Then n(k) =



4 MARTÍN SOMBRA

log
(
#(k b+k d [0, 1]n ∩Zn)

)
= log(k d+1)n = Ok(log k) (here the notation Ok refers

to the dependence on k) and so

h(ReskA) = Ok(kn log k).

Note that alternatively, we could have obtained this from the inequality (4) in the
appendix.
Toghether with the inequality (2) this implies that

log
∣∣ResA(f0, . . . , fn)

∣∣ ≤
n∑

i=0

MVi(A) log ||fi||1 + Ok

( log k

k

)
,

from where we conclude by letting k →∞. 2

Let us consider some examples. For short we set H(A) := H(ResA) and E(A) :=∏n
i=0(#Ai)MVi(A); we also set

q(A) :=
log E(A)
log H(A)

for the quotient between the height of the resultant and the estimate from Theorem 1.1.

Example 1.1. Sylvester resultants. For d ∈ N we let

A0(d) = A1(d) := {0, 1, 2, . . . , d} ⊂ Z.

The corresponding resultant coincides with the Sylvester resultant of two univariate
polynomials of the same degree d. In this case MV0(d) = MV1(d) = d and #A0(d) =
#A1(d) = d + 1, and so E(d) := E

(A0(d),A1(d)
)

= (d + 1)2 d.

We compute the height H(d) := H
(A0(d),A1(d)

)
for 2 ≤ d ≤ 7 with the aid of Maple

and we collect the results in the following comparative table:

d 2 3 4 5 6 7

H(d) 2 3 10 23 78 274

E(d) 81 4,096 390,625 60,466,176 13,841,287,201 4,398,046,511,104

q(d) 6.33 7.57 5.59 5.71 5.35 5.18

Example 1.2. We take this example from [EM99, Example 3.5]. Let

A0 :=
{
(0, 0), (1, 1), (2, 1), (1, 0)

}
,

A1 :=
{
(0, 1), (2, 2), (2, 1), (1, 0)

}
,

A2 :=
{
(0, 0), (0, 1), (1, 1), (1, 0)

}
.

Then MV0 = 4, MV1 = 3 and MV2 = 4, so that E(A) = 44 43 44. On the other
hand, we can compute the resultant using its expression in [EM99, Example 3.19] as
a quotient of determinants and we obtain that H(A) = 8. Hence

H(A) = 8 , E(A) = 4,194,304 , q(A) = 7.33 .

For reference, the straightforward estimation of H(A) via the Canny-Emiris formula
(see the appendix below) gives:

H(A) ≤ 282 = 4,835,703,278,458,516,698,824,704 .
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Example 1.3. We take this example from [Stu94, Example 2.1]. Let

A0 :=
{
(0, 0), (2, 2), (1, 3)

}
,

A1 :=
{
(0, 1), (2, 0), (1, 2)

}
,

A2 :=
{
(3, 0), (1, 1)

}
.

Then MV0 = 5, MV1 = 7 and MV2 = 7, so that E(A) = 35 37 27. From the explicit
monomial expansion of the resultant (see [Stu94, Example 2.1]) we find that H(A) =
14 and so

H(A) = 14 , E(A) = 68,024,448 , q(A) = 6.83 .

These examples show that there is still some room for improvement over Theorem 1.1.
It is however possible that our estimate is quite sharp anyway: in spite of the large
difference between H(A) and E(A) in the computed examples, the quotient q(A) is
quite small, and moreover it does not seem to grow when E(A) →∞.
In any case, it would be very interesting to have an exact expression for h(ResA) —
as was remarked to me by B. Sturmfels — or at least a non trivial lower bound. Note
that the only information that we dispose about the exact value of the coefficients of
ResA is for the extremal ones, which are equal to ±1 [Stu94, Cor. 3.1].

Remark 1.4. After a first version of this paper was circulating, C. D’Andrea (per-
sonal communication) obtained a non trivial lower bound for the height of the Sylvester
resultant, and an improvement of the upper bound for this case: in the notation of
Example 1.1 above, he obtains that H(d) ≤ d!.

Appendix: Estimation of the height via the Canny-Emiris formula

For purpose of easy reference, we establish herein the estimate for h(ResA) which
follows from the Canny-Emiris formula and the standard estimates for the behavior
of the height of polynomials under addition, multiplication and division.

Assume that LA = Zn and set Q :=
∑n

i=0 Qi ⊂ Rn. Let M0, . . . ,Mn be a family
of Canny-Emiris (square, non singular) matrices for A; we refer to [CLO98, Sec. 7.6]
for their precise definition. In the sequel we just describe the aspects needed for the
height estimate.
A family of Canny-Emiris matrices is not unique, as their construction depends on
a choice of a coherent mixed subdivision of Q and of a sufficiently small and generic
vector δ ∈ Qn. Set

E := (Q + δ) ∩ Zn.

The procedure then uses the given subdivision of Q to split this set into a disjoint
union E = E0(j) ∪ · · · ∪ En(j), for each 0 ≤ j ≤ n. The elements in E are in bijection
with the rows of Mj , and to each p ∈ Ei(j) corresponds a row of Mj with exactly
mi = #Ai non zero entries, which consist of the variables in Ui := {Ui a ; a ∈ Ai}.
Set Dj := det(Mj) ∈ Z[U0, . . . , Un] \ {0}. The Canny-Emiris formula [CLO98, Ch. 7,
Thm. 6.12] states that ResA = gcd(D0, . . . , Dn).

Then D0 is a multihomogeneous polynomial of degree Ni := #Ei(0) in each set of
variables Ui and of height bounded by

∑n
i=0 Ni log(mi). We have that ResA|D0 and
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so m(ResA) ≤ m(D0), which combined with [KPS01, Lem. 1.1] gives

h(ResA) ≤ h(D0) +
n∑

i=0

(
Ni + MVi(A)

)
log(#Ai)

≤
n∑

i=0

(
2Ni + MVi(A)

)
log(#Ai).(4)

Applied to Example 1.2, this gives the stated estimate: N0 = N1 = 4 and N2 = 7 (see
[EM99, Example 3.5]) and so the previous estimate gives H(A) ≤ 42·15+11 = 282.
In general, the estimate so obtained is much worse than that of Theorem 1.1, especially
for n À 0. Consider e.g. Ai := {0, . . . , d}n ⊂ Zn for i = 0, . . . , n. Then it is easy to
show that Inequality (4) gives

h(ResA) ≤ (
2 ((n+1) d)n+(n+1)! dn

)
log(d+1)n = n

(
2 (n+1)n+(n+1)!

)
dn log(d+1)

while Theorem 1.1 gives h(ResA) ≤ n (n + 1)! dn log(d + 1).
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