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Abstract

We show several arithmetic estimates for Hilbert’s Nullstellensatz. This includes an algorith-
mic procedure computing the polynomials and constants occuring in a Bézout identity, whose
complexity is polynomial in the geometric degree of the system. Moreover, we show for the first
time height estimates of intrinsic type for the polynomials and constants appearing, again poly-
nomial in the geometric degree and linear in the height of the system. These results are based on
a suitable representation of polynomials by straight–line programs and duality techniques using
the Trace Formula for Gorenstein algebras.

As an application we show more precise upper bounds for the function πS(x) counting the
number of primes yielding an inconsistent modular polynomial equation system. We also give a
computationally interesting lower bound for the density of small prime numbers of controlled bit
length for the reduction to positive characteristic of inconsistent systems. Again, this bound is
given in terms of intrinsic parameters.

1 Introduction and statement of results

In the sequel we discuss several arithmetic aspects of Hilbert’s Nullstellensatz whose origin is closely
connected with the classical consistency question for systems of multivariate polynomial equations.
Let us assume that a system S = {f1, . . . , fs} ⊆ ZZ[X1, . . . , Xn] of multivariate polynomials with
integer coefficients is given. The consistency problem over C on input S can be stated as deciding
whether the following formula is true or not :

∃x1 ∈ C, . . . , ∃xn ∈ C, fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ s. (1)

Hilbert’s Nullstellensatz (which was probably already considered by Kronecker) states that this for-
mula is false if and only if an arithmetic Bézout identity holds, i.e. if and only there exist a non–negative
integer a ∈ ZZ \{0} and polynomials g1, . . . , gs ∈ ZZ[X1, . . . , Xn] such that the following identity holds :

a = g1f1 + · · ·+ gsfs. (2)

This arithmetic presentation of the Hilbert Nullstellensatz is more suitable than the standard one
for the study of the consistency problem over prime fields of positive characteristic. More precisely,
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let us consider a prime number p ∈ IN, IFp := ZZ/pZZ the prime field of positive characteristic p,
and let Kp be an algebraic closure of IFp. For every polynomial f ∈ ZZ[X1, . . . , Xn] we denote by
f̄ ∈ ZZ/pZZ[X1, . . . , Xn] the polynomial obtained by taking residues (mod p) in the coefficients of
f . The consistency problem over Kp on input system S can now be stated as deciding whether the
following formula is true or not :

∃x1 ∈ Kp, . . . , ∃xn ∈ Kp, f̄i(x1, . . . , xn) = 0 for 1 ≤ i ≤ s. (3)

One of the main topics of this thesis will be the estimation of the number of primes p for a given
system S such that the formula (3) is false. In order to formalize this problem, we introduce the
following function (which depends on S) :

πS : ZZ≥0 −→ ZZ≥0

defined by πS(x) := the number of primes p such that p ≤ x and the formula (3) is true. A precise
description of this function πS is not known up to now. For the moment, only upper and lower bounds
are available, which will be improved here.

One of the motivations for this study is the interest in reductions of bounded complexity from the
consistency problem in characteristic 0 with the consistency problem in positive characteristic.

This kind of reductions have been used recently by P. Koiran in [41]. Let us observe that the con-
sistency problem has (up to now) worst case upper time bounds which are exponential in the input
length, whereas the upper space bounds are known to be polynomial by [13]. In fact, Koiran’s work
is stronger, since it reduces consistency problems in characteristic 0 to another relevant question
concerning polynomial equation systems : the satisfiability problem.

The satisfiability problem for a system S ⊆ IFp[X1, . . . , Xn] is to decide whether there exists a solution
in IFn

p for the system S or not. For fixed prime number p, the satisfiability problem is known to be
NP–complete due to a result of [19]. In [41] a reduction from the consistency problem in characteristic
zero to the satisfiability problem in positive characteristic is shown. This yields more precise space
bounds for the characteristic zero case than those shown in [13]. This reduction is based on estimates
for upper bounds for πS using the results of [44], also yielding a lower bound for πS assuming the
Generalized Riemann Hypothesis. Corollary 5 on the arithmetic Nullstellensatz improves the known
upper bounds for πS . In the sequel we also show a lower bound for πS improving on the one presented
in [60], assuming the Generalized Riemann Hypothesis. This lower bound is a consequence of the
studies done in [29], [28], [25], [30].

Let us observe that if the system S is inconsistent over C, the arithmetic Bézout identity (2) holds.
In that case, πS is a bounded function. The obvious reason is that if (2) holds, then (3) is false for all
those prime numbers p such that a 6≡ 0 (mod p). In particular, if we know the value of a from the
arithmetic Nullstellensatz, we immediately obtain the following bound :

πS(x) ≤ log2 | a | for all x ∈ IN

where | a | denotes the usual absolute value of a. Conversely, if (1) is a valid formula, πS is unbounded
but co–finite, i.e. π − πS is a bounded function. Thus, studies around the arithmetic Bézout identity
(2) with estimates for the absolute value of a (and consequently of the coefficients of the polynomials
g1, . . . , gs) are of central relevance for estimating πS .

A discussion of the historical achievements around (arithmetic) Bézout identities follows. Let us
assume now that d is an upper bound for the degrees of the polynomials in the input system S =
{f1, . . . , fs} and that h is an upper bound for the absolute values of the coefficients of the polynomials
in S. First estimates for log2 | a | were obtained by the systematic use of upper bounds for the degrees
of the polynomials g1, . . . , gs that may occur in a Bézout identity like (2).

Let us assume from now on that the system S is inconsistent and denote by D(d, n) the minimum of
the degrees of the polynomials g1f1, . . . , gsfs in the Bézout identity (2).
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The first remarkable achievement was G. Hermann’s upper bound that stated D(d, n) ≤ d2n

, cf. [37].
We have to wait until the late eighties to see major improvements of Hermann’s bound. In [12], [13],
[14], [42] the bound was improved to D(d, n) ≤ max{3, d}n, cf. also [22] and [65]. For the case of
d = 2, which seemed to escape these techniques, the following bound was obtained in the nineties, cf.
[21], [70] :

D(d, n) ≤ 4ndn

which also holds for d = 2. Recently, [78] showed D(d, n) ≤ 2n+1 for d = 2. The lower bound
D(d, n) ≥ dn−dn−1 is a consequence of the following example due to Mora-Lazard-Masser-Philippon,
see [12] :

S := {Xd
1 , X1 −Xd

2 , . . . , Xn−2 −Xd
n−1, 1−Xn−1X

d−1
n }. (4)

One can interpret Equation (2) as a big system of linear equations in the unknowns a and the coef-
ficients of the polynomials g1, . . . , gs. Making appropriate use of Cramer’s rule, we obtain a as the
determinant of a square submatrix M with approximately

(
D(d,n)+n

n

)
rows and columns. We then

conclude :
log2 | a | ≤ D(d, n)n log2 h.

The previous bounds imply the estimation πS(x) ≤ log2 | a | ≤ dn2
s log2 h, which is still far from being

satisfactory.

P. Philippon establishes in his paper [65] the bound

log | a | ≤ (n + 2)2 · (8n + 1)n+2 · (log h + d) · dn,

where h is a bound on the absolute values of the coefficients of the input polynomials. The contribu-
tions of [7], [6] provide the following more precise upper bounds :

πS(x) ≤ log2 | a | ≤ k(n)d8n+3(log2 h + d log2 d) (5)

where k(n) is an effective (but super-exponential) bound depending only on n. In [43], [44] the
following, even more precise upper bound was obtained :

πS(x) ≤ log2 | a | ≤ (nd)cn(log2 h + log2 s)

for a universal constant 0 < c < 32. These bounds seemed to be a final achievement because of the
following example adapted from the above example (4) for a ∈ ZZ \ {0}, cf. [44], [56] :

S := {X1 − 2, X2 −Xd
1 , . . . , Xn −Xd

n−1, Xn}.

Here we observe that for the constant a obtained from the Bézout equality (2) for this inconsistent
system S holds log2 | a | ≥ dn−1.

However, all these approaches had some inconvenience. First of all, their estimates depend strongly
on the syntactical representation of the polynomials (degree, number of variables, absolute value of
the coefficients). In particular, for systems of degree 2 the previous bounds in [6], [7] and [43], [44]
yield a bound of order :

πS(x) ≤ log2 | a | ≤ ncn+3(log2 h + 2).

Secondly, this dependence from the syntactical representation of the input system S hides any special
features of the system with respect to arithmetic Bézout identities. For instance, these features will
not be perceivable when we are facing systems as the following one :

S := {X1 − 1, X2 −Xd
1 , . . . , Xn −Xd

n−1, Xn}.

In this example, the integer a ∈ ZZ \ {0} in identity (2) can be chosen to be exactly 1, whereas all the
approaches cited above yield bounds exponential in n.
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In the sequel we also show that the Nullstellensatz depends on the special features of some geometric
objects associated to the input system S. We show that we can profit from these special features to
improve the estimates for upper bounds of log2 | a |. In this sense, the works [23], [43] and [44] were
fundamental. These contributions essentially proved that the polynomials g1, . . . , gs and the integer
a ∈ ZZ \ {0}, occurring in a Bézout identity can be chosen with very special features with respect to
their representation.

In fact, the authors showed in [44] that g1, . . . , gs and a can be expressed in terms of the input system
in a way far better than expected : For the case d ≥ n the polynomials g1, . . . , gs and the integer a can
be evaluated by a (certain kind of) program of polynomial size dO(n). This particular property yields
bounds of order equivalent to those in (5). Moreover, it was shown that the circuits (straight–line
programs) which evaluate the polynomials can be computed by a Turing machine running in time
essentially polynomial in dn log2 h.

However, the complexity estimates for the elimination procedures underlying [43], [44] were also of
syntactic nature (they were strongly inspired by [27]). The resulting bounds are of syntactic nature
too (depending on the bound dn) and thus can not profit from the special features of the input system
(as in the example before).

Statement of results Several intrinsic complexity elimination procedures were developed since
then in [29], [43], [28], [25], [30], [60]. These elimination procedures have the following properties :

• they can be adapted to the syntactic representation chosen to encode the polynomials in the
input system S.

• two intrinsic invariants (called the degree and height of the system S) appear in the complexity
estimates.

These methods have been discussed in detail in [60] and are fundamental to the forthcoming Theorem
1 and 2. Let us also mention that these intrinsic elimination methods inspired a new type of effective
Nullstellensätze with intrinsic degree bounds of order 3n2dδS in [45] and for the sparse monomial
representation of order min{n, s}2(d + 3n)δS in [76], [77], where δS is the geometric degree of the
system S as in Definition 50 on page 40.

An estimate in terms of intrinsic invariants for the representation of the constant a ∈ ZZ \ {0} and the
polynomials g1, . . . , gs ∈ ZZ[X1, . . . , Xn] by straight–line programs (see Section 2.2 for a definition)
can be obtained as a consequence of the following Theorem :

Theorem 1 There exists a universal constant c1 > 0 with the following property : Let R be the ring
of algebraic integers of a given number field K and f1, . . . , ft, f ∈ R[X1, . . . , Xn], t ≤ n+1 polynomials
of degree at most d. Suppose that the following properties are verified :

i) All the ideals (f1, . . . , fi) in K[X1, . . . , Xn] are radical ideals defining a variety of co-dimension
i for 1 ≤ i ≤ t− 1.

ii) The polynomial ft is not a zero divisor in the residue ring K[X1, . . . , Xn]/(f1, . . . , ft−1).

iii) The polynomial f belongs to the ideal (f1, . . . , ft) in K[X1, . . . , Xn].

iv) There is given a straight–line program Γ of size L, non–scalar depth ` and parameters in a finite
set F ⊂ R, such that Γ evaluates the polynomials f1, . . . , ft, f .

Let us define δ as the maximum of the geometric degrees (see Section 3) of the intermediate varieties,
δ := max{deg V (f1, . . . , fi) : 1 ≤ i ≤ t− 1}.
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1) Then, there exists a division-free straight–line program Γ1 of size (tdLδ)c1 , non–scalar depth
O((n + `)2 log2 δ) and parameters in F ∪ {z ∈ ZZ : | z | ≤ (tdLδ)c1} ⊆ R, such that Γ1 evaluates
polynomials g1, . . . , gt ∈ R[X1, . . . , Xn] and a non–zero constant a ∈ R \ {0} such that the
following holds :

af = g1f1 + · · ·+ gtft.

2) Moreover, the polynomials g1, . . . , gt verify the degree bound deg(gi) ≤ 3t2dδ.

Our proof of Theorem 1 (see Section 6) exhibits explicitly such a straight–line program Γ1 evaluating
the polynomials g1, . . . , gt. However, the non–scalar depth of the straight–line program describing the
polynomials obtained in this way is too big (of order O(n log2 δ)) to yield good bounds for the height
of the constant a ∈ R and the polynomials g1, . . . , gt ∈ R[X1, . . . , Xn] in the Bézout identity.

By an alternative approach, analyzing the parallel complexity of the polynomials a−1gi ∈ K[X1, . . . , Xn]
and starting from the so-called geometric solution (see Section 3 for a definition) produced by the al-
gorithm underlying Theorem 1, we yield the following result :

Theorem 2 There exists a universal constant c2 > 0 with the following property : Let R be the ring
of algebraic integers of a given number field K and f1, . . . , ft, f ∈ R[X1, . . . , Xn], t ≤ n+1 polynomials
of degree at most d satisfying conditions i), ii) and iii) of Theorem 1 above. Suppose we are given a
division-free straight–line program Γ of size L, non–scalar depth ` = O(log L) and parameters in a
finite set F ⊂ R such that Γ evaluates the polynomials f1, . . . , ft, f . Then there exists a division-free
straight–line program Γ2 of size ((td)tLδ)c2 , non–scalar depth O(log2 t + log2 d + log2 L + log2 δ), and
parameters in F ∪ {z ∈ ZZ : | z | ≤ ((td)tLδ)c2} ⊆ R, such that from the geometric solutions of the
varieties V (f1, . . . , fi), 1 ≤ i ≤ t − 1, the straight–line program Γ2 evaluates polynomials h1, . . . , ht ∈
R[X1, . . . , Xn] and a non–zero element b ∈ R such that holds :

bf = h1f1 + · · ·+ htft.

Moreover, the polynomials h1, . . . , ht verify the degree bound deg(hi) ≤ 3t2dδ.

The proof of the above Theorem 2 as established in Section 7 shows that the straight–line program
evaluating the polynomials g1, . . . , gt for the representation found by the algorithms underlying The-
orem 1 and 2 are, up to constants, the same, i.e. a−1gi = b−1hi holds in the above Theorems.

The total complexity of the algorithm underlying Theorem 2 is obviously worse than the result ob-
tained in the first Theorem. This is due to the iterated interpolation technique used, which causes
an increasal of the straight–line program size. Nevertheless, at the same time we obtain an improved
bound on the non–scalar depth of the straight–line program evaluating the polynomials, and as these
are up to constants identical, this yields an improved overall bound for the constant a in the Bézout
identity.

The two Theorems above have meaningful consequences in terms of complexity and arithmetic esti-
mates for the membership problem in complete intersection ideals. As a first consequence of Theorem
1, the method described in Section 6, and the results obtained in the series of papers [29], [43], [28],
[25], [30], [60] we have :

Corollary 3 (Bounds on the complexity) With the same notations and hypotheses as in Theo-
rem 1, let R = ZZ be the ring of integers. Then there exists a bounded error probability Turing machine
M which takes as input polynomials f1, . . . , ft, f in ZZ[X1, . . . , Xn] and produces a straight–line pro-
gram computing a constant a ∈ ZZ \ {0} and polynomials g1, . . . , gt ∈ ZZ[X1, . . . , Xn] verifying :

af = g1f1 + · · ·+ gtft.

Moreover, the running time of M is polynomial in ndLδ.
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On the other hand, Theorem 2 is helpful to obtain arithmetic estimates for the polynomials occuring
as quotients in a division modulo a complete intersection ideal. We have chosen two different height
measures for polynomials. The first one takes only archimedean absolute values into account for
polynomials g ∈ R[X1, . . . , Xn]. The second one is the invariant (logarithmic) height as introduced
by P. Philippon in the series of papers [66], [67], [68] to give a notion of height for unmixed homo-
geneous ideals (here invariance means invariance under scalar multiplication). In particular, using
the notation of Theorem 1 and 2, the invariant heights of a−1gi and b−1hi agree. For a finite subset
F = {a1, . . . , am} ⊆ R we define the height ht(F) as the logarithmic height (following [50]) of the
projective point (1 : a1 : . . . : am).

We have the following Corollary to Theorem 2 :

Corollary 4 (Bounds on the height) There exists a universal constant c3 > 0 with the following
property : With the same notations and assumptions as in Theorem 2, let η, η̃ be respectively the
quantities defined by :

η := max{ht(V (f1, . . . , fi)) : 1 ≤ i ≤ t− 1}, η̃ := max{h̃t(V (f1, . . . , fi)) : 1 ≤ i ≤ t− 1}

where ht(V (f1, . . . , fi)) is the normalized logarithmic height of the variety V (f1, . . . , fi) which takes
into account only the archimedean absolute values, whereas h̃t(V (f1, . . . , fi)) is the invariant logarith-
mic height of the elimination polynomials of V (f1, . . . , fi) (see Def. 38 on page 30).

For the constant b and the polynomials h1, . . . , ht as evaluated by the straight–line program of Theorem
2 the following estimates hold :

max{ht(b), ht(h1), . . . , ht(ht)} ≤ (ndLδ)c3(η + ht(F)), and

max{h̃t(b), h̃t(h1), . . . , h̃t(ht)} ≤ (ndLδ)c3(η̃ + ht(F)) holds.

Let us remark that h̃t(a) = h̃t(b) = 1 holds and the polynomials g1, . . . , gt evaluated by the straight–
line program of Theorem 1 also verify that :

h̃t(gi) = h̃t(hi) ≤ (ndδ)c3(η + ht(F)).

The conditions i) and ii) imposed on the polynomials f1, . . . , ft, f in Theorem 1 and also in Theorem
2 may seem very restrictive, but this is not the case as will be shown in Section 5.

In a purely existential form, combining Theorems 1 and 2 above, we may also show estimates for the
Arithmetic Nullstellensatz of the following minimal nature.
Let S = {f1, . . . , fs} ⊆ R[X1, . . . , Xn] be a sequence of polynomials of degree at most d generating the
trivial ideal in K[X1, . . . , Xn]. For every positive integer H ∈ IN, we define the class SH of sequences
of polynomials F := (F1, . . . , Fr) with 1 ≤ r ≤ n + 1 with the following properties :

i) for every i, 1 ≤ i ≤ r, Fi is not a zero divisor in K[X1, . . . , Xn]/(F1, . . . , Fi−1)

ii) for every i, 1 ≤ i ≤ r−1 the ideal (F1, . . . , Fi) is a radical ideal of codimension i in K[X1, . . . , Xn].

iii) (F1, . . . , Fr) = (f1, . . . , fs) in K[X1, . . . , Xn]

iv) there exist integer numbers λij ∈ ZZ with 1 ≤ i ≤ r and 1 ≤ j ≤ s such that |λij | ≤ H and
Fi = λi1fi + · · ·+ λisfs

Estimates for H such that SH 6= ∅ are shown in Section 5 below. In fact, there exists a universal
constant c1 > 0 such that for every given system S and every H ≥ dc1n the set SH is non–empty.
Now, let S ⊂ R[X1, . . . , Xn] be a finite system defining the trivial ideal in K[X1, . . . , Xn] and H ∈ IN
such that S̃H 6= ∅. For every sequence F = (F1, . . . , Fr) ∈ SH we define :
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• δ(F ) := max{deg V (F1, . . . , Fi) : 1 ≤ i ≤ r − 1} where deg V (F1, . . . , Fi) is the geometric
degree of the unmixed algebraic variety V (F1, . . . , Fi) := {x ∈ Cn : F1(x) = 0, . . . , Fi(x) = 0} of
codimension i. Here geometric degree is used as introduced in [34] without counting multiplicities
or points ar infinity.

• η̃(F̃ ) := max{η̃(V (F1, . . . , Fi)) : 1 ≤ i ≤ r − 1} where η̃(V (F1, . . . , Fi)) is the logarithmic
invariant height of the variety V (F1, . . . , Fi) ∈ Cn as introduced in [66], [67], [68].

• η(F̃ ) := max{η(V (F1, . . . , Fi)) : 1 ≤ i ≤ r− 1} where η(V (F1, . . . , Fi)) is the logarithmic height
of the variety taking into account only archimedean absolute values.

From these estimates we can define the minimal tradeoff between degree and height of a system S.
With the previous notions and notations, given S ⊆ R[X1, . . . , Xn] and H ∈ IN such that SH 6= ∅, we
define :

δ × η̃min(S,H) := min{δ(F ) · η̃(F ) : F ∈ SH},

where δmin(S, H) := min{ δ(F ) : F ∈ SH}, η̃min(S,H) :=
δ × η̃min(S,H)

δmin(S,H)
.

Corollary 5 (Existential estimates for the Arithmetic Nullstellensatz) With the previous no-
tations, let S = {f1, . . . , fs} ∈ ZZ[X1, . . . , Xn] be a sequence of polynomials of degree at most d gen-
erating the trivial ideal in K[X1, . . . , Xn]. Let us assume that the polynomials in S can be evaluated
by a non–scalar straight–line program of size L, non–scalar depth ` = O(log2 L) and parameters in a
finite set F ⊆ {z ∈ ZZ : |x | ≤ h}. Let H ∈ IN be such that S̃H 6= ∅. Then, there exists a universal
constant c > 0 and a non–zero a ∈ Rwzero such that the following holds :

i) a = g1f1 + · · ·+ gsfs,

ii) deg(gi) ≤ 3n2dδmin(S, H) holds for 1 ≤ i ≤ s,

iii) The invariant (logarithmic) height of g1, . . . , gt verifies the following upper bound :

h̃t(gi) ≤ (ndLδmin(S, H))c(ht(F) + η̃min(S,H) + log2 H + log2 s).

iv) The polynomials g1, . . . , gs ∈ R[X1, . . . , Xn] and the constant a ∈ IR \ {0} can be evaluated by a
straight–line program over K of size (ndLδmin(S,H))c and parameters in

F ∪ {z ∈ ZZ : | z | ≤ max{(ndLδmin(S, H))c,H}}.

Here, h̃t(gi) is the above mentioned notion of height for multivariate polynomials introduced by P.
Philippon in [64]. However, these estimates will equally hold for any reasonable notion of logarithmic
invariant height. As observed in Section 5 below, there exists a universal constant c > 0 such that for
H ≥ O(dcn), we have S̃H 6= ∅.
These existential estimates are complementary of some others of a more computational nature we are
going to introduce. Let us observe that for approriate bounds H a procedure to find some sequence
F̃ ∈ S̃H is given in Section 5 below. However, the computable sequence F̃ is not necessarily the best
one in the sense of minimizing the product of δmin and ηmin.
Thus, we have also developped a notion of degree and height of a system S according to the compu-
tational feasablity of this S̃ ∈ S̃H . These notions are essentially the geometric degree of the system
δS , and the logarithmic archimedean height of the system ηS and the logarithmic invariant height of
the system η̃S as defined in Section 5 below.

Let us remark that these notions depend on the geometric and arithmetic features of the input system,
independently from the syntactic representation of the polynomials in S. Let us also remark that δS
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is in any case at most dn−1 and that applying for instance the results of [44], η̃S and ηS can be shown
to be of order dO(n).
Actually, the procedure followed in Section 6 to show Theorem 1, Corollary 3, Theorem 2, Corollary
4 and Corollary 5 (which are existential statements) is the description of an algorithmic procedure
based on previous statements and geometric elimination methods (see for example [29], [43], [28], [25],
[30], [60]). We also obtain the following statements :

Corollary 6 (Membership problem for complete intersection varieties) Let R be the ring of
algebraic integers of a number field K and for t ≤ n f1, . . . , ft, f ∈ K[X1, . . . , Xn] polynomials of degree
at most d verifying the following hypotheses :

i) the ideal f1, . . . , ft in K[X1, . . . , Xn] is a complete intersection ideal of codimension t,

ii) the polynomial f belongs to the ideal (f1, . . . , ft) of K[X1, . . . , Xn], and

iii) there exists a non–scalar straight–line program Γ of size L, non–scalar depth ` = O(log2 L) and
parameters in a finite set F ⊂ R.

Then, there exist a non–zero constant a ∈ R \ {0} and polynomials g1, . . . , gt ∈ R[X1, . . . , Xn] such
that the following properties hold :

i) af = g1f1 + · · ·+ gtft,

ii) max{deg(gi) : 1 ≤ i ≤ t} ≤ 3t2dδ, where δ is the degree of the system f1, . . . , ft,

iii) the polynomials a−1g1, . . . , a
−1gt can be evaluated by a non–scalar straight–line program over K

of size (tdLδ)O(1) using parameters in F ∪ {a ∈ ZZ : | a | ≤ (tdLδ)O(1)},
iv) the logarithmic height of a, g1, . . . , gt verify the following bounds :

ht(a) ≤ (tdLδ)O(1)(ht(F) + η), ht(gi) ≤ (tdLδ)O(1)(ht(F) + η)

where η is the (logarithmic) height of the system f1, . . . , ft, as defined in Section 3.

v) the invariant (logarithmic) height of the polynomials g1, . . . , gt verifies the following upper bound :

h̃t(a−1gi) = h̃t(gi) ≤ (tdLδ)O(1)(ht(F) + η̃).

As in Corollary 5, a straight–line program evaluating the integer a and the polynomials g1, . . . , gt ∈
ZZ[X1, . . . , Xn] can be computed by a bounded error probability Turing machine running in time

(tdLδ)O(1).

We are now in conditions to give upper bounds for the function πS . In particular, we obtain directly
from claim iv) of Corollary 5 the following upper bound :

Corollary 7 (Upper bounds for πS) There exists a universal constant c1 > 0 (in particular, in-
dependent of x) such that for every given system S = {f1, . . . , fs} ⊆ ZZ[X1, . . . , Xn] of polynomials
verifying the hypotheses of Corollary 5, the function πS : IN → IN verifies the bound :

πS(x) ≤ (ndLδS)c1(ht(F) + ηS + log2 s).

The reduction of the consistency problem in characteristic zero to positive characteristic is not satis-
factorily characterized by the upper and lower bounds obtained for πS . Another outstanding estimate
concerns density questions in the following sense :

Supposing that S is inconsistent, πS is a bounded function. We are also interested in the following
density question :
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Given a system of multivariate polynomial equations S ⊂ ZZ[X1, . . . , Xn], inconsistent over C. Let IP
denote the set of all primes and let I ⊆ IP be a given finite set of prime numbers. We are interested
in estimates of the ratio of prime numbers p ∈ I such that the system S remains inconsistent when
reduced mod p and the cardinality of I. We define a density function depending only on the system
S and the set of chosen primes I :

PS(I) :=
#{p ∈ I : S (mod p) is inconsistent}

#(I)
.

Estimates for density functions depending on the representation of a in terms of arithmetic operations
were initiated in the late seventies and early eighties (as in [71], [38], cf. also [63]). Here, we give the
following lower bound for PS(I) :

Corollary 8 There exist universal constants c2, c3 > 0 such that the following holds : For every
given system of multivariate polynomials S = {f1, . . . , fs} ⊆ ZZ[X1, . . . , Xn] verifying the hypotheses
of Corollary 5, and for every finite subset I ⊆ IP we have :

i) PS(I) ≥ 1− (ht(F)+log2 L)(δSn2`)c2n

#(I)

ii) PS(I) ≥ 1− 2C(S)

#(I)

where C(S) := max{c3 log2(ndLδS), (ηS + ht(F) + log2 s)}.

Let us observe that the first bound does not take into account the height of the intermediate varieties
whereas the second one is polynomial in all the parameters involved. These lower bounds can be
applied to estimate densities for small prime numbers as done in the following Corollary :

Corollary 9 There exist universal constants c′2, c
′
3 > 0 such that the following holds :

For every given system of polynomials S = {f1, . . . , fs} ⊆ ZZ[X1, . . . , Xn] verifying the hypotheses of
Corollary 5, we have :

i) The probability that, choosing at random a prime number p ∈ ZZ of bit length bounded by
(ht(F) + log2 L)(δSn2`)c′2n such that the modular system

f̄1, . . . , f̄s ∈ IFp[X1, . . . , Xn] (6)

is inconsistent, is at least 1
2 .

ii) The probability that choosing at random a prime number p ∈ ZZ in the set
{2, . . . , (ndLδS)c′3(ht(F) + ηS + log2 s)} such that the modular system (6) is inconsistent, is at
least 1

2 .

Observe that the first bound does not take into account the height of the system. The second bound
yields together with the bounds obtained in [43] and [44] a reduction from inconsistent systems in
characteristic 0 to inconsistent systems in characteristic p, where the bit length of p is polynomial in
the input size.

As for the lower bounds for πS , we make use of the Generalized Riemann Hypothesis and Chebotarev’s
Density Theorem to obtain the following lower bound in terms of intrinsic parameters :

Theorem 10 (Lower bounds for πS [60]) For consistent systems S the following lower bound holds :

πS(x) ≥ 1
δS

(
π(x)− δc1

S (n− r + ηs)(1 + c2

√
x)− δ log x

)
.
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2 Fixing notations and notions

For the correct and precise elaboration of the results announced in the introduction ingredients from
different fields are required. Most of the material is common knowledge, well spread over the math-
ematical literature. Nevertheless, as the topics range from theoretical computer science to algebraic
and diophantine geometry, commutative algebra and back, it is very unlikely that all of the literature
covered is available to all of the readers. Therefore we settle in this Section the necessary definitions
and properties in a succinct form. In this way, the reader will hopefully be able to follow even the
less familiar notions and relations up to a level allowing him to proceed to the forthcoming Sections.
Also included are several references giving a more complete view on the subjects.

In Section 2.1, the notation used for multivariate polynomials, absolute values over number fields
and the Mahler measure of a polynomial are introduced. Then we briefly discuss in Section 2.2 the
theoretical background of the complexity model chosen in this work for the metric measures introduced
in Subsection 2.1.4.

2.1 Basic ingredients

2.1.1 Multivariate polynomials

A multivariate polynomial over a field K is a syntactic mathematical object whose existence is due to
the systematic study of a certain class of semantical objects : the polynomial functions

f : Kn −→ K.

Thus in a polynomial we may observe two aspects : the syntactical and the semantical. Years of
tradition in the systematic study of polynomial functions have established a convention of representing
them by their monomial expansions. Therefore a relevant part of the mathematical studies has tried
to relate both aspects. Several different estimates have been used just to connect the syntactical
representation and the semantical geometric object, for instance, relating the degree of a polynomial
and the degrees of the hypersurfaces given as the fibers f−1({0}).
In what follows we give the notation for the dense monomial encoding : Let 〈·, ·〉 denote the standard
hermitian product on the field of complex numbers C. For every complex number a ∈ C we denote
by | a | :=

√
〈a, a〉 its absolute value. Each multivariate complex polynomial P ∈ C[X1, . . . , Xn] has a

dense representation of the form :

P (X1 . . . , Xn) =
∑

|µ |≤d

Pµ Xµ1
1 · · ·Xµn

n

where d := deg(P ) denotes the total degree of P , µ := (µ1, . . . , µn) ∈ INn is a multi–index, |µ | :=
µ1+· · ·+µn is its length and Pµ are coefficients in C. Whereas the degree is an outstanding syntactical
invariant for the geometry of the hypersurface defined by a polynomial, other metric measures are
required when diophantine properties are studied. We define the (standard) weight of a complex
polynomial P ∈ C[X1, . . . , Xn] as :

wt(P ) :=
∑

|µ |≤d

|Pµ |.

The number of monomials of a multivariate polynomial P of total degree d is given by the length of
the vector of coefficients of P in the dense monomial encoding, which is

(
d+n

n

)
.

2.1.2 Absolute values over number fields

We resume here in a very concise form the language and notation used for absolute values over number
fields. For an introduction refer to e.g. [50, Chapter 1] whereas a more complete exposition of the
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theory of absolute values can found in Artin’s Algebraic Numbers and Algebraic Functions or [55]. Let
R be the ring of algebraic integers of a number field K and let IK be an algebraic closure of K.

By Kν we denote the completion of K with respect to the absolute value | · |ν and by IKν we shall
denote the algebraic closure of Kν . For sake of simplicity we assume that for archimedean ν its
algebraic closure IKν is included in C.

Finally, according to whether | · |ν is archimedean or not, we shall denote by nν the degree of Kν over
the completion of Q with respect to the absolute value | · |ν : Q −→ IR. Following [50], let MK be a
proper set of absolute values of K. We assume that MK has been chosen such that it satisfies Weil’s
product formula with multiplicities nν : For all x ∈ K \ {0} holds

1
[K : Q ]

∑

ν∈MK

nν log |x |ν = 0 (7)

where log stands for the natural logarithm, cf. [50, Chapter 2]. Let us recall that by [50, Proposition
4.3] for any given absolute value w on Q and all absolute values ν extending w to K, the following
holds : ∑

ν|w
nν = [K : Q ]. (8)

Observe that the proper set of absolute values MK has only a finite number of archimedean absolute
values (precisely the independent extensions of the ordinary archimedean value on Q to K induced
by the non–isomorphic embeddings of K into C, see below).

Let us recall that for archimedean valuations, i.e. ν ∈ S, the absolute value | · |ν is defined in the
following terms : for every ν ∈ S there exists an associated embedding σν : K −→ C such that for all
a ∈ K,

| a |ν := |σν(a) |,
where | · | stands for the usual absolute value in C. For archimedean valuations ν ∈ S, given P a
polynomial in R[X1, . . . , Xn], we denote by σν(P ) the polynomial in C[X1, . . . , Xn] given by

σν(P ) :=
∑

|µ |≤d

σν(Pµ)Xµ1
1 · · ·Xµn

n .

Now, for all valuations ν ∈ MK we define the height of P with respect to the absolute value | · |ν
as the maximum of the absolute values of the coefficients of P with respect to | · |ν , i.e. Hν(P ) :=
max|µ |≤d{|Pµ |ν}. We define in the same way for a finite set F ⊆ R the height of F with respect to the
absolute value | · |ν as Hν(F) := max{| a |ν : a ∈ F}. We define for archimedean absolute values the
weight of P with respect to the absolute value | · |ν as the sum of the absolute values of the coefficients
of P , i.e. for a polynomial P ∈ R[X1, . . . , Xn] as wtν(P ) :=

∑
|µ |≤d |Pµ |ν . Let us remark that

wtν(P ) = wt(σν(P )) holds. Finally, for all absolute values ν ∈ MK , we define the logarithmic height
with respect to the absolute value | · |ν as htν(F) := log Hν(F) and htν(P ) := log Hν(P ).

2.1.3 Mahler measure of multivariate polynomials

In the context of transcendental number theory, P. Philippon used the Mahler measure to derive a
notion of height for projective varieties in [64], which in the simplest case coincides with the logarithmic
absolute height of the point described. Later on, the author observed “le parallélisme qui existe entre
cette hauteur et le degré des variétés projectives” and showed this by establishing an arithmetic Bézout
inequality in [66].

This remark, together with the discussion of possible alternative definitions for the height of a pro-
jective variety (which were shown to be equivalent in a precise sense, see [66, Par.1]) gave rise to our
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hope, that a similar behaviour would certainly hold for a (suitably defined) version of height for affine
algebraic varieties and the geometric degree as defined in [34] (see Section 3.3 on page 25).

The Mahler measure of multivariate polynomials was used in [64] and more recently in [66], [67], [68].
We begin in this Subsection with the introduction of the Mahler measure for multivariate polynomials
to discuss different possible notions of height in the following Subsection 2.1.4.

When dealing with complex polynomials, i.e. when P is seen as element of C[X1, . . . , Xn], an inter-
esting metric measure is available : the Mahler measure M(P ) of the polynomial P . M(P ) is defined
as zero for the zero polynomial P = 0 and for non–zero polynomials as :

M(P ) := exp

(∫ 1

0

· · ·
∫ 1

0

log | P (e2πit1 , . . . , e2πitn) | dt1 · · · dtn

)
.

Sometimes we prefer to use the logarithmic Mahler measure which is obviously given as m(P ) :=
log M(P ), where log is the natural logarithm. In [51], the author used precisely this notion for
univariate polynomials under the form :

M(P ) := | a0 |
d∏

i=1

max{1, |αi |},

where P is a univariate complex polynomial verifying P = a0

∏d
i=1(X1 − αi). Let us recall that the

link between these two versions of the same invariant is Jensen’s Formula [50, p.60]. The Mahler
measure is closely related to the standard weight wt of the corresponding complex polynomial. In [64]
it was observed that for every complex polynomial P ∈ C[X1, . . . , Xn] the following inequalities hold :

m(P ) ≤ log wt(P ) ≤ m(P ) + d log(n + 1). (9)

A short resumé of the main relations between Mahler measure and degree / number of variables of the
polynomial can be found in [50, pp. 59–62]. We will make use of a particular feature of the Mahler
measure M , the fact that it is a multiplicative function. This means that M(PQ) = M(P ) ·M(Q)
holds. This multiplicative character is quite relevant for arithmetic Bézout inequalities (as in [66],
[67] and [68]) and we shall use this in Subsection 2.3 to estimate the height of polynomials given by
straight–line programs.

However, the behaviour of the Mahler measure with respect to additions of polynomials is not as
comfortable (cf. [64]) :

m(P + Q) ≤ m(P ) + m(Q) + (deg(P ) + deg(Q)) log(n + 1).

On the other hand, the standard weight is very well suited when dealing with the addition of polyno-
mials : it verifies the triangular inequality wt(P + Q) ≤ wt(P ) + wt(Q), but it is not as comfortable
for products of polynomials. In the sequel we shall profit from the features of each measure (and their
relation).

With the same notations as before, we define for archimedean absolute values | · |ν and polynomials
P ∈ R[X1, . . . , Xn] the Mahler measure of P with respect to ν as :

Mν(P ) := M(σν(P )) and mν(P ) := m(σν(P )).

Of course, this Mahler measure inherits all properties of the usual Mahler measure m(P ) for complex
polynomials through the embedding σν .

2.1.4 Different notions of height

The measures we have chosen for the estimation of degrees and heights in our complexity study have
a double aspect : geometric and diophantine. The geometric aspect refers to properties coming from
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algebraic geometry. Typically we may consider degrees of polynomials, number of monomials or the
cardinality of zero–dimensional solution sets given by systems of multivariate polynomial equations.
The diophantine aspect is more concerned with metric properties of the polynomials and the solution
sets.

Our idea here for obtaining improved bounds for the arithmetic Nullstellensatz is based on estimations
of the metric properties of the straight–line programs appearing in the concepts developed in [29], [43],
[44], [28], [25], [30] and [60].

Both Nesterenko and Philippon considered in their works the Chow form or elimination polynomial
for the introduction of a notion of height for equi-dimensional varieties. Furthermore, Philippon used
the Mahler measure for the definition of an invariant height for projective varieties over the algebraic
closure of Q by considering local height functions on the Chow form of the variety.

For the estimations of πS or PS it is sufficient to work with a rather simple notion of height, but
this is not the case for the arithmetic Nullstellensatz. We will compare the pairs of (suitably defined)
invariant height, archimedean height and elimination polynomial and geometric solution.

To give precise definitions of what we are going to use, we start with the standard definition for the
height of a projective point (cf. [50]).

Given a projective point a := (a0 : a1 : . . . : aN ) ∈ IPN (K) with coordinates in the number field K,
we define the height of a projective point a as :

H(a) := (
∏

ν∈MK

max{| ai |ν : 0 ≤ i ≤ N}nν )
1

[K:Q ] ,

which does not depend on the number field K under consideration. Given a finite set F := {bi : 0 ≤
i ≤ N} ⊆ K, we can associate a projective point in IPN+1(K) at a finite distance :

F1 := (1 : b0 : b1 : . . . : bN ) ∈ IPN+1(K).

Looking at the height of this projective point yields a notion of height of the finite set F , namely H1.

H1(F) := H(F1) = (
∏

ν∈MK

max{1, | bi |ν : 0 ≤ i ≤ N}nν )
1

[K:Q ] .

Let us observe that if the finite set F consists of just one point F = {α} ∈ K, the height H1(F)
gives the usual notion of height of the algebraic number α ∈ K. Observe that the consequence of
embedding F as a projective point at a finite distance has strong consequences for the derived height
H1, when F is contained in the ring of algebraic integers of K. In this case, only the archimedean
absolute values contribute to the height and the following holds :

H1(F) = (
∏

ν∈S

max{1, | bi |ν : 0 ≤ i ≤ N}nν )
1

[K:Q ] .

Using the height H1 as introduced above, we can derive the following notion of logarithmic height for
a finite set F :

the logarithmic height ht(F) := log H1(F).

As our main concern are metric estimates for multivariate polynomials P ∈ R[X1, . . . , Xn], and since
we do not have to relate the obtained estimates with any particular coefficient of the polynomial, we
can identify the polynomial P with the finite set F of cardinality N of its coefficients bi. This will do
for us using any arbitrary enumeration of the coefficients.

Now, we place the point obtained from the coefficients of P at finite distance as before, and obtain a
definition for the height of the polynomial P denoted by H1(P ) as :

H1(P ) := (
∏

ν∈MK

max{1, | bi |ν : 0 ≤ i ≤ N}nν )
1

[K:Q ]
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= (
∏

ν∈S

max{1, | bi |ν : 0 ≤ i ≤ N}nν )
1

[K:Q ] .

Similarly, we define the logarithmic height of the polynomial P as : ht(P ) := log H1(P ). Observe
that the logarithmic height ht defined above is non–negative. As in [64] and [66] we introduce the
Mahler measure instead of archimedean absolute values to define the invariant logarithmic height of
a polynomial P as :

h̃t(P ) :=
1

[K : Q ]
(
∑

ν∈S

nνmν(P ) +
∑

ν∈MK\S
nνhtν(P )).

Because of Weil’s product formula (7) we easily conclude that h̃t is invariant under scalar multiplication
by algebraic numbers i.e. for non–zero α in R and non–zero polynomials P in R[X1, . . . , Xn] holds
h̃t(αP ) = h̃t(P ). Just as the previously defined height ht, this new measure h̃t is also non–negative.
From the proof of [64, Proposition 1.12]. we obtain the following result :

For every non–zero polynomial P ∈ C[X1, . . . , Xn] of degree d, there exists µ ∈ INn, |µ | ≤ d, such
that the coefficient Pµ of Xµ is non–zero and for all archimedean absolute values | · |ν holds :

mν(P ) ≥ log |Pµ |ν .

Since this inequality also holds for non–archimedean absolute values, we conclude :

h̃t(P ) =
1

[K : Q ]

∑

ν∈S

nνmν(P ) +
∑

ν∈MK\S
nνhtν(P )

≥ 1
[K : Q ]

∑

ν∈MK

nν log |Pµ |ν = 0.

Using the relation between the Mahler measure and the weight for archimedean absolute values we
obtain for every polynomial P ∈ R[X1, . . . , Xn] of degree at most D the estimation :

h̃t(P ) ≤ log
(

D + n

n

)
+ ht(P ).

Philippon’s notion of invariant height h̃t as defined above has been chosen because of the good be-
haviour of the Mahler measure in terms of multiplication of polynomials. This has been illustrated
by a Bézout equality in [66], [67], [68].

Observe that using the above definition of invariant height h̃t, for any two multivariate polynomials
f, g ∈ R[X1, . . . , Xn] holds h̃t(fg) = h̃t(f) + h̃t(g). This property will be useful to relate the height of
a variety to the height of its irreducible components in a very natural form.

One might argue that the behaviour of Philippon’s invariant height h̃t with respect to other arithmetic
operations with polynomials (such as additions) is more difficult to analyze. However, this drawback is
less relevant since the height depends essentially on the non–scalar arithmetic operations (as remarked
in [44]). The problem appearing when dealing with additions can be overcome using the good relations
between the Mahler measure and the weight, whose behaviour with respect to additions is excellent.
This is the reason why in our demonstrations the weight appears as a technical tool in the estimations.

Remark For the statements of our results we shall mainly work with ht(P ) and h̃t(P ), the remaining
notation will be used only in the proofs. Let us also observe that all our statements concerning h̃t(P )
will equally hold using any reasonably defined notion of invariant logarithmic height (as for example
found in [50]). The same applies to the following invariant weight w̃t :

w̃t(P ) :=
1

[K : Q ]
(
∑

ν∈S

nν log wtν(P ) +
∑

ν∈MK\S
nνhtν(P )).
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We shall need the relations between the Mahler measure of a polynomial and the Mahler measure
of its coefficients with respect to some distinguished variable. These relations can be resumed in the
following Lemma :

Lemma 11 Let P ∈ R[X1, . . . , Xn][T ] be a polynomial of total degree N and degree D with respect to
the variable T . Let us assume that P has the following form :

P := aDTD + aD−1T
D−1 + · · ·+ a0

where ai ∈ R[X1, . . . , Xn], for 0 ≤ i ≤ D and aD 6= 0. Then the following estimates hold :

i) For every absolute value | · |ν ,

htν(ai) ≤ htν(P ) = max{htν(ai) : 0 ≤ i ≤ D},

wtν(ai) ≤ wtν(P ) =
D∑

i=0

wtν(ai).

ii) For every archimedean absolute value | · |ν , we have the following relations between the Mahler
measure of P and the Mahler measure of its coefficients :

mν(ai) ≤ mν(P ) + log
(

D

i

)
≤ mν(P ) + D log D,

mν(P ) ≤ N log(n + 1) +
D∑

i=0

mν(ai).

Proof.– Property i) follows immediately. The first inequality of ii) is a consequence of [64, Lemme
1.13]. The second inequality follows since the Mahler measure is bounded by the weight :

Mν(P ) ≤ wtν(P ) =
D∑

i=0

wtν(ai) ≤
D∑

i=0

Mν(ai)(1 + n)deg(ai).

As a consequence, we obtain the following Corollary :

Corollary 12 (Coefficients) With the same notations and assumptions, we have :

i) ht(ai) ≤ ht(P ) = max{ht(ai) : 0 ≤ i ≤ D}
ii) h̃t(ai) ≤ h̃t(P ) + D log D

iii) h̃t(P ) ≤ N log(n + 1) + (D + 1) +
∑D

i=0 h̃t(ai)

2.2 Non–scalar straight–line programs

In the sequel we will work with the complexity model of non–scalar straight–line programs (see for
instance [35], [80], [63], [59] or [44]) : a non–scalar straight–line program is a structure which evaluates
(and hence represents) a given polynomial of R[X1, . . . , Xn], taking R–linear operations for free.

Remark : We shall tacitly assume that our straight–line program does not contain any division.

We represent a straight–line program for the evaluation of a polynomial P ∈ R[X1, . . . , Xn] by a di-
rected acyclic graph G whose nodes are labelled gates which perform arithmetical operations. There-
fore we identify the nodes of G with the corresponding gates. The graph G disposes of n+1 particular
nodes labelled by the variables X1, . . . , Xn and the constant 1. These nodes are called the input gates
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of G. We define the depth of a gate ν of our graph as the length of the longest path which joins ν
with some input gate. Let us denote the gates of the directed acyclic graph by pairs of integer num-
bers (i, j), where i represents the depth of the gate and j is the corresponding value of an arbitrary
numbering imposed to the set of gates of depth i (this notation for the analysis of parallel complexity
has been inspired by [58] and [57]).

Definition 13 (Non-scalar straight–line program) A division-free non–scalar straight–line pro-
gram with inputs X1, . . . , Xn is a pair Γ := (G, Q), where G is a directed acyclic graph, with n + 1
input gates, unbounded fan–in, and Q is a function that assigns to every gate (i, j) one of the following
instructions :

i = 0 : Q0,1 := 1 , Q0,2 := X1 , . . . , Q0,n+1 := Xn

1 ≤ i ≤ ` : Qi,j := (
∑

r≤i−1
1≤s≤Lr

Ar,s
i,j Qr,s) · (

∑
r′≤i−1

1≤s′≤L
r′

Br′,s′
i,j Qr′,s′)

Here, Ar,s
i,j and Br′,s′

i,j are indeterminates called the parameters introduced in Γ. The non–scalar size
of the straight–line program Γ is L(Γ) = L0 + . . . + L` (where L0 := n + 1) and its non–scalar depth
`(Γ) = ` (these notions coincide with the notions of size and depth of the underlying computation
graph).

Observe that the rather complicated notation in Definition 13 (non–scalar straight–line program)
arises from the fact that a single non–scalar node in the graph represents the total of all scalar (i.e.
R–linear) operations contributing to this node.

Let us mention that in our notation the sub–indices i, j of the parameters Ar,s
i,j and Br′,s′

i,j represent the
gate of the multiplication they are assigned to and the super–indices r, s correspond to the previous
result they involve in the multiplication. We abbreviate A = (Ar,s

i,j ) and B = (Br′,s′
i,j ). Semantically

speaking the straight–line program Γ defines an evaluation algorithm of the polynomials (intermediate
results) :

Qi,j =
∑

|µ |≤2i

Qµ
i,j(A,B)Xµ1

1 . . . Xµn
n . (10)

Here, each coefficient Qµ
i,j(A,B) belongs to the polynomial ring ZZ[A,B]. The result Qi,j has degree

at most 2i with respect to the variables X1, . . . , Xn.

We obtain a non–scalar straight–line program over a ring R by specialisation of the non–scalar straight–
line program Γ, substituting the parameter lists A and B by elements of the ring R α = (αr,s

i,j ) and

β = (βr′,s′
i,j ) (we insist on the fact that αr,s

i,j , βr′,s′
i,j belong to R).

A specialisationA → α, B → β of the parameters of Γ induces a straight–line program (computation)
in R[X1, . . . , Xn] in the most obvious way. The intermediate results of this specialized straight–line
program γ are the polynomials of the form Qi,j(α, β,X1, . . . , Xn). In this sense we shall say that a
given polynomial P ∈ R[X1, . . . , Xn] is evaluable, or computable, by (a specialisation of) the straight–
line program Γ if there exists a specialisation A −→ α, B −→ β of the parameters of Γ such that for
some gate (i, j) the following equality holds :

P (X1, . . . , Xn) = Qi,j(α, β,X1, . . . , Xn). (11)

Taking into account the representation of (10) we can rewrite Identity (11) as :

Pµ = Qµ
i,j(α, β)

for all µ with |µ | ≤ 2i and Pµ = 0 for |µ | > 2i. Let us remark that the degree of such a polynomial
P = Qi,j(α, β,X1, . . . , Xn) is generically equal to 2i in the space of parameters.
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Finally, P ∈ R[X1, . . . , Xn] is computable by a straight–line program Γ with parameters in the finite
set F := {αrs

ij , βr′s′
ij }.

2.3 Evaluation and height: Some useful bounds

In this Section we resume how the notions of straight–line program (Subsection 2.2) and height
(Subsection 2.1.4) relate, establishing bounds for polynomials given by straight–line programs using
the different notions of height.

First of all, we can easily bound the number of parameters used by a non–scalar straight–line program
Γ of size L in n variables by 2L(L− (n + 1)). We can also bound the degrees of the polynomials Qµ

i,j

(of Formula (10)) as elements in ZZ[A,B] :

Lemma 14 ([44]) Given a non–scalar straight–line program Γ, the degree of all polynomials Qµ
i,j ∈

ZZ[A,B] is 2i+1 − 2 (independently from µ and j).

Lemma 15 ([44]) Let Γ be a non–scalar straight–line program over R of size L, non–scalar depth `
and parameters in a finite set F ⊆ R that evaluates a polynomial P ∈ R[X1, . . . , Xn].

i) For ν ∈ S holds max{mν(P ), htν(P )} ≤ log wtν(P ) ≤ (2`+1 − 2)[log L + htν(F)].

ii) For ν 6∈ S holds htν(P ) ≤ log wtν(P ) ≤ (2`+1 − 2)htν(F).

iii) As estimates for the two notions of logarithmic height introduced on page 13 we have :

ht(P ) ≤ (2`+1 − 2)(log L + ht(F)) and h̃t(P ) ≤ (2`+1 − 2)(log L + ht(F)).

Proof.– Claims i) and ii) follow as in [44, Proposition 15]. As for claim iii) we have for the logarithmic
height ht :

ht(P ) =
1

[K : Q ]
(
∑

ν∈S

nν max{0, htν(P )}+
∑

ν∈MK\S
nν max{0, htν(P )})

≤ 1
[K : Q ]

(
∑

ν∈S

nν(2`+1 − 2)(log L + max{0, htν(F)})

+
∑

ν∈MK\S
nν(2`+1 − 2) max{0, htν(F)}).

Since Identity (8) holds, we conclude :

ht(P ) ≤ (2`+1 − 2) log L +
(2`+1 − 2)
[K : Q ]

(
∑

ν∈MK

nν max{0, htν(F)})

= (2`+1 − 2) log L + (2`+1 − 2)ht(F).

On the other hand, for the invariant logarithmic height h̃t holds :

h̃t(P ) =
1

[K : Q ]

∑

ν∈S

nνmν(P ) +
∑

ν∈MK\S
nνhtν(P )

≤ 1
[K : Q ]

∑

ν∈MK

nν log wtν(P )

≤ 1
[K : Q ]

( ∑

ν∈S

nν(2`+1 − 2)(log L + htν(F))

+
∑

ν∈MK\S
nν(2`+1 − 2)htν(F)

)
.
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Again by Identity (8), we have :

h̃t(P ) ≤ (2`+1 − 2) log L

+
(2`+1 − 2)
[K : Q ]

(
∑

ν∈S

nνhtν(F) +
∑

ν∈MK\S
nνhtν(F))

= (2`+1 − 2) log L + (2`+1 − 2)ht(F).

Lemma 16 ([44], Proposition 15) Given an integer a ∈ ZZ by a division-free straight–line program
of size L, non–scalar depth ` and parameters in a finite set F ⊆ ZZ of bounded height H, the height
of a can be bounded as :

| a | ≤ (LH)(2
`+1−2).

Lemma 17 (Composition) Let g1, . . . , gm be polynomials in R[X1, . . . , Xn] of degree at most D.
Let f ∈ R[Y1, . . . , Ym] be a polynomial evaluable by a non–scalar straight–line program Γ of size L,
non–scalar depth ` and parameters in a finite subset F ⊆ R. Let G ∈ R[X1, . . . , Xn] be the polynomial
given by the composition of f with g1, . . . , gm, i.e. the polynomial given by :

G := f(g1, . . . , gm) ∈ R[X1, . . . , Xn].

Then,

i) for every non–archimedean absolute value | · |ν we have

htν(G) ≤ 2` max
1≤i≤m

{htν(gi)}+ (2`+1 − 2)htν(F),

ii) for every archimedean absolute value | · |ν we have

mν(G) ≤ log wtν(G)
≤ 2` max

1≤i≤m
{log wtν(gi)}+ (2`+1 − 2) · (log L + htν(F))

≤ D2`(n + 1) + (2`+1 − 2) · (log L + htν(F))
+2` max

1≤i≤m
{mν(gi)}.

iii) As for the height with respect to an archimedean absolute value | · |ν we have :

htν(G) ≤ log wtν(G)
≤ (n + 1)2` log D + (2`+1 − 2)(log L + htν(F))

+2` max
1≤i≤m

{htν(gi)}.

Moreover, if D is an upper bound for the degrees of the polynomials g1, . . . , gm, we have :

mν(G) ≤ 2` max
1≤i≤m

{mν(gi)}+ (2`+1 − 2)(mν(F) + log L) + D log(1 + n).

Proof.– Consider the following estimates :

i) If | · |ν is non–archimedean,

deg(f) max
1≤i≤m

{htν(gi)}+ htν(f) ≤ 2` max
1≤i≤m

{htν(gi)}+ (2`+1 − 2)htν(F).
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ii) If | · |ν is archimedean we have :

mν(G) ≤ log wtν(G), log wtν(G) ≤ (2`+1 − 2)(log L + htν(F)),

and, finally log wtν(G) ≤ deg(f)max1≤i≤m{log wtν(gi)}+ log wtν(f). The third inequality
follows since log wtν(gi) ≤ D log(n + 1) + mν(gi).

iii) We apply the same upper bounds as in ii), noting that htν(G) ≤ log wtν(G) and log wtν(gi) ≤
(n + 1) log D + htν(gi).

Corollary 18 (Composition) With the same notation as in the previous Lemma we conclude :

i) ht(G) ≤ (n + 1)2` log D + (2`+1 − 2)(log L + ht(F)) + 2` max1≤i≤m{ht(gi)},

ii) h̃t(G) ≤ D2` log(n + 1) + (2`+1 − 2)(log L + ht(F)) + 2` max1≤i≤m{h̃t(gi)}.

Proof.– We make use of the well-known fact that 1

[K:Q]

∑
ν∈Snν = 1. Then, the quantities (n +

1)2` log D and (2`+1 − 2) log L (or D2` log(n + 1) and (2`+1 − 2) log L) follow from the bounds in the
previous Lemma 17.

2.4 Non-scalar straight-line programs : Technical lemmata

The height estimates for the arithmetic Nullstellensatz announced in Section 1 are based on a detailed
analysis of the algorithm for geometric solving of multivariate polynomial equation systems defining
affine algebraic varieties as developped in [29], [43], [28], [25], [30] and [60].

The height estimates are obtained by bounding appropriately the height of all elements appearing in
a “geometric solution” produced by the afore mentioned eliminiation algorithm (see Section 3.4 for a
discussion of this approach).

This involves neccessarily the height analysis of the algorithmic ingredients given in terms of straight–
line programs, using the notions of height defined in Subsection 2.1.4. Therefore we resume here
briefly some of the results obtained in [29], [43], [28], [25], [30] and [60] for the straight–line program
complexity of the subalgorithms involved.

The elimination algorithm as developped in [25] has been analyzed and described in detail in [60],
which should be considered as a primary reference for the proofs of the following statements.

Let us recall the notation : R is the ring of algebraic integers of a number field K and IK an algebraic
closure of K. We denote by A the ring K[X1, . . . , Xr] and by F the quotient field K(X1, . . . , Xr) of
A.
Due to the iterative character of our algorithms and the fact that we distinguish between free and
dependent variables, we want to state the technical lemmata in a more general form. To facilitate the
notation, the ring A will include the free variables and the dependent variables are explicitly named.

Berkowitz’s algorithm One of the central tasks appearing naturally in elimination algorithms
when computing with polynomials, is the efficient computation of the determinant and characteristic
polynomial of a matrix over a polynomial ring. The classical Gaussian elimination algorithm computes
a solution using O(N3) arithmetic operations. Even though this appears already satisfactory, this
approach has two drawbacks : first of all the algorithm uses divisions, which makes it unsuitable for
computations over an arbitrary domain, and second, it has an intrinsically sequential character, thus
preventing further improvements through parallelism.
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These aspects were treated in [20], giving a first parallel algorithm, with restrictions on the character-
istic of the ground field though. These restrictions were removed in a very complicated way in [11],
and finally, [18] and [8] give practicable algorithms for the computation of the determinant as well as
the remaining coefficients of the characteristic polynomial of a matrix over an arbitrary domain.

The next Proposition describes the non–scalar complexity bounds resulting from the analysis made
in [44] using the algorithm given in [8].

Proposition 19 ([8], [44]) Let A be a ring. There exists a non–scalar straight–line program of size
O(n5), non–scalar depth 2 log2 n + 7 and parameters in {−1, 0, 1} which computes from the entries
of every matrix M ∈ Mn(A) the coefficients of its characteristic polynomial and, in particular, its
determinant det(M).

Vermeidung von Divisionen The technique of computing the homogeneous components of a
polynomial together with the use of the formal power series expansion of a rational function are
the main ingredients for the following algorithm due to V. Strassen and formulated for non–scalar
straight–line programs in [44].

Proposition 20 ([79], [44]) Let Γ be a non–scalar straight–line program of size L, non–scalar depth
` and parameters in a set F ⊆ R that computes {f0, . . . , fm} ⊆ R[X1, . . . , Xn]. Assume that f0 6= 0
and that f0 divides fi in R[X1, . . . , Xn] for all i, 1 ≤ i ≤ m. Then there exists a non–scalar straight–
line program Γ′ verifying :

i) Γ′ computes polynomials {P1, . . . , Pm} in R[X1, . . . , Xn] and an integer θ ∈ R − {0} such that
for 1 ≤ i ≤ m holds :

θ−1Pi =
fi

f0
,

ii) Γ′ has size of order dO(1)L, where d = max deg(fi), non–scalar depth of order O(`) and param-
eters in the set F ∪ {0, . . . , L(d + 1)2},

iii) the non–scalar depth of Γ′ is of order O(`).

Evaluation in a matrix Instead of considering only straight–line programs over a polynomial ring
R[X1, . . . , Xn], we will also make use of its flexible evaluation possibilities to compute results over a
matrix ring in the following form :

Lemma 21 (Evaluation of a polynomial in matrices, [33])
Given algebraically independent variables X1, . . . , Xn over the ring R, let g ∈ R[X1, . . . , Xn] be a
polynomial of degree d1 with respect to the variables Xr+1, . . . , Xn which can be computed by a straight–
line program Γ of size L, non–scalar depth ` and parameters in a finite subset F ⊂ R. For a fixed t
with 1 ≤ t ≤ n let A be the ring of polynomials with coefficients in R in the variables X1, . . . , Xt (i.e.
A = R[X1, . . . , Xt]). Let Mt+1, . . . , Mn be N×N matrices with entries in A such that Mi·Mj = Mj ·Mi

for all i, j and let ρ ∈ A be a non–zero polynomial. Then there exists a non–scalar straight–line program
Γ′ of size (d1 + 1)2NO(1)L and non–scalar depth O(`), such that using parameters in F and taking
as inputs the polynomial ρ and the entries of the matrices Mt+1, . . . , Mn, the straight–line program Γ′

evaluates all the entries of a matrix Mg ∈MN (A) and a non–zero polynomial ρg such that

g(X1, . . . , Xt, ρ
−1Mt+1, . . . , ρ

−1Mn) = ρ−1
g Mg.

Moreover, if ρ is a unit in A, the straight–line program Γ′ can be chosen of size LNO(1), non–scalar
depth ` + O(1) and a similar parameter set as before.
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Jacobian and pseudo—jacobian. The distinction of singular from non–singular points of a variety
yields the condition of the “Jacobian” criterion ([47, Chapter VI, Theorem 1.15]) whose “straight–line
program” version is presented here (and which will be used to check the condition of reduced regular
sequence). Combining the formal rules of derivation with Proposition 19, one concludes :

Lemma 22 Let f1, . . . , fn be a family of polynomials of A[X1, . . . , Xn] evaluated by a straight–line
program β of size L and non–scalar depth `. Then there exists a straight–line program over A with
inputs X1, . . . , Xn of size nO(1)L and non–scalar depth O(` + log2 n) with the same parameters as β
which evaluates the Jacobian determinant

J(f1, . . . , fn) := det(
∂fi

∂Xj
)1≤i,j≤n.

In Section 4.2 we shall work with a specific polynomial called the pseudo—jacobian determinant of a
given regular sequence. We now introduce this polynomial and say how it can be evaluated.

Notation 23 Let f1, . . . , fn ∈ A[X1, . . . , Xn] be a regular sequence in F [X1, . . . , Xn]. Furthermore,
let Y1, . . . , Yn be new variables. We write Y = (Y1, . . . , Yn). Fix 1 ≤ j ≤ n. By f

(Y )
j := fj(Y1, . . . , Yn)

we denote the polynomial obtained from fj substituting the variables X1, . . . , Xn by Y1, . . . , Yn. In
the polynomial ring A[Y1, . . . , Yn, X1, . . . , Xn] we decompose the polynomial f

(Y )
j − fj in the following

(non–unique) way :

f
(Y )
j − fj =

n∑

k=1

lk,j(Yk −Xk),

where lk,j are polynomials in A[Y1, . . . , Yn, X1, . . . , Xn]. Let us consider the determinant ∆ of the
matrix M = (lk,j)1≤k,j≤n, namely ∆ := det(M). This determinant is called a pseudo–jacobian
determinant of the regular sequence of polynomials f1, . . . , fn.

Proposition 24 ([28], [60]) If d is a bound for the degrees of f1, . . . , fn and these polynomials are
given by a non–scalar straight–line program Γ of size L and non–scalar depth `, then there exists a
straight–line program Γ′ of size (nd)O(1)L and non–scalar depth O(log2 n + `) which evaluates the
pseudo–jacobian determinant ∆. The straight–line program Γ′ uses apart from the same parameters
as Γ only parameters of ZZ in {0, . . . , dc}.

2.5 The equivalence problem for straight–line programs

This Subsection deals with the zero–equivalence problem for multivariate polynomials given by straight–
line programs. This subject was initiated in in the late seventies and early eighties by several authors
(cf. e.g. [85], [72], [36], [38]).

The renewed interest in the subject is motivated by several recent advances in Symbolic and Numeric
Solving (see for example [73], [74], [75], [29], [1], [25]).

We can state the problem in the following form :

Problem 1 (Zero–equivalence) Let K be a number field. Given a division free straight–line pro-
gram Γ that evaluates a polynomial f ∈ K[X1, . . . , Xn] of degree at most d, decide whether f ≡ 0 or
not.

The simple-minded approach of computing the coefficients of the dense representation does not work.
As observed in [53], deciding whether the k−th coefficient of the polynomial (1 + Xe1) · · · (1 + Xen)
is zero or not includes the Knapsack problem and is hence at least NP–complete.
There are three main approaches to avoid these difficulties, all of them involving the following com-
putational problem :
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Problem 2 Let K be a number field. Let Γ be a division free straight–line program that evaluates
a polynomial f ∈ K[X1, . . . , Xn] of degree at most d. If the polynomial f is not identically zero in
K[X1, . . . , Xn], compute a point x ∈ Kn such that f(x) 6= 0.

The method used to solve Problem 2 is the main difference between the following three approaches :

• Probabilistic zero–tests [72], [86]

• Correct test sequences [36], [43]

• Witness methods,

2.5.1 Correct test sequences

The approach based on a non–uniform complexity model using density arguments is used by J. Heintz
and C. P. Schnorr in [36] to establish the existence of short correct test sequences.

Definition 25 Given a set F ⊂ R[X1, . . . , Xn] (which contains the null polynomial) we say that a
finite set of points Q ⊂ Rn is a correct test sequence for F iff for all P ∈ F the following holds :

P |Q= 0 =⇒ P ≡ 0 .

Let W(n, d, L) be the class of all polynomials in n variables with degree bounded by d which can be
evaluated by a straight–line program of size L. The following Theorem taken from [36] states that
the height of correct test sequences for W(n, d, L) is moderate.

Theorem 26 ([36]) Let L, d ∈ IN and let u := 2L(d + 1)2, s := 6(L + n)(L + n + 1). Then, the
number of correct test sequences for W(d, n, ν) in the set {1, . . . , u}ns is at least uns(1− u−s/6).

Let us define the set W (n, L, `) of all polynomials in n variables over R which can be evaluated by a
non–scalar straight–line program of size L and non–scalar depth `. The following Proposition states
the existence of a correct test sequence for W (n,L, `) of small size and height.

Proposition 27 ([44]) Given n, L, ` ∈ IN with L ≥ n+1, let u := (2`+1−2) (2`+1)2 and t := 6 (`L)2.
Then the finite set {1, . . . , u}nt ⊂ ZZnt contains at least unt (1− u−

t
6 ) correct test sequences of length

t for W(n,L, `) (therefore it contains at least one correct test sequence of this length).

2.5.2 Witness Theorem

In [36] and more recently in [10] (cf. also [9]) the authors give deterministic methods for the solution
of Problem 2. The common approach is based on the notion of witness.

Definition 28 ([10]) Let K be an algebraic number field and f ∈ K[X1, . . . , Xn]. A witness for f is
a point w ∈ Kn such that holds :

f(w) = 0 =⇒ f = 0.

The result due to Heintz and Schnorr can be resumed as :

Theorem 29 ([36]) Let f ∈ ZZ[X1, . . . , Xn] be a polynomial of degree bounded by d such that the
weight of f is bounded by m. Then, the following point is a witness for f :

w := ((2m), (2m)d+1, . . . , (2m)(d+1)n−1
).

By a similar argument (due to Kronecker) as that of Theorem 29 above, but using Weil’s height, we
obtain the following statement :
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Theorem 30 ([10]) Let f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] be a polynomial that can be evaluated by
a division free non–scalar straight–line program of size L with parameters in {x1, . . . , xs}. Then a
witness for f can be obtained as the sequence :

(w1, (w1)2
4nL2+4L

, . . . , (w1)2
4nL2+4L(n−1)),

where w1 can be chosen in
{224nL2+4L

, x24nL2+4L

1 , . . . , x24nL2+4L

s }.

Observe that the proof is similar to that of [36], with the bounds for the weight written in terms of
the size of the straight–line program. For more recent results in this direction refer to the book [10].
As a final remark we give the following Theorem, which improves on the height bounds established in
Theorem 30 above by considering the parallel complexity measure of a straight–line program evaluating
the polynomial.

Theorem 31 (Witness Theorem with parallel estimates, [16]) Let f be a polynomial in
ZZ[T1, . . . , Tr, X1, . . . , Xn] evaluable by a non–scalar straight–line program Γ of size L, non–scalar
depth ` and parameters in {−1, 0, 1}. Let x1, . . . , xr ∈ K be some algebraic numbers, and ω0 ∈
{2, x1, . . . , xr} such that

H1(x0) = max{2,H1(x1), . . . , H1(xr)}
Let f ∈ K[X1, . . . , Xr] be the polynomial given by f := F (x1, . . . , xr, X1, . . . , Xr). Then, for N ∈ IN
such that

log2 N > log2(` + 1) + (` + 2)(log2 log2 L + max{2, log2 r})
the point (ω1, . . . , ωn) ∈ Kn given by :

ω1 = ωN
0 , ωi = ωN

i−1 for i = 2, . . . , n

is a witness point for f .

3 Complete intersection varieties

In this Section we first recall how the degree and height of an ideal–theoretic complete intersection
diophantine variety V ⊆ IKn are defined. The standard method (see e.g. [83, Chap.I.1.]) associates
to V a birationally isomorphic hypersurface defined as a generic projection with respect to a Noether
normalisation (see Subsection 3.2). The height and degree of the resulting hypersurface are then
defined as height and degree of its defining polynomial. This polynomial, called elimination polynomial
of V with respect to a given Noether normalisation, is closely related with the notion of geometric
solution as introduced in [29], [44], [28], [25].

Recently we have discovered that a similar notion has already been considered by Kronecker in his
work dedicated to Kummer [46]. These ideas have been discussed in [52] and [83]. Unfortunately,
the developing elimination theory was not able to make good use of Kronecker’s ideas. At that time,
mathematicians thought that using Kronecker’s representation would yield an excessive growth in
the degrees and heights of the polynomials computed. This impression is wrong since we are in a
situation similar to Gaussian elimination, where the “cleaning” of common denominators is crucial
for the resulting complexity of the algorithm.

3.1 Notation

Let us recall the notation : R is the ring of algebraic integers of a number field K and IK an algebraic
closure of K. We denote by A the ring K[X1, . . . , Xr] and by F the quotient field K(X1, . . . , Xr)
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of A. An affine algebraic variety V ⊆ IKn is said to be R–definable, if there exist polynomials
f1, . . . , fs ∈ R[X1, . . . , Xn] such that :

V := V (f1, . . . , fs) = {x ∈ IKn : f1(x) = 0, . . . , fs(x) = 0}.

In the following we are going to consider only R–definable varieties. For such a variety V ⊆ IKn we
denote by I(V ) the ideal in K[X1, . . . , Xn] of all polynomials vanishing on V , i.e.

I(V ) := {f ∈ K[X1, . . . , Xn] : f(x) = 0, ∀x ∈ V }.

We also denote by K[V ] the reduced residue ring (or coordinate ring of V ) K[V ] := K[X1, . . . , Xn]/I(V )
and recall that the ideal I(V ) is radical, i.e.

√
(f1, . . . , fs) = I(V ) holds.

For polynomials g ∈ K[X1, . . . , Xn] we denote by ḡ the equivalence class defined by g in the residue
ring K[V ]. Let us denote by r the dimension of the R–definable variety V and by s the codimension
of V (i.e. s + r = n).

One of the main technical difficulties of the algorithms for geometric solving of multivariate polynomial
equation systems (as e.g. in [28], [25] and [60]) is possibly the very tight relation between geometric
reasoning and algebraic language used.

We shall mainly use terminology and elementary facts that can be found in classical textbooks on
commutative algebra, see for example [47, Chapter VI], [54, Chapters 5+6], [84, Appendix 6]).

3.2 Variables in Noether position

We denote by A the ring K[X1, . . . , Xr] and by F the quotient field K(X1, . . . , Xr) of A. Let V ⊆ IKn

be an algebraic variety of dimension r and I(V ) its associated ideal. We say that the variables
X1, . . . , Xn are in Noether position with respect to V if the following is an integral ring extension :

K[X1, . . . , Xr] ↪→ K[V ].

The variables X1, . . . , Xr are called the free variables (with respect to V ) and Xr+1, . . . , Xn are called
the dependent variables. Let us denote by Mn(K) the space of all n× n matrices with entries in K
(Mn(K) ∼= Kn).

It is well–known that there exist generically many matrices N ∈ Mn(K) such that the linear change
of coordinates given by the following relation :




Y1
...

Yn


 = N




X1
...

Xn




puts the variables Y1, . . . , Yn in Noether position with respect to the variety V . Let N (V ) ⊆Mn(K)
be the set of all matrices which put the variables in Noether position with respect to V .

The “generically many” condition means that N (V ) contains a non–empty Zariski-open subset. As
for the practical consequences, refer to Section 5 for more details. In the sequel we are interested in
the case of matrices with coordinates in a ring of algebraic integers. We denote by NR(V ) and NZZ (V )
the sets N (V ) ∩Rn×n and N (V ) ∩ ZZn×n, respectively.

We say that an R–definable variety V ⊆ IKn of codimension s is an ideal–theoretic complete inter-
section if there exist polynomials f1, . . . , fs in R[X1, . . . , Xn] such that I(V ) = (f1, . . . , fs) holds in
K[X1, . . . , Xn].

Lemma 32 (Radical, [60]) Let K be a field of characteristic 0 and g1, . . . , gt a regular sequence in
K[X1, . . . , Xn]. Let us assume that the variables X1, . . . , Xn are in Noether position with respect to the
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ideal I = (g1, . . . , gt), i.e. A = K[X1, . . . , Xr] ↪→ K[X1, . . . , Xn]/I = B is an integral ring extension,
where r + t = n. Let J(g1, . . . , gt) be the determinant of the jacobian matrix given by

(
∂gi

∂xj

)

1≤i≤t,r+1≤j≤n

.

Then, the ideal I is radical if and only if J̄(g1, . . . , gt) is not a zero divisor in K[X1, . . . , Xn]/(g1, . . . , gt).

Proof.– [60, Proposition 27]

An elementary inductive argument (based on Quillen–Suslin’s Theorem proving Serre’s conjecture, cf.
[49], [47]) shows the following statement :

Let V ⊆ IKn be an ideal–theoretic complete intersection algebraic variety of dimension r. Let us
assume that the variables X1, . . . , Xn are in Noether position with respect to V . Then, K[V ] is a free
K[X1, . . . , Xr]–module of finite rank. For a proof of this statement see [69], [4] or [31, Lemma 3.3.1].

3.3 Geometric degree

In [34] a notion of (geometric) degree for affine algebraic varieties is introduced. Alternative notions
can be found in [24] and [82]. If V is an irreducible algebraic set of dimension r, the geometric degree
of V is defined as the maximum number of points of the intersections of V with affine linear spaces
of dimension n − r. For a general variety V the degree is defined as the sum of the degrees of its
irreducible components. We denote by deg(V ) the geometric degree of the affine algebraic variety
V ⊆ IKn.

A Bézout Inequality can be established for this notion of geometric degree, (cf. [34], [24], and [82]) i.e.
given affine algebraic sets V,W ⊆ IKn we have :

deg(V ∩W ) ≤ deg(V ) deg(W ).

This notion of geometric degree has an interesting translation in terms of Noether normalisations :

Let V be an ideal–theoretic complete intersection of dimension r, and N (V ) the Zariski open subset
of Mn(K) of all non–singular matrices which put the variables in Noether position with respect to V .
For every matrix N ∈ N (V ), let us denote by rkAN K[V ] the rank of K[V ] as free AN–module, where




Y1
...

Yn


 = N




X1
...

Xn




are the new variables and AN := K[Y1, . . . , Yr] such that AN ↪→ K[V ] is an integral ring extension.
The following equality may be seen in [34] :

deg(V ) = max{rkAN
K[V ] : N ∈ N (V )}.

As observed in [15, Proposition 1.11] the geometric degree of an affine algebraic variety agrees with
the geometric degree of its projective closure without counting multiplicities.

However, one has to observe that the existing relations between equations and degree in projective
geometry and commutative algebra cannot be directly translated to the affine case. For instance, let
X0, X1, . . . , Xn be homogeneous coordinates and g1, . . . , gs ∈ K[X0, X1, . . . , Xn] a regular sequence
of homogeneous polynomials. The degree of the set of common zeroes of g1, . . . , gs defined by the
Hilbert polynomial is exactly the product of the degrees deg(g1) · · · deg(gs).
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This number is usually called the Bézout number of g1, . . . , gs. This behaviour does not occur in the
affine case. As a simple example, let us consider the regular sequence of affine polynomials given by :

g1 = x2
1 + x1 + 1, g2 = x2 − x2

1, . . . , gs = xs − x2
s−1.

The geometric degree of the affine variety V (g1, . . . , gs) is exactly 2, whereas the Bézout number is
2s. As the geometric degree does not take into account neither components in the infinity hyperplane
nor multiplicities, this yields a more “geometric” behaviour which is just what we are looking for, as
illustrated by the example in Section 3.1.

3.4 Geometric Solving

In [63], [25] the notion of geometric solving was introduced to formalize a way of describing the ring
K[V ], where V is an ideal–theoretic complete intersection variety of dimension r. Basically, this
ring has two main properties. One is the free module character of K[V ] inherited from a Noether
normalisation :

A := K[X1, . . . , Xr] ↪→ K[V ].

This can be easily described by means of a basis of K[V ] as a free module. The second property is the
A–algebra character of K[V ]. This means to describe the product operation in the ring K[V ]. This
is achieved by means of the following method :

For every g ∈ K[X1, . . . , Xn] we identify the residual class ḡ and the K[X1, . . . , Xr]–module endomor-
phism ηg defined by : ηg : K[V ] −→ K[V ], where ηg(f) := ḡf , for all f ∈ K[V ]. Furthermore, for a
fixed free module basis of K[V ], we can represent the endomorphism ηg by a matrix which we denote
by Mg. If g = Xi is a dependent variable, we denote Mi := MXi for r + 1 ≤ i ≤ n and we call these
matrices the tensor matrices of the algebra K[V ].

Let us observe that if g ∈ K[X1, . . . , Xn] and a basis of K[V ] is fixed, the matrix Mg is given by the
following formula :

Mg := g(X1, . . . , Xr,Mr+1, . . . , Mn).

Thus, the ring K[V ] will be completely described by means of the following elements :

• the Noether normalisation, K[X1, . . . , Xr] ↪→ K[V ],

• the basis of K[V ] as a free module, and

• the tensor matrices Mr+1, . . . , Mn.

There exists a geometrical interpretation of the matrices Mg and, more precisely, the characteristic
and minimal polynomials of Mg. Suppose that the variables are in Noether position with respect to
V ⊆ IKn and that g ∈ K[X1, . . . , Xn]. Let us consider the regular morphism :

G : IKn −→ IK r+1, G(X1, . . . , Xn) := (X1, . . . , Xr, g(X1, . . . , Xn)).

We observe that (since the variables are in Noether position) the image of V under the action of this
mapping G, G(V ) ⊆ IK r+1, is a hypersurface HG ⊆ IK r+1.

Proposition 33 With this notation, let χg,mg ∈ A[T ] be the characteristic and minimal polynomial
of Mg, respectively. We have :

i) mg = χg

gcd(χg,χ′g) , where χ′g is the derivative of χg with respect to the variable T ,

ii) V (χg) = V (mg) = HG in IK r+1,

iii) I(HG) = (mg) in K[X1, . . . , Xr, T ],
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iv) deg(HG) = deg(mg) ≤ deg(V ) · deg(g),

v) degT mg ≤ degT χg = rkK[Y1,...,Yr](K[V ]) ≤ deg(V ).

Up to now there is no method of admissible complexity known for the computation of a basis of K[V ]
as free A–module. Recent progress in this sense may be seen in [2]. Thus, alternative descriptions of
the algebra K[V ] have been introduced (cf. [46], [26], [27], [23], [43], [29], [28], [53], [60] and [25] for
more details).

One of these alternative descriptions is the following one. Suppose, as before, that you have a Noether
normalisation : A := K[X1, . . . , Xr] ↪→ K[V ] =: B. Let F = K(X1, . . . , Xr) be the quotient field of
A and B′ the zero–dimensional F–algebra obtained by extending scalars to F , i.e. B′ = F ⊗A B.

For most elimination problems, a description of the F–algebra B′ will be sufficient to proceed. Thus,
a geometric solution of an ideal–theoretic complete intersection variety V consists of a Noether nor-
malisation

A = K[X1, . . . , Xr] ↪→ K[V ] = B

together with a suitable description of B′.

We are going to show that the following two approaches for the description of ideal theoretic complete
intersection affine algebraic varieties are equivalent : the description using the elimination polynomial
or Chow form with respect to a given Noether normalisation (see for example [81] or the works [66],
[67], [68]) and the description by a geometric solution (consider e.g. [46], [26], [27], [23], [44] and [25]).
For an application of both approaches (even for arbitrary dimension) in the context of polynomial
factorization see [17] and [32].

3.4.1 The elimination polynomial

This approach describes the algebra K[V ] by means of a generic projection in terms of the dependent
variables. With the previous notation, let Ur+1, . . . , Un be new indeterminates. Let us denote by
Ru, Au, Fu, Bu, B′

u respectively the rings obtained by extending scalars in the following form :

Ru := R[Ur+1, . . . , Un], Au := A[Ur+1, . . . , Un],

Fu := F (Ur+1, . . . , Un), Bu := Au ⊗A B, B′
u := Fu ⊗F B′.

We have that Au ↪→ Bu is also an integral ring extension and Bu is also a free Au–module. We also
have

rkAuBu = rkAB, dimFu B′
u = dimF B′,

and the bases of B and B′ extend respectively to bases of Bu and B′
u. Let U be the linear form

given in terms of the dependent variables by U := Ur+1Xr+1 + · · · + UnXn and let us consider the
endomorphism given by :

ηU : Bu −→ Bu : ḡ 7→ Ū · ḡ.

Proposition 34 The characteristic polynomial χU ∈ Au[T ] of ηU agrees with its minimal polynomial
mU ∈ Au[T ]. Both have degree equal to rkAB and B′

u is isomorphic to the Fu–algebra :

Fu[T ]/(mU (T )).

Since R is the ring of algebraic integers of the number field K, there exists a minimal non–zero integer
number CU ∈ ZZ \{0} such that CU ·mU ∈ R[X1, . . . , Xr, Ur+1, . . . , Un][T ] and this constant CU is the
coefficient of the highest degree term in T of the minimal polynomial mU . From now on we denote by
mU this polynomial CU ·mU in R[X1, . . . , Xr, Ur+1, . . . , Un][T ]. It has the form

mU = CUTD + G(X1, . . . , Xr, Ur+1, . . . , Un, T )

where degT G ≤ D − 1, D = rkAK[V ]. It will be called the elimination polynomial of V with respect
to the Noether Normalisation A ↪→ K[V ].
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3.4.2 The primitive element

The second approach for the description of the algebra K[V ] is most commonly used in the design of
elimination procedures because of its efficiency. The underlying idea consists in specializing the generic
parameters Ui used to define the elimination polynomial. We take some concrete data ur+1, . . . , un ∈ R
and the linear form

u := ur+1Xr+1 + · · ·+ unXn ∈ R[Xr+1, . . . , Xn].

With the same notations as before, we say that u is a primitive element of K[V ] with respect to the
Noether normalisation A ↪→ K[V ] if the characteristic polynomial χu and the minimal polynomial mu

of ηu agree (i.e. if χu = mu holds). In fact, a primitive element u verifies that B′ = F ⊗A K[V ] and
F [T ]/(mu(T )) are isomorphic.

This is equivalent to saying that for D = rkAK[V ] and ū the class of u modulo I(V ) the set
{1, ū, . . . , ūD−1} is a basis of the zero–dimensional algebra B′ if and only if u is primitive element of
K[V ] with respect to the Noether normalisation A ↪→ K[V ].

All these equivalent properties may be illustrated by the following geometric property. Let U be the
regular mapping given by :

U : IKn −→ IK r+1 : U(X1, . . . , Xn) = (X1, . . . , Xr,u(Xr+1, . . . , Xn)).

Then, u is a primitive element if and only if U defines a birational isomorphism between V and the
hypersurface HU given by :

HU := {(X1, . . . , Xr+1) ∈ IK r+1 : mu(X1, . . . , Xr+1) = 0}.

Since A ↪→ K[V ] is integral, the inverse U−1 restricted to V of the birational isomorphism U can be
obtained in the following way :

U−1 := (X1, . . . , Xr, ρ
−1
r+1vr+1(X1, . . . , Xr+1), . . . , ρ−1

n vn(X1, . . . , Xr+1)),

where for r+1 ≤ i ≤ n, the ρi ∈ K[X1, . . . , Xr] are non–zero polynomials and the vi ∈ K[X1, . . . , Xr, T ]
are polynomials whose degree with respect to the variable T is at most D − 1. The polynomials
ρr+1Xr+1 − vr+1, . . . , ρnXn − vn are then called a canonical parametrization of the ideal–theoretic
complete intersection variety V .

In other words, the following identity between ideals in F [xr+1, . . . , xn] holds :

F ⊗A I(V ) = (mu(u), ρr+1Xr+1 − vr+1, . . . , ρnXn − vn)

Observe that for i = r + 1, . . . , n the dependent variable Xi is parametrized by ρ−1
i vi.

Proposition 35 (Proposition 16, [28]) Suppose the polynomials ρr+1Xr+1 − vr+1, . . . , ρnXn − vn

define a canonical parametrization of an ideal–theoretic complete intersection variety V . Then, the
polynomials ρi ∈ R[X1, . . . , Xr] \ {0}, r + 1 ≤ i ≤ n and the coefficients of the polynomials vi ∈
R[X1, . . . , Xr][t] verify the conditions :

• deg ρi ≤ (deg V )3,

• the degree of the coefficients of the vi is ≤ 2(deg V )3,

• in K(Y1, . . . , Yr)[Yr+1, . . . , Yn] holds the identity (mu, ρr+1Xr+1− vr+1, . . . , ρnXn− vn) = I(V ),

• and ρiX̄i − vi(X1, . . . , Xr, ū) = 0 in K[V ].
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Let us observe that the information provided by HU , U , and U−1 is sufficient to describe K[V ]
completely. The set {1, ū, . . . , ūD−1} is a basis of F ⊗A K[V ] as a vector space. The matrix Mu is the
companion matrix of mu with respect to this basis. The tensor matrices Mi, for r + 1 ≤ i ≤ n, will
be given by :

Mi := ρ−1
i vi(Mu). (12)

The elimination polynomial can be obtained as the characteristic polynomial of the matrix given by :

n∑

i=r+1

Ui · ρ−1
i vi(Mu). (13)

Definition 36 (Geometric Solution) Let V ⊆ IKn be an ideal–theoretic complete intersection R–
definable variety V = V (f1, . . . , ft) of dimension r, i.e. r + t = n. A geometric solution of V is the
following list of data :

• a non–singular matrix N ∈ N (V ) such that the set of variables



Y1

...
Yn


 = N ·




X1

...
Xn




are in Noether position with respect to V , this means the ring AN := K[Y1, . . . , Yr] verifies that
AN ↪→ K[V ] is an integral ring extension,

• a primitive element u = ur+1Yr+1 + · · ·+ unYn ∈ R[Yr+1, . . . , Yn] of the integral ring extension
AN ↪→ K[V ],

• a polynomial P ∈ R[Y1, . . . , Yr][T ] of the form

P = CTD + g(Y1, . . . , Yr, T ),

where C ∈ ZZ \ {0}, degT g ≤ D − 1 and C−1P is the minimal polynomial of u with respect to
K[V ] (let us observe that degT P = rkAN K[V ]) and finally

• a representation of U−1 given as the list ρr+1, . . . , ρn ∈ R[Y1, . . . , Yr], vr+1, . . . , vn ∈ R[Y1, . . . , Yr][T ]
with deg vj ≤ D − 1 such that

I(V ) = (P (u), ρr+1Xr+1 − vr+1(u), . . . , ρnXn − vn(u))

is an equality of ideals in K(Y1, . . . , Yr)[Yr+1, . . . , Yn].

Observe that for the minimal polynomial P of the primitive element u holds :

K[X1, . . . , Xn]/(P (u), ρr+1Xr+1 − vr+1(u), . . . , ρnXn − vn(u)) = K[T ]/(P (T )).

In [25], [60] a procedure that computes geometric solutions for the varieties Vi = V (f1, . . . , fi) for
1 ≤ i ≤ t is shown. The main statement is describe in Section 6 below.

3.5 Height of complete intersection varieties.

Being well conscious about the existing differences between the commutative algebra, projective and
affine geometrical context, we introduce a notion of height for complete intersection varieties which is
strongly inspired by the works [61], [62] and [66], [67], [68]. These authors focused their attention on
the elimination polynomial of equidimensional projective varieties in order to define an appropriate
notion of height. In spite of the non–homogeneous condition of our ideals we can condense a notion of
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height for affine varieties in the elimination polynomial mU . This depends on the condition of having
the variables in Noether position, but this is not a relevant restriction as we will see.

Our main goal here is to show that elimination polynomial and geometric solution are not only
computationally equivalent. They are also equivalent in terms of height and we are therefore free to
use either in our forthcoming statements.

Definition 37 Let V ⊆ IKn be an ideal–theoretic complete intersection R–definable variety of dimen-
sion r. Let N ∈ N (V ) be a linear change of coordinates that puts the variables in Noether position
with respect to V . Let Y1, . . . , Yn be the new variables and A = K[Y1, . . . , Yr] be the ring of polynomials
such that AN ↪→ K[V ] is an integral ring extension. We define :

i) the degree of V with respect to AN as deg(V, N) := rkAN K[V ]. Let us observe that if mU ∈
R[Y1, . . . , Yr][Ur+1, . . . , Un][T ] is the elimination polynomial of V with respect to AN (see Sub-
section 3.4.1) we have :

deg(V,N) = degT mU .

ii) the height of V with respect to the Noether normalisation AN as the logarithmic height

ht(V,N) := ht(mU ).

iii) Finally, Philippon’s invariant height of V with respect to the Noether normalisation AN is :

h̃t(V,N) := h̃t(mU ).

These notions of degree and height may be seen as mappings :

degV : N (V ) −→ IR , htV : N (V) −→ IR , h̃tV : N (V) −→ IR .

To state the forthcoming results in a concise form, we shall restrict the domains of these mappings,
while trying to minimize the loss of generality. First, we work mainly with the set of Noether nor-
malisations N ∈ NZZ (V ) which have integer entries. Second, there exists a universal constant c > 0
independent from V such that there exist matrices N ∈ NZZ (V ), N = (nij)1≤i,j≤n, nij ∈ ZZ verifying

|nij | ≤ (ndeg(V ))c. (14)

Finally, we restrict our Noether normalisations to the class of matrices

N(V ) := {N ∈ NZZ (V ) : H1(N) ≤ (n deg(V ))c,deg(V,N) = deg(V )}.

Definition 38 (Heights) With the previous notations, for an ideal–theoretic complete intersection
R–definable variety V ⊆ IKn, we define

i) the height of V as ht(V ) := max{ht(V,N) : N ∈ N(V )},

ii) and Philippon’s invariant height of V as h̃t(V ) := max{h̃t(V, N) : N ∈ N(V )}.

3.6 Relations between both approaches

This Section shows that the two approaches for the description of F⊗AK[V ] via elimination polynomial
and geometric solution are essentially equivalent, both in terms of computational and height estimates.
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3.6.1 Computational equivalence

From the geometric solution to the elimination polynomial Let us assume that we have a
complete intersection variety V ⊆ IKn of dimension r, generated by and that I(V ) = (f1, . . . , fn−r).
Let N ∈ NZZ (V ) be a linear change of coordinates which puts the variables in Noether position with
respect to V , i.e. the new set of variables (Y1, . . . , Yn) given by




Y1
...

Yn


 = N




X1
...

Xn




verifies that the following is an integral ring extension : A = K[Y1, . . . , Yr] ↪→ K[Y1, . . . , Yn]/I(V ) = B.
Let D ∈ IN be the rank of B as free A–module. Let Ur+1, . . . , Un be a new set of variables and

U = Ur+1Xr+1 + · · ·+ UnXn

the generic projection. The elimination polynomial mU as introduced in Subsection 3.4.1 can be
obtained as the characteristic polynomial χU of the matrix :

MU = Tr+1Mr+1 + · · ·+ TnMn

where the matrices Mi are the tensor matrices MXi of A ↪→ B describing the multiplication by the
dependent variables Xi for r + 1 ≤ i ≤ n.

Thus, using Proposition 19 (Berkowitz) we can obtain the characteristic polynomial χU of MU by
a straight–line program Γ0 of size D6, non–scalar depth 2 log2 D + 7 = O(log2 D) and parameters
in {−1, 0, 1} which takes as inputs the entries of the matrix MU and outputs the coefficients of the
elimination polynomial χU in AT := A[Ur+1, . . . , Un].

Now, let us consider a geometric solution of the variety V (as introduced in Section 3.4) consisting
of :

• a primitive element u (Subsection 3.4.2),

• the minimal polynomial mu ∈ A[Z] of u and

• the canonical parametrizations ρiXi − vi(Z) for r + 1 ≤ i ≤ n.

Let Mu be the companion matrix of mu. Then, by Equation (12) we can compute a multiple of the
tensor matrix Mi as ρiMi = vi(Mu). Defining ρ :=

∏n
i=r+1 ρi, we have :

ρMU := Ur+1(
∏

i 6=r+1

ρi) · vr+1(Mu) + · · ·+ Un(
∏

i 6=n

ρi)vn(Mu).

Thus, applying Proposition 19 (Berkowitz) there exists a non–scalar straight–line program Γ1 of size
O(n · D), non–scalar depth O(max{log2 n, log2 D}), and parameters in {−1, 0, 1} ⊆ ZZ, which takes
as inputs

• the new variables Ur+1, . . . , Un,

• the coefficients of p,

• the coefficients of the polynomials vr+1, . . . , vn and

• the polynomials ρr+1, . . . , ρn
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and outputs the entries of the matrix ρMU . Finally, let us consider the coordinate change given by
the variables Z and Z ′ related by Z ′ = ρZ. Then, we have :

ρD det(Z −MU ) = det(ρZ − ρMU ) = det(Z ′ − ρMU ).

So, the coefficients of the characteristic polynomial χU can be obtained by dividing the coefficients of
the characteristic polynomial of ρMU (as obtained by the straight–line program Γ1) by 1

ρD . We then
conclude the following Proposition :

Proposition 39 There exists a non–scalar straight–line program Γ of size O(n · D) + DO(1), non–
scalar depth O(log2 n + log2 D), and parameters in {−1, 0, 1}, which takes as inputs

• the variables Ur+1, . . . , Un,

• the coefficients of the minimal polynomial mu of the primitive element u,

• the coefficients of the polynomials vr+1, . . . , vn and

• the polynomials ρr+1, . . . , ρn

and, applying Proposition 20 (Vermeidung von Divisionen), outputs the coefficients of the elimination
polynomial χU .

From the elimination polynomial to the geometric solution Conversely, let us suppose now
that we are given an elimination polynomial of the variety V with respect to a fixed Noether normal-
isation N . In [43], [44] a well-parallelizable method was exposed, which transforms the coefficients of
the elimination polynomial into the coefficients of the geometric solution of the variety V . Roughly
speaking, the method is expressed as a well-parallelizable straight–line program (of appropriate size)
performing this transformation. A brief sketch of this method runs as follows :

Let U := Ur+1Xr+1 + · · ·+ UnXn be the generic projection with respect to a Noether normalisation
A = K[X1, . . . , Xr] ↪→ K[V ]. Let mU be its minimal polynomial in A[Ur+1, . . . , Un][T ] with respect
to the variety V . Let us recall that mU is monic (up to a constant in ZZ) with respect to the variable
T .

Let us now consider for r + 1 ≤ i ≤ n the projections :

zi := Ur+1Xr+1 + · · ·+ Ui−1Xi−1 + Ui+1Xi+1 + · · ·+ UnXn

and the polynomials Qi := mU (X1, . . . , Xr, Ur+1, . . . , Ui−1, 0, Ui+1, . . . , Un, T ),

Gi := mU (X1, . . . , Xr, 0, . . . , 0, 1, 0, . . . , 0, T ).

Then, we have the following

Lemma 40 ([44]) There exists a geometric solution of the variety V given by :

• u := ur+1Xr+1 + · · ·+ unXn ∈ ZZ[Xr+1, . . . , Xn],

• Pu ∈ R[X1, . . . , Xr][T ],

• ρi ∈ K[X1, . . . , Xr] for r + 1 ≤ i ≤ n and

• vi ∈ K[X1, . . . , Xr][T ] for r + 1 ≤ i ≤ n,

such that the following holds :

i) |ui | ≤ (deg(V ))O(1) for r + 1 ≤ i ≤ n,
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ii) mu(X1, . . . , Xr) := mU (X1, . . . , Xr, ur+1, . . . , un).

Let us consider for r + 1 ≤ i ≤ n the polynomials

qi := Qi(X1, . . . , Xr, Ur+1, . . . , Ui−1, Ui+1, . . . , Un, T ),

gi := Gi(X1, . . . , Xr, 0, . . . , 0, 1, 0, . . . , 0, T ).

Then, there exists a non–scalar straight–line program of size (n deg(V ))O(1), non–scalar depth
O(log deg(V )) and parameters in {−1, 0, 1, ur+1, . . . , un} which from the coefficients with respect to
the variable T of the polynomials qr+1, . . . , qn, gr+1, . . . , gn computes the coefficients with respect to
the variable T of the polynomials vr+1, . . . , vn and the polynomials ρr+1, . . . , ρn.

Moreover, this procedure for computing the geometric solution of V from the elimination polyno-
mial can be performed by an algorithm running in bounded error probability, probabilistic time
(ndeg(V ))O(1).

3.6.2 Equivalence of height estimates

Let us observe that the two main statements shown in the previous Subsection say that we may pass
from the elimination polynomial to the geometric solution and vice versa by means of an algorithmic
procedure with low bounds in terms of parallel complexity (non-scalar depth). Since height estimates
depend mainly on the non-scalar depth (see Section 2.3) we may easily conclude the following two
Theorems.

Theorem 41 There exists a universal constant c > 0 independent of all involved data such that
for every ideal–theoretic complete intersection R–definable variety V ⊆ IKn, there exist the following
elements :

i) a Noether normalisation N ∈ N(V ),

ii) a geometric solution of V with respect to N (see Definition 36), i.e.

• a primitive element u = ur+1Yr+1 + · · ·+ unYn,

• the minimal polynomial P ∈ K[Y1, . . . , Yr][T ],

• polynomials ρi ∈ R[Y1, . . . , Yr] and polynomials vi ∈ R[Y1, . . . , Yr][T ]

such that the following holds :

i) the data N, u, P, ρr+1, . . . , ρn, vr+1, . . . , vn is a geometric solution of V ,

ii) |ui | ≤ H1(u) ≤ (deg(V ))c,

iii) max{ht(P ), ht(ρiXi − vi(T ))} ≤ deg(V )c((n− r) + ht(V )), and

iv) max{h̃t(P ), h̃t(ρiXi − vi(T ))} ≤ deg(V )c((n− r) + h̃t(V )).

Moreover, all these polynomials verify the degree bounds stated in Proposition 35 on page 28.

Proof.– Combining the Lemmata 11, 14, 15, 17 and 40.
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Theorem 42 For the height estimates of the elimination polynomial holds :

ht(χU ) ≤ (nD)O(1)(ht(mu)) +
n∑

i=r+1

ht(ρiXi − vi(Z)),

h̃t(χU ) ≤ (nD)O(1)(h̃t(mu) +
n∑

i=r+1

h̃t(ρiXi − vi(Z)).

Proof.– Applying Proposition 39, there exists a non–scalar straight–line program of size (nD)O(1),
non-scalar depth O(log2 n + log2 D) and parameters in {−1, 0, 1} which, taking as input the coeffi-
cients of the polynomials mu, ρ1, . . . , ρn and v1, . . . , vn with respect to the variable Z, evaluates the
coefficients of χU with respect to the variable Z. Applying Corollary 18 (Composition), we obtain
that the coefficients of χU verify that both ht and h̃t are bounded by the heights of the coefficients
of mu, v1, . . . , vn and the heights of ρ1, . . . , ρn. Next, applying Corollary 12 (Coefficients) shows that
also ht(χU ) and h̃t(χU ) are bounded by these estimates. Finally, the heights of the coefficients of mu,
v1, . . . , vn and also ρ1, . . . , ρn are appropriately bounded, see Corollary 12.

4 Interpolation modulo complete intersection varieties

Trace formulae have been used recently in several papers treating problems in algorithmic elimination
theory. There are two main applications of this kind of identities : computation of monomial bases of
low degree (as in [3], [5]) or interpolation modulo complete intersection varieties (as in [23], [43], [44],
[25]). Here we follow the second approach to solve the following problem :

Let A be a ring of polynomials over a given number field. Let F be the quotient field of A, IF the
algebraic closure of F and let A[X1, . . . , Xn] be the ring of n–variate polynomials with coefficients
in A. Let f1, . . . , fn be polynomials in the ring A[X1, . . . , Xn] of degree at most d in the variables
X1, . . . , Xn such that the following holds :

• the ideal (f1, . . . , fn) is radical and

• for B := A[X1, . . . , Xn]/(f1, . . . , fn) the morphism A ↪→ B is an integral ring extension repre-
senting a Noether normalisation of the variety V = V (f1, . . . , fn) defined by the polynomials
f1, . . . , fn in a suitable affine space.

Thus, B is a free A–module of rank bounded by the degree of the variety V (f1, . . . , fn). Moreover,
the A–algebra B is Gorenstein and the following statements are based on this fact.

Now the interpolation problem can be stated in the following terms :

Problem 3 (Interpolation modulo complete intersection variety) Given an element g ∈ B,
compute a polynomial g1 ∈ A[X1, . . . , Xn] such that ḡ1 = g holds in B.

Let us explain why this can be considered as an “interpolation” problem. The residue class g ∈ B of
a polynomial can be given in terms of a matrix Mg as described in Section 3. However, the method
we are going to show, does not require all of the information available in this matrix.
Let V ⊆ IF be the zero–dimensional algebraic variety defined by

V := V (f1, . . . , fn) = {x ∈ IFn : fi(x) = 0 for 1 ≤ i ≤ n},

and let us assume that V = {α1, . . . , αD}. The procedure for the solution of Problem 3 we will exhibit
in the sequel will also solve the following task :
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Given a list of eigenvalues {β1, . . . , βD} ⊆ IF of a matrix Mg which describes the endomorphism
of multiplication by an element g ∈ B with respect to some fixed basis, compute a polynomial
g1 ∈ A[X1, . . . , Xn] (if it exists) such that holds : g1(αi) = βi for 1 ≤ i ≤ D.

In some cases, in particular our case the existence of g1 can be guaranteed : Let f, h be two elements of
B such that f is not a zero–divisor in B and f divides h in B. Then, there exists a g1 ∈ A[X1, . . . , Xn]
such that

g1(αi) =
h(αi)
f(αi)

= βi for 1 ≤ i ≤ D.

The polynomial g1 computed by our procedure verifies ḡ1 · f = h. The objective for any constructive
solution of the Interpolation Problem 3 will be of course to minimize the degree of g1 with respect to
the variables X1, . . . , Xn.

4.1 Trace and duality

With the above notations we are going to sketch a few standard facts related with the solution of the
Interpolation Problem 3.

Recall that we are considering ideal-theoretic complete intersection varieties given by a sequence of
polynomials f1, . . . , fn ∈ A[X1, . . . , Xn] generating a radical ideal of codimension n. The A–algebra
B := A[X1, . . . , Xn]/(f1, . . . , fn) is reduced and Gorenstein (see Section 3). Let B∗ denote the dual
of B by B∗ := HomA(B, A) as a B–module by the scalar product B ×B∗ −→ B∗ which associates to
any (b, τ) in B ×B∗ the A–linear map b · τ : B −→ A defined by (b · τ)(x) := τ(bx) for any element x
of B.

Since we know by our short discussion in Section 3 that the A–algebra B is Gorenstein, its dual B∗

is a free B–module of rank one. Any element σ of B∗ which generates B∗ as B–module is called a
canonical trace of B or simply a trace.

There exists a particular element Tr of B∗ relevant for our purposes. The mapping Tr ∈ B∗ and is
given in the following way : given b ∈ B, let ηb : B −→ B the A–linear map defined by multiplying
by b any given element of B. The image Tr(b) under the map Tr is defined as the trace of the
endomorphism ηb of B. This mapping Tr is called the standard trace of B and it should be remarked
that it is not necessarily a canonical trace in the above sense, i.e. does not necessarily generate B∗.

Let us introduce some additional notations, which we will need to show how to compute a canonical
trace σ. For any element g ∈ A[X1, . . . , Xn] we denote by ḡ its image in B, i.e. the residue class
of g modulo the ideal (f1, . . . , fn). Let Y1, . . . , Yn be new variables and let Y := (Y1, . . . , Yn). Let
1 ≤ j ≤ n and let fY

j := fj(Y1, . . . , Yn) be the polynomial of A[Y1, . . . , Yn] obtained from fj by
substituting the variables X1, . . . , Xn by Y1, . . . , Yn. Let us consider the polynomial

fY
j − fj =

n∑

k=1

ljk(Yk −Xk) ∈ A[X1, . . . , Xn, Y1, . . . , Yn],

where the ljk are polynomials belonging to A[X1, . . . , Xn, Y1, . . . , Yn] with total degree at most (d−1).
Let us now consider the determinant ∆ of the matrix (ljk)1≤j,k≤n which can be written (non uniquely)
as

∆ =
∑
m

am(X1, . . . , Xn)bm(Y1, . . . , Yn) ∈ A[X1, . . . , Xn, Y1, . . . , Yn],

with the am being elements of A[X1, . . . , Xn] and bm elements of A[Y1, . . . , Yn] (observe that it will not
be necessary to find the polynomials am and bm algorithmically, we need just their existence for our
argumentation). The polynomial ∆ is called a pseudo–jacobian determinant of the regular sequence
(f1, . . . , fn), as defined in Subsection 2.4.
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Observe that the polynomials am and bm can (and will) be chosen to have degrees bounded by n(d− 1)
in the variables X1, . . . , Xn and Y1, . . . , Yn respectively. Let cm ∈ A[X1, . . . , Xn] be the polynomial
we obtain from bm by substituting the variables Y1, . . . , Yn by X1, . . . , Xn. Denoting by J̄ the class
of the Jacobian determinant J(f1, . . . , fn) in B, we have the identity

J̄ =
∑
m

ām · c̄m.

Moreover the image of the polynomial ∆ in the residue class ring

A[X1, . . . , Xn, Y1, . . . , Yn]/(f1, . . . , fn, fY
1 , . . . , fY

n )

is independent of the particular choice of the matrix (lkj)1≤k,j≤n. This justifies the name pseudo–
jacobian determinant for the polynomial ∆.

With these notations there exists a unique canonical trace σ ∈ B∗ such that the following identity
holds in B :

1̄ =
∑
m

σ(ām) · c̄m.

This canonical trace σ is called the canonical trace associated to the pseudo–jacobian determinant.
The main property of the canonical trace σ, known as “trace formula” (“Tate’s trace formula”, see
[48, Appendix F] or [39], as a particular case) is the following statement : for any g ∈ A[X1, . . . , Xn]
the identity

ḡ =
∑
m

σ(ḡ · ām) · c̄m (15)

holds true in B. Let us observe that the polynomial
∑

m σ(ḡ · ām) · cm ∈ A[X1, . . . , Xn] underlying
Identity (15) is of degree at most n(d − 1) in the variables X1, . . . , Xn. The next Proposition shows
how to relate the standard trace Tr and a canonical trace σ ∈ B∗ (see also [25]) :

Proposition 43 ([70])
σ(ḡ) = Tr(ḡ · J̄−1)

Tate’s trace formula (15) solves the Interpolation Problem 3 in the following terms :

Given g ∈ B, let us consider the polynomial g1 ∈ A[X1, . . . , Xn] of degree at most n(d− 1) given by

g1 :=
∑
m

σ(ḡ · ām) · cm. (16)

Then, ḡ1 = g in B.

The use of these monomial expressions of (16) inhibits us from taking advantage of any special “se-
mantical” features of the A–algebra B : one “a priori” needs all monomials of degree at most n(d−1)
for the description of the polynomials cm (and am). Therefore, we replace the trace formula (15) by
the following alternative one, which solves the problem in a suitable linear vector space :

First, recall that in our case A is a ring of polynomials over a number field, f1, . . . , fn are polynomials in
the ring A[X1, . . . , Xn] of degree at most d in the variables X1, . . . , Xn, generating a radical ideal. The
extension A ↪→ B := A[X1, . . . , Xn]/(f1, . . . , fn) is an an integral ring extension. Thus, we are given
an ideal-theoretic complete intersection variety, where the A–algebra B is reduced and Gorenstein
(see Section 3).

Proposition 44 (Trace Formula, [25]) With the same notations as before, let us consider the
free A[X1, . . . , Xn]–module B[X1, . . . , Xn] given by extending scalars to B (this means we consider
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the tensor product B[X1, . . . , Xn] := B ⊗A A[X1, . . . , Xn]) and let us also consider the polynomial
∆1 ∈ A[X1, . . . , Xn] given by :

∆1 :=
∑
m

ām · cm ∈ B[X1, . . . , Xn].

Then for any g ∈ A[X1, . . . , Xn] the following identity holds in A[X1, . . . , Xn] :

ḡ =
∑
m

σ(ḡ · ām) · cm = T̃r(J̄−1 · ḡ ·∆1)

(where T̃r := Tr ⊗ IdA[X1,...,Xn] : B[X1, . . . , Xn] −→ A[X1, . . . , Xn] is the trace obtained from the
standard trace Tr : B −→ A by extending scalars).

The reader will observe that the duality techniques used here agree in the case of n = 1 with the
standard Lagrange interpolation.

4.2 Division modulo complete intersection ideals

One of the main applications of these interpolation techniques will be the division modulo complete
intersection ideals. This problem can be stated in the following terms :

Given a sequence of polynomials f1, . . . , ft ∈ R[X1, . . . , Xn] of degree at most d defining a radical ideal
(f1, . . . , ft) of codimension t. Let V be the complete intersection variety given by V = (f1, . . . , ft). Let
us assume that the variables are in Noether position with respect to the variety V , i.e. the following
is an integral ring extension :

A = K[X1, . . . , Xn−t] ↪→ B = K[V ] = K[X1, . . . , Xn]/(f1, . . . , ft).

We have thus the same conditions as in the previous Subsection. Then, there exists a pseudo–
jacobian determinant defined by f1, . . . , ft with respect to the variables Xn−t+1, . . . , Xn. There exist
am, cm ∈ A[Xn−t+1, . . . , Xn] such that

∆ =
∑

1≤m≤N

am ⊗ cm ∈ B ⊗B,

where the polynomials cm can be chosen as polynomials in the variables Yn−t+1, . . . , Yn of degree
at most t(d− 1). Let bm be the monomial given as cm(Xn−t+1, . . . , Xn). Moreover, the polynomials
am ∈ K[X1, . . . , Xn] have total degree at most t(d−1). The problem we want to solve is the following :

Problem 4 (Division Problem) With the previous notations, given two polynomials f, g in
R[X1, . . . , Xn] such that f̄ is not a zero divisor in B, and f̄ divides ḡ in B, this means there exists
some q ∈ B such that

qf − g ∈ (f1, . . . , ft).

Then, compute some polynomial q1 ∈ K[X1, . . . , Xn] such that q1f − g ∈ (f1, . . . , ft) holds.

First, we give a formal statement showing how the trace formulae of the previous Section 4.1 interferes
in the solution of Problem (4). Then we show how to use this statement in a computational solution
for the Division Problem.

Let σ ∈ B∗ be the trace associated to the pseudo–jacobian determinant ∆. Let q ∈ K[X1, . . . , Xn]
be any polynomial such that q̄ · f̄ = ḡ holds in B. Let F be the quotient field of A, B′ := F ⊗A B
the zero–dimensional F–algebra and σ′ : B′ → F the canonical trace on B′ obtained by extending
scalars on σ (i.e. σ′ = σ on B). Then, since f̄ is not a zero divisor in B, f̄ is a unit in B′. Hence,
q̄ = (f̄)−1 · ḡ holds in B′. We then conclude that for every h ∈ K[X1, . . . , Xn] the following holds :

σ′((f̄)−1 · ḡ · h̄) = σ′(q̄ · h̄) = σ(q̄ · h̄) ∈ A.

In particular, we conclude :
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Proposition 45 With the previous hypotheses and notations, the polynomial

q1 =
∑

1≤m≤N

σ′((f̄)−1 · ḡ · h̄) · bm ∈ K[X1, . . . , Xn]

verifies that the degree of q1 with respect to the variables Xn−t+1, . . . , Xn is at most t(d − 1), and
q1f − g ∈ (f1, . . . , ft).

Moreover, let T̃r
′
: B′[Xn−t+1, . . . , Xn] → F [Xn−t+1, . . . , Xn] be the extension of the standard trace

T̃r : B[Xn−t+1, . . . , Xn] → A[Xn−t+1, . . . , Xn]

by localization at A \ {0}. Let ∆1 =
∑

1≤m≤N ām · bm ∈ B[Xn−t+1, . . . , Xn] be the pseudo–jacobian
determinant seen as an element of B′[Xn−t+1, . . . , Xn]. Finally, let J̄ ∈ B be the residual class defined
by the jacobian determinant of the polynomials f1, . . . , ft with respect to the variables Xn−t+1, . . . , Xn.
Then, the polynomial q1 of the previous Proposition 45 can also be obtained as :

q1 = T̃r
′
((J̄)−1 · (f̄)−1 · ḡ ·∆1). (17)

Now, for the computational solution of the Division Problem 4, we have to represent the entities
appearing in Equation (17). We can do this by associating to each endomorphism its corresponding
matrix of multiplication in a suitable basis, following Section 3. We thus obtain the following :

q0 = T̃r
′
(M−1

J ·M−1
f ·Mg ·M∆1), (18)

We can compute this polynomial using the method described in Lemma 21 in Section 2.4.

Proposition 46 With the previous assumptions and conventions, let D be the rank of B as free A–
module (observe that D ≤ deg(V ) holds). Let us also assume that there exists a non–scalar straight–
line program Γ1 of size L1, depth `1 and parameters in F1 ⊆ R such that Γ1 evaluates f, f1, . . . , ft ∈
R[X1, . . . , Xn]. Let us suppose deg(fi) ≤ d, deg(f) ≤ d with respect to the variables X1, . . . , Xn. Let us
also assume that g ∈ R[X1, . . . , Xn] has degree at most d with respect to the variables Xn−t+1, . . . , Xn.
Let us finally assume that there exists a non–scalar straight–line program Γ2 of size L2, non–scalar
depth `2 and parameters in a finite set F2 ⊆ R which evaluates g. Then, there exists a non–scalar
straight–line program Γ over A, taking as input a geometric solution of V (f1, . . . , ft) (see Definition
36 on page (36)) with the following properties :

i) the size of Γ is at most (L1 + L2)(tdD)O(1),

ii) the non–scalar depth of Γ is at most O(log2 t + `1 + `2 + log2 D),

iii) the parameters are in F1 ∪ F2 ∪ {z ∈ ZZ : | z | ≤ (td)O(1)L1}, and

iv) the straight–line program Γ evaluates two polynomials q0 ∈ R[X1, . . . , Xn] and Θ ∈ R[X1, . . . , Xn−t]
such that holds :

q1 =
q0

Θ
∈ K[X1, . . . , Xn] and q1f − g ∈ (f1, . . . , ft). (19)

Here we simply sketch the proof of this Proposition. A more explicit description can be found in [33]
or [25]. The key point can be understood as the following : One wishes to compute the polynomial
q1 ∈ K[X1, . . . , Xn] verifying the desired properties. Thus, the Trace Formula (17) of Proposition 45
in the computational form of Equation (18) shows how to compute q1 from the geometric solution of
the variety V . However, as the geometric solution yields tensor matrices (describing the multiplication
by the variables Xi in B) whose entries are quotients of polynomials, we will have to find a common
denominator polynomial for these. Moreover, inverting the matrices MJ and Mf will also introduce
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denominators. By our method, these will be “carried on” by keeping numerators and denominators
separate in order to express q1 as the quotient

q1 =
q0

Θ
(20)

where q0 and Θ are polynomials in R[X1, . . . , Xn] computed from the coefficients of the geometric
solution of V (or equivalently, from the coefficients of the elimination polynomial mU using only
addition, subtraction and multiplication).

The polynomials q0 and Θ in R[X1, . . . , Xn] are given by straight–line program encoding, which means
given as the list of coefficients of the geometric solution and a list of arithmetic operations required
to evaluate them. As we know that Θ divides q0 in R[X1, . . . , Xn], the computation of q1 concludes
with the application of Strassen’s Vermeidung von Divisionen as in Lemma 20, yielding a straight–line
program for the polynomial q1.
We will have to iterate divisions of precomputed polynomials which involve precomputed quotients.
The näıve approach, simply iterating the above procedure, would yield an excessive growth of the
complexity of the method. Therefore, we combine in the proofs of Theorem 1 and Theorem 2 the
strategy of Proposition 46 with two methods, namely Pasodoble effect and iterated matrix product,
which improve the complexity and height estimates (depending mainly on the non–scalar depth of the
straight–line programs describing our algorithm).

5 Equations in general position : Geometric degree and height

This Section is dedicated to the proof of Corollary 5 given in Section 1. We introduce the notion
of polynomials in general position as the central property of our inductive algorithm, and show how
to maintain this condition while controlling the height of the appearing coefficients in terms of the
geometric degree of the system. Then, we show how to deduce the claims made in Corollary 5 from
Theorems 1 and 2.

5.1 Geometric degree and height of a system

Here we introduce the notions of geometric degree and height of a system of polynomials. Observe
that this can be done in both cases in a very similar way.

Definition 47 (General position) A sequence of polynomials h1, . . . , ht ∈ R[X1, . . . , Xn] is said to
be in general position if the following holds :

• h1, . . . , ht−1 is a regular sequence in K[X1, . . . , Xn],

• the ideals (h1, . . . , hi) are radical in K[X1, . . . , Xn] for 1 ≤ i ≤ t− 1 , and

• ht is not a zero divisor in K[X1, . . . , Xn]/(h1, . . . , ht−1).

Definition 48 (Geometric degree of a sequence) Given a sequence of polynomials h1, . . . , ht ∈
R[X1, . . . , Xn] in general position, we denote by δ the geometric degree of the sequence h1, . . . , ht :

δ(h1, . . . , ht) := max{deg V (h1, . . . , hi) : 1 ≤ i ≤ t− 1}.

Let us notice that δ(h1, . . . , ht) ≤
∏t−1

i=1 deg(hi) holds. Observe, that the δ thus defined does not just
depend on the variety V but also on the polynomials h1, . . . , ht and their order.

Similarly, we define the logarithmic height and invariant logarithmic height of a sequence in general
position.
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Definition 49 (Height of a sequence) Given a sequence of polynomials h1, . . . , ht ∈ R[X1, . . . , Xn]
in general position, we define :

i) the logarithmic height of the sequence η(h1, . . . , ht) := max{htV (h1, . . . , hi) : 1 ≤ i ≤ t− 1},
ii) the invariant logarithmic height of the sequence η̃(h1, . . . , ht) := max{h̃tV (h1, . . . , hi) : 1 ≤ i ≤

t− 1}.
Definition 50 (Geometric degree of a system) Let S = {f1, . . . , fs} be a system of polynomials
of degree at most d in R[X1, . . . , Xn]. We consider the set S̃ of all families {h1, . . . , ht : 1 ≤ t ≤ n+1}
of polynomials such that the following holds : There exist integer numbers λij ∈ ZZ , 1 ≤ i ≤ t, 1 ≤ j ≤ s
such that :

• hi :=
∑s

j=1 λijfj,

• (h1, . . . , ht) = (f1, . . . , fs) = (1),

• h1, . . . , ht are in general position and

• |λij | ≤ (ndδ(h1, . . . , ht))c ≤ (ndt)c.

We define

i) the geometric degree δS of the system S as δS := max{δ(h1, . . . , ht) : {h1, . . . , ht} ∈ S̃}.
ii) the logarithmic height ηS of the system S as ηS := max{η(h1, . . . , ht) : {h1, . . . , ht} ∈ S̃}.
iii) and the invariant logarithmic height η̃S of the system S as

η̃S := max{η̃(h1, . . . , ht) : {h1, . . . , ht} ∈ S̃}.

Observe that initially, we are given polynomials f1, . . . , fs ∈ R[X1, . . . , Xn]. Passing from these
polynomials to a sequence h1, . . . , ht in general position as described in Section 5.2 is a constructive,
algorithmic process. Therefore, in our estimates, we are forced to assume worst-case estimates, which
means taking maximums in our definitions of geometric degree and height.

Nevertheless, our Theorems are of a double nature : existential statement and at the same time
algorithmic solution. The existential statements made in Corollary 5 and Corollary 6 also hold for
any particular sequence h1, . . . , ht in general position which minimizes the products δSηS or δS η̃S

respectively.

5.2 Computing equations in general position

The proof of Corollaries 5 and 6 requires some additional effort for the preparation of the input
polynomials f1, . . . , fs ∈ R[X1, . . . , Xn]. We show how to proceed in the case of the arithmetic
Nullstellensatz, the membership problem for complete intersection ideals follows in the same way.
In the following we exhibit an efficient procedure that, taking as inputs the polynomials f1, . . . , fs,
outputs a sequence of polynomials h1, . . . , ht ∈ R[X1, . . . , Xn] with t ≤ n + 1 such that (h1, . . . , ht) =
(f1, . . . , fs) = (1). For this sequence of polynomials h1, . . . , ht holds :

i) hi is a linear combination of f1, . . . , fs for 1 ≤ i ≤ t,

ii) (h1, . . . , ht) defines the trivial ideal in K[X1, . . . , Xn] and

iii) (h1, . . . , ht) verifies that 1) the ideals (h1, . . . , hi) are radical ideals in K[X1, . . . , Xn] of codi-
mension i, for 1 ≤ i ≤ t − 1, and 2) the polynomial ht is not a zero divisor in the residue
ring

K[X1, . . . , Xn]/(h1, . . . , ht−1).
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Let us observe that this effectively shows that the set S̃ appearing in Definition 50 is non–empty.
Since {h1, . . . , ht} ∈ S̃ are linear combinations of f1, . . . , fs, they can be evaluated by a non–scalar
straight–line program of size L + ts, non–scalar depth ` + 1 = O(log2 L) and parameters in F ∪ P,
where P ⊆ ZZ is a finite set whose height we are going to bound.

Lemma 51 (Zero divisor, Lemma 24, [60]) Let g1, . . . , gt be a regular sequence generating a rad-
ical ideal and assume that the variables X1, . . . , Xn are in Noether position with respect to the ideal
I = (g1, . . . , gt). Let g ∈ K[X1, . . . , Xn] be a new polynomial, ηg the endomorphism defined by multi-
plication by g and Mg the matrix of ηg in some fixed basis. Then we have :

i) g is not a zero divisor in B if and only if det(Mg) ∈ K[X1, . . . , Xr] \ {0}.
ii) If g is not a zero divisor in B, the ideal (g1, . . . , gt) is the trivial ideal in K[X1, . . . , Xn] if and

only if det(Mg) ∈ K \ {0}.

Using Bertini’s Theorem as stated in [40, Theorem 6.3] we may obtain the following statement :

Proposition 52 (Proposition 29, [60]) Let h1, . . . , ht be a regular sequence in K[X1, . . . , Xn] such
that the ideal I = (h1, . . . , ht) is a radical ideal in K[X1, . . . , Xn]. Let f1, . . . , fs be polynomials in
K[X1, . . . , Xn] such that they generate the trivial ideal. Let T1, . . . , Ts some new variables and let h
be the polynomial

h = T1f1 + · · ·+ Tsfs.

Let F be the field K(T1, . . . , Ts). Then,

i) h is not a zero divisor in F [X1, . . . , Xn]/(h1, . . . , ht), and

ii) either (h1, . . . , ht, h) is the trivial ideal in F [X1, . . . , Xn] or (h1, . . . , ht, h) is a radical ideal in
F [X1, . . . , Xn]/(h1, . . . , ht).

Proposition 53 There exists a universal constant c > 0 such that the following holds : Given
f1, . . . , fs ∈ R[X1, . . . , Xn] polynomials of degree at most d such that (f1, . . . , fs) is the trivial ideal in
K[X1, . . . , Xn], there exists t ∈ IN , 1 ≤ t ≤ n + 1 and integer numbers λij ∈ ZZ , 1 ≤ i ≤ t, 1 ≤ j ≤ s,
such that the following holds :

• the polynomials h1, . . . , ht given by hi =
∑s

j=1 λijfj, 1 ≤ i ≤ t are in general position,

• (h1, . . . , ht) = (f1, . . . , fs) = (1) in K[X1, . . . , Xn], and

• |λij | ≤ (ndδ(h1, . . . , hi))c for 1 ≤ i ≤ t (where δ(∅) := 1).

Proof.– The proof follows follows by means of an inductive argument. Thus, let us assume that there
exist h1, . . . , hi ∈ R[X1, . . . , Xn] ZZ–linear combinations of f1, . . . , fs such that the ideal (h1, . . . , hi)
is a proper ideal of codimension i. Let us also assume that the variables X1, . . . , Xn are in Noether
position with respect to the ideal (h1, . . . , hi), i.e. the following is an integral ring extension

A = K[X1, . . . , Xn−i] ↪→ K[X1, . . . , Xn]/(h1, . . . , hi) = B.

Let us now introduce some new variables T1, . . . , Ts and the polynomial

h = T1f1 + · · ·+ Tsfs ∈ K(T1, . . . , Ts)[X1, . . . , Xn].

Let A′ and B′ be the algebras obtained from A and B by extending scalars, i.e.

A′ = K(T1, . . . , Ts)⊗K A = K(T1, . . . , Ts)[X1, . . . , Xn−i],

B′ = K(T1, . . . , Ts)⊗K B.
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Again, we have an integral ring extension A′ ↪→ B′ and B′ is a free A′–module. We observe that
the basis of B as A–module is also a basis of B′ as A′–module and that for every polynomial f ∈
K[X1, . . . , Xn] the matrix of the endomorphism ηf : B −→ B is also the matrix of the endomorphism
η′f : B′ −→ B′. In other words, M ′

f = Mf for all polynomials f in K[X1, . . . , Xn]. In particular, let
η′h be the endomorphism η′h : B′ −→ B′ defined by multiplying by h. We have

M ′
h = T1Mf1 + · · ·+ TsMfs

.

The entries of M ′
h are polynomials in K[T1, . . . , Ts, X1, . . . , Xn−i] of degree at most 1 in the variables

T1, . . . , Ts. Now, let χh be the characteristic polynomial of M ′
h, which can be written in the following

way :
χh = Zδ + aδ−1Z

δ−1 + · · ·+ a0,

with δ = rkAB = rkA′B
′, coefficients ai ∈ K[T1, . . . , Ts, X1, . . . , Xn−i] and a0 = det(M ′

h). The
coefficients ai are polynomials of degree at most δ in the variables T1, . . . , Ts. Now, we have two
possibilities : either A) a0 ∈ K[T1, . . . , Ts] or B) a0 ∈ K[T1, . . . , Ts, X1, . . . , Xn−i] \K[T1, . . . , Ts].

A) In the first case, let us choose a point t := (t1, . . . , ts) ∈ ZZs such that a0(t1, . . . , ts) 6= 0. The
polynomial

hi+1 = t1h1 + · · ·+ tshs

verifies that hi+1 is not a zero divisor modulo (h1, . . . , hi) and (h1, . . . , hi+1) is the trivial ideal in
K[X1, . . . , Xn]. As the degree of a0 is bounded by δ, the point t = (t1, . . . , ts) ∈ ZZs may be chosen
such that | ti | ≤ δ, for 1 ≤ i ≤ s. In this case we have finished since h1, . . . , hi+1 are in general
position and (h1, . . . , hi+1) = (f1, . . . , fs).

B) As for the second case, we have to make an additional effort. First we perform a linear change of
coordinates (X1, . . . , Xn) → (Y1, . . . , Yn) such that for A′1 := K(T1, . . . , Ts)[Y1, . . . , Yn−i−1] and the
A′1–algebra

B′
1 := K(T1, . . . , Ts)[Y1, . . . , Yn]/(h1, . . . , hi, h)

the new variables Y1, . . . , Yn verify that A′1 ↪→ B′
1 is an integral ring extension. In fact, this can be

done simply by transforming the polynomial a0 in such a way that

a0(T1, . . . , Ts, Y1, . . . , Yn−i) = bDY D
n−i + · · ·+ b0 (21)

where bi ∈ K[T1, . . . , Ts, Y1, . . . , Yn−i−1]. The degree D is at most δ · d as shown in [29, Lemma 11].
Of course, the degree of the polynomials bi with respect to the variables T1, . . . , Ts is at most δ. Now,
we proceed as in [29, Section 4] or [28, Section 5], to compute a primitive element of the integral ring
extension A′1 ↪→ B′

1.

Let u = λn−iYn−i + · · · + λnYn be such a primitive element with λj ∈ ZZ for n − i ≤ j ≤ n. Now,
there exists a universal constant c1 > 0 such that the degrees of the geometric solution given by the
polynomials mu, ρn−i, . . . , ρn, vn−i, . . . , vn with respect to the variables T1, . . . , Ts are at most (dδ)c1 .

Finally, we consider the Jacobian determinant J = det J(h1, . . . , hi, h), which is not a zero divisor in
B′

1. This simply means that we consider the matrix M ′
J of the endomorphism η′J : B′

1 −→ B′
1.

The determinant of M ′
J is a polynomial in K[T1, . . . , Ts, Y1, . . . , Yn−i−1] whose degree in the variables

T1, . . . , Ts is at most (ndδ)c for some universal constant c ≥ c1 > 0. Thus, let us consider the following
two polynomials

F1 = det(Mh) ∈ K[T1, . . . , Ts, Y1, . . . , Yn−i] and F2 = det(M ′
J) ∈ K[T1, . . . , Ts, Y1, . . . , Yn−i−1].

Both polynomials are not in K[T1, . . . , Ts]. Let us choose two points y
1

= (y(1)
1 , . . . , y

(1)
n−i) and y

2
=

(y(2)
1 , . . . , y

(2)
n−i) ∈ ZZn−i such that the following polynomials F1 and F2 verify :

F1 = F1(T1, . . . , Ts, y1
)− F1(T1, . . . , Ts, y2

) 6= 0 and F2 = F2(T1, . . . , Ts, y1
)− F2(T1, . . . , Ts, y2

) 6= 0.
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Finally, the polynomial F1 · F2 ∈ K[T1, . . . , Ts] is a non zero polynomial of degree at most (ndδ)c + δ.
For every point (t1, . . . , ts) ∈ ZZs such that F1 ·F2(t1, . . . , ts) 6= 0 we have that F1 and F2 are non–zero
polynomials. In particular, let hi+1 be the polynomial hi+1 = t1f1 + · · ·+ tsfs. Then, we obtain that
hi+1 is not a zero divisor modulo (h1, . . . , hi), and the ideal (h1, . . . , hi, hi+1) is a proper radical ideal
of codimension i + 1.

The coordinates of the point (t1, . . . , ts) ∈ ZZs can be obviously chosen such that | ti | ≤ (ndδ)c + δ.

5.3 The case of trivial ideals

Now we are in conditions to give the proof of Corollary 5 from Theorems 1 and 2 :

From Proposition 53 we easily deduce the existential statements of Corollary 5 (i.e. claims ii), iii), iv)
and v) as a consequence of the bounds given in Theorem 1 and 2.

As for claim vi), the proof of Proposition 53 essentially shows how to compute polynomials h1, . . . , ht ∈
ZZ[X1, . . . , Xn] given as linear combinations of the input polynomials f1, . . . , fs and verifying the
conditions described in Proposition 53. To see how this works, we shall explain the inductive step :

Suppose that we already have computed polynomials h1, . . . , hi (for a fixed i, 1 ≤ i ≤ m) such that

i) (h1, . . . , hj) is a radical ideal of codimension j in K[X1, . . . , Xn] for 1 ≤ j ≤ i, and

ii) h1, . . . , hi are linear combinations of f1, . . . , fs of the form

hk :=
s∑

j=1

λkjfj with |λkj | ≤ (ndδS)c.

Now, suppose that we have computed a Noether normalisation of (h1, . . . , hi), i.e. a matrix N ∈
Mn(ZZ) such that the variables 


Y1

...
Yn


 = N ·




X1

...
Xn




are in Noether position with respect to h1, . . . , hi, i.e. the following is an integral ring extension

A = K[Y1, . . . , Yn−i] ↪→ K[Y1, . . . , Yn]/(h1, . . . , hi) = B.

We may also assume that a geometric solution (Def. 36 on page 29) of V (h1, . . . , hi) has been computed
with respect to the Noether normalisation N . As observed in Lemma 40, all this can be done in time

(nd(L + s)δS)O(1).

Now, we proceed as follows :

i) Introduce some new variables T1, . . . , Ts.

ii) Consider the polynomial H = T1f1 + · · ·+ Tsfs ∈ R[T1, . . . , Ts][Y1, . . . , Yn].

iii) Consider A[T ] := A[T1, . . . , Ts], B[T ] = A[T ]⊗A B and the homothesy : ηH : B[T ] → B[T ].

iv) Compute the determinant of the matrix of ηH (using the geometric solution), yielding the
polynomial P1(Y1, . . . , Yn−i, T1, . . . , Ts) ∈ A[T ].

v) Now, using a probabilistic algorithm (as described in Section 2.5.1 or [87], [72]) decide (according
to Lemma 51 on page 41) whether P1(Y1, . . . , Yn−i, T1, . . . , Ts) is in K[T1, . . . , Ts] or not.
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vi) If P1(Y1, . . . , Yn−i, T1, . . . , Ts) ∈ K[T1, . . . , Ts], choose a point in ZZs, say (λi+1,1, . . . , λi+1,s),
such that |λi+1,k | ≤ (ndδs)s and P1 does not vanish : P1(Y1, . . . , Yn−i, λi+1,1, . . . , λi+1,s) 6= 0.
The algorithm terminates by writing t = i + 1, ht = λt,1f1 + · · ·+ λt,sfs.

vii) Else, compute a Noether normalisation of the ideal (h1, . . . , hi,H) as an ideal of codimension
i + 1 in K(T1, . . . , Ts)[Y1, . . . , Yn]. In other words, compute N ′ ∈ Mn(ZZ) a regular matrix such
that 


Y ′

1
...

Y ′
n


 = N ′ ·




Y1

...
Yn




such that for A′[T ] := K(T1, . . . , Ts)[Y ′
1 , . . . , Y ′

n−i+s] the following

A′[T ] ↪→ K(T1, . . . , Ts)[Y ′
1 , . . . , Y ′

n]/(h1, . . . , hi,H)

is an integral ring extension. Then, compute the Jacobian determinant of the sequence
(h1, . . . , hi,H) with respect to the variables Y ′

n−i, . . . , Y
′
n. Let J(Y ′

1 , . . . , Y ′
n−i−1, T1, . . . , Ts) in

R[T1, . . . , Ts, Y
′
1 , . . . , Yn−i−1′ ] be this polynomial. Finally, using a probabilistic algorithm (as

described in Section 2.5.1 or [87]) choose a point (λi+1,1, . . . , λi+1,s) ∈ ZZs with |λi+1,k | ≤
(ndδs)c for 1 ≤ k ≤ s such that

P1(Y1, . . . , Yn−i, λi+1,1, . . . , λi+1,s) 6= 0 and

J(Y ′
1 , . . . , Yn−i−1, λi+1,1, . . . , λi+1,s) 6= 0 holds.

We now set hi+1 = λi+1,1f1+· · ·+λi+1,sfs and obtain thus the hypotheses made at the beginning
and continue the induction.

This procedure runs in the desired time because all polynomials computed by the procedure are
represented by the straight–line program which evaluates them.

6 Proof of Theorem 1

This Section contains the proofs for the two statements of Theorem 1, 1) the complexity estimates
and 2) the degree bounds claimed.

6.1 The degree bound

In this Subsection we give a proof for the degree bound for the polynomials gi stated in claim 2) of
Theorem 1.

We are given a finite sequence of polynomials f1, . . . , ft ∈ R[X1, . . . , Xn] with t ≤ n + 1 such that the
following properties hold :

i) for every i, 1 ≤ i ≤ t− 1, the ideals (f1, . . . , fi) are radical ideals of codimension i,

ii) the polynomial fi+1 is not a zero divisor in the residue ring
Bi := K[X1, . . . , Xn]/(f1, . . . , fi) for 1 ≤ i ≤ t− 1,

iii) deg(fi) ≤ d, ht(fi) ≤ h, for every i, 1 ≤ i ≤ t.

We are also given an additional polynomial f ∈ R[X1, . . . , Xn] with deg(f) ≤ d and ht(f) ≤ h.
Assuming that f belongs to the ideal (f1, . . . , ft) in K[X1, . . . , Xn], we wish to compute a ∈ R and
g1, . . . , gt ∈ R[X1, . . . , Xn] such that the following identity holds :

af = g1f1 + · · ·+ gtft.
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We consider the intermediate varieties Vi := V (f1, . . . , fi) for 1 ≤ i ≤ t − 1, Di := deg(Vi) and
δ := max{D1, . . . , Dt−1}.
We will make use of the following Proposition, saying that we can compute geometric solutions for
all intermediate varieties Vi. The proof of this Proposition can be found for example in [44], [28], [25]
and [60].

Proposition 54 (Geometric solutions, [25]) With the previous hypotheses and notations, given
a non–scalar straight–line program Γ of size L, non–scalar depth ` and parameters in a finite set
F ⊆ R, such that Γ evaluates the polynomials f1, . . . , ft, f ∈ R[X1, . . . , Xn] verifying the hypotheses
of Theorem 1 above. Then there exists a bounded error probability Turing machine which, taking as
input this straight–line program Γ computes the following items :

i) a regular matrix N ∈Mn(ZZ), N = (νij)1≤i,j≤n such that

(a) | νij | ≤ (nδ)c, where c is the universal constant of Equation (14) on Page 30,

(b) the variables Y1, . . . , Yn given by :



Y1

...
Yn


 = N




X1

...
Xn




are in Noether position with respect to all intermediate varieties Vi, i.e.

Ai := K[Y1, . . . , Yn−i] ↪→ Bi := K[Y1, . . . , Yn]/(f1, . . . , fi)

is an integral ring extension for 1 ≤ i ≤ t− 1,

ii) a non–scalar straight–line program Γ′ of size O(ndLδ)O(1) and parameters in F ∪ {z ∈ ZZ :
| z | ≤ (ndLδ)c}, such that Γ′ evaluates the geometric solutions of all the varieties V1, . . . , Vi−1

with respect to the Noether normalisation N , i.e. Γ′ evaluates :

• linear forms ui ∈ ZZ[Yn−i+1, . . . , Yn], 1 ≤ i ≤ t−1, such that ui is a primitive element of the
integral ring extension Ai ↪→ Bi. Moreover, ui may be chosen such that ht(ui) ≤ (ndLδ)c.

• polynomials pi ∈ R[Yn−i+1, . . . , Yn][T ] for 1 ≤ i ≤ t − 1 of degree Di with respect to the
variable T . We may assume that pi has the form

pi = αiT
Di + hi

where αi ∈ R \ {0} is the leading coefficient of pi and degT hi ≤ deg pi ≤ Di. Moreover,
α−1

i pi is the minimal equation of the endomorphism : ηui : B′
i → B′

i in the basis given by
{1, ūi, . . . , ū

Di−1
i }.

• for 1 ≤ i ≤ t− 1 polynomials ρ
(i)
n−i+1, . . . , ρ

(i)
n ∈ R[Yn−i+1, . . . , Yn],

• for 1 ≤ i ≤ t−1 polynomials v
(i)
n−i+1, . . . , v

(i)
n ∈ R[Yn−i+1, . . . , Yn][T ] with degT v

(i)
j ≤ Di−1.

Moreover, for 1 ≤ i ≤ t− 1 and for n− i + 1 ≤ j ≤ n, the polynomial ρ
(i)
j Yj − v

(i)
j (ui) lies

in the ideal generated by (f1, . . . , fi) in K[Y1, . . . , Yn].

As observed in Section 3.2, Bi is a free Ai–module of rank at most Di (and also bounded by the
geometric degree δ). For every polynomial g ∈ K[Y1, . . . , Yn] we denote by ḡ the residual class
g + (f1, . . . , fi) ∈ Bi, writing simply ḡ ∈ Bi when no confusion may occur. We denote by Fi :=
K(Y1, . . . , Yn−i) the quotient field of Ai (according to the Nomenklatur of [54]) and by B′

i the zero–
dimensional Fi–algebra obtained by extending scalars in Bi, i.e.

B′
i := Fi ⊗Ai Bi.
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It is clear that B′
i is a Fi–vector space of finite dimension and that its dimension equals the rank

of Bi as free Ai–module. For every Ai–module morphism σ ∈ B∗
i (:= HomAi

(Bi, Ai)) we denote
by σ′ ∈ (B′

i)
∗ (:= HomFi

(B′
i, Ki)) the Fi–linear mapping defined by extending scalars to B′

i. In
particular, if σ ∈ B∗

i is a canonical trace, the trace σ′ := IdFi ⊗Ai σ in (B′
i)
∗ is also a canonical trace

(in the sense of Section 4.1).

Following our discussion in Section 4.1, we know that there exists a canonical trace σi ∈ B∗
i associated

to the pseudo–jacobian determinant defined by the sequence f1, . . . , fi with respect to the variables
Yn−i+1, . . . , Yn.

Let ∆i ∈ Bi ⊗Ai
Bi be a pseudo–jacobian determinant defined by the sequence f1, . . . , fi. Let us

consider the set Mi of all monomials of degree at most i(d−1) in the variables {Yn−i+1, . . . , Yn}. Let
us denote the monomials contained in Mi in the following way :

Mi := {b(i)
k : 1 ≤ k ≤ Ni},

where Ni is the cardinality ofMi. Then, there exist polynomials a
(i)
k ∈ Ai[Yn−i+1, . . . , Yn], 1 ≤ k ≤ Ni

of total degree bounded by i(d− 1) such that holds :

∆i =
Ni∑

k=1

a
(i)
k ⊗ b

(i)
k ∈ Bi ⊗Ai Bi. (22)

We want to apply the alternative trace formula given by Proposition 44. As discussed in Section 4.1,
for 1 ≤ i ≤ t− 1 we have the canonical trace σ′i ∈ B′

i obtained by extending scalars to B′
i. Similarly,

we may consider B̃i := Bi[Yn−i+1, . . . , Yn] = Ai[Yn−i+1, . . . , Yn]⊗Ai Bi and B̃′
i := B′

i[Yn−i+1, . . . , Yn].

Now, let us denote by ∆(i)
1 the pseudo–jacobian determinant ∆i seen as an element in

B̃′
i = B′

i[Yn−i+1, . . . , Yn]. In other words, let ∆(i)
1 be the following element :

∆(i)
1 =

Ni∑

k=1

a
(i)
k ⊗ b

(i)
k ∈ Bi[Yn−i+1, . . . , Yn].

Let us recall from Proposition 46 on page 38 that ∆(i)
1 can be evaluated by a non–scalar straight–line

program of low complexity. Now, we consider the standard traces :

T̃ri : B̃i → Ai[Yn−i+1, . . . , Yn] = K[Y1, . . . , Yn], and T̃r
′
i : B̃′

i → Fi[Yn−i+1, . . . , Yn],

where T̃r
′
i is IdFi ⊗Ai T̃ri.

Let Ji denote the jacobian determinant of the sequence f1, . . . , fi with respect to the variables
Yn−i+1, . . . , Yn. Then, by Proposition 44 holds for every g ∈ Ai[Yn−i+1, . . . , Yn] the following identity :

g1 =
∑

1≤k≤Ni

σ′i(ḡ · ā(i)
k )b(i)

k = T̃r
′
i(J̄

−1
i · ḡ ·∆(i)

1 )

and ḡ1 − ḡ = 0 in Bi.

This will allow us to compute a single division step in Bi as shown in Proposition 45.

The degree bound We are now in conditions to show the degree bound for the polynomials gi

appearing in the Bézout identity af = g1f1+· · ·+gtft of Theorem 1. We define inductively a sequence
of polynomials G1, . . . , Gt and Q1, . . . , Qt in K[X1, . . . , Xn] in the following way :

Gt := T̃r
′
t−1(J̄

−1
t−1 · f̄−1

t · f̄ · ∆̄(t−1)
1 ), Qt := f −Gtft. (23)
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For 2 ≤ i ≤ t− 1, given Qi+1 we define:

Gi := T̃r
′
i−1(J̄

−1
i−1 · f̄−1

i · Q̄i+1 · ∆̄(i−1)
1 ), Qi := Qi+1 −Gifi. (24)

As for i = 1, we define

G1 :=
Q2

f1
, Q1 := 0. (25)

For the polynomials Gi and Qi such defined holds :

f = G1f1 + · · ·+ Gtft. (26)

Because of our discussion in Section 4.2 one now easily sees from their definition that the polynomials
G1, . . . , Gt are in K[Y1, . . . , Yn] and that they verify Identity (26).

The degree bound on the polynomials gi as claimed in Theorem 1 (first stated in [28]) follows by an
elementary inductive argument as that of [45] or [60]. We have to find a suitable common denominator
a ∈ R \ {0}, such that defining gi := a ·Gi, for 1 ≤ i ≤ t we obtain the expression stated in Theorem
1, i.e. af = g1f1 + · · · + gtft, and gi ∈ R[Y1, . . . , Yn]. The forthcoming Section will show how to
construct this denominator a for the polynomials G1, . . . , Gt.

6.2 The size of the straight–line program

Sketch of proof The following lines intend to give an overview for the proof of claim 1) of Theorem 1
– the complexity estimates in terms of size and non-scalar depth for a straight–line program evaluating
polynomials g1, . . . , gt ∈ R[X1, . . . , Xn] and a non–zero constant a ∈ R \ {0} such that af = g1f1 +
· · ·+ gtft holds.

Since we are going to exhibit as precisely as possible the procedures underlying the straight–line
programs evaluating the polynomials g1, . . . , gt ∈ R[X1, . . . , Xn] and the constant a ∈ R\{0} verifying
the conditions of Theorem 1, we will have to pay a price in terms of style and notation. This outline
hopefully clarifies the reasons for the necessarily detailed notations introduced in the proof.

The main technical tool we are going to use is a combination of the following two ingredients :

i) an efficient algorithm for computing the geometric solutions of all intermediate varieties Vi =
V (f1, . . . , fi) for 1 ≤ i ≤ t− 1 as found in [25] and resumed in Proposition 54,

ii) and the division procedure described in Section 4, resumed in Proposition 46.

More precisely, for 1 ≤ i ≤ n we consider the intermediate varieties Vi = V (f1, . . . , fi) and the integral
ring extensions

Ai := K[Y1, . . . , Yn−i] ↪→ Bi := K[Y1, . . . , Yn]/(f1, . . . , fi).

We show that there exist for 1 ≤ i ≤ t − 1 straight–line programs Γi in Ai taking as input the
coefficients of a geometric solution for the variety Vi which performs the divison algorithm described
in Section 4 and evaluate polynomials

G̃i ∈ R[X1, . . . , Xn], Θ̃i ∈ R[X1, . . . , Xn−i] (27)

with the following properties : 1) Θ̃i divides G̃i in K[X1, . . . , Xn], 2) Gi = eGi

eΘi
, and for 1 ≤ r ≤ t the

polynomial f −∑t
j=r

eGj

eΘj
· fj is in (f1, . . . , fr−1).

The geometric solutions of all intermediate varieties Vi are given by a straight–line program Γ′ by
Proposition 54. We use the information contained in this straight–line program Γ′ as input for the
straight–line programs Γi computing the divisions modulo the intermediate complete intersection
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varietes. This composition of straight–line programs yields a new straight–line program which can
be visualized by the scheme given in Figure 1, where the arrows signify “input”, as indicated by
Equations (23) to (25).

¶
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¶
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¶
¶
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Q
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Q

Q
Q

Q
Q

Q
Q
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´
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´
´

´
´

´
´

´
´

´
´

Γ′

ΓiΓt Γt−1 Γ2 Γ1

Figure 1: First Approach

Then, applying Strassen’s Vermeidung von Divisionen technique (Proposition 20) to this straight–line
program evaluating the polynomials G̃i, Θ̃i for 1 ≤ i ≤ t, we would obtain a new straight–line program
that evaluates a suitable constant a ∈ R \ {0} and polynomials g1, . . . , gt ∈ R[X1, . . . , Xn] such that
holds :

a−1 · gi =
G̃i

Θ̃i

and af = g1f1 + · · ·+ gtft.

This strategy suffers one major drawback, called the Pasodoble effect :

Recall the method introduced in Section 4 to perform a single division modulo a complete intersection
variety. This method will be applied in each straight–line program Γi, but the input of Γi is not just
the geometric solution of the complete intersection variety Vi = V (f1, . . . , fi) but also the “remainder”
of all previous divisions as expressed in the polynomials Qj as introduced in Equations (23) to (25)
on page 46 :

Qj = f −
t∑

j=i

Gj · fj for 1 ≤ r ≤ t.

The resulting effect on the dependency of the inputs is illustrated graphically in Figure 2.
Thus, to compute the polynomials G̃i and Θ̃i, all the previously computed straight–line programs
Γt, . . . , Γi+1 will be used. This “nesting” or dependence on the previous steps (therefore Pasodoble
effect) causes an accumulated complexity increasal. If Di denotes the geometric degree deg Vi of the
intermediate variety Vi from the bounds obtained for a single division step in Section 4 follows for the
straight–line programs Γi a complexity bound of order (

∏t
j=r+1 Dj)O(1), which is unsatisfactory.

Therefore, the main work in the forthcoming proof of Theorem 1 will be spent on showing a way how
to avoid this Pasodoble effect.

The crucial observation for the proof of the complexity estimates of Theorem 1 is the fact that we
can pre–compute some intermediate information in the form of some straight–line programs which we
will denote by M1, . . . , Mt−1. This information will only depend on the geometric solutions of the
intermediate varieties Vi and the input polynomials f1, . . . , ft. In addition, we modify the straight–
line programs Γi slightly to obtain some new straight–line programs Γ′i such that the straight–line
program of Table 1 above can be obtained as a straight–line program Γ′′ in the following, alternative
way illustrated in Figure 3.
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Figure 2: Consequences
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Figure 3: Alternative

For t − 1 ≥ i ≥ 1 the straight–line programs Mi will evaluate the polynomials listed in Proposition
64 on page 55. Then, using this information as input, the straight–line programs Γi evaluate the
polynomials listed in Proposition 65 on page 57.

Applying Strassen’s Vermeidung von Divisionen method (cf. Proposition 20) we obtain from the
straight–line programs Γi a straight–line program evaluating the polynomials g1, . . . , gt and a non-
zero constant a ∈ R \ {0} such that af = g1f1 + · · ·+ gtft holds.

Roughly speaking, the new technical outcome may be explained as follows : We define inductively
a sequence of polynomials G1, . . . , Gt ∈ K[X1, . . . , Xn] by Equations (23) to (25) such that f =
G1f1 + · · ·+ Gtft holds. Suppose we have computed Gt, . . . , Gi+1. Then, the polynomial Gi is given
as :

Gi = T̃r
′
i−1(J̄

−1
i−1 · f̄−1

i · Q̄i+1 · ∆̄(i−1)
1 )

= T̃r
′
i−1(J̄

−1
i−1 · f̄−1

i · f̄ · ∆̄(i−1)
1 )−

t∑

j=i+1

T̃r
′
i−1(J̄

−1
i−1 · f̄−1

i · Ḡj · f̄j · ∆̄(i−1)
1 ).

Now, the main point will be to determine which parts of Ḡj have some influence in the second part
of the above formula, namely :

T̃r
′
i−1(J̄

−1
i−1 · f̄−1

i · Ḡj · f̄j · ∆̄(i−1)
1 ). (28)

The product J̄−1
i−1 · f̄−1

i · ·f̄j · ∆̄(i−1)
1 depends just on the input system S = {f1, . . . , ft} and does not

depend on the precomputed polynomials Gt, . . . , Gi+1.

Now, we observe that the polynomial Gj ∈ Aj [Yn−j+1, . . . , Yn] has two main “components”. First,
we can see its “coefficients” being polynomials in Aj ⊆ Ai−1 and second, its “variables”, namely
Yn−j+1, . . . , Yn. The main influence of the polynomial Gj in Equation (28) above depends on the

action of the “variable” part of Gj under the trace T̃r
′
i−1, i.e. the dependence on the variables

Yn−j+1, . . . , Yn, whereas the “coefficient” part of Gj does not interfere significantly.

We will show that this “variable” part of Gj depends only on the previously computed pseudo–
jacobian determinants ∆(s)

1 for t− 1 ≥ s ≥ j. These pseudo–jacobian determinants ∆(s)
1 are elements

of Aj [Yn−j+1, . . . , Yn] and depend only on the input system f1, . . . , ft, but not on the previously
computed polynomials Gt, . . . , Gi+1.

The task performed by the non–scalar straight–line programs Mt−1, . . . , Mi−1 will be to “isolate” this
“variable” part of the polynomials Gt, . . . , Gi+1 to be reused in the computation of Gi. To clarify
this idea : “isolate” does not mean to compute the monomials of Gj with respect to the variables
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Yn−j+1, . . . , Yn. It means a more sophisticated process which does not contain any “interpolation”
steps and which we show explicitely in the sequel. As an additional complication interfers the necessity
to “carry on” denominators as before, which increases the notational complexity of the proof once
more. Unfortunately, we have not been able to exhibit this process using less notation.

Proof of the complexity estimates of Theorem 1 The complexity estimates of Theorem 1
follow by describing a suitable straight–line program that evaluates G1, . . . , Gt from the information
contained in the geometric solutions of the varieties V1, . . . , Vt−1. First of all, we want to give here a
matricial expression of the equations (23), (24) and (25).

For every polynomial g ∈ R[Y1, . . . , Yn] we denote by M
(i)
g the matrix of the endomorphism ηg : B′

i →
B′

i in the basis given by the primitive element {1, ūi, . . . , ū
Di−1
i }.

Similarly, for every ∆ ∈ Bi[Yn−i+1, . . . , Yn] we denote by M
(i)
∆ the matrix associated to the endomor-

phism η∆ : B̃′
i → B̃′

i in terms of the basis given by the primitive element {1⊗1, ūi⊗1, . . . , ū
Di−1
i ⊗1}.

Recall from page 46 that ∆i denotes a pseudo–jacobian of f1, . . . , fi in Bi ⊗Ai
Bi and that ∆(i)

1 is
∆i seen as an element in B̃′

i = B′
i[Yn−i+1, . . . , Yn]. Then, let us write M

(i)

∆
(i)
1

for the matrix of the

endomorphism of multiplication by ∆(i)
1 in B̃′

i.

Then, the polynomials Gt, . . . , G1 we have defined recursively by Equations (23), (24) and (25) can
be rewritten in terms of linear algebra using matrices as :

Gt = T̃r
′
t−1((M

(t−1)
Jt−1

)−1 · (M (t−1)
ft

)−1 ·M (t−1)
f ·M (t−1)

∆
(t−1)
1

)−1), Qt = f −Gtft

and, recursively for t− 1 ≥ i ≥ 2,

Gi = T̃r
′
i−1((M

(i−1)
Ji−1

)−1 · (M (i−1)
fi

)−1 ·M (i−1)
Qi+1

·M (i−1)

∆
(i−1)
1

)−1), Qi = Qi+1 −Gifi

and finally G1 = Q2
f1

, Q1 := 0.

All these expressions above involve divisions by non–constant polynomials (divisions by det(M (i−1)
Ji−1

),

det(M (i−1)
fi

) for instance. Even if the results of Section 3 would guarantee that the Gi’s and the Qi’s are
true polynomials (in K[Y1, . . . , Yn]), the presence of intermediate divisions will hide (and make harder)
the computation of the common denominator (in R) of the polynomials G1, . . . , Gt ∈ R[Y1, . . . , Yn].
We are going to show a method for computing Gt, . . . , G2. The last step of computing G1 can be done
applying Vermeidung von Divisionen.

As we said before, our method “carries on” the occurring divisions by non–constant polynomials until
the last moment. In this way, we obtain sequences of polynomials G̃1, . . . , G̃t in R[Y1, . . . , Yn] and
Θ̃1, . . . , Θ̃t in R[Y1, . . . , Yn] such that the following identities hold for 2 ≤ i ≤ t :

Gi =
G̃i

Θ̃i

. (29)

Then, applying Strassen’s Vermeidung von Divisionen technique as stated in Lemma 20 together with
the degree bound stated in Section 6.1 before will be sufficient to obtain a straight–line program of
appropriate size and parameters which evaluates polynomials g1, . . . , gt ∈ R[Y1, . . . , Yn] and a non–zero
constant a ∈ R \ {0} such that for 1 ≤ i ≤ t holds :

Gi = a−1 · gi, (30)

where for i = 1 simply holds Θ̃1 = f1 and G̃i = Q1. From this, the complexity estimates of Theorem
1 follow immediately.
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Denominators in tensor matrices We are now interested in the description of the tensor matrices,
i.e. the matrices in the basis {1, ūi, . . . , ū

Di−1
i } of the endomorphisms : ηYj

: B′
i → B′

i for 1 ≤ i ≤
t− 1, n− i + 1 ≤ j ≤ n. We have the following Lemma :

Lemma 55 With the same notations and assumptions as before, there exists a non–scalar straight–
line program of size (ndLδ)O(1) and parameters in F ∪ {z ∈ ZZ : | z | ≤ (ndLδ)c}, such that the
straight–line program evaluates the following polynomials :

i) for every i, 1 ≤ i ≤ t− 1, polynomials ρ(i) ∈ R[Y1, . . . , Yn−i],

ii) for every i, 1 ≤ i ≤ t−1, and every j, n−i+1 ≤ j ≤ n, Γ′′ evaluates the entries in R[Y1, . . . , Yn−i]
of some Di ×Di matrices M(i)

Yj
.

These polynomials verify that for every i, 1 ≤ i ≤ t − 1, and every j, n − i + 1 ≤ j ≤ n, the matrix
(ρ(i))−1M(i)

Yj
is the matrix of the endomorphisms ηYj

: B′
i → B′

i in the basis {1, ūi, . . . , ū
Di−1
i }.

Proof.– This follows by an argument similar to the one of Lemma 21. We first observe that the tensor
matrices of multiplication by Yj are given by

M
(i)
Yj

= (ρ(i)
j )−1v

(i)
j (Mui),

where Mui is the companion matrix of the polynomial α−1
i · pi ∈ Ai[T ]. Let us assume that

v
(i)
j :=

Di−1∑

k=0

a
(i)
j,kT k with a

(i)
j,k ∈ R[Y1, . . . , Yn−i]

and let us define the polynomial w
(i)
j :=

∑Di−1
k=0 a

(i)
j,kαDi−k−1

i T k. The tensor matrix may then be seen

as M
(i)
Yj

= (ρ(i)
j )−1 · α−1

i · w(i)
j (αiMui). Defining

ρ(i) :=
n∏

j=n−i+1

(ρ(i)
j αi) and M(i)

Yj
:=

n∏
k=n−i+1

k 6=j

w
(i)
j (αiMui),

we have M
(i)
Yj

= (ρ(i)
j )−1M(i)

Yj
and these obviously verify the desired conditions.

Denominators of the homothesy matrices We are interested in the description of the denomi-
nators of the matrices describing the multiplication by elements in Bi.

Lemma 56 With the previous notations and assumptions, let g be a polynomial in R[Y1, . . . , Yn]
evaluable by a non–scalar straight–line program Γ1 of size L1 and parameters in F1. Then, there exists
a non–scalar straight–line program Γg of size (nd(L + L1)δ)O(1) and parameters in F ∪F1 ∪ {z ∈ ZZ :
| z | ≤ (ndLδ)c} such that Γg evaluates

• a polynomial Θ(i)
g ∈ R[Y1, . . . , Yn−i] \ {0} and

• the entries in R[Y1, . . . , Yn−i] of a Di ×Di matrix M(i)
g such that :

the matrix M
(i)
g is given by M

(i)
g = (Θ(i)

g )−1 · M(i)
g .

If g ∈ R[Y1, . . . , Yn] is not a zero divisor in Bi (and B′
i), the matrix M

(i)
g is a regular matrix. Thus,

we are also interested in the computation of its inverse matrix, (M (i)
g )−1.
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Lemma 57 With the notations and assumptions of the previous Lemma, if the polynomial g ∈
R[Y1, . . . , Yn] is not a zero divisor in Bi, there exists a non–scalar straight–line program Γ = (Γ(i)

g )−1

of size (nd(L + L1)δ)O(1) and parameters in F ∪F1 ∪ {z ∈ ZZ : | z | ≤ (ndLδ)c} such that Γ evaluates

• a polynomial Θ̃(i)
g ∈ R[Y1, . . . , Yn−i] \ {0} and

• the entries in R[Y1, . . . , Yn−i] of a Di ×Di matrix M̃(i)
g such that :

the inverse matrix (M (i)
g )−1 may be obtained as (M (i)

g )−1 = (Θ̃(i)
g )−1 · M̃(i)

g .

Proof.– First, we have the identity M
(i)
g = (Θ(i)

g )−1 ·M(i)
g with the bounds of the previous Lemma 56.

Let detg be the determinant of M(i)
g and let Adjg be the transposed of the adjoint matrix of M(i)

g .
Then, we have :

(M (i)
g )−1 = (detg)−1 ·Θ(i)

g ·Adjg

and thus, defining Θ̃(i)
g := (detg) and M̃(i)

g := Θ(i)
g ·Adjg we conclude the proof.

Let us observe that for a given polynomial θ ∈ Bi[Yn−i+1, . . . , Yn] the endomorphism

ηθ : B′
i[Yn−i+1, . . . , Yn] → B′

i[Yn−i+1, . . . , Yn]

represented in the basis {1⊗ 1, ūi ⊗ 1, . . . , ūDi−1
i ⊗ 1} is given by the matrix M

(i)
θ .

Lemma 58 With the same notations and assumptions, let be given a polynomial θ ∈ Bi[Yn−i+1, . . . , Yn]
which can be evaluated by a non–scalar straight–line program Γ2 of size L2 and parameters in F2.
Then, there exists a non–scalar straight–line program Γθ of size (nd(L + L2)δ)O(1) and parameters in
F ∪ F2 ∪ {z ∈ ZZ : | z | ≤ (ndLδ)c} such that Γθ evaluates

• a polynomial Θ(i)
θ ∈ R[Y1, . . . , Yn−i] and

• the entries in R[Y1, . . . , Yn] of a Di ×Di matrix M(i)
θ such that :

the matrix M
(i)
θ may be obtained as M

(i)
θ := (Θ(i)

θ )−1 · M(i)
θ .

Proof.– Let us simply observe that :

M
(i)
θ = θ(Y1, . . . , Yn−i, (ρ(i))−1M(i)

Yj−i+1
, . . . , (ρ(i))−1M(i)

Yn
, Yn−i+1, . . . , Yn)

and apply the technical tool of Lemma 21 as before to compute matrices and denominators separately.

Dependence on the input system These notations fixed, let us see how to compute our poly-
nomials G1, . . . , Gt. We introduce the following additional notation for the entities we will compute
(which will depend only on the input system f1, . . . , ft) :

• for 1 ≤ i ≤ t− 1 the polynomial

Θ(i) := Θ̃(i−1)
Ji−1

· Θ̃(i−1)
fi

·Θ(i−1)
f ·Θ(i−1)

∆
(i−1)
1

∈ R[Y1, . . . , Yn−i+1],

• the matrices with entries in R[Y1, . . . , Yn] for 1 ≤ i ≤ t− 1 :

M(i) := M̃(i−1)
Ji−1

· M̃(i−1)
fi

·M(i−1)
f · M(i−1)

∆
(i−1)
1

,
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• for 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t, the polynomials :

Θ(i)
j := Θ̃(i−1)

Ji−1
· Θ̃(i−1)

fi
·Θ(i−1)

fj
·Θ(i−1)

∆
(i−1)
1

∈ R[Y1, . . . , Yn−i+1],

• for 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t, the matrices with entries in R[Y1, . . . , Yn] given by :

M
(i)
j := M̃(i−1)

Ji−1
· M̃(i−1)

fi
· M(i−1)

fj
· M(i−1)

∆
(i−1)
1

,

• for 1 ≤ i ≤ t− 1, let Pi ∈ R[Y1, . . . , Yn] be the polynomial given by

Pi := T̃r
′
i(M(i)).

Observe the following relevant fact which helps us to avoid the Pasodoble effect : the information
Θ(i),M(i), Θ(i)

j and M(i)
j is independent of the intermediate results G1, . . . , Gt, Q1, . . . , Qt. This leads

us to the following Lemmata showing how to compute the polynomials G1, . . . , Gt.

Lemma 59 With the previous notations and assumptions, for j ≥ i + 1 let M
(i)
Gj

be the matrix
associated to the endomorphism ηGj : B′

i → B′
i. Then, the following identities hold :

Gt = (Θ(t−1))−1Pt−1,

and for every 2 ≤ i ≤ t− 1 :

Gi = (Θ(i−1))−1Pi−1 −
t∑

j=i+1

(Θ(i−1)
j )−1T̃r

′
i−1(M

(i−1)
j ·M (i−1)

Gj
).

Proof.– Observe that the following identities hold :

Gt = T̃rt−1((M
(t−1)
Jt−1

)−1 · (M (t−1)
ft

)−1 ·M (t−1)
f ·M (t−1)

∆
(t−1)
1

),

Gi = T̃ri−1((M
(i−1)
Ji−1

)−1 · (M (i−1)
fi

)−1 ·M (i−1)
f ·M (i−1)

∆
(i−1)
1

−
t∑

j=i+1

T̃r
′
i−1((M

(i−1)
Ji−1

)−1 · (M (i−1)
fi

)−1 ·M (i−1)
Gj

·M (i−1)
fj

·M (i−1)

∆
(i−1)
1

).

At this stage let us consider the entries of the matrices M
(i)
j . For 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t, let

M
(i)
j be (m(i,j)

k,l )1≤k,l≤Di with m
(i,j)
k,l ∈ R[Y1, . . . , Yn].

According to Lemma 59 we can compute the following list of information :

Lemma 60 With the previous notations and assumptions, there exists a non–scalar straight–line
program Γ of size (tdLδ)O(1) and parameters in

F ∪ {z ∈ ZZ : | z | ≤ (tdLδ)c}

such that Γ evaluates the following polynomials :

• the polynomials Θ(i) for 1 ≤ i ≤ t− 1,
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• the polynomials Θ(i)
j for 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t,

• the entries of the matrices M
(i)
j for 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t, and

• the polynomials Pi for 1 ≤ i ≤ t− 1

verifying the conditions of Lemma 59 above.

Proof.– Observe that all this information is obtained by evaluating some polynomials fi, f, Ji of ∆(i)
1

in the corresponding tensor matrices, which only depend on the input (i.e. f1, . . . , ft, f) and not on
the intermediate results G1, . . . , Gt, Q1, . . . , Qt.

Isolating the variable parts Let us consider for 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t the matrices M
(i)
Gj

whose entries are in Fi. Let us denote the entries of the matrices M
(i)
Gj

as follows :

M
(i)
Gj

:= (z(i,j)
k,l )1≤k,l≤Di .

We have the following identities.

Proposition 61 With the previous notations and assumptions, we have

Gt = (Θ(t−1))−1 · Pt−1

and for 2 ≤ i ≤ t− 1 holds

Gi = (Θ(i−1))−1 · Pi−1 −
t∑

j=i+1

(Θ(i−1)
j )−1(

Di−1∑

k=1

(
Di−1∑

l=1

m
(i−1,j)
k,l · z(i−1,j)

l,k )).

Proof.– Observe simply that in the expression T̃r
′
i−1(M

(i−1)
j ·M (i−1)

Gj
) holds :

M
(i−1)
j ·M (i−1)

Gj
=




Di−1∑

l=1

m
(i−1,j)
k,l · z(i−1,j)

l,λ




for 1 ≤ k, λ ≤ Di−1.

Carrying on denominators Additionally, we have to introduce the matrices :

• for 1 ≤ i ≤ t− 1 and r ≤ i, let us denote

M
(r)
Pi

:= Pi(Y1, . . . , Yn−r, (ρ(r))−1M(r)
Yn−r+1

, . . . , (ρ(r))−1M(r)
Yn

),

• for 1 ≤ i ≤ t− 1, i + 1 ≤ j ≤ t, r ≤ i and 1 ≤ k, l ≤ Di−1 we consider :

M
(i,j,r)
k,l := M

(r)

m
(i,j)
k,l

= m
(i,j)
k,l (Y1, . . . , Yn−r, (ρ(r))−1M(r)

Yn−r+1
, . . . , (ρ(r))−1M(r)

Yn
).

We have the following Lemma :

Lemma 62 With the same notations and assumptions as before, there exists a non–scalar straight–
line program Γ̃ of size (tdLδ)O(1) and parameters in F∪{z ∈ ZZ : | z | ≤ (tdLδ)c} such that Γ̃ evaluates
the following polynomials :
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i) for 1 ≤ i ≤ t− 1 and r ≤ i polynomials α
(r)
i ∈ R[Y1, . . . , Yn−r],

ii) for 1 ≤ i ≤ t− 1, i + 1 ≤ j ≤ t, r ≤ i polynomials β(i,r) ∈ R[Y1, . . . , Yn−r],

iii) for 1 ≤ i ≤ t − 1, i + 1 ≤ j ≤ t and r ≤ i the entries in R[Y1, . . . , Yn−r] of some Dr × Dr

matrices M
(r)
Pi

,

iv) for every i, j, k, l, r with 3 ≤ j ≤ t, i + 1 ≤ j, r ≤ i and 1 ≤ k, l ≤ Di the entries m
(i,j,r)
k,l in

R[Y1, . . . , Yn−r] of some Dr ×Dr matrices M
(i,j,r)
k,l

verifying the following identities :

M
(r)
Pi

= (α(r)
i )−1 ·M(r)

Pi
, M

(i,j,r)
k,l = (β(i,r)

j )−1 ·M(i,j,r)
k,l .

Proof.– Again we apply Lemma 21, noting that all the wanted information (i.e. the straight–
line program that evaluates Pj and M(i,j)

k,l and the geometric solution of the intermediate varieties
V (f1, . . . , fi), 1 ≤ i ≤ t− 1) does not depend on the quotients Gj to be computed.

The straight–line programs Mi Now, we have established the following recurrence rules to com-
pute the homothesy matrices M

(r)
Gi

:

Lemma 63 With the same notations and assumptions, we obtain that for r ≤ t− 1 holds :

M
(r)
Gt

= (Θ(t−1))−1(α(r)
t−1)

−1 ·M(r)
Pt−1

and for 1 ≤ i ≤ t− 1 and r ≤ i− 1 holds :

M
(r)
Gi

= (Θ(i−1))−1(α(r)
i−1)

−1 ·M(r)
Pi−1

−
t∑

j=i+1

(Θ(i−1)
j )−1(

Di−1∑

k=1

(
Di−1∑

l=1

(β(i−1,r)
j )−1M

(i−1,j,r)
k,l · z(i−1,j)

l,k )).

Proof.– This follows simply by applying the previous identity, noting that z
(i−1,j)
l,k ∈ Fi−1 ⊆ Fr.

With this, we have explained how to compute straight–line programs evaluating only from the input
system f1, . . . , ft the parts of the polynomials G1, . . . , Gt which we refered to as “coefficient” parts in
the sketch of proof on page 49. We conclude from the above discussion the following :

Proposition 64 (Output of the straight–line programs Mi) There exists a non–scalar straight–
line program Γ of size (tdLδ)O(1) and parameters in F∪{z ∈ ZZ : | z | ≤ (tdLδ)c} such that Γ evaluates
directly (i.e. from the input polynomials f1, . . . , ft, f and the geometric solutions of the intermediate
varieties Vi = V (f1, . . . , fi) for 1 ≤ i ≤ t− 1) the following information :

• Θ(i) ∈ R[Y1, . . . , Yn−i+1] for 1 ≤ i ≤ t− 1,

• Θ(i)
j ∈ R[Y1, . . . , Yn−i+1] for 1 ≤ i ≤ t− 1 and i + 1 ≤ j ≤ t,

• Pi ∈ R[Y1, . . . , Yn] for 1 ≤ i ≤ t− 1,

• the entries m
(i,j)
k,l ∈ R[Y1, . . . , Yn] of the matrices M

(i)
j for 1 ≤ i ≤ t − 1, i + 1 ≤ j ≤ t and

1 ≤ k, l ≤ Di,
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• α
(r)
i ∈ R[Y1, . . . , Yn−r] for 1 ≤ i ≤ t− 1 and r ≤ i,

• β
(i,r)
j ∈ R[Y1, . . . , Yn−r] for 1 ≤ i ≤ t− 1, i + 1 ≤ j ≤ t and r ≤ i,

• the entries in R[Y1, . . . , Yn−r] of the matrices M
(r)
Pi

for 1 ≤ i ≤ t− 1 and r ≤ i, and finally

• the entries in R[Y1, . . . , Yn−r] of the matrices M
(i,j,r)
k,l for 1 ≤ i ≤ t− 1, i + 1 ≤ j ≤ t, r ≤ i and

1 ≤ k, l ≤ Di,

verifying :
Gt = (Θ(t−1))−1Pt−1 and M

(r)
Gt

= (Θ(t−1))−1 · (α(r)
t−1)

−1M
(r)
Pt−1

.

and for 2 ≤ i ≤ t− 1

Gi = (Θ(i−1))−1 · Pi−1 −
t∑

j=i+1

(Θ(i−1)
j )−1 · (

Di−1∑

k=1

(
Di−1∑

l=1

m
(i−1,j)
k,l · z(i−1,j)

k,l )),

M
(r)
Gi

= (Θ(i−1))−1(α(r)
i−1)

−1 ·M(r)
Pi−1

−
t∑

j=i+1

(Θ(i−1)
j )−1(

Di−1∑

k=1

(
Di−1∑

l=1

(β(i−1,r)
j )−1M

(i,j,r)
k,l · z(i−1,j)

l,k ))

such that f − (Gtft + · · ·+ Gifi) ∈ (f1, . . . , fi−1) holds.

The straight–line programs Mi compute for 1 ≤ i ≤ t− 1 the items listed in Proposition 64 verifying
the above recurrence rules for Gi and M

(r)
Gi

. The total complexity of the straight–line programs Mi

is (tdLδ)O(1).

This shows how the influence of the previously computed polynomials Gj for j ≥ i + 1 depends on
the polynomials m

(i−1,j)
k,l and less on the entries z

(i−1,j)
k,l of the matrices M

(i−1)
Gj

.

The straight–line programs Γi From the recurrence rules resumed in Proposition 64 above we
also obtain a way for computing the entries z

(i−1,j)
k,l of the matrices M

(i−1)
Gj

, which will be done by the
straight–line programs Γi.

We explain how to compute from the information contained in the straight–line programs Mi the
polynomial Gi and how to “carry on” the denominators of Gi and the matrices M

(r)
Gi

.

We define from the output of the straight–line program of Proposition 64 :

ζ
(r)
t := (Θ(t−1)) · α(r)

t−1 ∈ R[Y1, . . . , Yn−r]

and we denote by µ
(r,t)
k,l ∈ R[Y1, . . . , Yn−r] the entries of the matrix M

(r)
Pt−1

. From this we obtain
denominators

z
(r,t)
k,l = (ζ(r)

t )−1 · µ(r,t)
k,l .

Then, we have

Gt = (Θ(t−1))−1Pt−1, M
(r)
Gt

= (ζ(r)
t )−1 · µ(r,t)

k,l , M
(r)
Gt

:= (µ(r,t)
k,l )1≤k,l≤Dr .

Now, let us suppose we already have computed inductively Gt, . . . , Gi+1 and for i+1 ≤ j ≤ t, r ≤ j−1
and 1 ≤ k, l ≤ Dr the polynomials ζ

(r)
j and µ

(r,j)
k,l in R[Y1, . . . , Yn−r] such that the following holds :

z
(r,j)
k,l = (ζ(r)

j )−1 · µ(r,j)
k,l , M

(r)
Gj

= (ζ(r)
j )−1 · µ(r,j)

k,l , M
(r)
Gj

= (µ(r,j)
k,l ).
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Then, for r ≤ i the polynomial Gi and the matrices M
(r)
Gi

can be computed by the following recurrence

rule for the polynomials ζ
(i−1)
j and µ

(i−1,j)
k,l :

Gi = (Θ(i−1))−1 · Pi−1 (31)

−
t∑

j=i+1

(Θ(i−1)
j )−1 · (

Di−1∑

k=1

(
Di−1∑

l=1

m
(i−1,j)
k,l · (ζ(i−1)

j )−1 · µ(i−1,j)
k,l )), (32)

M
(r)
Gi

= (Θ(i−1))−1 · (α(r)
i−1)

−1M
(r)
Pi−1

−
t∑

j=i+1

(Θ(i−1)
j )−1 · (33)

·(
Di−1∑

k=1

(
Di−1∑

l=1

(β(i−1,r)
j )−1M

(i,j,r)
k,l (ζ(i−1)

j )−1 · µ(i−1,j)
l,k )). (34)

Let us observe that we have used only the information contained in Proposition 64 plus the denomi-
nators ζ

(i−1)
j and the polynomials µ

(i−1,j)
k,l computed by the recurrence rules.

Carrying on separately the denominators appearing in the above recurrence rules (31) and (33),
we can obtain polynomials µ

(r,i)
k,l ∈ R[Y1, . . . , Yn−r] for r ≤ i − 1 and 1 ≤ k, l ≤ Dr as well as

ζ
(r)
i ∈ R[Y1, . . . , Yn−r] such that the following holds :

M
(r)
Gi

= (µ(r,i)
k,l )1≤k,l≤Dr and for r ≤ i M

(r)
Gi

= ((ζ(r)
i )−1 ·M(r)

Gi
.

These recurrence rules yield now a way to compute the polynomials Gi :

Proposition 65 The straight–line program Γi evaluates from the information evaluated by the straight–
line programs Γ (the polynomials f1, . . . , ft), Mt−1, . . . , Mi and Γi+1 the following list of items :

• for i ≤ j ≤ t and r ≤ i the polynomials ζ
(r)
j and

• for i ≤ j ≤ t, r ≤ i and 1 ≤ k, l ≤ Dr polynomials µ
(r,j)
k,l ∈ R[Y1, . . . , Yn]

such that, if we define for i ≤ j ≤ t

M
(r)
Gj

= (µ(r,j)
k,l )1≤k,l≤Dr

the following identity holds :
M

(r)
Gj

= (ζ(r)
j )−1 ·M(r)

Gj
.

Furthermore, the straight–line program Γi evaluates the polynomials

• m
(i−1,j)
k,l for i + 1 ≤ j ≤ t and 1 ≤ k, l ≤ Di,

• µ
(i−1,j)
k,l for i + 1 ≤ j ≤ t and 1 ≤ k, l ≤ Di,

• Θ̃i := Θ(i−1) ·∏t
j=i+1 Θ(i−1)

j ·∏t
j=i+1 ζ

(i−1)
j

• and the polynomials P̃i−1 := eΘi

Θ(i−1) · Pi−1,

such that defining

m̃
(i−1,j)
k,l := m

(i−1,j)
k,l · µ(i−1,j)

k,l · Θ̃i

Θ(i−1) · ζ(i−1)
j

,

57



the following holds :

G̃i = P̃i−1 −
t∑

j=i+1

(
Di−1∑

k=1

(
Di−1∑

l=1

m̃
(i−1,j)
k,l )).

The iteration step has to be performed t times and hence the total complexity for the straight–line
programs Γi is (tδ)O(1) for each inductive step for 2 ≤ i ≤ t.

Noting that eGi

eΘi
= Gi holds, we apply Strassen’s Vermeidung von Divisionen method (cf. Proposition

20) to obtain from the combination of the straight–line programs Mi and the straight–line programs
Γi a division free non–scalar straight–line program evaluating the polynomials Gi.

Thus, we obtain a total complexity of order (tdLδ)O(1). This concludes the proof of Theorem 1.

7 Proof of Theorem 2

The present Section 7 contains the proofs of Theorem 2 and the Corollaries from the Introduction.

In what follows, we are going to show an alternative method for the computation of the polynomials
a−1g1, . . . , a

−1gt of Theorem 1. This alternative method induces a major growth of the output size
(and hence of the complexity of this procedure) but permits a better control of the non–scalar depth
of the straight–line program describing the output. In fact, we are going to compute polynomials
h1, . . . , ht ∈ R[X1, . . . , Xn] and a non–zero constant b ∈ R \ {0} such that

a−1gi = b−1hi for 1 ≤ i ≤ t,

where the non–zero integer a and the polynomials g1, . . . , gt are precisely those computed by the
algorithm given in the proof of Theorem 1. The proof of Theorem 2 here uses mainly Tate’s trace
formula which involves all monomials up to a certain degree ((t − 1)d in the worst case) and this
implies the growth of the size. Conversely, this reduces the division procedures to an iterated matrix
product (which was already considered in [43] and [44]). The reason for starting with the elimination
polynomial (and not with the input polynomials) is mainly based on the fact that Newton’s method
for complete local rings (as used in [25]) is not well-parallelizable. In contrast, this yields bounds
for the height of the resulting polynomials which depend almost polynomially on the height and the
degree of the intermediate varieties V (f1, . . . , fi).

As we are going to compute the same polynomials (up to a non–zero constant) the degree bound
follows from the discussion put forward in Section 6.1.

7.1 The non–scalar depth bound

We assume the same conditions as those given at the beginning of Section 6. To recapitulate, let us
denote by N ∈Mn(ZZ) a linear change of coordinates such that :

i) the variables Y1, . . . , Yn given by



Y1

...
Yn


 = N ·




X1

...
Xn




are in Noether position with respect to the sequence of intermediate varieties V (f1, . . . , fi) for
0 ≤ i ≤ t− 1. In other words,

Ai := K[Y1, . . . , Yn−i] ↪→ Bi := K[X1, . . . , Xn]/(f1, . . . , fi)
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is an integral ring extension for 0 ≤ i ≤ t − 1. Let us observe that A0 = B0 and V0 = V ((0))
holds.

ii) The matrix N = (nij)1≤i,j≤n describing the Noether position has coefficients nij ∈ ZZ of bounded
height |nij | ≤ (ndLδ)c.

iii) For every i, 1 ≤ i ≤ t− 1 we have the elimination polynomial

mi ∈ R[Y1, . . . , Yn−i, Un−i+1, . . . , Un][T ].

In fact, mi has the form mi := αi · TDi + hi, with αi ∈ R \ {0}, degree Di = rkAi
Bi and degree

in T degT hi ≤ Di − 1. Moreover, the polynomial

α−1
i ·mi ∈ K[Y1, . . . , Yn−i, Un−i+1, . . . , Un][T ]

is the minimal equation over Ai of the generic projection

Ui := Un−i+1Xn−i+1 + · · ·+ UnXn.

We will write m0 = 1 when necessary.

iv) As observed in Lemma 55 before, there exists a non–scalar straight–line program Γ of size
(tdδ)O(1) and non–scalar depth O(log2 d + log2 δ) such that Γ computes from the coefficients
(with respect to the variable T ) of mi the following polynomials :

(a) for 1 ≤ i ≤ t− 1 non–zero polynomials ρ(i) ∈ R[Y1, . . . , Yn−i],
(b) for 1 ≤ i ≤ t− 1 and n− i + 1 ≤ j ≤ n the entries in R[Y1, . . . , Yn−i] of a Di ×Di matrix

M
(i)
j ,

such that the matrix of the endomorphism ηYj : Bi → Bi is given by M
(i)
Yj

:= (ρ(i))−1M
(i)
j .

Let us remark that these matrices M
(i)
j and polynomials ρ(i) are not exactly the same as those

in the previous Section 6.2. Here we have explicitly chosen those who can be obtained from the
elimination polynomial whereas in Section 6.2 they were given by the description of the primitive
element. Nevertheless, as they are essentially the same objects just described in different ways, we
preserved the notation introduced before.

Following the introduction of Section 6, let us consider for 1 ≤ i ≤ t − 1 the pseudo–jacobian deter-
minant ∆(i) ∈ Bi ⊗Ai Bi. Let us also consider the set Mi of all monomials of degree at most i(d− 1)
in the variables {Yn−i+1, . . . , Yn}. Let us denote by

Mi := {b(i)
k : 1 ≤ k ≤ Ni}

such a set, where Ni is the cardinality of Mi. Then, there exist polynomials a
(i)
k ∈ R[Y1, . . . , Yn], 1 ≤

k ≤ Ni of total degree bounded by i(d− 1) such that

∆(i) :=
Ni∑

k=1

ā
(i)
k ⊗ b̄

(i)
k ∈ Bi ⊗Ai Bi,

where ¯ denotes taking residual classes in Bi (as before). The case i = 0 yields ∆(0) = 1⊗ 1.

Let σi ∈ B∗
i be the trace associated to ∆(i) by Tate’s trace formula. Let us also consider Fi as the

quotient field of Ai, B′
i = Fi⊗Ai Bi and σ′i → Fi the trace obtained from σi by extending scalars. For

i = 0 we consider σ0 = IdBi, σ
′
o = IdB′

0. Now, we have the following rule to compute the quotients :

Gt :=
Nt−1∑

k=1

σ′t−1(ā
(t−1)
k · f̄−1

t · f̄) · b(t)
k ∈ R[X1, . . . , Xn], Qt := f −Gt · ft.
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As for 2 ≤ i ≤ t− 1, we have :

Gi :=
Ni−1∑

k=1

σ′i−1(ā
(i−1)
k · f̄−1

i · Q̄i+1) · b(i−1)
k ∈ R[X1, . . . , Xn], Qi := Qi+1 −Gi · fi.

The case i = 1 is simply given by G1 = f−1
1 · Q2. Now, we are going to transform this recurrence

rule under the following terms : let βi be the free Ai–module generated by the monomials in Mi, and
β′i := Fi ⊗Ai Bi. Let us consider πi : βi → Bi and π′i : β′i → B′

i the projections given by :

π′i(C1, . . . , CNi
) :=

Ni∑

k=1

C̄k · b̄(i)
k ∈ B′

i.

The following diagram obviously commutes for every i, 1 ≤ i ≤ t− 1 :

βi ↪→ β′i
πi ↓ ↓ π′i

Bi ↪→ B′
i

The previous division procedure can be performed as follows : We are going to compute for every
i, 2 ≤ i ≤ t− 1 some elements of the free Ai−1–module βi−1 :

(C(i)
1 , . . . , C

(i)
Ni−1

) ∈ βi−1

such that

Gi =
Ni∑

k=1

C
(i)
k · b̄(i−1)

k ∈ K[Y1, . . . , Yn].

In order to perform this task, let us observe the following facts :
For every i, 1 ≤ i ≤ t− 1 let f, g ∈ R[Y1, . . . , Yn] be polynomials such that f̄ | ḡ in Bi and f̄ is not a
zero divisor in Bi. Then, for every a ∈ K[X1, . . . , Xn] we have that :

σ′i(ḡ · f̄−1 · ā) ∈ Ai.

The reason is simply the following : let q ∈ K[Y1, . . . , Yn] be such that ḡ = f̄ · q̄ in Bi. Then, since
f̄−1 ∈ B′

i, we have f̄−1 · ḡ = q̄ in B′
i. Finally, σ′i(ḡ · f̄−1 · ā) = σi(q̄ · ā) ∈ Ai. The polynomials

(C(i)
1 , . . . , C

(i)
Ni−1

) ∈ βi−1 are given by C
(i)
j := σ′i−1(ā

(i−1)
k · f̄−1

i · Q̄i+1) ∈ Ai−1. Let us now consider the
following sequence of objects :

• for 1 ≤ i ≤ t− 1 and 1 ≤ k ≤ Ni :

d
(i)
k := σ′i(f

−1
i+1 · a(i)

k ) ∈ Ki,

• for 1 ≤ i ≤ t− 1, 1 ≤ k ≤ Ni, 1 ≤ l ≤ Nj , j ≥ i− 1,

e
(i,j)
k,l := σ′i(b̄

(j)
t · f̄j+1 · f̄−1

i+1 · b(i)
k ) ∈ Ki.

We consider now the following matrices and column vectors :

E(i,j) := (e(i−1,j)
k,l ) 1≤k≤Ni−1

1≤l≤Nj

, and D(i) := (d(i−1)
k )1≤k≤i−1.

Now, suppose that we already computed the polynomials Gt, . . . , Gr+1, where :

Gj :=
Ni−1∑

k=1

C
(j)
k · b(j−1)

k
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for r + 1 ≤ j ≤ t and C
(j)
k ∈ Aj−1 for r + 1 ≤ j ≤ t. For the computation of the coefficients

(C(r)
1 , . . . , C

(r)
Nr−1

) ∈ βr−1 such that the following holds :

1− (Gtft + · · ·+ Grfr) ∈ (f1, . . . , fr−1),

we proceed as follows : fr is not a zero divisor in Br−1 and fr divides the polynomial Qr+1. Let
hr ∈ Br−1 be such that hr · f̄r = Q̄r+1. Then, for every k, 1 ≤ k ≤ Nr−1, we have the following
identity :

σ′r−1(f̄
−1
r · Q̄r+1 · ā(r−1)

k ) = σr−1(h̄r · ā(r−1)
k ) ∈ Ar−1.

Then, we proceed as follows :

σ′r−1

(
f̄−1

r · q̄r · ā(r−1)
k

)
= σ′r−1

(
(1− (gtft + · · ·+ gr+1fr+1)) · f̄−1

r · ā(r−1)
k

)

= σ′r−1

(
f̄−1

r · ā(r−1)
k

)
− (

t∑

i=r+1

σ′r−1

(
ḡi · f̄i · f̄−1

r · ā(r−1)
k

)
)

= σ′r−1

(
f̄−1

r · ā(r−1)
k

)
−




t∑

i=r+1

σ′r−1




Ni−1∑
t=1

C̄
(i)
t · b̄(i−1)

t · f̄i · f̄−1
r · ā(r−1)

k







= d
(r−1)
k −




t∑

i=r+1




Ni−1∑
t=1

C̄
(i)
t · σ′r−1

(
b̄
(i−1)
t · f̄i · f̄−1

r · ā(r−1)
k

)






= d
(r−1)
k −




t∑

i=r+1




Ni−1∑
t=1

e
(r−1,i)
k,t · C̄(i)

r





 .

In other words, using the matricial language, we obtain for 1 ≤ r ≤ t−1 the following linear recurrence
to perform the wanted division step. It is well-known that linear recurrences can be inverted by a
well-parallelizable procedure, see [20]. Then, the computation of terms given by a linear recurrence
can be done by a well-parallelizable procedure.




C
(r)
1
...

C
(r)
Nr−1


 = D(r) − (

t∑

i=r+1

E(r,i) ·




C
(i)
1
...

C
(i)
Ni−1


).

Let us observe that this identity holds in the vector space β′r−1 (since the matrices D(r) and E(r,i) have
entries in Fi) but that both sides of this identity represent objects belonging to the free Ar−1–module
βr−1.

Thus, to conclude the proof of Theorem 2 we just have to show how to invert this linear recurrence.
However, as in the previous proof of Theorem 1, the presence of intermediate divisions by non–
constant polynomials would hide information. This leads to a procedure that combines inversion of
linear recurrences together with carrying on denominators. This is what we show below.

Following the recurrence rule, we observe that there are polynomials

Pi(Z(i), . . . , Z(t), Z(i,i+1), . . . , Zi,t), Z(i+1,i+2), . . . , Z(t−1,t)) (35)

such that for every i, 1 ≤ i ≤ t− 1,



C
(i)
1
...

C
(i)
Ni−1


 := Pi(D(i), . . . , D(t), E(i,i+1), . . . , E(i,t), . . . , E(t−1,t)) ·




C
(t)
1
...

C
(t)
Nt−1
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where Pi := Pi(D(i), . . .) is a matrix with entries in Fi−1. These polynomials Pi have coefficients in
{−1, 0, 1} ⊆ ZZ and their monomials are of degree at most t. In fact, only a few monomials occur in this
expression, since they are of the form E(i,j1) ·E(j1,j2) · · ·E(jk,jk+1) where i < j1 < j2 < . . . < jk+1 < t
or E(i,j1) · E(j1,j2) · · ·E(jk,jk+1) ·D(jk+1) also with i < j1 < j2 < . . . < jk+1 < t.

The obvious procedure that computes first the monomials (in the appropriate order) and then adds
the results has non–scalar depth of order O(log2 t). However, to multiply two of these matrices we
are dealing a total number of multiplications of order (maxNi)O(1) ≤ (td)O(t) which yields an awful
upper bound for the size.

To end this proof, we are going to see how these linear recurrences can be computed in low parallel
time. Let us observe that for the computation of the matrices D(i) and E(i,j) we have to compute
some traces of some polynomials. This can be done using the following identities :

d
(i)
0 := Tr′i(J̄

−1
i · f̄−1

i+1 · ā(i)
k ) and e

(i,j)
k,l := Tr′i(J̄

−1
i · b̄(j)

t · f̄j+1 · f̄−1
i+1 · b̄(i)

k ),

where Tr′i : B′
i → Fi is the usual trace and Ji is the jacobian determinant of f1, . . . , fi with respect

to the variables Y1, . . . , Yn−i+1. Thus, noting that deg a
(i)
k ≤ t(d− 1) and deg b

(j)
k ≤ t(d− 1), we may

conclude as in Lemma 21 (i.e. carrying on denominators) that :

There exists a non–scalar straight–line program Γ of size ((td)tLδ)O(1) and non–scalar depth O(log2 t+
log2 d+log2 L+log2 δ) such that Γ computes from the geometric solutions of the varieties V1, . . . , Vt−1

non–zero polynomials Θ(i) ∈ R[Y1, . . . , Yn−i+1] and the entries in R[Y1, . . . , Yn−i+1] of matrices D(i)
k ,

E(i,j) such that D
(i)
k = (Θ(i))−1 · D(i)

k and E(i,j) = (Θ(i))−1 · E(i,j).

Finally, the computation of the polynomials Pi from Equation (35) on page 61 is performed for each
polynomial separately. We also compute the respective homogeneous components :

Pi := P ∗i,0 + · · ·+ P ∗i,t.

Thus, defining Θ̃(i) :=
∏t

j=1 Θ(i), we conclude that for every i there exists a matrix

P̃i ∈MNt−1(R[Y1, . . . , Yn−i+1])

such that 


C
(i)
1
...

C
(i)
Ni−1


 = (Θ̃(i))−1 · P̃i ·




C
(t)
1
...

C
(t)
Nt−1




and both Θ̃(i) and the matrices P̃i can be computed from the geometric solutions of the varieties
V1, . . . , Vt−1 by a non–scalar straight–line program of size ((td)tδ)LO(1), non–scalar depth O(log2 t +
log2 d + log2 δ + log2 L) and parameters in {−1, 0, 1}.
Thus we finally conclude by performing the non–scalar arithmetic operations (that can be done in
depth O(1))

Gi := (Θ̃(i))−1 · (〈P̃i




C
(t)
1
...

C
(t)
Nt−1


 ,




b
(i−1)
1
...

b
(i−1)
Ni−1


〉)

where 〈, 〉 denotes the scalar product. Finally, applying the Vermeidung von Divisionen technique as
in Proposition 20, we obtain the desired statement.
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7.2 Applications

This Subsection recompiles the proofs of the Corollaries which were announced at the introduction
and which depended on the completion of the proofs for the Theorems 1 and 2.

Complexity bounds - proof of Corollary 3 Proof.– The algorithm developed in the sequence of
papers [44], [28], [25], and [60] gives an efficient method for the computation of the geometric solutions
of all intermediate varieties V (f1, . . . , fi), see Proposition 54. This, together with the method given
in Section 6 for the computation of a straight–line program evaluating the polynomials g1, . . . , gt and
the integer a yields the proof of Corollary 3. The time complexity of the Turing machine M is an
immediate consequence of the size of the straight–line program exhibited in Section 6.

Height bounds - proof of Corollary 4 Proof.– By Lemma 40 from page 32 we know that a
geometric solution of every variety V (f1, . . . , fi) can be computed from the elimination polynomial of
V (f1, . . . , fi). Thus, applying Lemma 17 (Composition) from page 18, we may estimate the logarithmic
and invariant heights of the polynomials in a geometric solution of (f1, . . . , fi)). Now, using the
straight–line program stated in Theorem 2 and applying the bounds of Lemmata 15 and 17 from
Section 2.3 we obtain the desired bounds for the proof of Corollary 4.

Upper bound for πS: proof of Corollary 7 Proof.– The height bound of Corollary 5 for the
integer a appearing in the arithmetic Bézout Equality gives ht(a) ≤ (ndLδS)O(1)(ht(F)+ηS +log2 s).
As we can always bound the number of possible prime divisors of a number by its (logarithmic) height,
the claim of Corollary 7 follows as an immediate consequence.

Lower bound for πS: proof of Theorem 10 Proof.– The following lines give an idea of the proof,
a more complete account can be found in [60]). Let us suppose given the system S = {f1, . . . , fs},
where the polynomials f1, . . . , fs ∈ ZZ[X1, . . . , Xn] are given by a straight–line program of size L and
depth `. Let us also suppose, that these polynomials form a reduce regular sequence and let us denote
by δS the geometric degree and by ηS the height of the system S.

For the proof of Theorem 10, the following results are relevant:

Lemma 66 Let x = (x1, . . . , xn) be a zero of the system S and let r be a primitive element (in the
sense of Subsection 3.4) for x1, . . . , xn. Then, there exist Q1, . . . , Qn ∈ ZZ[X] and a ∈ ZZ such that
xi = Qi(r)/a. Let R ∈ ZZ[X] be an irreducible polynomial such that R(r) = 0. If R has a root in IFp

and a is not zero modulo p, the system is consistent in IFp.

Let now f ∈ ZZ[X] be a polynomial of degree d, ∆ its discriminant and let πf (x) be the number of
primes p such that f has a root modulo p. Based on an effective version of Chebotarev’s Density
Theorem (which assumes the Generalized Riemann Hypothesis) one can prove:

Lemma 67 ([41]) There exists a universal constant c > 0 such that

πf (x) ≥ 1
d
[π(x)− log2∆− cx1/2log2(∆xd)]

Once stated these results we begin the proof of Theorem 10.
We first study the case s = n, that is, the zero—dimensional case. In this case we have a primitive
element for the variety V defined by S, u ∈ ZZ[X1, . . . , Xn], and polynomials q ∈ ZZ[T ], vj ∈ ZZ[T ]
and ρ ∈ ZZ (multiple of the discriminant of q) such that :

63



• q is square free and

• ρxj − vj(u(x1, . . . , xn)) = 0 for all (x1, . . . , xn) in V .

In order to finish the proof, we remark that by Lemma 66 above we only have to estimate πf (x). To
do that, we simply remark that the degree of q is bounded by δS and the logarithmic height of its
discriminant is bounded by δ

O(1)
S ηS by Theorem 41.

For the case s < n, we can reduce the situation to the zero–dimensional case by considering the fiber
in a point of moderate logarithmic height (see [25] and [60] for more details).

Bounds on PS(I) - proof of Corollary 8 Proof.– Given a bound B on the absolute value of the
integer a appearing in the Nullstellensatz we know that a has at most log2 B many prime divisors and
therefore holds

PS(I) ≥ #(I)− log2 B

#(I)
.

We apply Lemma 16 to the bounds for L, ` established in iii) of Corollary 5 to conclude claim i) of
Corollary 8. Similarly, using the bound for the height of a from Corollary 5 iv), follows claim ii).

Probability - proof of Corollary 9 Proof.– Under the hypotheses of Corollary 5, the height of
the integer a appearing in the Nullstellensatz is bounded by | a | ≤ (ndLδS)O(1)(ht(F) + ηS + log2 s),
and therefore a cannot possess any prime divisors of greater height. This already yields the bound
given in Corollary 7.

Now, for m := max{c′3 log2(ndLδS)), ht(F)+ ηs +log2 s} holds | a | ≤ 2m2m

which in turn yields claim
ii) of Corollary 9. Claim i) follows as an application of Corollary 8 i).
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en composantes irréductibles et équidimensionelles. In T. Mora and C. Traverso, eds., Proceedings of
MEGA’90 , vol. 94 of Progress in Mathematics , pp. 169–194. Birkhäuser, 1991.
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