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Abstract. We give bounds for the number and the size of the
primes p such that a reduction modulo p of a system of multivariate
polynomials over the integers with a finite number T of complex
zeros, does not have exactly T zeros over the algebraic closure of
the field with p elements.

We apply these bounds to study the periodic points and the in-
tersection of orbits of algebraic dynamical systems over finite fields.
In particular, we establish some links between these problems and
the uniform dynamical Mordell–Lang conjecture.

1. Introduction

The goal of the paper is to extend the scope of application of al-
gebraic geometric methods to algebraic dynamical systems, that is, to
dynamical systems generated by iterations of rational functions.

Let
R = (R1, . . . , Rm), R1, . . . , Rm ∈ Q(X),

be a system of m rational functions in m variables X = (X1, . . . , Xm)
over Q. The iterations of this system of rational functions are given by

(1.1) R
(0)
i = Xi and R

(n)
i = Ri(R

(n−1)
1 , . . . , R(n−1)

m )

for i = 1, . . . ,m and n ≥ 1, as long as the compositions are well-defined.
We refer to [AK09, Sch95, Sil07] for a background on the dynamical
systems associated with these iterations.

For i = 1, . . . ,m and n ≥ 1 write

(1.2) R
(n)
i =

Fi,n
Gi,n
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with coprime Fi,n, Gi,n ∈ Z[X] and Gi,n 6= 0. Given a prime p such that
Gi,j 6≡ 0 (mod p), j = 1, . . . , n, we can consider the reduction modulo
p of the iteration (1.1). Recently, there have been many advances in
the study of periodic points and period lengths in reductions of orbits
of dynamical systems modulo distinct primes p [AG09,BGH+13,Jon08,
RV09,Sil08]. However, many important questions remain widely open,
including:

• the distribution of the period lengths,
• the number of periodic points,
• the number of common values in orbits of two distinct algebraic

dynamical systems.

Furthermore, some of our motivation comes from the recently intro-
duced idea of transferring the Hasse principle for periodic points and
thus linking local and global periodicity properties [Tow13].

In this paper, we use several tools from arithmetic geometry to ob-
tain new results about the orbits of the reductions modulo a prime p
of algebraic dynamical systems. Our approach is based on a new result
about the reduction modulo prime numbers of systems of multivariate
polynomials over the integers. If the system has a finite number of solu-
tions T over the complex numbers, then there exists a positive integer
A such that, for all prime numbers p - A, the reduction modulo p of the
system has also T solutions over Fp, the algebraic closure of the field
with p elements. Here, using an arithmetic version of Hilbert’s Null-
stellensatz [DKS13, KPS01] and elimination theory, we give a bound,
in terms of the degree and the height of the input polynomials, for the
integer A controlling the primes of bad reduction (Theorem 2.1). For
T = 0, that is, for systems of polynomial equations without solutions
over C, this question has been previously adressed in [HMPS00,Koi96].
Indeed, the corresponding bound for the set of primes of bad reduc-
tion was a key step in Koiran’s proof that, from the point of view of
complexity theory, the satisfability problem for systems of polynomial
equations lies in the polynomial hierarchy [Koi96].

As an immediate application of this result, in Theorems 4.2 and 4.3
we bound the number of points of given period in the reduction modulo
p of an algebraic dynamical system. Also, combining Theorem 2.1 with
some combinatorial arguments, we give in Theorem 5.3 a bound for
the frequency of the points in an orbit of the reduction modulo p of an
algebraic dynamical system lying in a given algebraic variety, or that
coincide with a similar point coming from an orbit of another algebraic
dynamical system (in Corollary 5.4).

We also use a different approach, based again on an explicit version
of Hilbert’s Nullstellensatz, to obtain in Theorem 6.2 better results for
the problem of bounding the frequency of the points in an orbit lying
in a given algebraic variety, under a different and apparently more
restrictive condition.
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Our bounds are uniform in the prime p, provided that p avoids a
certain set of exceptions. In particular, our bounds for the number of
k-periodic points can be viewed as distant relatives of the Northcott
theorem for dynamical systems in [Sil07, Theorem 3.12], which bounds
the number of pre-periodic points in algebraic dynamical systems over
finite algebraic extensions of Q. Here we restrict the length of the
period, but instead we consider all k-periodic points over Fp.

From a computational point of view, the arithmetic Nullstellensätze
in [DKS13, KPS01] are effective. Using this, one can show that the
positive integers describing the set of exceptional primes in our results
can be effectively computed.

Further applications of our results have been given in our subsequent
paper with Chang [CDO+18].

Acknowledgements. We are grateful to Dragos Ghioca, Luis Miguel
Pardo, Richard Pink, Thomas Tucker and Michael Zieve for many valu-
able discussions and comments, specially concerning the plausibility of
the uniform boundedness assumption for the orbit intersections.

2. Modular Reduction of Systems of Polynomial
Equations

2.1. General notation. Throughout this text, boldface letters de-
note finite sets or sequences of objects, where the type and number
should be clear from the context. In particular, X denotes the group
of variables (X1, . . . , Xm), so that Z[X] denotes the ring of polynomials
Z[X1, . . . , Xm] and Q(X) the field of rational functions Q(X1, . . . , Xm).

We denote by N the set of positive integer numbers. Given functions

f, g : N −→ R,

the symbols f = O(g) and f � g both mean that there is a constant
c ≥ 0 such that |f(k)| ≤ c g(k) for all k ∈ N. To emphasize the
dependence of the implied constant c on parameters, say m and s, we
write f = Om,s(g) or f �m,s g. We use the same convention for other
parameters as well.

For a polynomial F ∈ Z[X], we define its height, denoted by h(F ), as
the logarithm of the maximum of the absolute values of its coefficients.
For a rational function R ∈ Q(X), we write R = F/G with coprime
F,G ∈ Z[X] and we define the degree and the height of R respectively
as the maximum of the degrees and of the heights of F and G, that is,

degR = max{degF, degG} and h(R) = max{h(F ), h(G)}.

Let K be a field and K its algebraic closure. Given a family of
polynomials G1, . . . , Gs ∈ K[X], we denote by

V (G1, . . . , Gs) = Spec (K[X]/(G1, . . . , Gs)) ⊂ Am
K
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its associated affine algebraic variety. We also denote by Z(G1, . . . , Gs)
their zero set in K

m
, which coincides with the set of K-valued points

V (G1, . . . , Gs)(K).
Let

(2.1) R = (R1, . . . , Rm), R1, . . . , Rm ∈ K(X)

be a system of m rational functions in m variables over K. For n ≥ 1,
we denote

R(n) = (R
(n)
1 , . . . , R(n)

m ),

as long as this iteration is well-defined as a rational function.
Given a point w ∈ Km

we define its orbit with respect to the system
of rational functions above as the set

(2.2) OrbR(w) = {wn | with w0 = w

and wn = R (wn−1) , n = 1, 2, . . .}.
The orbit terminates if wn is a pole of R and, in this case, OrbR(w)
is a finite set.

If the point wn in (2.2) is defined, then w0 is not a pole of R(n)

and wn = R(n)(w0). However, the fact that the evaluation R(n)(w0)
is defined does not imply the existence of wn, since this latter point
is defined if and only if all the previous points of the orbit (2.2) are
defined and wn−1 is not a pole of R. For instance, let m = 1 and
R(X) = 1/X. Then R(2)(X) = X and we see that R(2)(0) = 0, but
w2 = R(R(0)) is not defined as 0 is a pole for R. Clearly, for polynomial
systems this distinction does not exist.

2.2. Preserving the number of points. The following is our main
result concerning the reduction modulo prime numbers of systems of
multivariate polynomials over the integers.

Theorem 2.1. Let m ≥ 1 and let F1, . . . , Fs ∈ Z[X] be a system of
polynomials whose zero set in Cm has a finite number T of distinct
points. Set

d = max
i=1,...,s

degFi and h = max
i=1,...,s

h(Fi).

Then there exists A ∈ N satisfying

logA ≤ C1(m)d3m+1h+ C2(m, s)d3m+2,

with

C1(m) = 11m+ 4 and C2(m, s) = (55m+ 99) log((2m+ 5)s)

and such that, if p is a prime number not dividing A, then the zero set
in Fmp of the system of polynomials Fi (mod p), i = 1, . . . , s, consists
of exactly T distinct points.

This result allows us to control the number and the height of the
primes of bad reduction.
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Corollary 2.2. With notation as in Theorem 2.1, set F = (F1, . . . , Fs)
and let SF denote the set of prime numbers such that the number of
zeros in Fmp of the system of polynomials Fi (mod p), i = 1, . . . , s, is
different from T . Then

max

{
#SF , max

p∈SF

log p

}
�m,s d

3m+1h+ d3m+2.

Remark 2.3. In the interesting special case when s = m, one can get a
slightly stronger version of Theorem 2.1, but of the same general shape.

It is also very plausible that Theorem 2.1 admits a number of exten-
sions such as zero-dimensional systems of polynomial equations on an
equidimensional variety X ⊆ Am

C instead of just on Am
C . One can also

obtain a bound taking into account the degree and the height of each
individual polynomial Fj.

2.3. Preliminaries. Besides the application of an arithmetic Nullstel-
lensatz, the proof of Theorem 2.1 relies on elimination theory and on
the basic properties of schemes over the integers. Hence, it is con-
venient to work using the language of algebraic geometry as in, for
instance, [Liu02].

Let F1, . . . , Fs ∈ Z[X] be a system of polynomials whose zero set
in Cm has a finite number T of distinct points, as in the statement of
Theorem 2.1. Denote by V the subvariety of the affine space Am

Q =
Spec(Q[X]) defined by this system of polynomials. For each prime p,
set

(2.3) Fi,p ∈ Fp[X]

for the reduction modulo p of Fi, and by Vp the subvariety of Am
Fp =

Spec(Fp[X]) defined by the system Fi,p, i = 1, . . . , s.
Recall that, given a field extension K ↪→ L and a variety X over K,

we denote by X(L) the set of L-valued points of X. We have that

Am
Q (C) = Cm and Am

Fp(Fp) = Fmp ,

and that the varieties V (C) and Vp(Fp) coincide with the zero sets
Z(F1, . . . , Fs) and Z(F1,p, . . . , Fs,p), respectively. Our aim is to give a

bound for an integer A ∈ N such that, if p - A, then Vp(Fp) consists of
T distinct points.

Let Am
Z and PmZ be the affine space and the projective space over the

integers, respectively. We denote by Z = {Z0, . . . , Zm} the homoge-
neous coordinates of PmZ . Using the standard inclusion

(2.4) ι : Am
Z ↪−→ PmZ , (x1, . . . , xm) 7−→ (1 : x1 : . . . : xm),

we identify Am
Z with the open subset of PmZ given by the non-vanishing

of Z0. The coordinates of these spaces are then related by Xi = Zi/Z0.
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Let V and V denote the closure of V in Am
Z and in PmZ , respectively.

Then V is the affine scheme corresponding to the ideal

I(V) = I(V ) ∩ Z[X]

and V is the projective scheme corresponding to

I(V) = I(V)h ⊆ Z[Z],

the homogenisation of the ideal I(V).
Consider the projection π : PmZ → Spec(Z) and set

Vp = π−1(p) ∩ V
for the fibre over the prime p of the restriction to V of this map. It is
a subscheme of the projective space PmFp .

The morphism of schemes V → Spec(Z) is flat if there is a family
of flat Z-algebras Aj, j ∈ J , such that their associated affine schemes
form an open covering of V , namely V =

⋃
j∈J Spec(Aj). Since Z is

a principal ideal domain, the Z-algebras Aj, j ∈ J , are flat if and
only if they are torsion free [Liu02, Corollary 1.2.5]. The flatness of an
algebra over a ring is a property concerning extensions of scalars. At
the geometric level, this property ensures a certain continuity behavior
of the fibres of the morphism, see [Liu02, §4.3] for more details.

Lemma 2.4. Let notation be as above.

(1) The projective scheme V is flat over Spec(Z) and moreover, it
is reduced, has pure relative dimension 0, and none of its irre-
ducible components is contained in the hyperplane at infinity.

(2) For all p ∈ Spec(Z), we have that Vp is a 0-dimensional sub-
scheme of PmFp of degree T .

(3) The inclusion Vp(Fp) ∩ Fmp ⊆ Vp(Fp) holds.

Proof. For the statement (1), consider the decomposition V =
⋃
C C

into irreducible components. For each C, denote by C its closure in PmZ .
Then

I(C) = (I(C) ∩ Z[X])h ⊆ Z[Z],

where, as before, Jh denotes the homogenisation of the ideal J .
One can verify that this ideal is prime and that I(C)∩Z = {0}. We

have that
V =

⋃
C

C,

and so V is a reduced scheme that, by [Liu02, Proposition 4.3.9], is
flat over Spec(Z). Moreover, the Krull dimension of the quotient ring
Z[Z]/I(C) is one and Z0 /∈ I(C), which respectively implies that V is of
pure relative dimension 0 and that none of its irreducible components
is contained in the hyperplane at infinity of PmZ , as stated.

Now we turn to the statement (2). By the invariance of the Euler-
Poincaré characteristic of the fibres of a projective flat morphism,
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see [Liu02, Proposition 5.3.28], and the fact that the map V → Spec(Z)
is flat, the Hilbert polynomial of Vp coincides with that of the generic
fibre of that map. This generic fibre coincides with the closure of V
in PmQ , which is a 0-dimensional variety of degree T . It follows that its

Hilbert polynomial is the constant T , and so Vp is also a 0-dimensional
scheme of degree T .

To prove the statement (3), note first that Vp(Fp) is given by the

zero set in PmFp(Fp) of the ideal(√
(F1, . . . , Fs) ∩ Z[X]

)h

(mod p) ⊆ Fp[Z].

Hence, the intersection Vp(Fp)∩F
m

p coincides with the zero set in Fmp of
the affinisation of this ideal, obtained by setting Z0 → 1 and Zi → Xi,
i = 1, . . . ,m. Denote by I1 this ideal of Fp[X].

On the other hand, Vp is given by the zero set in Fmp of the ideal

I2 =
√

(F1,p, . . . , Fs,p) ⊆ Fp[X]

with F1,p, . . . , Fs,p as in (2.3). Then (3) follows from the inclusion of
ideals I1 ⊃ I2. ut

2.4. Eliminants and heights. We recall the notion of eliminant of
a homogeneous ideal as presented by Philippon in [Phi86]. Let R be
a principal ideal domain, with group of units R× and field of frac-
tions K. Let U = {U0, . . . , Um} be a further group of m + 1 variables
and consider the general linear form in the variables Z given by

L = U0Z0 + . . .+ UmZm ∈ Z[U ][Z].

Definition 2.5. Let I ⊆ R[Z] be a homogeneous ideal. The eliminant
ideal of I is the ideal of R[U ] defined as

E(I) = {F ∈ R[U ] | ∃k ≥ 0

with Zk
j F ∈ IR[U ,Z] + (L) for j = 0, . . . ,m}.

If E(I) is principal, then the eliminant of I, denoted by Elim(I), is
defined as any generator of this ideal.

The eliminant of an ideal of R[Z] is a homogeneous polynomial,
uniquely defined up to a factor in R×.

In the following proposition, we gather the basic properties of elim-
inants of 0-dimensional ideals following [Nes77,Phi86]. Given a prime
ideal P in some ring and a P -primary ideal Q, the exponent of Q, de-
noted by e(Q), is the least integer e ≥ 1 such that P e ⊆ Q. Notice
that Q is prime if and only if e(Q) = 1.

Lemma 2.6. Let I ⊆ R[Z] be an equidimensional homogeneous ideal
defining a 0-dimensional subvariety of PmK.
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(1) The eliminant ideal E(I) is principal and Elim(I) is well-defi-
ned.

(2) If I is prime and (Z0, . . . , Zm) 6⊂ I, then Elim(I) is an irre-
ducible polynomial.

(3) Let I =
⋂
iQi be the minimal primary decomposition of I and

set Pi =
√
Qi. Then there exists µ ∈ R× such that

Elim(I) = µ
∏
i

Elim(Pi)
e(Qi).

(4) Let V (I)(K) be the zero set of I in PmK(K). Then

Elim(I) = λ
∏

η∈V (I)(K)

L(η)eη ,

with λ ∈ K× and where eη denotes the exponent of the primary
component associated to the point η. In particular, I ⊗R K is
radical if and only if Elim(I) is squarefree.

Proof. These statements are either contained or can be immediately
extracted from results in [Nes77, Phi86]. Precisely, the statement (1)
is [Nes77, Proposition 2(1)] or [Phi86, Lemma 1.8]. The statement (2)
is contained in [Phi86, Proposition 1.3(ii)]. The statement (3) follows
from [Nes77, Corollary to Proposition 3]. The last claim (4) follows
from (3) and the proof of [Phi86, Lemma 1.8]. ut

Lemma 2.7. Let notation be as in §2.3. In particular, V is the 0-
dimensional subvariety of Am

Q defined by the system Fi, i = 1, . . . , s, V
its closure in PmZ , and T the number of points in V (Q). Then E(I(V)) is
a principal ideal and the eliminant Elim(I(V)) ∈ Z[U ] is well-defined.
Moreover, this eliminant is a primitive polynomial and we have the
factorisation

(2.5) Elim(I(V)) = λ
∏

(ξ1,...,ξm)∈V (Q)

(U0 + ξ1U1 + . . .+ ξmUm)

with λ ∈ Q×.

Proof. Set I = I(V) for short. The subvariety of PmQ defined by this
ideal coincides with ι(V ), the image of V under the standard inclu-
sion (2.4). This subvariety is of dimension 0, and it follows from
Lemma 2.6(1) that the eliminant ideal of I is principal and that its
eliminant polynomial is well-defined.

By Lemma 2.4(1), the subscheme V ⊂ PmZ is flat and reduced. Hence,
I =

⋂
i Pi where each Pi is a prime ideal of Z[Z] which defines a 0-

dimensional subvariety of PmQ and Pi ∩ Z = {0}. By Lemma 2.6(2,4)
applied to Pi, each eliminant Elim(Pi) is an nonconstant irreducible
polynomial. Together with Lemma 2.6(3), this implies that Elim(I) is
primitive.
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The ideal I is radical and no point of V lies in the hyperplane at
infinity of PmQ . Then the factorisation (2.5) follows immediately from
Lemma 2.6(2, 4). ut

Set

(2.6) EV = Elim(I(V))

for short. Our next aim is to bound the height of this polynomial in
terms of the degree and the height of the Fi’s. To this end, we first
recall the notion of Weil height of a finite subset of Qm

.
Given a number field K, we denote by MK its set of places. For each

w ∈ MK, we assume the corresponding absolute value of K, denoted
by | · |w, extends either the Archimedean or a p-adic absolute value of
Q, with their standard normalisation.

Let η ∈ PmQ (Q) and choose a number field K such that η = (η0 : . . . :
ηm) with ηi ∈ K. The Weil height of η is defined as

ĥ(η) =
∑
w∈MK

[Kw : Qw]

[K : Q]
log max{|η0|w, . . . , |ηm|w},

where Kw and Qw denote the w-adic completion of K and Q, respec-
tively. This formula does not depend neither on the choice of homoge-
neous coordinates of η nor on the number field K. Hence, it defines a
function

ĥ : PmQ (Q) −→ R≥0.

For a point of Qm
, we define its Weil height as the Weil height of its

image in PmQ (Q) via the inclusion (2.4) and, for a finite subset of Qm
,

we define its Weil height as the sum of the Weil height of its points.
Since the Fi’s have integer coefficients, the points of V lie in Qm

. If
we write

V (C) = Z(F1, . . . , Fs) = {ξ1, . . . , ξT}
with ξj ∈ Qm

, then the Weil height of this set is given by

ĥ(V ) =
T∑
i=1

ĥ(ξi)

=
T∑
j=1

∑
w∈MK

[Kw : Qw]

[K : Q]
log max{1, |ξj,1|w, . . . , |ξj,m|w}.

(2.7)

We refer to [BG06] for a more detailed background on heights.
The notion of Weil height of points extends to projective varieties.

This extension is usually called the “normalised” or “canonical” height

and also denoted by the operator ĥ, see for instance [PS08, §I.2] or [DKS13,
§2.3]. For an affine variety Z ⊂ Am

Q , we respectively denote by degZ

and ĥ(Z) the sum of the degrees and of the canonical heights of the
Zariski closure in PmQ of its irreducible components. We also define the
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dimension of Z, denoted by dimZ, as the maximum of the dimensions
of its irreducible components.

The following is a version of the arithmetic Bézout inequality.

Lemma 2.8. Let Z ⊂ Am
Q be a variety and Gi ∈ Z[X], i = 1, . . . , t.

Set

di = degGi, h = max
i=1,...,t

h(Gi), m0 = min{dimZ,m},

and assume that d1 ≥ . . . ≥ dt. Then

ĥ(Z ∩ V (G1, . . . , Gt)) ≤
m0∏
i=1

di

(
ĥ(Z) +

( m0∑
i=1

1

di

)
h degZ

+m0 log(m+ 1) degZ

)
.

Proof. Let C ⊆ Am
Q be an irreducible subvariety and F ∈ Z[X] a poly-

nomial such that the hypersurface V (F ) ⊆ Am
Q intersects C properly.

From [DKS13, Theorem 2.58], we deduce that

(2.8) ĥ(C ∩ V (F )) ≤ ĥ(C) degF + (h(F ) + degF log(m+ 1)) degC.

The stated bound now follows by repeating the scheme of the proof
of [KPS01, Corollary 2.11] for the canonical height instead of the Fubini-
Study one, and using (2.8) instead of the inequality in the second line
of [KPS01, Page 555]. ut

Let F1, . . . , Fs ∈ Z[X] and let V ⊆ Am
Q be the 0-dimensional subva-

riety defined by this system of polynomials, as in §2.3. Also set

d = max
i=1,...,s

degFi and h = max
i=1,...,s

h(Fi).

Corollary 2.9. Write V (C) = {ξ1, . . . , ξT} with ξj ∈ Qm
. Then

T ≤ dm and
T∑
i=1

ĥ(ξi) ≤ mdm−1(h+ d log(m+ 1)).

Proof. The first inequality is given by the Bézout theorem. For the
rest, we have that degAm

Q = 1 and, by [DKS13, Proposition 2.39(4)],

ĥ(Am
Q ) = 0. The statement then follows from Lemma 2.8 and the

inequalities 0 ≤ m and di ≤ d. ut

Lemma 2.10. With notation as above, let EV denote the eliminant of
the ideal I(V) as in (2.6). Then

degU0
EV = degEV = T ≤ dm

and

h(EV ) ≤ mdm−1h+ (m+ 1)dm log(m+ 1).
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Proof. Set

Q =
T∏
j=1

(U0 + ξj,1U1 + . . .+ ξj,mUm) ∈ Q[U ]

so that, by the factorisation (2.5) of Lemma 2.7 we have EV = λQ with
λ ∈ Q×. The formula for the degrees of the eliminant follows readily
from this.

For a polynomial F over Q, we denote by ‖F‖∞,1 the `1-norm of its
vector of coefficients with respect to the Archimedean absolute value
of Q. Then

(2.9) h(EV ) ≤ log ‖EV ‖∞,1 = log ‖Q‖∞,1 + log |λ|∞.

Since EV is primitive, for v ∈MQ \ {∞},

0 = log ‖EV ‖v = log ‖Q‖v + log |λ|v,

where ‖Q‖v is defined as the maximum norm of the vector of the coef-
ficients of Q with respect to the absolute value | · |v. Summing up over
all places and using the product formula, we obtain

(2.10) log ‖EV ‖∞,1 = log ‖Q‖∞,1 +
∑

v∈MQ\{∞}

log ‖Q‖v.

Let K be a number field of definition of ξ1, . . . , ξT , and denote by
M∞

K and M0
K the set of Archimedean and non-Archimedean places of K,

respectively. For each w ∈M∞
K and a polynomial F over K, we denote

by ‖F‖w,1 the `1-norm of its vector of coefficients with respect to the
absolute value | · |w. Then, by the compatibility between places and
finite extensions,

log‖Q‖∞,1 +
∑

v∈MQ\{∞}

log ‖Q‖v

=
∑

w∈M∞
K

[Kw : Qw]

[K : Q]
log ‖Q‖w,1 +

∑
w∈M0

K

[Kw : Qw]

[K : Q]
log ‖Q‖w.

(2.11)

For w ∈M∞
K , by the sub-additivity of log ‖ · ‖w,1,

log‖Q‖w,1 ≤
T∑
j=1

log ‖U0 + ξj,1U1 + . . .+ ξj,mUm‖w,1

≤
T∑
j=1

log max{1, |ξj,1|w, . . . , |ξj,m|w}+ T log(m+ 1).

(2.12)
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On the other hand, for w ∈M0
K,

log ‖Q‖w =
T∑
j=1

log‖U0 + ξj,1U1 + . . .+ ξj,mUm‖w

=
T∑
j=1

log max{1, |ξj,1|w, . . . , |ξj,m|w}.

(2.13)

If follows from (2.9), (2.10), (2.11), (2.12), (2.13) and (2.7) that

h(EV ) ≤
T∑
i=1

ĥ(ξi) + T log(m+ 1).

The statement then follows from the bound for the Weil height in
Corollary 2.9. ut

Set

Laff = U0 + U1X1 + . . .+ UnXn ∈ Z[U ,X].

By construction, EV vanishes on the zero locus of F1, . . . , Fs and Laff

in Cm+1 ×Cm. By Hilbert’s Nullstellensatz, there exist α,N ∈ N such
that

αEN
V ∈ (F1, . . . , Fs, L

aff) ⊆ Z[U ,X].

We use the effective version of this result [DKS13, Theorem 2] to bound
the integer α.

Lemma 2.11. With notation as above, there exist α,N ∈ N such that

αEN
V ∈ (F1, . . . , Fs, L

aff) ⊆ Z[U ,X]

and

logα ≤ A1(m)dm+min{s,2m+1}h+ A2(m, s)dm+min{s,2m+2}

with

A1(m) = 10m+ 4,

A2(m, s) = (54m+ 98) log(2m+ 5) + 24(m+ 1) log max{1, s− 2m}.

Proof. The system of polynomials F1, . . . , Fs, L
aff verifies the bounds

degFj ≤ d, degLaff = 2, h(Fj) ≤ h, h(Laff) = 0.

The case when d = 1 can be easily treated applying Cramer’s rule to
the system of linear equations Fi = 0, i = 1, . . . , s. Hence, we assume
that d ≥ 2.

We apply [DKS13, Theorem 2] to the variety A2m+1
Q and the polyno-

mials EV , F1, . . . , Fs and Laff . From the statement of [DKS13, Theo-
rem 2], we consider the parameter D and the sum over ` in the bound
on α, which we denote by Σ. In our situation, the parameters n and r
in the notation of this theorem, are equal to 2m+ 1.
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For s+1 ≤ 2m+2, we have that D ≤ 2ds and DΣ ≤ 2sds−1h+dsh ≤
(s + 1)dsh whereas, for s + 1 > 2m + 2, we have that D ≤ d2m+2 and
DΣ ≤ (2m+ 2)hd2m+1. In either case,

D ≤ 2dmin{s,2m+2} and DΣ ≤ (2m+ 2)dmin{s,2m+1}h.

Thus, since degA2m+1
Q = 1 and ĥ(A2m+1

Q ) = 0, it follows that

logα ≤ 2D degEV
( 3h(EV )

2 degEV
+ Σ

+ ((12m+ 6) + 17) log((2m+ 1) + 4)

+ 3(2m+ 2) log(max{1, s− 2m})
)

≤ 6dmin{s,2m+2}h(EV ) + 2(2m+ 2)dmin{s,2m+1}h degEV

+ 4dmin{s,2m+2} degEV
(
(12m+ 23) log(2m+ 5)

+ 6(m+ 1) log max{1, s− 2m}
)
.

Applying Lemma 2.10, we obtain

logα ≤ 6dmin{s,2m+2} (mdm−1h+ (m+ 1)dm log(m+ 1)
)

+ 2(2m+ 2)dm+min{s,2m+1}h

+ 4dm+min{s,2m+2}((12m+ 23) log(2m+ 5)

+ 6(m+ 1) log max{1, s− 2m}
)
.

The coefficient multiplying h in the expression above can be bounded by

6dm+min{s,2m+2}−1m+ 2dm+min{s,2m+1}(2m+ 2)

≤ 6dm+min{s,2m+1}m+ 2dm+min{s,2m+1}(2m+ 2)

= A1(m, s)dm+min{s,2m+1}.

By replacing log(m+1) with log(2m+5) and after simple calculations,
we obtain the desired expression for A2(m, s). ut

We now recall the standard bound for the height of the composi-
tion of polynomials with integer coefficients, see, for instance, [KPS01,
Lemma 1.2(1.c)].

Lemma 2.12. Let F ∈ Z[Y1, . . . , Y`] and G1, . . . , G` ∈ Z[X]. Set

d = max
i=1,...,`

degGi and h = max
i=1,...,`

h(Gi).

Then

h (F (G1, . . . , G`)) ≤ h(F ) + degF (h+ log(`+ 1) + d log(m+ 1)) .

Lemma 2.13. Let notation be as above. Then there exists β ∈ N such
that

log β ≤ B1(m)d2m−1h+B2(m)d2m
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with

B1(m) = 2m and B2(m) = (2m+ 4) log(m+ 1) + 4m+ 2,

such that, if p is a prime number not dividing β, then the reduction of
EV modulo p is a squarefree polynomial of degree T in the variable U0.

Proof. By Lemma 2.10, degU0
EV = T . Let β0 be the coefficient of the

monomial UT
0 in EV . If p - β0, then reduction of EV modulo p has also

degree T in the variable U0.
In addition, EV is squarefree and so

∆ := ResU0

(
EV ,

∂EV
∂U0

)
∈ Z[U1, . . . , Um]

is a nonzero polynomial. If p does not divide one of the nonzero coef-
ficients of this polynomial, then EV (mod p) is also squarefree. Thus
we choose β as the absolute value of β0 times any nonzero coefficient
of ∆.

The logarithm of |β0| is bounded by the height of EV . Hence, by
Lemma 2.10,

(2.14) log |β0| ≤ mdm−1h+ (m+ 1)dm log(m+ 1).

By [Som04, Theorem 1.1], the Sylvester resultant of two generic uni-
variate polynomials of respective degrees T and T − 1, has 2T + 1 co-
efficients, degree 2T − 1 ≤ 2dm − 1 and height bounded by 2T log T ≤
2mdm log d. By Lemma 2.10,

degEV , deg
∂EV
∂U0

≤ dm,

h(EV ), h

(
∂EV
∂U0

)
≤ mdm−1h+ (m+ 1)dm log(m+ 1) +m log d.

Hence, specializing this generic resultant in the coefficients of EV and
∂EV /∂U0, seen as polynomial in the variable U0, and using Lemma 2.12
with F = ∆, ` = 2T + 1 ≤ 2dm + 1 and k = m, we get

h(∆) ≤ 2mdm log d

+ (2dm − 1)
(
mdm−1h+ (m+ 1)dm log(m+ 1) +m log d

+ log(2dm + 2) + dm log(m+ 1)
)

≤ 2mdm log d

+ (2dm − 1)
(
mdm−1h+ (m+ 2)dm log(m+ 1) +m log d

+ log(2dm + 2)
)
.

Taking into account that log(2dm + 2) ≤ (m+ 1)d, we get

h(∆) ≤ (2dm − 1)
(
mdm−1h+ (m+ 2)dm log(m+ 1)

)
+ 2dm(2m+ 1).

(2.15)

Adding (2.14) and (2.15), we easily derive the stated result. ut
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2.5. Proof of Theorem 2.1. We assume that d ≥ 2 as otherwise
the result is trivial by the Hadamard bound on the determinant of the
corresponding system of linear equations.

Set A = αβ with α as in Lemma 2.11 and β as in Lemma 2.13. If
p - A, then p - β and, by Lemma 2.13, the reduction of the eliminant
EV modulo p is a squarefree polynomial of degree T in the variable U0.

Recall that Vp denotes the fibre of the scheme V over the prime p.
This is a subscheme of PmFp . From the definition of the eliminant ideal,

we can see that Elim(I(Vp)) divides EV (mod p). Since this latter
polynomial is squarefree, it follows that Elim(I(Vp)) is squarefree too.

By Lemma 2.6(4), this implies that the subcheme Vp is reduced and,
by Lemma 2.4(2), it is of degree T . Applying Lemma 2.6(4) again, we
deduce that Elim(I(Vp)) has degree T and so

Elim(I(Vp)) ≡ λEV (mod p)

with λ ∈ F×p . By Lemma 2.13, the polynomial EV (mod p) has degree

T in the variable U0. This implies that the subscheme Vp is contained
in the open subset Am

Fp . Hence, Vp is a subvariety of degree T which is
contained in Vp.

If p is a prime not dividing A, then p - α and so α is invertible
modulo p. Write Laff

p ∈ Fp[U ,X] for the reduction modulo p of Laff .
Then

EN
V (mod p) ∈ (F1,p, . . . , Fs,p, L

aff
p ) ⊆ Fp[U ,X]

with F1,p, . . . , Fs,p as in (2.3). Write

(2.16) EN
V (mod p) = ALaff

p +
s∑
j=1

BjFj,p

with A,Bj ∈ Fp[U ,X]. Let ξ be a zero of Fj,p, j = 1, . . . , s, in Fmp .
Evaluating the equality (2.16) at this point, we obtain

EN
V (U) (mod p) = A(U , ξ)Laff(U , ξ).

It follows that Laff
p (U , ξ) divides EV (U ) (mod p) for every such point.

Since for every pair of distinct points ξ1 and ξ2 in Fmp , the linear forms

Laff
p (U , ξ1) and Laff

p (U , ξ2) are coprime, we conclude that the zero set

of F1, . . . , Fs in Fmp has at most degEV = T points. Hence Vp is of
dimension 0 and degree T , as stated.

The bound for A follows from the bounds for α in Lemma 2.11 and
for β in Lemma 2.13. Indeed, with the notation therein, the quantity
A1(m)dm+min{s,2m+1} +B1(m)d2m−1 can be bounded by

(10m+ 4)dm+min{s,2m+1} + 2md2m−1 ≤ (11m+ 4)d3m+1 = C1(m)d3m+1,
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and A2(m, s)dm+min{s,2m+2} +B2(m)d2m−1 can be bounded by(
(54m+ 98) log(2m+ 5)

+ 24(m+ 1) log max{1, s− 2m}
)
dm+min{s,2m+2}

+ ((2m+ 4) log(m+ 1) + (4m+ 2)) d2m

≤
(
(54m+ 98) log(2m+ 5) + 24(m+ 1) log max{1, s− 2m}

+
1

8
((2m+ 4) log(m+ 1) + (4m+ 2))

)
d3m+2

≤ (55m+ 99) log((2m+ 5)s)d3m+2 = d3m+2C2(m, s)

with C1(m) = 11m + 4 and C2(m, s) = (55m + 99) log((2m + 5)s).
Hence

logA ≤ C1(m)d3m+1h+ C2(m, s)d3m+2,

concluding the proof.

3. Bounds for the Degrees and the Heights of Products
and Compositions of Rational Functions

In this section, we collect several useful bounds on the height of
various polynomials and rational functions. These lemmas are used in
the proof of our results in §4, §5 and §6, and some of them can be of
independent interest.

The following bound on the height of a product of polynomials, which
follows from [KPS01, Lemma 1.2], underlines our estimates.

Lemma 3.1. Let F1, . . . , Fs ∈ Z[X]. Then

−2
s∑
i=1

degFi log(m+ 1) ≤ h

(
s∏
i=1

Fi

)
−

s∑
i=1

h(Fi)

≤
s∑
i=1

degFi log(m+ 1).

We also frequently use the trivial bound on the height of a sum of
polynomials

(3.1) h

(
s∑
i=1

Fi

)
≤ max

i=1,...,s
h(Fi) + log s.

We already used the bound for the composition of polynomials (see
Lemma 2.12). We now specialize it to polynomials with equal number
of variables.

Lemma 3.2. Let F,G1, . . . , Gm ∈ Z[X]. Set d = maxi=1,...,s degGi

and h = maxi=1,...,s h(Gi). Then

degF (G1, . . . , Gm) ≤ d degF,

h (F (G1, . . . , Gm)) ≤ h(F ) + h degF + (d+ 1) degF log(m+ 1).
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The following is and extension of Lemma 3.2 to the composition of
rational functions.

Lemma 3.3. Let R, S1, . . . , Sm ∈ Q(X) such that the composition
R(S1, . . . , Sm) is well defined. Set d = maxi=1,...,s degSi and h =
maxi=1,...,s h(Si). Then

degR(S1, . . . , Sm) ≤ dm degR,

h (R(S1, . . . , Sm)) ≤ h(R) + h degR + (3dm+ 1) degR log(m+ 1).

Proof. Let R = P/Q with coprime P,Q ∈ Z[X] and write

P =
∑
a

αaX
a and Q =

∑
a

βaX
a

with αa, βb ∈ Z. We suppose for simplicity that

D = degP ≥ degQ,

since the other case can be reduced to this one by considering the
inverse R−1.

Let also Si = Fi/Gi with coprime Fi, Gi ∈ Z[X]. Consider the
polynomials

B =
∏
j

Gj and Ai = Fi
∏
j 6=i

Gj

and set A = (A1, . . . , Am). Then R(S1, . . . , Sm) = U/V with

U =
∑
a

αaB
D−|a|Aa and V =

∑
a

βaB
D−|a|Aa.

By Lemma 3.1, for each a with |a| ≤ D,

deg(BD−|a|Aa) ≤ mDd, h(BD−|a|Aa) ≤ mDh+mDd log(m+ 1).

Hence degU, deg V ≤ mDd, which gives the degree bound for the ra-
tional function R(S1, . . . , Sm). For the height bound, we have that

h(U) ≤ h(P ) +mDh+mDd log(m+ 1) + log

(
D +m

m

)
≤ h(R) +mDh+mDd log(m+ 1) +D log(m+ 1),

(3.2)

and similarly for V .

Let Ũ , Ṽ ∈ Z[X] coprime with Ũ/Ṽ = U/V . Then Ũ | U and Ṽ | V .
Then, by Lemma 3.1,

(3.3) h(Ũ) ≤ h(U) + 2 log(m+ 1) degU,

and similarly for Ṽ . From (3.2) and (3.3), it follows that

h(Ũ) ≤ h(R) +mDh+D(md+ 1) log(m+ 1) + 2mDd log(m+ 1)

≤ h(R) +mDh+D(3md+ 1) log(m+ 1),

and similarly for Ṽ , which gives the bound for the height of the com-
position. ut
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We now use Lemma 3.2 to bound the degree and height of iterations
of polynomial systems.

Lemma 3.4. Let F1, . . . , Fm ∈ Z[X] be polynomials of degree at most
d ≥ 2 and height at most h. Then, for any positive integer k, the

polynomials F
(k)
1 , . . . , F

(k)
m defined by (1.1), are of degree at most dk

and of height at most

h
dk − 1

d− 1
+ d(d+ 1)

dk−1 − 1

d− 1
log(m+ 1).

Proof. The bound on the degree is trivial, and the inequality for the
height also follows straightforwardly by induction on the number of
iterates k. Indeed, for k = 1 we have equality by definition. Suppose
the statement is true for the first k−1 iterates. For every i = 1, . . . ,m,
we apply Lemma 3.2 to the polynomial

F
(k)
i = F

(k−1)
i (F1, . . . , Fm)

and we get that the height of this polynomial is bounded by

h(F
(k−1)
i ) + (h+ (d+ 1) log(m+ 1)) degF

(k−1)
i

≤ h
dk−1 − 1

d− 1
+ d(d+ 1)

dk−2 − 1

d− 1
log(m+ 1)

+ (h+ (d+ 1) log(m+ 1))dk−1

≤ h
dk − 1

d− 1
+ d(d+ 1)

dk−1 − 1

d− 1
log(m+ 1),

which concludes the proof. ut

For rational functions we apply Lemma 3.3 to derive a similar result.

Lemma 3.5. Let R1, . . . , Rm ∈ Q(X) be rational functions of degree
at most d and height at most h. If either d ≥ 2 or m ≥ 2 then, for any

positive integer k, the rational functions R
(k)
1 , . . . , R

(k)
m defined by (1.1),

are of degree at most dkmk−1, and of height at most(
1 + d

dk−1mk−1 − 1

dm− 1

)
h+ d(3dm+ 1)

dk−1mk−1 − 1

dm− 1
log(m+ 1).

Proof. The bound for the degree follows easily from Lemma 3.3. We
prove the bound for the height by induction on k. For k = 1 the bound
is trivial. For k ≥ 2, we assume that the bound holds for the first k−1
iterates.
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Applying Lemma 3.3 with Ri and R
(k−1)
i , i = 1, . . . ,m, and the

induction hypothesis, we obtain that h(R
(k)
i ) is bounded by

h(R
(k−1)
i ) + h deg(R

(k−1)
i ) + (3dm+ 1) deg(R

(k−1)
i ) log(m+ 1)

≤
(

1 + d
dk−2mk−2 − 1

dm− 1

)
h

+ d(3dm+ 1)
dk−2mk−2 − 1

dm− 1
log(m+ 1)

+ hdk−1mk−2 + (3dm+ 1)dk−1mk−2 log(m+ 1)

=

(
1 + d

dk−1mk−1 − 1

dm− 1

)
h

+ d(3dm+ 1)
dk−1mk−1 − 1

dm− 1
log(m+ 1),

where we have used the identity

d
dk−2mk−2 − 1

dm− 1
+ dk−1mk−2 = d

dk−1mk−1 − 1

dm− 1
.

ut

4. Periodic Points

4.1. Definitions and main results. We start with the following
standard definition of k-periodicity.

Definition 4.1. Let K be a field and R ∈ K(X)m a system of rational
functions as in (2.1). Given k ≥ 1, we say that w ∈ Km

is k-periodic
if the element wk exists in the orbit (2.2) and we have wk = w0.

In this definition, we do not request that k is the smallest integer
with this property. On the other hand, this notion of k-periodicity is
more restrictive than the condition R(k)(w) = w0, see the discussion
after (2.2).

We first prove the following result for systems of rational functions.

Theorem 4.2. Let m, d ∈ N with d,m ≥ 2, and R = (R1, . . . , Rm) be
a system of m rational functions in Q(X) of degree at most d and of
height at most h. Assume that R has finitely many periodic points of
order k over C. Then there exists an integer Ak ≥ 1 with

logAk �d,h,m (dm)k(3m+5)

such that, if p is a prime number not dividing Ak, then the reduction
of R modulo p has at most (2mkdk)m+1 periodic points of order k.

In the particular case of polynomials, the bound of Theorem 4.2
simplifies as follows:
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Theorem 4.3. Let d,m ≥ 2, and F = (F1, . . . , Fm) be a system of
m polynomials in Z[X] of degree at most d and of height at most h.
Assume that F has finitely many periodic points of order k over C.
Then there exists an integer Ak ≥ 1 with

logAk �d,h,m dk(3m+2)

such that, if p is a prime number not dividing Ak, then the reduction
of F modulo p has at most dkm periodic points of order k.

Using these theorems, it is possible to recover some of the results of
Silverman and of Akbary and Ghioca, that give lower bounds on the
period length which are roughly of order log log p for all primes p [Sil08,
Corollary 12], and of order log p for almost all of them [AG09, Theo-
rem 1.1(1)], see [CDO+18, Corollaries 2.3 and 2.4].

Similarly, Theorems 4.2 and 4.3 can be used with k of order log p and
log log p for almost all and all primes p, respectively, to get nontrivial
upper bounds on the number of periodic points of order k (or even at
most k).

4.2. Proof of Theorem 4.2. The result is a direct consequence of
Theorem 2.1 and Lemma 3.5. Indeed, let R(k) be the iteration of the
system of rational functions R as in (1.1). As in (1.2), write

R
(k)
i =

Fi,k
Gi,k

with coprime Fi,k, Gi,k ∈ Z[X] and Gi,k 6= 0, and consider then the
system of equations

Fi,k −XiGi,k = 0, i = 1, . . . ,m.

From the solutions to this system of equations, we have to extract

those that come from the poles of R
(j)
i , j ≤ k, that is, from the zeroes

of
∏m

i=1

∏k
j=1Gi,j. For this we introduce a new variable X0, and thus,

the set of k-periodic points of R coincides with the zero set

Vk = Z

(
F1,k −X1G1,k, . . . , Fm,k −XmGm,k, 1−X0

m∏
i=1

k∏
j=1

Gi,j

)
.

By Lemma 3.5 and the fact that dm ≥ 2 :

(4.1) deg

(
X0

m∏
i=1

k∏
j=1

Gi,j

)
≤ 1 +m

k∑
j=1

djmj−1 ≤ 2(dm)k.
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Further, by Lemmas 3.1 and 3.5,

h

(
X0

m∏
i=1

k∏
j=1

Gi,j

)
= h

(
m∏
i=1

k∏
j=1

Gi,j

)

≤ 2(dm)k log(m+ 1) +
m∑
i=1

k∑
j=1

h (Gi,j)

≤ 2(dm)k log(m+ 1) +m

( k∑
j=1

(
1 + d

dj−1mj−1 − 1

dm− 1

)
h

+ d(3dm+ 1)
dj−1mj−1 − 1

dm− 1
log(m+ 1)

)
≤ 2(dm)k log(m+ 1) +m

(
4d(dm)k−2h

+ 2d(3dm+ 1)(dm)k−1 log(m+ 1)

)
.

Hence

h

(
X0

m∏
i=1

k∏
j=1

Gi,j

)
�d,h,m (dm)k.

Also, for every i = 1, . . . ,m, we easily see that Lemma 3.5 and the
bound (3.1) yield

deg (Fi,k −XiGi,k) ≤ dkmk−1 + 1,

and

h (Fi,k −XiGi,k) ≤ h
(
R

(k)
i

)
+ log 2

≤
(

1 + d
dk−1mk−1 − 1

dm− 1

)
h

+ d(3dm+ 1)
dk−1mk−1 − 1

dm− 1
log(m+ 1) + log 2.

Hence

h (Fi,k −XiGi,k)�d,h,m dkmk−1.

We apply now Theorem 2.1 (with s = m + 1 polynomials and m + 1
variables) and derive

logAk �d,h,m (dm)k+k(3(m+1)+1)h+(dm)k(3(m+1)+2) �d,h,m (dm)k(3m+5).

Next, we denote by Nk the number of points of Vk over C, which is
equal to the number of periodic points of order k of R1, . . . , Rm over
C. Using the degree bounds (4.1), by Bézout theorem we obtain

Nk ≤ 2(md)k
(
mkdk + 1

)m ≤ (2mkdk)m+1,

which yields the desired bound.
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4.3. Proof of Theorem 4.3. As in the proof of Theorem 4.2, the
result is an immediate consequence of Theorem 2.1 and Lemma 3.4.
Indeed, we apply Theorem 2.1 with

Vk = Z(F
(k)
1 −X1, . . . , F

(k)
m −Xm),

getting, after simple calculations, that

logAk �d,h,m dk+k(3m+1)h+ dk(3m+2) �d,h,m dk(3m+2).

We now denote by Nk the number of points of Vk over C, which is
equal to the number of periodic points of order k of F1, . . . , Fm over C.
Using Lemma 3.4 and the fact that Nk ≤ dkm, we obtain immediately
the desired bound.

4.4. Lower bounds on the number of k-periodic points. The
bound on the k-periodic points given by Theorem 4.3 is tight for some
particular polynomial systems. Indeed, let d ≥ 0 and consider the
system F = (F1, . . . , Fm) with Fi = Xd

i . For k ≥ 1, the k-th iterate is

given by F
(k)
i = Xdk

i , i = 1, . . . ,m. A k-periodic point is a solution to
the system

(4.2) Xdk

i −Xi = 0, i = 1, . . . ,m.

This system of equations has a finite number of solution over the com-
plex numbers. Set A = dk − 1. If p is a prime not dividing A, then the
system of equations (4.2) has exactly dkm solutions in Fmp . Hence, the

reduction of F modulo p has exactly dkm periodic points of order k.

5. Iterations Generically Escaping a Variety

5.1. Problem formulation and definitions. We next study the fre-
quency of the orbit intersections of two rational function systems. In
the univariate case, Ghioca, Tucker and Zieve [GTZ08, GTZ12] have
proved that, if two univariate nonlinear complex polynomials have an
infinite intersection of their orbits, then they have a common iterate.
No results of this kind are known for arbitrary rational functions.

The analogue of this result by Ghioca, Tucker and Zieve [GTZ08,
GTZ12] cannot hold over finite fields. Instead, we obtain an upper
bound for the frequency of the orbit intersections of a rational function
system. More generally, we bound the number of points in such an
orbit that belong to a given algebraic variety.

As before, we first obtain results for general systems of rational func-
tions and polynomials, and we then obtain stronger bounds for systems
of the form (7.1).

Let K be a field and

R = (R1, . . . , Rm), R1, . . . , Rm ∈ K(X)
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a system of m rational functions in m variables over K as in (2.1). For
n ≥ 1, we denote by R(n) the n-th iteration of this system, as long as
this iteration is well-defined.

Given an initial point w ∈ Km
, we consider the sequence given by

w0 = w and wn = R(wn−1) for n ≥ 1,

as in (2.2). As discussed after (2.2), this sequence terminates when wn

is a pole of the system R. Recall that the orbit of w is the subset
OrbR(w) = {wn | n ≥ 1} ⊂ K. We put

(5.1) T (w) = #OrbR(w) ∈ N ∪ {∞}.

Now let K = Q and, for n ≥ 1, write

R
(n)
i =

Fi,n
Gi,n

with coprime Fi,n, Gi,n ∈ Z[X] and Gi,n 6= 0, as in (1.2). Given a
prime p such that Gi,j 6≡ 0 (mod p), j = 1, . . . , n, we can consider the
reduction modulo p of the iteration R(n). We denote it by

R(n)
p =

(
R

(n)
1,p , . . . , R

(n)
m,p

)
∈ Fp(X)m.

Let V ⊂ Am
Q be the affine algebraic variety over Q defined by a system

of polynomials Pi ∈ Z[X], i = 1, . . . , s. For a prime p, we denote by
Vp ⊂ Am

Fp the variety over Fp defined by the reduction modulo p of the
system Pi, i = 1, . . . , s.

Let w ∈ Fmp be an initial point, N ∈ N, and suppose that Gi,j 6≡ 0
(mod p), j = 0, . . . , N − 1. We then define

Vw(R, V ; p,N) =
{
n ∈ {0, . . . , N − 1} | R(n)

p (w) ∈ Vp(Fp)
}
.

Namely, this is the set of values of n ∈ {0, . . . , N − 1} such that the

iterate R
(n)
p (w) is defined and lies in the set Vp(Fp). One of our goals

is obtaining upper bounds on #Vw(R, V ; p,N) that are uniform in w.
We now define the following class of pairs (R, V ) of systems of ra-

tional functions and varieties:

Definition 5.1. With notation as above, we say that the iterations of
R generically escape V if, for every integer k ≥ 1, the k-th iteration
of R is well-defined and the set{

w ∈ Cm |
(
w,R(k)(w)

)
∈ V (C)× V (C)

}
is finite.

We expect that this property of generic escape is satisfied for a “ran-
dom” pair (R, V ) consisting of a system and a variety of dimension at
most m/2.
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We consider now two rational function systems R,Q ∈ Q(X)m. For
N ∈ N, let p be a prime such that that the iterations R(j) and Q(j),
j = 0, . . . , N − 1, can be reduced modulo p. For u,v ∈ Fmp , we define

Iu,v(R,Q; p,N) =
{
n ∈ {0, . . . , N − 1} | R(n)

p (u) = Q(n)
p (v)

}
.

To bound the cardinality of this set, we introduce the following ana-
logue of Definition 5.1:

Definition 5.2. Let R,Q ∈ Q(X)m. We say that the iterations of
R and Q generically escape each other if, for every k ∈ N, the k-th
iterations of R and Q are well-defined and the set{

w ∈ Cm | R(k)(w) = Q(k)(w)
}

is finite.

5.2. Systems of rational functions. We present our results in a
simplified form where all constants depend on subsets of the following
vector of parameters

(5.2) ρ = (d,D, h,H,m, s).

Consequently, in our results we use the notation ‘Oρ’ and ‘�ρ’, mean-
ing that the implied constants do not depend on the parameters ε
and N .

We also recall the definition of T (w) given by (5.1).

Theorem 5.3. Let R = (R1, . . . , Rm) be a system of m ≥ 2 rational
functions in Q(X) of degree at most d ≥ 2 and of height at most h.
Let P1, . . . , Ps ∈ Z[X] of degree at most D and height at most H, and
denote by V ⊂ Am

Q the variety defined by this system of polynomials.
Assume that the iterations of R generically escape V . Then, there is a
constant c(ρ) > 0 such that for any real ε > 0 and N ∈ N with

(5.3) N ≥ exp

(
c(ρ)

ε

)
,

there exists B ∈ N with

logB ≤ exp

(
c(ρ)

ε

)
such that, if p is a prime number not dividing B, then for any w ∈ Fmp
with T (w) ≥ N ,

#Vw(R, V ; p,N)

N
≤ ε.

We derive from Theorem 5.3 the following bound for the number of
orbit intersection for two systems of rational functions.

Corollary 5.4. Let R = (R1, . . . , Rm) and Q = (Q1, . . . , Qm) be two
systems of rational functions in Q(X) of degree at most d and of height
at most h such that their iterations generically escape each other. Then
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there is a constant c(ρ) > 0 such that, for any real ε > 0 and N ∈ N
with

N ≥ exp

(
c(ρ)

ε

)
,

there exists B ∈ N with

logB ≤ exp

(
c(ρ)

ε

)
such that, if p is a prime number not dividing B, then for any u,v ∈ Fmp
with T (u), T (v) ≥ N ,

#Iu,v(R,Q; p,N)

N
≤ ε.

Remark 5.5. Alternatively, the bounds in Theorem 5.3 and Corol-
lary 5.4 can be formulated taking ε as a function of p. More precisely,
for some constant c0(ρ) > 0, one can take

• ε = c0(ρ)/ log log p for any prime p and eliminate any influence
of B. Since B ≤ exp exp(c(ρ)ε−1), the condition p - B is
automatically satisfied for such ε, provided that c0(ρ) is large
enough;
• ε = c0(ρ)/ logQ for all but o(Q/ logQ) primes p ≤ Q, since B

has at most logB ≤ exp(c(ρ)ε−1) prime divisors.

Remark 5.6. For systems with slower than generic growth of the de-
gree and height the bounds in Theorem 5.3 and Corollary 5.4 can be
improved. Some examples of such systems are given in §7.

5.3. Preparation. We need the following simple combinatorial state-
ment.

Lemma 5.7. Let 2 ≤M < N/2. For any sequence

0 ≤ n1 < . . . < nM ≤ N,

there exists r ≤ 2N/(M − 1) such that ni+1 − ni = r for at least
(M − 1)2/4N values of i ∈ {1, . . . ,M − 1}.

Proof. We denote by I(s) the number of i = 1, . . . ,M − 1 with ni+1 −
ni = s. Clearly

N∑
s=1

I(s) = M − 1 and
N∑
s=1

I(s)s = nM − n1 ≤ N.

Thus, for any integer t ≥ 1 we have
t∑

s=1

I(s) = M − 1−
N∑

s=t+1

I(h)

≥M − 1− 1

t+ 1

N∑
s=t+1

I(s)s ≥M − 1− 1

t+ 1
N.
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Hence, there exists r ∈ {1, . . . , t} with

(5.4) I(r) ≥ 1

t

t∑
s=1

I(s) ≥ M − 1−N/(t+ 1)

t
.

We now set t = b2N/(M − 1)c. Clearly

1 ≤ t ≤ 2N

(M − 1)
and

N

t+ 1
<
M − 1

2
.

Hence
M − 1−N/(t+ 1)

t
≥ M − 1

2t
≥ (M − 1)2

4N
,

which together with (5.4) concludes the proof. ut

5.4. Proof of Theorem 5.3. Let p be a prime and n ∈ N. As at

the beginning of this section, we denote by R
(n)
p and Vp the reduction

modulo p of R(n) and V , respectively. Fix an initial point w ∈ Fmp and
let M ∈ N be the number of values of n ∈ {0, . . . , N − 1} such that

R
(n)
p (w) ∈ Vp.
Suppose that

(5.5) M > εN ≥ 2.

Then take r ≤ 2N/(M − 1) as in Lemma 5.7 and let N be the set of
n ∈ {0, . . . , N − 1} with

(5.6) R(n)
p (w) ∈ Vp and R(n+r)

p (w) = R(r)
p

(
R(n)
p (w)

)
∈ Vp.

By Lemma 5.7,

(5.7) #N ≥ (M − 1)2

4N
� ε2N.

By (5.5), we have r � ε−1.
Since the iterations of R generically escape V , the set {z ∈ V |

R(r)(z) ∈ V } is finite. This set is defined by the following 2s + 1
equations

Pν(X) = Pν
(
R(r)(X)

)
=0, ν = 1, . . . , s,

1−X0

m∏
i=1

Gi,r(X) =0
(5.8)

where, as in the proof of Theorem 4.2, we write

R
(r)
i =

Fi,r
Gi,r

, Fi,r, Gi,r ∈ Z[X],

with relative prime polynomials Fi,r, Gi,r ∈ Z[X], and introduce one
more variable X0.
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From now on, we denote by ci(ρ), i = 1, 2, . . ., a sequence of suitable
constants depending only on the parameters in ρ. By Bézout’s theorem
and the degree bounds of Lemmas 3.3 and 3.5 we have

#{z ∈ V | R(r)(z) ∈ V }

≤ Ds(Ddrmr−1)s((drmr−1)m + 1) ≤ exp

(
c1(ρ)

ε

)
.

(5.9)

Using the height bound of Lemma 3.5, we also obtain

h(R
(r)
i ) ≤ exp

(
c2(ρ)

ε

)
, i = 1, . . . ,m.

Therefore, by Lemma 3.3, clearing the denominators, we see that the
2s+ 1 polynomials in (5.8) have degree and height of size bounded by
exp(c3(ρ)ε−1).

Hence, by Theorem 2.1, there is a positive integer B with

logB ≤ exp

(
c4(ρ)

ε

)
such that, if p - B, then

#{z ∈ Vp | R(r)
p (z) ∈ Vp} = #{z ∈ V | R(r)(z) ∈ V }.

Since N ≤ T (w), the points R
(n)
p (w), n = 0, . . . , N − 1, are pairwise

distinct. Hence,

#N ≤ #{z ∈ Vp | R(r)
p (z) ∈ Vp}.

From (5.6), (5.7) and (5.9) we deduce that

ε2N ≤ exp

(
c1(ρ)

ε

)
.

Choosing c(ρ) = max{c4(ρ), c1(ρ) + 1}, this contradicts (5.3). Hence
M ≤ εN and the result follows.

5.5. Proof of Corollary 5.4. If Iu,v(R,Q; p,N) is empty, the state-
ment is trivial. Otherwise, let n0 ∈ N be the smallest element in this
set. Then

#Iu,v(R,Q; p,N) = #Iw,w(R,Q; p,N − n0)

with w = R(n0)(u). Moreover,

Iw,w(R,Q; p,N − n0) = Vw((R(X),Q(Y )), V ; p,N − n0)

for the 2m-dimensional system of rational functions

(R(X),Q(Y )) = (R1(X), . . . , Rm(X), Q1(Y ), . . . , Qm(Y )),

and the variety V defined by the polynomials

Pj = Xj − Yj, j = 1, . . . ,m.
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The hypothesis that the orbits of R and Q generically escape each
other implies that the system (R(X),Q(Y )) generically escapes the
variety V . The statement then follows from Theorem 5.3.

5.6. Examples of iterations generically escaping a variety. Clearly,
the problem of finding nontrivial pairs (R, V ) consisting of a system R
of rational functions with iterations that generically escape a variety V
is interesting in its own. Here we give a family of examples of this kind,
as an application of a result of Dvir, Kollár and Lovett [DKL14, The-
orem 2.1].

Let m = 2s be even and let

A = (ai,j)i,j ∈ Zs×m

be an s × m matrix with integer entries such that any s × s minor
is nonsingular. For instance, one may construct such a matrix as a
Vandermonde or Cauchy matrix.

We now choose 2m positive integers with

(5.10) d1 > . . . > dm and e1 > . . . > em > ds1

such that gcd(diei, djej) = 1, 1 ≤ i, j ≤ m, i 6= j.
We consider the monomial system F = (Xe1

1 , . . . , X
em
m ) ∈ Z[X]m

and the variety V ⊂ Cm defined by the s polynomials

Pj =
m∑
i=1

aj,iX
di
i , j = 1, . . . , s.

This variety is a complete intersection of degree at most ds1.
For any point w ∈ Cm we have

(
w,F (k)(w)

)
∈ V (C)× V (C) if and

only if w ∈ Uk ∩V , where Uk is the variety defined by the polynomials

Pj(X
ek1
1 , . . . , X

ekm
m ) =

m∑
i=1

aj,iX
die

k
i

i , j = 1, . . . , s.

As V is of dimension m − s = s, and recalling the conditions (5.10),
we see that

d1e
k
1 > . . . > dme

k
m > ds1 ≥ deg V.

Therefore, [DKL14, Theorem 2.1] applies and yields the finiteness of
Uk ∩ V . Hence, the iterations of the monomial system F generically
escape the variety V , as desired.

6. Orbits on Varieties under the Uniform Dynamical
Mordell-Lang Conjecture

6.1. Varieties satisfying the uniform dynamical Mordell–Lang
conjecture. Informally, the dynamical Mordell–Lang conjecture as-
serts that the intersection of an orbit of an algebraic dynamical system
(in affine or projective space over a field of zero characteristic) with
a given variety is a union of a finite “sporadic” set and finitely many
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arithmetic progressions. Among other sources, this conjecture stems
from the celebrated Skolem-Mahler-Lech theorem [BL13].

Here we consider a class of algebraic dynamical systems and varieties
that satisfy the following stronger uniform condition.

Definition 6.1. Let R ∈ Q(X)m be a system of rational functions
over K and V ⊂ Am

Q an affine variety. The intersection of the orbits
R with V is L-uniformly bounded if there is a constant L depending
only on R and V such that for all initial values w ∈ Qm

,

#
{
n ∈ N | wn ∈ V (Q)

}
≤ L,

with wn is as in (2.2).

In this section, we reconsider the problem of §5 of bounding the
number of elements in an orbit of a given system of rational functions
lying in a variety satisfying this uniformity condition.

The boundedness of the number of orbit elements that fall in a vari-
ety, or more specialised questions of orbit intersections (see §5.5 where
this link is made explicit), has recently been an object of active study,
see [BGT14, BGKT10, BGKT12, GTZ08, GTZ12, OS15, SV13] and the
references therein. Although we believe that the L-uniformly bound-
edness condition is generically satisfied, proving it for general classes
of systems appear to be difficult.

6.2. Systems of rational functions. Here we add one parameter L
in the definition of ρ, so instead of (5.2) it is now given by

ρ = (d,D, h,H, L,m, s).

We also continue to use T (w) as given by (5.1). We obtain the following
result which is a version of Theorem 5.3.

Theorem 6.2. Let R = (R1, . . . , Rm) be a system of m ≥ 2 rational
functions in Q(X) of degree at most d ≥ 2 and of height at most
h. Let V be the affine algebraic variety defined by the polynomials
P1, . . . , Ps ∈ Z[X] of degree at most D and height at most H. We
also assume that the intersection of orbits of R with V is L-uniformly
bounded. There is a constant c(ρ) > 0 such that, for any real ε > 0,
there exists B ∈ N with

logB ≤ exp

(
c(ρ)

ε

)
such that, if p is a prime number not dividing B, then for any integer

N ≥ 2L

ε
+ 1

and any initial point w ∈ Fmp with T (w) ≥ N , we have

#Vw(R, V ; p,N)

N
≤ ε.
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Remark 6.3. One can check that appropriate versions of Remarks 5.5
and 5.6 apply to Theorem 6.2 as well.

6.3. Proof of Theorem 6.2. We set

M =
⌊
2ε−1L

⌋
+ 1,

thus in particular N ≥M .
For each set L ⊆ {0, . . . ,M − 1} of cardinality #L = L + 1 we

consider the system of equations

Pj(R
(k)) = Pj

(
F1,k

G1,k

, . . . ,
Fm,k
Gm,k

)
= 0, k ∈ L, j = 1, . . . , s.

Let X0 be an additional variable, set

Γ0,k = 1−X0

m∏
i=1

k∏
j=1

Gi,j

and let Γj,k be the numerator of Pj(R
(k)). We now study the following

system of equations in m+ 1 variables:

(6.1) Γj,k = 0, k ∈ L, j = 0, . . . , s.

By Lemmas 3.3 and 3.5, we have

deg Γ0,k ≤ 2dkmk and deg Γj,k ≤ dkDmk,

which we combine in one bound

(6.2) deg Γj,k ≤ dkDmk + 1, j = 0, . . . , s.

Also, by Lemmas 3.1 and 3.5, exactly as in the proof of Theorem 4.2,
we have

(6.3) h(Γ0,k)�ρ (dm)k.

By Lemmas 3.3 and 3.5 again, we also have

h(Γj,k) ≤ H +Dh

(
1 + d

dk−1mk−1 − 1

dm− 1

)
+ dD(3dm+ 1)

dk−1mk−1 − 1

dm− 1
log(m+ 1)

+D(3dkmk + 1) log(m+ 1)�ρ (dm)k.

(6.4)

For simplicity, we use the bound (6.4) also for h(Γ0,k), even if we loose
slightly in the final bound.

By the assumption on R and L, the equations (6.1) have no common
solution w ∈ Qm

. By Theorem 2.1 together with the bounds (6.2),
(6.3) and (6.4) and the fact that k ≤M − 1, there exists AL ∈ N with

logAL �ρ (dM−1DmM−1 + 1)3(m+1)+2

such that, if p is a prime not dividing AL, then the reduction modulo p
of the system of equations (6.1) has no solution in Fmp .
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We now set

B =
∏

L⊆{0,...,M−1}
#L=L+1

AL

and note that B ≥ 1

(6.5) logB�ρ

(
M

L+ 1

)
(dM−1DmM−1 + 1)3(m+1)+2 ≤ exp

(
c1(ρ)

ε

)
for a constant c1(ρ).

Let p be a prime with p - B. Suppose that for some u ∈ Fmp there

are at least εN values of n ∈ {0, . . . , N − 1} with R
(n)
p (u) ∈ Vp. We

recall that N ≥ M , so bN/Mc + 1 ≤ 2N/M . Therefore, there is a
nonnegative integer i ≤ bN/Mc such that there are at least

εN

bN/Mc+ 1
≥ 1

2
εM > L

values of n ∈ {iM, . . . , (i + 1)M − 1} with R
(n)
p (u) ∈ Vp. Take L + 1

such values and write them as

s < s+ t1 < . . . < s+ tL+1 < s+M

where s = iM . Then, for j = 1, . . . , s and ν = 1, . . . , L+ 1,

Pj
(
R(tν)
p

(
R(s)
p (u)

))
= 0.

So, setting w = R
(s)
p (u) ∈ Fp, we obtain

Pj
(
R(tν)
p (w)

)
= 0

for all such j, ν. This implies that p | AL with L = {t1, . . . , tL+1}, and
thus we obtain a contradiction.

7. Some remarks

Clearly, our results depend on the growth of the degree and the height
of the iterates (1.1). When this growth is slower than “generic”, one
can expect stronger bounds. For example, this is true for the following
family of systems which stems from that introduced in [OS10], see
also [GOS14,OS12].

For i = 1, . . . ,m, let

(7.1) Fi ∈ Z[Xi, Xi+1, . . . , Xm]

be a “triangular” system of polynomials Fi which do not depend on the
first i−1 variables and with a term of the form giXiX

si,i+1

i+1 . . . X
si,m
m such

that gi ∈ Z \ {0}, degXi Fi = 1 and degXj Fi = si,j, j = i+ 1, . . . ,m.

Using the same idea as in [OS10], similarly to the bounds of §3, one
can show that for the systems (7.1) the degree and the height of the
kth iterate grow polynomially and thus obtain stronger versions of our
main results in §4, §5 and §6.
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Indeed, an inductive argument shows that for any integer k ≥ 1,

the polynomials F
(k)
i , i = 1, . . . ,m, defined by (1.1), are of degree and

height at most

di,k = Od,m(km−i) and hi,k = Od,h,m(km−i+2).

In turn, one obtains a version of Theorem 4.3 with an integer Ak ≥ 1
satisfying

logAk �d,h,m km(3m−1)

and such that, if p is a prime number not dividing Ak, then the reduc-
tion of F modulo p has at most Od,h,m(km(m−1)/2) periodic points of
order k. Similarly, for systems the form (7.1) a version of Theorem 5.3
holds with

N ≥ c(ρ)ε−(m−1)s−2 and logB ≤ c(ρ)ε−m(3m−1),

while a version of Theorem 6.2 holds with

logB ≤ c(ρ)ε−(m−1)s(L+1)+m+L+1

and the same value of N .
The polynomial systems of the form (7.1) have been generalised in

various directions, including their rational function analogues [GOS14,
HP07]. It is expected that similar improvements hold for all these
systems as well.
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