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JOSÉ IGNACIO BURGOS GIL, PATRICE PHILIPPON, AND MARTÍN SOMBRA

Abstract. We show that the height of a variety over a finitely generated field

of characteristic zero can be written as an integral of local heights over the
set of places of the field. This allows us to apply our previous work on toric

varieties and extend our combinatorial formulae for the height to compute

some arithmetic intersection numbers of non toric arithmetic varieties over
the rational numbers.

Introduction

In [Mor00, Mor01a], Moriwaki introduced a notion of height for cycles over a
finitely generated extension of Q. Using this definition, it was possible to extend
several central results about cycles over a number field to cycles over a finitely gen-
erated extension of Q. These results include Northcott’s theorem on the finiteness
of cycles with bounded degree and height, the Manin-Mumford and the Bogomolov
conjectures, Zhang’s theorem on successive algebraic minima, and the equidistribu-
tion properties of Galois orbits of points of small height [Mor00, Mor01a, Mor01b,
YZ13].

This notion of height is defined as follows. Let B be an arithmetic variety, that is,
a normal flat projective scheme over Spec(Z), of relative dimension b. Set K = K(B)
for its function field, which is a finitely generated extension of Q of transcendence
degree b. Let Hi, i = 1, . . . , b, be a family of nef Hermitian line bundles on B.

Let π : X → B be a dominant morphism of arithmetic varieties and denote by X
the fibre of π over the generic point of B, which is a variety over K. Let Y be a prime
cycle of X of dimension d. Let Y be the closure of Y in X and Lj , j = 0, . . . , d,
a family of semipositive Hermitian line bundles on X . Moriwaki defines the height
of Y relative to this data as the arithmetic intersection number in the sense of
Gillet-Soulé given by

hπ∗H1 ,...,π
∗H

b
,L0,...,Ld(Y), (0.1)

see [Mor00, Mor01a] for details.
It is well known that this arithmetic intersection number can be written as a

sum over the places of Q of local heights of the fibre of Y over the generic point
of Spec(Z), see for instance [BPS14, § 1.5]. However, for points in a projective
space and the canonical metric, Moriwaki showed that this arithmetic intersection
number is also equal to an integral of local heights over a measured set of places
of K [Mor00, Proposition 3.2.2].
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In this paper, we extend Moriwaki’s result to a cycle Y of arbitrary dimension
and general semipositive metrics, to show that the height of Y is equal to an integral
of local heights over this set of places of K (Theorem 2.4).

This allows us to apply our previous work on toric varieties in [BPS14] and
extend our combinatorial formulae for the height to some arithmetic intersection
numbers of non toric arithmetic varieties. More explicitly, let X → B be a dominant
morphism of arithmetic varieties as above, and such that its generic fibre X is a toric
variety over K of dimension n. For simplicity, suppose that L0 = · · · = Ln = L.
The semipositive Hermitian line bundle L defines a polytope ∆ in a linear space of
dimension n and, for each place w of K, a concave function ϑw : ∆→ R called the
w-adic “roof function”, see § 3 for details and pointers to the literature. By [BPS14,
Theorem 5.1.6], the w-adic local height of X is given by (n+ 1)! times the integral
over ∆ of this concave function. Combining this with Theorem 2.4, we derive a
formula for the corresponding arithmetic intersection number as an integral of the
function (w, x) 7→ ϑw(x) over the product of the polytope and the set of places of
K (Corollary 3.1). Furthermore, we can define a global roof function ϑ : ∆ → R
by integrating the local ones over the set of places of K. Then, in this case, the
arithmetic intersection number (0.1) is also equal to (n + 1)! times the integral of
ϑ over the polytope (Corollary 3.4).

As an application, we give in § 4 an explicit formula for the case of translates of
subtori of a projective space and canonical metrics (Corollary 4.2). The obtained
integrals reduce, in some instances, to logarithmic Mahler measures of multivariate
polynomials.
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Institut de Mathématiques de Jussieu (Paris). We are thankful for their hospitality.
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1. Fields with product formula from arithmetic varieties

In [Gub03, Example 11.22], Gubler observed that, for an arithmetic variety
equipped with a family of nef Hermitian line bundles, one can endow its func-
tion field with a measured set of places satisfying the product formula. In this
section, we explain the details of this construction and, as an example, we explicit
it for the projective space and the universal line bundle equipped with the canonical
metric. We refer to [BPS14, Chapter 1] and [BMPS12, § 3] for the background for
this section on metrized line bundles and their associated measures and heights.

Let B be an arithmetic variety, which means that B is a normal flat projective
scheme over Spec(Z). We denote by b the relative dimension of B and by K = K(B)
its function field, which is a finitely generated extension of Q of transcendence degree
b. For i = 1, . . . , b, let Hi = (Hi, ‖ · ‖i) be a Hermitian line bundle on B, that is,
a line bundle Hi on B equipped with a continuous metric on the complexification
Hi,C over B(C), invariant under complex conjugation. We will furthermore assume

that each Hi is nef in the sense of [Mor00, § 2] or [BMPS12, Definition 3.18(3)].
This amounts to the conditions:

(1) the metric ‖ · ‖i is semipositive, namely it is the uniform limit of a sequence
of smooth semipositive metrics as in [Mai00, Definition 4.5.5] or [BPS14,
Definition 1.4.1];

(2) the height of every integral one-dimensional subscheme of B with respect
to Hi is nonnegative.

Let B(1) denote the set of hypersurfaces of B, that is, the integral subschemes
of B of codimension 1. Let V ∈ B(1). By [Zha95, Theorem 1.4(a)] or [Mor00,
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Proposition 2.3], the hypothesis that the Hi’s are nef implies that the height of V
with respect to these Hermitian line bundles, denoted by hH1,...,Hb(V), is nonnega-
tive. Hence, we associate to V the non-Archimedean absolute value on K given, for
γ ∈ K, by

|γ|V = e
− hH1,...,Hb

(V)ordV(γ)
,

where ordV denotes the discrete valuation associated to the local ring OB,V . We

denote by µfin the counting measure of B(1).
We define the set of generic points of B(C) as

B(C)gen = B(C) \
⋃
V∈B(1)

V(C).

By definition, a point p ∈ B(C) belongs to B(C)gen if and only if, for all γ ∈ K×, this
point does not lie in the analytification of the support of div(γ). Hence |γ(p)| is a
well-defined positive real number, and we associate to p the Archimedean absolute
value given, for γ ∈ K×, by

|γ|p = |γ(p)|. (1.1)

On B(C), we consider the measure

µ∞ = c1(H1) ∧ · · · ∧ c1(Hb)

associated to the family of semipositive Hermitian line bundles Hi, i = 1, . . . , b,
as in [BPS14, Definition 1.4.2]. By [CT09, Corollaire 4.2], the measure of each
hypersurface of B(C) with respect to µ∞ is zero. Since the complement of B(C)gen

is a countable union of hypersurfaces, it has measure zero. We will denote also by
µ∞ the induced measure on B(C)gen.

Put then

(M, µ) = (B(1), µfin) t (B(C)gen, µ∞). (1.2)

The set M is in bijection with a set of absolute values. Moreover, all the non-
Archimedean absolute values in this set are associated to a discrete valuation.

Example 1.1. Let B = PbZ with projective coordinates (x0 : · · · : xb) and Hi =

O(1)
can

, i = 1, . . . , b, the universal line bundle on PbZ equipped with the canonical
metric as in [BPS14, Example 1.4.4]. We have that K = K(B) ' Q(z1, . . . , zb), with
zi = xi/x0.

Consider the compact subtorus of PbZ(C) given by

S = {(1 : z1 : · · · : zb) ∈ PbZ(C) | |zi| = 1 for all i} ' (S1)b

and the measure µS of Pb(C) given by the current

1

(2πi)b
dz1

z1
∧ · · · ∧ dzb

zb
∧ δS.

Namely, µS is the Haar probability measure on S.
A hypersurface V of PbZ corresponds to an irreducible homogeneous polynomial

PV ∈ Z[x0, . . . , xb]. The associated absolute value is given, for γ ∈ K×, by

log |γ|V = −ordV(γ) m(PV),

where m(PV) is the logarithmic Mahler measure of PV given by

m(PV) =

∫
log |PV(1, z1, . . . , zb)| dµS.

If PV is a irreducible polynomial of degree zero, then PV = p ∈ Z, a prime number.
In this case m(PV) = log(p) and V is the fibre over the point corresponding to p.

The absolute value associated to a point of PbZ(C)gen is given by the Archimedean
absolute value of the evaluation at this point as in (1.1).
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In this example, the measure µfin on (PbZ)(1) is the counting measure and the
measure µ∞ is the restriction to PbZ(C)gen of µS.

A function on a measured space is integrable (also called summable) if its integral
is a well-defined real number.

Proposition 1.2. For each γ ∈ K×, the function M → R given by w 7→ log |γ|w
is µ-integrable. Furthermore, the “product formula”∫

M

log |γ|w dµ(w) = 0 (1.3)

holds.

Proof. Given γ ∈ K×, the set of hypersurfaces V such that |γ|V 6= 1 is contained
in the set of components of the support of div(γ), when γ is viewed as a rational
function on B. Hence this set is finite, and so the function on B(1) given by V 7→
log |γ|V is µfin-integrable. Moreover, by [CT09, Théorème 4.1], the function on
B(C)gen given by p 7→ log |γ(p)| is µ∞-integrable. Summing up, log |γ|w is µ-
integrable, which proves the first statement.

For the second one, let O be the trivial metrized line bundle on B. Then∫
M

log |γ|w dµ(w) =
∑
V∈B(1)

−ordV(γ) hH1,...,Hb(V) +

∫
B(C)gen

log |γ(p)| dµ∞(p)

= − hO,H1,...,Hb(B)

by the arithmetic Bézout formula, see for instance [BGS94, (3.2.2)] for the smooth
case or [CT09, Théorème 1.4] for an adelic version in the general case. From the
multilinearity of the height, it follows that hO,H1,...,Hb(B) = 0, which concludes the
proof. �

Definition 1.3. Given γ = (γ0, . . . , γn) ∈ Kn+1 \ {0}, the size of γ with respect
to (K,M, µ) is defined as

tK,M,µ(γ) =

∫
M

log max(|γ0|w, . . . , |γn|w) dµ(w). (1.4)

Example 1.4. Let K ' Q(z1, . . . , zb) with the measured set of places (M, µ) as
described in Example 1.1. Let γ ∈ K× given in reduced representation as γ = α/β
with coprime α, β ∈ Z[z1, . . . , zb]. Using the product formula (1.3), the size of γ
can be given in this case by

tK,M,µ(γ) =

∫
M

log max(|α|w, |β|w) dµ(w)

Since α and β are coprime, the contribution of the integral over the places of (PbZ)(1)

is zero. Hence,

tK,M,µ(γ) =
1

(2πi)b

∫
(S1)b

log max(|α(z)|, |β(z)|) dz1

z1
∧ · · · ∧ dzb

zb
. (1.5)

Using Jensen’s formula, this size can be alternatively written as the logarithmic
Mahler measure of the polynomial

Pγ = α(z1, . . . , zb)t1 − β(z1, . . . , zb) ∈ Z[t1, z1, . . . , zb], (1.6)

where t1 denotes an additional variable. The difference between this size and the
logarithm of the maximum of the absolute values of the coefficients of α and β can
be bounded by the maximum of their degrees times a constant depending only on b.
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2. Relative arithmetic varieties

In this section we prove our main result (Theorem 2.4), showing that the height
of a cycle over the finitely generated extension K can be written as an integral of
the local heights of this cycle over the measured set of places (M, µ).

Let π : X → B be a dominant morphism of arithmetic varieties of relative di-
mension n ≥ 0 and L a Hermitian line bundle on X . We denote by X the fibre of
π over the generic point of B. This is a variety over K of dimension n, and the line
bundle L induces a line bundle on X, denoted by L. There is a collection of metrics
on the analytifications of L for each absolute value of M, that we now describe.

For each V ∈ B(1), the local ring OB,V is a discrete valuation ring with field of
fractions K. The scheme X and the line bundle L induce a projective model over
Spec(OB,V), denoted (XV ,LV), of the pair (X,L). Following Zhang, the model
(XV ,LV) induces a metric on the analytification Lan

V over Xan
V , see [Zha95] or

[BPS14, Definition 1.3.5] for details.
The map π also induces a map of complex analytic spaces X (C)→ B(C), that we

also denote by π. A point p ∈ B(C)gen induces an Archimedean absolute value | · |p
on K and the analytification of the variety X with respect to | · |p can be identified
with the fibre π−1(p) ⊂ X (C), with its structure of real analytic space when the
point p is real. The analytification of the line bundle L on X with respect to | · |p
can also be identified with the restriction of LC to π−1(p). Then the metric on Lan

p

is defined as the restriction of the metric on LC to this fibre. We then denote

L = (L, (‖ · ‖w)w∈M) (2.1)

the obtained M-metrized line bundle on X.
Let Y be a d-dimensional cycle on X and Li, i = 0, . . . , d, M-metrized line

bundles on X as in (2.1). We assume that each Li is constructed from a DSP
Hermitian line bundle Li on X . Recall that a DSP (difference of semipositive)
Hermitian line bundle on X is the quotient of two semipositive ones as in [BPS14,
Definition 1.4.1].

Given a collection of nonzero rational sections si of Li, i = 0, . . . , d, intersecting
properly on Y and w ∈M, we denote by

hL0,w,...,Ld,w
(Y ; s0, . . . , sd)

the local height of Y with respect to the family of w-adic metrized line bundles
Li,w := (Li, ‖ · ‖i,w), i = 0, . . . , d. It is defined inductively on the dimension of Y
by the arithmetic Bézout formula

hL0,w,...,Ld,w
(Y ; s0, . . . , sd) = hL0,w,...,Ld,w

(Y · div sd; s0, . . . , sd−1)

−
∫
Xan
w

log ‖sd‖d,w
d−1∧
i=0

c1(Li,w) ∧ δY , (2.2)

see [BPS14, Definition 1.4.11]. Recall that the local height We will show in Theorem
2.4 below that the function M→ R given, for w ∈M, by

w 7−→ h(L0,‖·‖0,w),...,(Ld,‖·‖d,w)(Y ; s0, . . . , sd) (2.3)

is µ-integrable.

Definition 2.1. With notation as above, the global height of Y with respect to the
M-metrized line bundles Li, i = 0, . . . , d, is defined as the integral of the function
in (2.3), that is

hL0,...,Ld
(Y ) =

∫
M

h(L0,‖·‖0,w),...,(Ld,‖·‖d,w)(Y ; s0, . . . , sd) dµ(w).
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Thanks to the product formula, this notion does not depend on the choice of the
sections si.

Example 2.2. Let B be an arithmetic variety as above and (K,M, µ) the associated
finitely generated field and measured set of places. Let

X = PnB ' B × PnZ and L = $∗OPnZ (1)
can
,

where $ denotes the projection B × PnZ → PnZ. Hence X = PnK and L = OPnK (1)
can

.
For a point p = (γ0 : · · · : γn) ∈ X(K) = PnK(K), we have

hL(p) = tK,M,µ(γ), (2.4)

where tK,M,µ(γ) denotes the size of the vector γ = (γ0, . . . , γn) as in (1.4). This is
the “naive height” in [Mor00, § 3.2].

The following projection formula for heights of schemes over Spec(Z) generalizes
[Mor00, Proposition 1.3(1)].

Proposition 2.3. Let π : W → V be a morphism between two finitely generated
projective schemes over Spec(Z) of relative dimensions d+ b− 1 and b− 1, respec-
tively, with b, d ≥ 0. Let Li, i = 1, . . . , d, and Hj, j = 1, . . . , b, be DSP Hermitian
line bundles on W and V, respectively. Then

hπ∗H
1
,...,π∗H

b
,L1,...,Ld(W) = degL1,...,Ld(Wη) hH1,...,Hb(V),

where Wη denotes the fibre of W over the generic point η of V. In particular, if π
is not dominant, then hπ∗H1 ,...,π

∗H
b
,L1,...,Ld(W) = 0.

Proof. By linearity, we can reduce to the case when the Li’s are ample and the
metrics are semipositive. By continuity, we can also reduce to the case when the
metrics in Li and Hj are smooth for all i, j.

We proceed by induction on d. The case d = 0 is given by [Mor00, Proposition
1.3(2)] in the case when π is dominant and by [BPS14, Theorem 1.5.11(2)] in the
general case. Let d ≥ 1 and choose a nonzero rational section sd of Ld. Let ‖ · ‖d
denote the metric of Ld. By the arithmetic Bézout formula,

hπ∗H
1
,...,π∗H

b
,L1,...,Ld(W) = hπ∗H

1
,...,π∗H

b
,L1,...,Ld−1

(div(sd))

−
∫
W(C)

log ‖sd‖d
b∧
i=1

c1(π∗Hi) ∧
d−1∧
j=1

c1(Lj). (2.5)

Since dim(V(C)) = b − 1, we have that
∧b
i=1 c1(Hi) = 0. Hence, the measure

in the integral in the right-hand side of (2.5) is zero, and so this integral is zero
too. Decompose the divisor of sd into its horizontal and vertical components over
Spec(Z) as

div(sd) = div(sd)hor + div(sd)vert.

Write div(sd)vert =
∑

p∈Spec(Z) Zp as a finite sum of schemes over the primes. We

have that degπ∗H1 ,...,π
∗H

b
,L1,...,Ld−1

(Zp) = 0 because dim(π(div(sd)vert)) ≤ b − 1.

It follows that

hπ∗H
1
,...,π∗H

b
,L1,...,Ld−1

(div(sd)vert)

=
∑

p∈Spec(Z)

log(p) degπ∗H
1
,...,π∗H

b
,L1,...,Ld−1

(Zp) = 0.

By the inductive hypothesis,

hπ∗H1 ,...,π
∗H

b
,L1,...,Ld−1

(div(sd)hor) = degL1,...,Ld−1
(div(sd)hor,η) hH1,...,Hb(V).

Since degL1,...,Ld−1
(div(sd)hor,η) = degL1,...,Ld(Wη), we obtain the result. �
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Theorem 2.4. Let B be an arithmetic variety of relative dimension b and Hi,
i = 1, . . . , b, nef Hermitian line bundles on B. Let K = K(B) be the function field
of B and (M, µ) the associated measured set of places as in (1.2).

Let π : X → B be a dominant morphism of arithmetic varieties of relative dimen-
sion n and X the fibre of π over the generic point of B. Let Y be a prime cycle of
X of dimension d and Y its closure in X . Let Lj, j = 0, . . . , d, be DSP Hermitian

line bundles on X and Lj, j = 0, . . . , d, the associated M-metrized line bundles as
in (2.1). Let s0, . . . , sd be rational sections of L0, . . . ,Ld respectively, intersecting
properly on Y . Then the function M→ R given, for w ∈M, by

w 7−→ h(L0,‖·‖0,w),...,(Ld,‖·‖d,w)(Y ; s0, . . . , sd) (2.6)

is µ-integrable. Moreover,

hL0,...,Ld
(Y ) = hπ∗H1 ,...,π

∗H
b
,L0,...,Ld(Y). (2.7)

In other words, the integral of the function (2.6) coincides with the height of Y as
defined in (0.1).

Proof. By linearity, we reduce to the case when the line bundles Lj are ample,
their metrics are semipositive and the sections are global sections. Moreover, since
multiplying one of the metrics on Lj changes both sides of the equality (2.7) by the
same additive constant, we can assume that the sections sj of Lj , j = 0, . . . , d are
small, in the sense that supp∈X(C) ‖sj(p)‖j ≤ 1.

We proceed by induction on the dimension of Y . If dim(Y ) = −1, then Y = ∅
and so the local heights of Y are zero. Hence, these local heights are µ-integrable
and, by Proposition 2.3, the equality in (2.7) is reduced to 0 = 0.

We now assume that dim(Y ) = d ≥ 0. In this case, the restriction π|Y : Y → B is
dominant. Since the height does not change by normalization, by restricting objects
to Y and pulling back to its normalization, we may assume in the computations
that follow that Y = X . In particular, Y = X and d = n = dim(X).

Let s0, . . . , sn be global sections of L0, . . . ,Ln respectively, that meet properly
on X, and denote by ρ : M→ R the local height function in (2.6). We have to show
that this function is µ-integrable and that∫

M

ρ(w) dµ(w) = hπ∗H
1
,...,π∗H

b
,L0,...,Ln(X ).

For each w ∈M, by the definition of local heights in (2.2), we can write ρ(w) =
ρ1(w)− ρ2(w) with

ρ1(w) = h(L0,‖·‖0,w),...,(Ln−1,‖·‖n−1,w)(div(sn); s0, . . . , sn−1),

ρ2(w) =

∫
Xan
w

log ‖sn‖n,w
n−1∧
j=0

c1(Lj , ‖ · ‖j,w).

We decompose the cycle div(sn) as

div(sn) = div(sn)hor/B + div(sn)vert/B,

where div(sn)hor/B contains all the components that are dominant over B and
div(sn)vert/B contains the remaining ones. Clearly, div(sn)hor/B is the closure of
div(sn) · X, and div(sn)vert/B contains all the components of div(sn) that do not
meet X.

By the inductive hypothesis, the function w 7→ ρ1(w) is µ-integrable and∫
M

ρ1(w) dµ(w) = hπ∗H1 ,...,π
∗H

b
,L0,...,Ln(div(sn)hor/B). (2.8)
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Let now w = V ∈ B(1). The local ring OB,V is a discrete valuation ring. The scheme
X and the line bundle Li induce models XV and Li,V over Spec(OB,V) of X and
Li. Each component of the special fibre of XV is the localization

WV =W ×
V

Spec(K(V))

of a hypersurfaceW ∈ X (1) with π(W) = V. Since the metric over w is an algebraic
metric coming from a model, by [BPS14, (1.3.6) and Remark 1.4.14],

ρ2(V) = −
∑
W∈X (1)

π(W)=V

hH1,...,Hb(V)ordW(sn) degL0,...,Ln−1
(WV). (2.9)

Since the number of components of div(sn) is finite, we deduce from (2.9) that there
is only a finite number of V ∈ B(1) with ρ2(V) 6= 0. Thus ρ2 is integrable on B(1)

with respect to the counting measure µfin as in (1.2). By Proposition 2.3,

hH1,...,Hb(V) degL0,...,Ln−1
(WV) = hπ∗H

1
,...,π∗H

b
,L0,...,Ln−1

(W).

The same result implies that, if dim(π(W)) ≤ b− 1, then

hπ∗H
1
,...,π∗H

b
,L0,...,Ln−1

(W) = 0.

Since

div(sn)vert/B =
∑
W∈X (1)

dim(π(W))≤b

ordW(sn)W

=
∑
V∈B(1)

∑
W∈X (1)

π(W)=V

ordW(sn)W +
∑
W∈X (1)

dim(π(W))≤b−1

ordW(sn)W,

it follows from (2.9) that∫
B(1)

ρ2(w) dµfin(w) =
∑
V∈B(1)

ρ2(V)

=−
∑
V∈B(1)

∑
W∈X (1)

π(W)=V

ordW(sn) hπ∗H1 ,...,π
∗H

b
,L0,...,Ln(W)

=− hπ∗H
1
,...,π∗H

b
,L0,...,Ln(div(sn)vert/B). (2.10)

We next consider the places associated to the points p ∈ B(C)gen. In this case,
by the definition of ρ2, we have that

ρ2(p) =

∫
π−1(p)

log ‖sn‖n
n−1∧
j=0

c1(Lj,C|π−1(p)),

where π denotes the projection X → B and ‖ · ‖n the metric in Ln. We have to

show that ρ2 is µ∞-integrable with µ∞ =
∧b
i=1 c1(Hi) and that∫

B(C)gen
ρ2(p) dµ∞(p) =

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj) ∧
b∧
i=1

c1(π∗Hi). (2.11)

We first assume that, for each j = 0, . . . , n, the metric on the line bundle Lj
is smooth, but that the metric on Hi, i = 1, . . . , b, is not necessarily smooth. By
definition, there is a sequence of smooth semipositive metrics (‖ · ‖i,k)k≥0 on Hi,C
that converge to ‖·‖i. SetHi,k = (Hi, ‖·‖i,k) and let µ∞,k be the measure associated
to the differential form

c1(H1,k) ∧ · · · ∧ c1(Hb,k).
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By [CT09, Théorème 4.1], the measures µ∞,k converge weakly to µ∞. By the same
result, even if log ‖sn‖n is not bounded, the equality

lim
k→∞

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj) ∧
b∧
i=1

c1(π∗Hi,k)

=

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj) ∧
b∧
i=1

c1(π∗Hi)

holds. Let U ⊂ B(C) be a connected Zariski open subset such that the restric-
tion π |π−1(U) is a proper smooth map. By Ehresmann’s fibration theorem, this
restriction is a locally trivial proper differentiable fibration. Thus, that there exists
a compact differentiable manifold F and an analytic open cover {Uα}α of U such
that π−1(Uα) is diffeomorphic to F × Uα for every α. Let {να}α be a partition of
unity subordinated to the open cover {Uα}α.

Fix an α. To avoid burdening the notation, we identify π−1(Uα) with F × Uα
through the above diffeomorphism. Let λF be a measure of F given by a volume
form. Since the metrics ‖·‖j are smooth, there is a smooth function g : F ×Uα → R
such that, for each u ∈ Uα,

n−1∧
j=0

c1(Lj)
∣∣∣∣
{u}×F

= g(·, u)λF .

By [Bil68, Theorem 3.2], the measures λF ×
∧b
i=1 c1(π∗Hi,k) converge weakly to

the measure λF ×
∧b
i=1 c1(π∗Hi). By the unicity of weak limits of measures,

n−1∧
j=0

c1(Lj) ∧
b∧
i=1

c1(π∗Hi)
∣∣∣∣
F×Uα

= gλF ×
b∧
i=1

c1(π∗Hi). (2.12)

Since log ‖sn‖n is integrable with respect to
∧n−1
j=0 c1(Lj)∧

∧b
i=1 c1(π∗Hi), by (2.12)

the function (να ◦ π) log ‖sn‖n g is integrable with respect to λF ×
∧b
i=1 c1(π∗Hi).

By Fubini’s theorem [Fed69, Theorem 2.6.2], the function∫
F

(να ◦ π) log ‖sn‖n gλF = ναρ2

is µ∞-integrable and∫
Uα

ναρ2(p) dµ∞(p) =

∫
F×Uα

(να ◦ π) log ‖sn‖n gλF ×
b∧
i=1

c1(π∗Hi)

=

∫
π−1(Uα)

(να ◦ π) log ‖sn‖n
n−1∧
j=0

c1(Lj) ∧
b∧
i=1

c1(π∗Hi),

where the last equality follows from (2.12).
Since the above holds for every α, Lebesgue’s monotone convergence theorem

[Fed69, Corollary 2.4.8] and the fact that µ∞(B(C) \ U)) = 0 which follows from
[CT09, Corollaire 4.2], imply that ρ2 is µ∞-integrable and that (2.11) holds. Ob-
serve that we can apply Lebesgue’s monotone convergence theorem because we are
assuming that the section sn is small, and so the function log ‖sn‖n is nonpositive.

We now assume that the metrics on Lj and Hi are not necessarily smooth, and
choose sequences of smooth semipositive metrics (‖ · ‖j,kj )kj≥0 on Lj that converge
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uniformly to ‖ · ‖j . For p ∈ B(C))gen, write

ρ2,k0,...,kn(p) =

∫
π−1(p)

log ‖sn(p)‖n,kn
n−1∧
j=0

c1(Lj,kj ,C|π−1(p)). (2.13)

From equation (2.13) when i = n, and from equation (2.13) and Stokes’ theorem
when i 6= n, one can prove that, for each ε > 0, there is a constant Ki that does
not depend on p nor on kj , j 6= i, such that, for all ki, k

′
i ≥ Ki,

|ρ2,k0,...,ki,...,kn(p)− ρ2,k0,...,k′i,...,kn
(p)| ≤ ε. (2.14)

For k ≥ 0, denote by ρ2,k the function in (2.13) for the choice of indices k0 =
· · · = kn = k. We deduce from (2.14) that the diagonal sequence (ρ2,k)k≥0 converges
uniformly to ρ2. Since the measure µ∞ has finite total mass and, by the previous
case, the functions ρ2,k are µ∞-integrable, we deduce that ρ2 is µ∞-integrable and
that

lim
k→∞

∫
B(C)

ρ2,k(p) dµ∞(p) =

∫
B(C)

ρ2(p) dµ∞(p).

Therefore, using (2.11) for the functions ρ2,k and [CT09, Théorème 4.1], we deduce
that (2.11) also holds in the case when all the metrics are semipositive.

In consequence, ρ = ρ1 − ρ2 is µ-integrable and, using (2.8), (2.10), (2.11), the
arithmetic Bézout theorem in (2.2) and the inductive hypothesis,∫

M

ρ(w) dµ(w) = hπ∗H1
,...,π∗H

b
,L0,...,Ln(div(sn)hor/B)

+ hπ∗H1 ,...,π
∗H

b
,L0,...,Ln(div(sn)vert/B)

−
∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj) ∧
b∧
i=1

c1(π∗Hi)

= hπ∗H
1
,...,π∗H

b
,L0,...,Ln(X ),

which concludes the proof. �

Example 2.5. Let K ' Q(z1, . . . , zb) with the measured set of places (M, µ) as in
Examples 1.1 and 1.4. Let

X = PbZ × P1
Z and L = $∗OP1

Z
(1)

can
,

where $ denotes the projection PbZ × P1
Z → P1

Z, and let L = OP1
K
(1)

can
denote the

canonical M-metrized line bundle structure on the universal line bundle of P1
K as

in Example 2.2.
Let (1 : γ) ∈ P1

Z(K) with γ ∈ K×. The closure Y of this point in X is the
hypersurface defined by the bihomogenization of the polynomial Pγ in (1.6). In
this case, Theorem 2.4 together with (2.4) and (1.5) gives

hπ∗H1
,...,π∗Hb,L(Y) = hL(1 : γ) = tK,M,µ(γ) = m(Pγ),

where m(Pγ) denotes the logarithmic Mahler measure of Pγ .

3. Height of toric varieties over finitely generated fields

Using our previous work on toric varieties in [BPS14], we can give a “combi-
natorial” formula for the mixed height of a toric variety with respect to a family
of M-metrized line bundles. As a consequence of Theorem 2.4, this formula also
expresses an arithmetic intersection number, in the sense of Gillet-Soulé, of a non
toric arithmetic variety.
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Let B be an arithmetic variety of relative dimension b and Hi = (Hi, ‖ · ‖i),
i = 1, . . . , b, a family of nef Hermitian line bundles on B, as at the beginning of § 1.
Let K = K(B) and (M, µ) the associated set of places of K as in (1.2).

Let T ' Gnm be a split torus of dimension n over K. Let N = Hom(Gm,T) be
the lattice of cocharacters of T, M = Hom(T,Gm) = N∨ the lattice of characters,
and set NR = N ⊗ R and MR = M ⊗ R.

Let X be a proper toric variety over K with torus T, described by a complete
fan Σ on NR. A toric divisor on X is a Cartier divisor invariant under the action
of T. Such a divisor D defines a “virtual support function”, that is, a function
ΨD : NR → R whose restriction to each cone of the fan Σ is an element of M . The
toric divisor D is nef if and only if ΨD is concave. One can also associate to D the
polytope defined as

∆D = {x ∈MR | x ≥ ΨD}.
Now let

π : X → B
be a dominant morphism of arithmetic varieties of relative dimension n ≥ 0 and
L a Hermitian line bundle on X . We assume that (X,L), the fibre of (X ,L) over
the generic point of B, is a toric variety over K with a line bundle associated to a
toric divisor D on X. We consider the associated M-metrized line bundle L on X
as in (2.1).

For each place w ∈ M, we associate to the torus T an analytic space Tan
w and

we denote by Sw its compact subtorus. In the Archimedean case, it is isomorphic
to (S1)n. In the non-Archimedean case, it is a compact analytic group, see [BPS14,

§ 4.2] for a description. Then, the M-metrized line bundle L = O(D) on X is toric
if its w-adic metric ‖ · ‖w is invariant with respect to the action of Sw for all w.

Assume that L is toric and let s be the toric section of L with div(s) = D.
For each w ∈ M, denote by Xan

0,w the analytification of the open principal subset
X0 ⊂ X corresponding to the cone {0}, which is isomorphic to the torus T. Then
the function Xan

0,w → R given by p 7→ log ‖s(p)‖w is invariant under the action
of Sw and induces a function ψL,s,w : NR → R as in [BPS14, Definition 4.3.5]. For

shorthand, when L and s are fixed, we will denote ψL,s,w by ψw.
We now further assume that the line bundle L is generated by global sections

and that the Hermitian metric on L is semipositive. Hence, the line bundle L is
also generated by global sections and, for each w ∈ M, the metric induced in Lan

w

by L is semipositive. In this case, by [BPS14, Theorem 4.8.1], for each w ∈ M,
the function ψw is concave. We associate to it a concave function on ∆D, denoted
by ϑL,s,w or ϑw for short, and called the w-adic roof function of the pair (L, s) as

in [BPS14, Definition 5.1.4]. This function is defined as the Legendre-Fenchel dual
of ψw, and so it is defined, for x ∈ ∆D, as

ϑw(x) = inf
u∈NR

(〈x, u〉 − ψw(u)).

We denote by volM the measure on ∆D given by the restriction of the Haar
measure on MR normalized so that the lattice M has covolume 1.

Corollary 3.1. With notation as above, the function

M −→ R, w 7−→
∫

∆D

ϑL,s,w(x) dvolM (x) (3.1)

is µ-integrable. Moreover,

hπ∗H1,...,π∗Hb,L,...,L(X ) = hL(X) = (n+1)!

∫
M

∫
∆D

ϑL,s,w(x) dvolM (x) dµ(w).

(3.2)
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Proof. By [BPS14, Theorem 5.1.6], the quantity

(n+ 1)!

∫
∆D

ϑL,s,w(x) dvolM (x)

is equal to the difference of local heights

h(L0,‖·‖0,w),...,(Ln,‖·‖n,w)(Y ; s0, . . . , sn)−h(L0,‖·‖0,w,can),...,(Ln,‖·‖n,w,can)(Y ; s0, . . . , sn),

where ‖ · ‖i,w,can is the canonical w-adic metric on Li as in [BPS14, Proposition-
Definition 4.3.15]. By Theorem 2.4, both local heights are µ-integrable. Hence, so
is the function in (3.1), which proves the first statement.

For the second statement, the first equality follows from Theorem 2.4. By the
discussion above,

(n+ 1)!

∫
M

∫
∆D

ϑL,s,w(x) dvolM (x) dµ(w) = hL(X)− hLcan(X).

Using the argument in the proof of [BPS14, Proposition 5.2.4], it can be shown that
hLcan(X) = 0, which proves the second equality in (3.2). �

Theorem 3.2. Let notation be as above.

(1) For each x ∈ ∆D, the function

M −→ R, w 7−→ ϑw(x)

is µ-integrable.
(2) The function

∆D −→ R, x 7−→
∫
M

ϑw(x) dµ(w)

is concave and continuous on ∆D.
(3) The function

M×∆D −→ R, (w, x) 7−→ ϑw(x)

is (µ× volM )-integrable.

Proof. Let σ ∈ Σn. The closure V (σ) of the orbit of X corresponding to σ is a
point. By [BPS14, Proposition 4.8.9], for each w ∈M,

ϑι∗L,ι∗sσ,w(0) = ϑL,sσ,w(mσ) = ϑw(mσ),

where ι denotes the inclusion V (σ) ↪→ X. By Corollary 3.1, the function w 7→
ϑw(mσ) in µ-integrable, and its integral coincides with the height of V (σ) with
respect to L.

Since ϑw is a concave function, for all x ∈ ∆D,

min
σ∈Σn

ϑw(mσ) = min
y∈∆D

ϑw(y) ≤ ϑw(x). (3.3)

On the other hand, using again the concavity of ϑw,

ϑw(x)− min
y∈∆D

ϑw(y) ≤ max
y∈∆D

ϑw(y)− min
y∈∆D

ϑw(y)

≤ n+ 1

volM (∆D)

∫
∆D

(
ϑw(z)− min

y∈∆D

ϑw(y)
)

dvolM (z) (3.4)

It follows from (3.3) and (3.4) that, for all x ∈ ∆D,

min
σ∈Σn

ϑw(mσ) ≤ ϑw(x) ≤ n+ 1

volM (∆D)

∫
∆D

ϑw(z) dvolM (z)− n min
σ∈Σn

ϑw(mσ).

By Corollary 3.1 and the fact that ∆D has finite measure, we have that both the
upper and the lower bound are integrable with respect to the measure µ × volM .
The statements (1) and (3) follow directly from these bounds, while the statement
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(2) follows from the same bounds and Lebesgue’s bounded convergence theorem
[Fed69, Theorem 2.4.9]. �

Definition 3.3. With notations as above, the (global) roof function is the contin-
uous concave function ϑL,s : ∆D → R given by

ϑL,s(x) =

∫
M

ϑw(x) dµ(w).

Corollary 3.4. With the previous notations,

hπ∗H1,...,π∗Hb,L,...,L(X ) = hL(X) = (n+ 1)!

∫
∆D

ϑL,s(x) dvolM (x)

holds.

Proof. This follows from Corollary 3.1 and Theorem 3.2(3) together with Fubini’s
theorem [Fed69, Theorem 2.6.2]. �

Remark 3.5. More generally, when we have a family L0, . . . ,Ln of semiposi-
tive Hermitian line bundles on X such that the induced Hermitian line bundles
L0, . . . , Ln on X are toric, we can express

hπ∗H1,...,π∗Hb,L0,...,Ln(X ) = hL0,...,Ln
(X)

in terms of mixed integrals, similarly as in [BPS14, Theorem 5.2.5],

4. Canonical height of translated of subtori over finitely
generated fields

In this section, we particularize the formulae in § 3 to the case when X is the
normalization of a translated of a subtori in the projective space.

As before, let B be an arithmetic variety of relative dimension b and Hi =
(Hi, ‖ · ‖i), i = 1, . . . , b, a family of nef Hermitian line bundles on B. Let also
K = K(B) and (M, µ) the associated set of places of K as in (1.2).

Let r ≥ 1 and consider the projective space PrB over B and the universal line
bundle OPrB(1) on it. Since PrB = PrZ ×

Spec(Z)
B and OPrB(1) is the pull-back of OPrZ (1)

under the first projection, we can pull-back the canonical metric on OPrZ (1) to

obtain a metric on OPrB(1), also called canonical. We denote by O(1) = OPrB(1) the
obtained Hermitian line bundle.

Choose mj ∈ Zn and fj ∈ K×, j = 0, . . . , r. For simplicity, we assume that
m0 = 0 ∈ Zn and that the collection of vectors mj generates Zn as Abelian group.
Consider the map

Gnm,K −→ PrK, t 7−→ (f0t
m0 : · · · : frtmr ),

where fjt
mj denotes the monomial fjt

mj,1
1 . . . t

mj,n
n . We then denote by Y the clo-

sure in PrK of the image of this map.
The projective space PrK is the fibre of PrB over the generic point of B. We denote

by Y the closure of Y in PrB and by π : Y → B the dominant map obtained by
restricting the projection PrB → B. In this setting, we want to give a formula for
the arithmetic intersection number

h
π∗H,...,π∗H,O(1),...,O(1)

(Y). (4.1)

The subvariety Y is not a toric variety over K because it is not necessarily
normal. Indeed, it is a “translated toric subvariety” of PrK in the sense of [BPS14,
Definition 3.2.6]. Let X be the normalization of Y, and X the corresponding variety

over K. Let L be the pull-back of O(1) to X and L the associated M-metrized line
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bundle over X as in (2.1). Therefore, X is a toric variety over K with torus Gnm,K
and the M-metrized line bundle L is toric and semipositive.

In this case we can give an explicit description of the corresponding w-adic roof
functions.

Proposition 4.1. With notation as above, let s be the toric section of L determined
by the section x0 of O(1). The polytope associated to the divisor D = div(s) on X
is given by

∆ = conv(m0, . . . ,mr)

and, for w ∈M, the w-adic roof function ϑw : ∆→ R is the function parameterizing

the upper envelope of the extended polytope ∆̃w ⊂ Rn × R given by

∆̃w =

{
conv

(
(mj ,−hH1,...,Hb(V)ordV(fj))j=0,...,r

)
, if w = V ∈ B(1),

conv((mj , log |fj(p)|)j=0,...,r), if w = p ∈ B(C)gen.

Proof. This follows from [BPS14, Example 5.1.16]. �

Combining this result with Corollary 3.1, we obtain a formula for the arithmetic
intersection number in (4.1), that we will particularize to concrete examples.

Corollary 4.2. With notation as above, set B = PbZ and Hi = H = OPrB(1)
can

,
i = 1, . . . , b. Then h

π∗H,...,π∗H,O(1),...,O(1)
(Y) is equal to

(n+ 1)!

(∫ (∫
∆

ϑp(x) dvol(x)

)
dµS +

∑
V∈C

∫
∆

ϑV(x) dvol(x)

)
,

where C ⊂ B(1) is the set of irreducible components of the divisors div(fj), j =
0, . . . , r, vol denotes the Lebesgue measure on Rn, and µS is the Haar measure of
the compact torus S as in Example 1.1.

Proof. We have that h
π∗H,...,π∗H,O(1),...,O(1)

(Y) = hπ∗H,...,π∗H,L,...,L(X ) by the in-

variance of the height under normalization. The formula then follows from Corol-
lary 3.1, Proposition 4.1, the description of the measured set of places (M, µ) of
the field K in Example 1.1 together with the fact that, for V ∈ B(1) \ C, the local
roof function ϑV vanishes identically. �

Example 4.3. Consider the case n = 0. Thus m` = 0 for all ` and choose a
collection f0, . . . , fr ∈ Z[z1, . . . , zb] of coprime polynomials with integer coefficients.
Hence ∆ = {0} ⊂ R0 and, for w ∈M, the local roof function is given by

ϑw(0) =

{
max` log |f`(p)| if w = p ∈ PbZ(C)gen,

−h(V) min` ordV(f`) if w = V ∈ (PbZ)(1).

If V is not the hyperplane at infinity of Pb, then by the coprimality of the f`, we
have min` ordV(f`) = 0, while, if V is the hyperplane at infinity, h(V) = 0. Thus the
finite contribution vanishes and, from Theorem 2.4 and Proposition 4.1 we deduce

hπ∗H,...,π∗H,L(Y) =

∫
max
`

(log |f`(p)|) dµS.

In particular, if r = 1, this arithmetic intersection number agrees with the size
of the element γ = f1/f0 given in Example 1.4. For instance, consider the case
when b = 1, f0 = α and f1 = βz1 +γ with α, β, γ coprime integers. Using (1.5) and
(1.6), the corresponding intersection number is given by the logarithmic Mahler
measure of the affine polynomial αt1 − βz1 − γ. By [Mai00, Proposition 7.3.1],
this logarithmic Mahler measure can be computed in terms of the Bloch-Wigner
dilogarithm.
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Example 4.4. Let n = 1 and consider the case when mi = i, i = 0, . . . , r, and
f0, . . . , fr ∈ Z[z1, . . . , zb] is a family of coprime polynomial with integer coefficients
with f0 = fr = 1.

We have that ∆ = [0, r]. Let w ∈M and ϑw : [0, r]→ R the corresponding local
roof function. By Proposition 4.1, if w = V ∈ (PbZ)(1), then this function is zero.
Also, if w = p ∈ PbZ(C)gen, this function is the minimal concave function on [0, r]
whose values at the integers are given, for i = 0, . . . , r, by

ϑw(i) = max
0≤j≤i≤`≤r

j 6=`

(
`− i
`− j

log |fj(p)|w +
i− j
`− j

log |f`(p)|w
)
.

In particular, ϑw(0) = log |f0(p)|w = 0 and ϑw(r) = log |fr(p)|w = 0. It follows
that

∫ r

0

ϑw(x) dx =

δ−1∑
i=1

max
j≤i≤`,j 6=`

(
`− i
`− j

log |fj(p)|+
i− j
`− j

log |f`(p)|
)

(4.2)

From Corollary 4.2 and (4.2), we deduce that

hπ∗H,...,π∗H,L(Y) = 2

∫ r−1∑
i=1

max
0≤j≤i≤`≤r

j 6=`

(
`− i
`− j

log |fj(p)|+
i− j
`− j

log |fj(p)|
)

dµS.

Hence, this arithmetic intersection number can be expressed in terms of integrals
over the compact torus, of maxima of logarithms of absolute values of polynomials.
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