AN ARITHMETIC BERNSTEIN-KUSNIRENKO INEQUALITY

CESAR MARTINEZ AND MARTIN SOMBRA

ABSTRACT. We present an upper bound for the height of the isolated zeros in the
torus of a system of Laurent polynomials over an adelic field satisfying the product
formula. This upper bound is expressed in terms of the mixed integrals of the local
roof functions associated to the chosen height function and to the system of Laurent
polynomials. We also show that this bound is close to optimal in some families of
examples.

This result is an arithmetic analogue of the classical Bernstein-Kus8nirenko the-
orem. Its proof is based on arithmetic intersection theory on toric varieties.

1. INTRODUCTION

The classical Berngtein-Kusnirenko theorem bounds the number of isolated zeros
of a system of Laurent polynomials over a field, in terms of the mixed volume of
their Newton polytopes [Kus76, Ber75]. This result, initiated by Kus$nirenko and
put into final form by Berngtein, is also known as the BKK theorem to acknowledge
Khovanskii’s contributions to this subject. It shows how a geometric problem (the
counting of the number of solutions of a system of equations) can be translated into
a combinatorial, simpler one. It is commonly used to predict when a given system of
equations has a small number of solutions. As such, it is a cornerstone of polynomial
equation solving and has motivated a large amount of work and results over the past
25 years, see for instance |[GKZ94, [Stu02), [PS08] and the references therein.

When dealing with Laurent polynomials over a field with an arithmetic structure like
the field of rationals, it might be also important to control the arithmetic complexity
or height of their zero set. In this paper, we present an arithmetic version of the BKK
theorem, bounding the height of the isolated zeros of a system of Laurent polynomials
over such a field. It is a refinement of the arithmetic Bézout theorem that takes into
account the finer monomial structure of the system.

Previous results in this direction were obtained by Maillot [Mai00| and by the
second author [Som05|. Our current result improves these previous upper bounds, and
generalizes them to adelic fields satisfying the product formula, and to height functions
associated to arbitrary nef toric metrized divisors.

Let K be a field and K its algebraic closure. Let M ~ Z" be a lattice and set

K[M] ~K[z7',...,25'] and T = Spec(K[M]) ~ G ¢

n

for its group K-algebra and algebraic torus over K, respectively. For a family of Laurent
polynomials f1,..., f, € K[M], we denote by Z(f1,..., fn) the O-cycle of Tj; given by
the isolated solutions of the system of equations

fi==fu=0
with their corresponding multiplicities (Definition [2.7).
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Set Mr = M ® R ~ R™. Let voly; be the Haar measure on My normalized so that
M has covolume 1, and let MV be the corresponding mixed volume function. For
i=1,...,n,let A; C Mg be the Newton polytope of f;. The BKK theorem amounts
to the upper bound

(1.1) deg(Z(f1,-.-, fn)) S MV (A, Ay),

which is an equality when the f;’s are generic with respect to their Newton polytopes
|[Kus76l Ber75], see also Theorem

Now suppose that K is endowed with a set of places 9, so that the pair (K, 9) is
an adelic field (Definition [3.1). Each place v € 9 consists of an absolute value |- |, on
K and a weight n, > 0. We assume that this set of places satisfies the product formula,

namely, for all a € K*,
Z ny log |af, = 0.

veEM
The classical examples of adelic fields satisfying the product formula are the global
fields, that is, number fields and function fields of regular projective curves.
Let X be toric compactification of Ty and Dg a nef toric metrized divisor on X,
see 4] and §5] for details. This data gives a notion of height for 0-cycles of X, see
[BGO6, Chapter 2] or §4 The height

b, (Z(f1, o f))

is a nonnegative real number, and it is our aim to bound this quantity in terms of the
monomial expansion of the f;’s.

The toric Cartier divisor Dy defines a polytope Ag C Mg. Following [BPS14], we
associate to Dy an adelic family of continuous concave functions Yow: Ag = R, v e M,
called the local roof functions of Dy.

Fori:=1,...,n, write
fi = Z aimXx"
meM
with a;, € K. Let Ng = My ~ R™ be the dual space and, for each place v € 9,
consider the concave function 1;,: Ng — R defined by

—log ( Z || €™ ) if v is Archimedean,

(12) ¢i,v(u) = meM
—log (max |t |w e~ (mou) ) if v is non-Archimedean.
meM

The Legendre-Fenchel dual ¥;, = wx , 1s a continuous concave function on A;.

We denote by MI,; the mixed integral of a family of n + 1 concave functions on
convex bodies of Mg (Definition[5.6). It is the polarization of (n+1)! times the integral
of a concave function on a convex body. It is a functional that is symmetric and linear
in each variable with respect to the sup-convolution of concave functions, see [PS08],
§8] for details.

The following is the main result of this paper.

Theorem 1.1. Let fi,..., fn € K[M], and let X be a proper toric variety with torus
Tur and Do a nef toric metrized divisor on X. Let Ag C Mg _be the polytope of Dy
and, for v € M, let ¥g,: Ao — R be v-adic roof function of Dy. Fori =1,...,n,
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let A; C Mg be the Newton polytope of f; and, for v € M, let ¥;,: Ay — R be the
Legendre-Fenchel dual of the concave function in (L.2). Then

(1.3) b, (Z(fi-e i ) €Y g MIWo0, - ., )
veEM

Using the basic properties of the mixed integral, we can bound the terms in the
right-hand side of (1.3]) in terms of mixed volumes. From this, we can derive the bound

(Corollary

by (Z(f1s o f)) S MVar(A, o Ag) (Y maxdo, )
veEM

+ ) OMVar(Ao, . Aoy, Aigrs o Ap)(f),
i=1
where £(f;) denotes the (logarithmic) length of f; (Definition [6.6). This bound might
be compared with the one given by the arithmetic Bézout theorem (Corollary .
The following example illustrates a typical application of these results. It concerns
two height functions applied to the same 0-cycle. Our upper bounds are close to
optimal for both of them and, in particular, they reflect their very different behavior
on this family of Laurent polynomials.

Example 1.2. Take two integers d,« > 1 and consider the system of Laurent poly-
nomials

1
fi=z1—a, fo=xp—azl ..., fo=zp—azl , eQzFl,... 2zl

The 0-cycle Y := Z(f1,..., fa) of G, g is the single point (a, adtl "t
with multiplicity 1.

Let IP’(’E’P be the n-dimensional projective space over Q and E the divisor of the hy-
perplane at infinity, equipped with the canonical metric. Its associated height function
is the Weil height. We consider two toric compactifications X; and Xy of G}%,. These
are given by compactifying the torus via the equivariant embeddings ¢;: G, — Pg,

i = 1,2, respectively defined, for p = (p1,...,pn) € G (Q) = (@X )", by
ulp)=(L:pr:--:pn) and  wo(p) = (Lipripapy® - papy ).

Set D; = ¢ E™, i =1,2, which are nef toric metrized divisors on X;. By an explicit
computation, we show that

hp, (V) = (Zd“) log(a) and Dy (V) = log().
i=1
On the other hand, the upper bounds given by Theorem are

hp, (V) < <Zdz‘fl> log(a+1) and hg, (V) < nlog(a+1),
i=1
see Example [7.2] for details.

To the best of our knowledge, the first arithmetic analogue of the BKK theorem
was proposed by Maillot [Mai00, Corollaire 8.2.3], who considered the case of canonical
toric metrics. Another result in this direction was obtained by the second author for
the unmixed case and also canonical toric metrics [Som05, Théoreme 0.3]. Theorem [1.1]
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improves and refines these previous upper bounds, and generalizes them to adelic fields
satisfying the product formula and to height functions associated to arbitrary nef toric
metrized divisors, see §7] for details.

The key point in the proof of Theorem consists of the construction, for each
Laurent polynomial f;, of a nef toric metrized divisor D; on a proper toric variety X,
such that f; corresponds to a small section of D; (Propositionand Lemma . The
proof then proceeds by applying the constructions and results of [BPS14, BMPS16]|
and basic results from arithmetic intersection theory.

Trying to keep our results at a similar level of generality as those in [BPS14], we
faced difficulties to define and study global heights of cycles over adelic fields. This
lead us to a more detailed study of these notions. In particular, we give a new notion
of adelic field extension that preserves the product formula (Proposition and a
well-defined notion of global height for cycles with respect to metrized divisors that
are generated by small sections (Proposition-Definition [.15).

As an application of Theorem [I.I] we give an upper bound for the size of the
coefficients of the u-resultant of the direct image under a monomial map of the solution
set of a system of Laurent polynomial equations.

For the simplicity of the exposition, set K = Q and M = Z". Let r > 0, mg =
(Mmoo, ---,mor) € (Z") ! and ap = (a0, - -,@0,) € (Z\ {0})"", and consider the
map Pmg,aq: G, g = P defined by

(1.4) g0 (P) = (00X (p) -+t ao X7 (D))

For a 0-cycle W of Py, let w = (ug,...,u,) be a set of r + 1 variables and denote
by Res(W) € Z[ui, ..., u,] its primitive u-resultant (Definition [7.4). It is well-defined
up a sign. For a vector ae with integer entries, we denote by ¢(a) the logarithm of the
sum of the absolute values of its entries.

Theorem 1.3. Let f1,..., fn € Z[zT!, ...zt mo € (Z")™ and o € (Z\ {0})" !
with v > 0. Set Ag = conv(mop,...,mo,) C R™ and let ¢ be the monomial map
associated to mqg and o as in . Fori=1,...,n, let A; C R" be the Newton
polytope of f;, and ay the vector of nonzero coefficients of f;. Then

n

E(R‘es(@*z(flv B 7fn))) < ZMVM(A()? s Ai*lv Ai+17 s 7ATL) f(az)
=0

The paper is organized as follows. In §2| we recall some preliminary material on in-
tersection theory and on the algebraic geometry of toric varieties. In §3]we study adelic
fields satisfying the product formula. In §4| we recall the notions of metrized divisors
and its associated measures and heights, with an emphasis on the 0-dimensional case.
In §5| we explain the notation and basic constructions of the arithmetic geometry of
toric varieties. In §6| we prove Theorem whereas in §7] we give examples illustrating
the applications of our bounds, and prove Theorem
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for their hospitality.



AN ARITHMETIC BERNSTEIN-KUSNIRENKO INEQUALITY 5

2. INTERSECTION THEORY AND TORIC VARIETIES

In this section, we recall the proof of the Bernstein-Kusnirenko theorem using inter-
section theory on toric varieties, which is the model that we follow in our treatment of
the arithmetic version of this result. Presenting this proof also allows us to introduce
the basic definitions and results on the intersection of Cartier divisors with cycles, and
on the algebraic geometry of toric varieties. For more details on these subjects, we
refer to [Ful84) Laz04] and to [Ful93].

Let K be an infinite field and X a variety over K of dimension n. For 0 < k < n,
the group of k-cycles, denoted by Z(X), is the free abelian group on the k-dimensional
irreducible subvarieties of X. Thus, a k-cycle is a finite formal sum

Y:vav
174

where the V'’s are k-dimensional irreducible subvarieties of X and the my ’s are integers.
The support of Y, denoted by |Y|, is the union of the subvarieties V such that my # 0.
The cycle Y is effective if my > 0 for every V. Given Y)Y’ € Z;(X), we write Y/ <Y
whenever Y — Y is effective.

Let Z be a subscheme of X of pure dimension k. For an irreducible component V
of Z, we denote by Oy,z the local ring of Z along V', and by lo,, ,(Ov,z) its length as
an Oy, z-module. The k-cycle associated to Z is then defined as

[Z] = Z lOV,Z(OV,Z) v,

the sum being over the irreducible components of Z.

Let V be an irreducible subvariety of X of codimension one and f a regular function
on an open subset U of X such that U NV # (). The order of vanishing of f along V
is defined as

ordy (f) = loy, @) (Ovx (U)/(f)).
For a Cartier divisor D on X, the order of vanishing of D along V is defined as

ordy (D) = ordy (g) — ordy (h),

with g,h € Oy x(U) such that g/h is a local equation of D on an open subset U of
X with UNV # (. This definition does not depend on the choice of U, g and h.
Moreover, ordy (D) = 0 for all but a finite number of V’s. The support of D, denoted
by |D], is the union of these subvarieties V' such that ordy (D) # 0. The Weil divisor
associated to D is then defined as

(2.1) D-X=> ordy(D)V,
%
the sum being over the irreducible components of |D)|.

Now let W be an irreducible subvariety of X of dimension k. If W ¢ |D|, then D
restricts to a Cartier divisor on W. In this case, we define D - W as the Weil divisor
of W obtained by restricting to W. This gives a (k — 1)-cycle of X. If W C |D|,
then we set D - W = 0, the zero element of Z;_1(X). We extend by linearity this
intersection product to a morphism

ZK(X) — Zy—1(X), Yr— DY,
with the convention that Z_;(X) = 0, the zero group.
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For 0 < r < n and Cartier divisors D; on X, ¢=1,...,r, we define inductively the
intersection product [[;_; D; € Z,,—,(X) by

i X ift =0,
[[pi= DT D; if1<t<
i1 1‘1_[2»:2 i 1 1_t_T.

Definition 2.1. Let Y be a k-cycle of X and Dq,..., D, Cartier divisors on X,
with r < k. We say that Dq,..., D, intersect Y properly if, for every subset I C

{1,...,7},
dim (|Y| nN |Di]> =k — #1.
i€l

If Dy,...,D, intersect X properly, then the cycle [[;_; D; does not depend on the
order of the D;’s [Ful84l Corollary 2.4.2]. This conclusion does not necessarily hold if
these divisors do not intersect properly.

Example 2.2. Let X = A%( and consider the principal Cartier divisors D1 = div(z122)
and Dy = div(z1). Then

Dl‘D2 =0 and DQ-Dl == (0,0)
Proposition 2.3. Let X be a Cohen-Macaulay variety over K of pure dimension n

and D1, ..., D, Cartier divisors on X. Let s; be a global section of O(D;), 1 =1,...,n,
and write

(2.2) [T div(si) =Y myp € Zo(X),
=1 P

where the sum is over the closed points p of X and m, € Z. This 0-cycle is effective
and, for each isolated closed point p of the intersection (i | div(s;)|,

my = dimg (Op x (U)/(f1,-- -, fn)),

where U is a trivializing neighborhood of p, and f; is a defining function for s; on U,
1=1,...,n.

Proof. The fact that the cycle in is effective follows from the hypothesis that
the s;’s are global sections.

For the second statement, by possibly replacing U with a smaller open neighborhood
of p, we can assume that div(sy),...,div(s,) intersect X properly on U, and so this
intersection is of dimension 0. By [Ful84] Proposition 7.1 and Example 7.1.10],

mp = lop,x(U)(O]%X(U)/(fl’ ) le))
By [Ful84, Example A.1.1], we have the equality

lo, x () (Opx(U)/(f1,. .., fn)) = dimg (Op x (U)/(f1, .., fn)),
completing the proof. O

For the rest of this section, we assume that the variety X is projective. With this
hypothesis, Chow’s moving lemma allows to construct, given a cycle and a family of
Cartier divisors, another family of linearly equivalent Cartier divisors intersecting the
given cycle properly, in the sense of Definition 2.1]



AN ARITHMETIC BERNSTEIN-KUSNIRENKO INEQUALITY 7

Definition 2.4. Let Y be a k-cycle of X and D,...,D; Cartier divisors on X.
The degree of Y with respect to D1, ..., Dy, denoted by degp, p, (Y), is inductively
defined by the rules:
(1) it k=0, write Y =} m; p and set deg(Y) = > my, [K(p) : KJ;
(2) if k > 1, choose a rational section si of O(Dy) such that div(sy) intersects Y
properly, and set degp,  p, (Y) =degp, p, ,(div(sy)-Y).

The degree of a cycle with respect to a family of Cartier divisors does not depend
on the choice of the rational section s in ([2]), see for instance [Ful84] §2.5] or [Laz04l,
§1.1.CJ.

A Cartier divisor D on X is nef if degp(C) > 0 for every irreducible curve C of X.
By Kleiman’s theorem [Laz04) §1.4.B], for a family of nef Cartier divisors Dy, ..., Dy
on X and an effective k-cycle Y of X,

(2.3) degp, .p,(Y)=0.

Proposition 2.5. Let Y be an effective k-cycle of X and Dy,..., Dy nef Cartier
divisors on X . Let s be a global section of O(Dy). Then

0 <degp, . p, ,(div(sy)-Y) <degp, p,(Y).

Proof. Since Y is effective and sy, is a global section, div(sg)-Y is also effective. Since
Dy, ..., Dy_q are nef, by we have that degp, p,  (div(sg)-Y) >0, proving the
lower bound.

For the upper bound, we reduce without loss of generality to the case when Y =V
is an irreducible subvariety of dimension k. If V' C |div(sg)|, then div(sg) - Y =
0 € Zi_1(X). Hence deg(div(sg) - Y) = 0 and the bound follows from the nefness of
the D;’s. Otherwise, from the definition of the degree,

Dk_l(diV(Sk) V)= deng,...,Dk(V)a
which completes the proof. [l

degD1

-----

Corollary 2.6. Let Dq,..., D, be nef Cartier divisors on X and, fori=1,...,n, let
si be a global section of O(D;). Then

0 < deg (HdiV(Si)> <degp, . p,(X).
i=1

We now turn to toric varieties. Let M ~ Z™ be a lattice and set

(2.4) K[M]~K[z7',...,2'] and T =Spec(K[M])~ G}k

’rn

for its group K-algebra and algebraic torus over K, respectively. The elements of M
correspond to the characters of T and, given m € M, we denote by X" € Hom(T, Gy, k)
the corresponding character. Set also Mr = M ® R.

Let N = MV ~ Z" be the dual lattice and set Ng = N ® R. Given a complete
fan ¥ in N, we denote by Xy the associated toric variety with torus T. It is a proper
normal variety over K containing T as a dense open subset. When the fan ¥ is regular,
in the sense that it is induced by a piecewise linear concave function on Ng, the toric
variety Xy is projective.

Set X = Xy, for short. Let D be a toric Cartier divisor on X, and denote by
U p its associated virtual support function on . This is a piecewise linear function
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VUp: Nr — R satisfying that, for each cone o € ¥, there exists m € M such that, for
all u € o,
Up(u) = (m,u).
The condition that ¥p is concave is both equivalent to the conditions that D is nef and
that the line bundle O(D) is globally generated. This line bundle O(D) is a subsheaf
of the sheaf of rational functions of X. For each m € M, the character x™ is a rational
function of X, and so it induces a rational section of O(D) that is regular and nowhere
vanishing on T. The rational section corresponding to the point m = 0 is called the
distinguished rational section of O(D) and denoted by sp.
The toric Cartier divisor D also determines the lattice polytope of Mg given by

Ap ={x € Mg | (x,u) > ¥p(u) for every u € Ng}.

A rational section corresponding to a point m € M is global if and only if m € Ap.
The global sections corresponding to the lattice points of Ap form a K-basis for the
space of global sections of O(D). Identifying each character x™ with the corresponding
rational section ¢, of O(D), we have the decomposition

(2.5) NX,0D)= & K-

mEADﬁ]V[

Now let Ay, ..., A, be lattice polytopes in Mg. For each A;, we consider its support
function, which is the piecewise linear concave function with lattice slopes Ua,: Ng —
R given by
(2.6) Ua,(u) = min(z,u).

TEA;

Let X be a regular complete fan in Ng compatible with the collection Aq,..., A,,
in the sense that the Wa,’s are virtual support functions on ¥. Such a fan can be
constructed by taking any regular complete fan in Np refining the complex of cones
that are normal to the faces of A;, for all i. Let X be the toric variety corresponding to
this fan and D; the toric Cartier divisor on X corresponding to these virtual support
functions. By construction, Ua, is concave. Hence D; is nef and O(D;) is globally
generated, and its associated polytope coincides with A;.

Let volys be the Haar measure on Mg such that M has covolume 1, and take r = n.
The mized volume of Aq,..., A, is defined as the alternating sum

n
MV (A, An) =D (D)7 Y volu(Ay 4+ + Ay)).

j=1 1<i1 <--<ij<n

A fundamental result in toric geometry states that the degree of a toric variety with
respect to a family of nef toric Cartier divisors is given by the mixed volume of its
polytopes [Ful93l §5.4]. In our present setting, this amounts to the formula

(2.7) degp, ... p,(X) =MVy(Ar,...,Ay).
We turn to 0-cycles of the torus defined by families of Laurent polynomials.

Definition 2.7. Let fi,..., f, € K[M] and denote by V(f1,..., fn)o the set of isolated
closed points in the variety defined by this family of Laurent polynomials. For each
p € V(fi,..., fn)o, let my, be the maximal ideal of K[M] corresponding to p and set

Hp = dlmK(K[M]mp/(fh - an))
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The 0-cycle associated to f1,..., fn is defined as

Z(f1i,. . fa) = > mpp€ Zo(T).

pGV(fl ----- fn)O

Let f =3, cmamX™ € K[M] be a Laurent polynomial. Its support is defined as
the finite subset of M of the exponents of its nonzero terms, that is supp(f) = {m |
am # 0}. The Newton polytope of f is the lattice polytope in My given by the convex
hull of its support, that is N(f) = conv(supp(f)).

Proposition 2.8. Let f1,..., fn € K[M]. Let ¥ be a reqular complete fan in Ng com-
patible with the Newton polytopes of the f;’s and, fori =1,...,n, let D; be the Cartier
divisor on Xy, associated to N(f;) and s; the global section of O(D;) corresponding
to fi asin (2.5). Write [}, div(s;) = > vpp, where the sum is over the closed points
of Xs.. Then

(1) for every p € V(f1,..., fu)o, we have vy = dimpg (K[M]w,/(f1,---, fa));
(2) the inequality Z(f1,. .., fn) < [lie; div(s;) holds.

Proof. We have that (i |div(s;)] = V(f1,...,fn). Since T is Cohen-Macaulay,
Proposition gives the first statement. Since the sections s; are global, the 0-cycle
[T, div(s;) is effective. Hence, the second statement follows directly from the first
one. ]

Finally, we prove the version of the Bernstein-Kusnirenko theorem in ((1.1).
Theorem 2.9. Let f1,..., fn € K[M]. Then

deg(Z(f1;-- -, fn)) < MV (N(f1), ..., N(fn)).
Proof. This follows from Proposition , Corollary and the formula (2.7). O

3. ADELIC FIELDS AND FINITE EXTENSIONS

In this section, we consider adelic fields following [BPS14]. We also give a new
notion of adelic field extension that behaves better than the one in loc. cit.. With this
definition, the product formula is preserved when passing to finite extensions.

Definition 3.1. Let K be an infinite field and 97 a set of places. Each place v € M is
a pair consisting of an absolute value | - |, and a positive real weight n,. We say that
(K, 9) is an adelic field if

(1) for each v € M, the absolute value |- |, is either Archimedean or associated to
a nontrivial discrete valuation;
(2) for each a € K*, we have that |a|, = 1 for all but a finite number of v € M.

An adelic field (K, 90) satisfies the product formula if, for every a € K*,

[T ol =1.

veM

Let (K, 90t) be an adelic field. For each place v € 9, we denote by K, the completion
of K with respect to the absolute value |- |,. By a theorem of Ostrowski, if v is
Archimedean, then K, is isomorphic to either R or C [Cas86, Chapter 3, Theorem 1.1].
In particular, an adelic field has only a finite number of Archimedean places.
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Example 3.2. Let Mg be the set of places of Q consisting of the Archimedean and
p-adic absolute values of Q, normalized in the standard way, and with all the weights
equal to 1. The adelic field (Q,Mg) satisfies the product formula.

Example 3.3. Let K(C) denote the function field of a regular projective curve C over
a field k. To each closed point v € C we associate the absolute value and weight given,
for f € K(C)*, by

(3.1) \flo = e o) and  n, = [K(v) : &),

where ord, (f) denotes the order of vanishing of f at v and
e if #k = o0,

(3.2) Cr = { #r i #Kr < oo,

The set of places My is indexed by the closed points of C, and consists of these
absolute values and weights. The pair (K(C), My (¢)) is an adelic field which satisfies
the product formula.

Lemma 3.4. Let F be a finite extension of K and v € 9. Then
(33) F@K KU = Eun

w
where the sum is over the absolute values | - |, on F whose restriction to K, coincides
with | - |,, and where the Ey,’s are local Artinian K,-algebras with mazimal ideal p,,.
For each w, we have Ey,/py, ~ Fy.

Proof. Since K — F is a finite extension, the tensor product F ® K, is an Artinian
K,-algebra. By the structure theorem for Artinian algebras,

F ok K, ~ P E;,
icl

where [ is a finite set and the E;’s are local Artinian K,-algebras. Let p; be the
maximal ideal of F;, for each 7. These are the only prime ideals of F ® K,, and so
rad(F @ Ky) = (Ve pi-

Each w in the decomposition corresponds to an absolute value | - |, on F
extending | - |,, and there is a natural inclusion F < F,,. The diagonal morphism
F — @, Fu extends to a map of K,-vector spaces

F @ Ky — EPFo.

By [Bou64l Chapitre VI, §8.2 Proposition 11(b)|, this morphism is surjective and its
kernel is the radical ideal of F ® K,. Therefore

(3.4) P Ei/pi = <@E> /rad(IE‘@KU) ~ P F..
el el w

The summands in both extremes of are fields over K,, and so local Artinian K-

algebras. By the uniqueness of the decomposition in the structure theorem for Artinian

algebras, there is a bijection between the elements in I and the w’s, identifying each

i € I with the unique w such that E;/p; ~ F,,. O

The following definition was introduced by Gubler in the context of M-fields, see
[Gub97, Remark 2.5]|.
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Definition 3.5. Let (K, 97) be an adelic field and F a finite extension of K. For every
place v € M, we denote by 91, the set of absolute values | - |, on F that extend | - |,
with weight given by
dimg, (Fy)
Ny = [F: K] T,

where the E,’s are the local Artinian K,-algebras in the decomposition of F Qg K,
from Lemma Set N = | |,con Mv- The pair (F,MN) is an adelic field. The adelic
fields of this form are called adelic field extensions of (K, IN).

Remark 3.6. With notation as in Lemma [3.4]
dimg, (Fy) = lg, (Fw)[Fyw : Ky,

where I, (E,) is the length of E,, as a module over itself. This follows from [Ful84]
Lemma A.1.3] applied to the morphism K, — F,,. Hence, the weights in Definition
can be alternatively written as
[Fy : Ky
w=1lg,(Ey) = Ny.
= o, (Bu) gy "
Proposition 3.7. Let (K,9) be an adelic field and (F,N) an adelic field extension
of (K,9M). Then

(1) the equality 3 co Mw = My holds for every place v € M;

(2) if (K,9M) satisfies the product formula, then (F,N) also does.

Proof. From the definition of adelic field extension and Lemma [3.4],

dimg, (Ey) dimg, (F @ K,)
D =) [IE‘K:K] = HEF:K]

nv = n’U;
we‘ﬁv we‘ﬁv

which proves statement . To prove the second statement, let o € F* and consider
the multiplication map 7,: F — F given by 14 (z) = ax. The norm Np/k(a) € K* is
defined as the determinant of this K-linear map. Moreover, 7, extends to the K,-linear
map

N @1k, FRIK, — F®K,,
which has the same determinant. Using the decomposition in , write a ® 1g, =
() with o, € Eyy,. Hence 1o ® 1x, = B, Ma,, and

Npjg (o) = det(na @ 1k,) = H Ng, /k, (ow).
wEN,
By [BouT0, Chapitre III, §9.2, Proposition 1], Ng, /k,(cw) = N, /x, (0u)'Be(Fw).
Moreover, by [Lan02, VI Proposition 5.6],

NFw/KU aw H o [Fw Kv]z

where the product is over the different embeddlngs o of F, in an algebraic closure
of K,, and [F, : K,]; denotes the inseparability degree of the extension K, < Fy,.
Furthermore, the number of such embeddings is equal to the separability degree [F,, :
K,]s. For every embedding o, we have |o(ay)|y = ||, because the base field K, is
complete. Since [Fy, : Ky |i[Fy : Kyls = [Fy 1 Ky, we get

|NIF/]K ‘Tlu _ H |O' le Ew []Fw Kﬂ]nv — H |Oé| FK]nw
wEMU wemv



12 MARTINEZ AND SOMBRA

Since Ng/k(a) € K*, if (K, 90) satisfies the product formula, then

1
FK]
I lad = ( I rNF/Km)VJv) 1

weN veEM

concluding the proof. (]

Example 3.8. Let F be a number field. This is a separable extension of Q. By [Bou64),
Chapitre VI, §8.5, Corollaire 3|, we have that F ® Q, ~ F,, for all v € My.
Therefore, the weight associated to each place w € N, is

[Fw : Qv]

Ny = ————.
[F: Q]

Example 3.9. Let (K(C), M () be the function field of a regular projective curve C

over a field k£ with the structure of adelic field as in Example [3.3] The places of K(C)

correspond to the closed points of C' with absolute values and weights given by .
Let F be a finite extension of K(C') and 9 the set of places of F as in Definition [3.5]
There is a regular projective curve B over x and a finite map n: B — C such that
the extension K(C) — F identifies with the morphism 7*: K(C') — K(B). For each
place v € My ), the absolute values of F that extend | - |, are in bijection with the
fiber 771 (v).

For each closed point v € C, the integral closure in K(B) of O, ¢ coincides with
Or-1(v),B, the local ring of B along the fiber 71 (v). The ring Or-1(v),B s of finite type
over O, ¢. With notation as in Lemma , by [Bou64, Chapter VI, §8.5, Corollaire 3|,
we have F,, ~ I, for all w € 9M,. Hence, the weight of w is given by

[Fyp : K(C)y]
Ny = ——————K(v) : K].
[F: K(C)]

Let e(w/v) denote the ramification index of w over v. By [Bou64), Chapter VI, §8.5,
Corollaire 2|, we have that [F,, : K(C),] = e(w/v) [K(w) : K(v)]. Therefore, for each
place w € M, the weight of w can also be expressed as

L elw/0) [K(w) : 4]
[F: K(C)]

wefﬂu

Following [BPS14], a global field is a finite extension of the field of rational numbers
or of the function field of a regular projective curve, with the structure of adelic field
described in Examples [3.8|and [3.9] For these fields, Proposition [3.7]is already a known
result, see for instance [BPRS15, Proposition 2.1].

By a result of Artin and Whaples, global fields can be characterized as the adelic
fields having an absolute value that is either Archimedean or associated to a discrete
valuation whose residue field has finite order over the field of constants [AW45], Theo-
rems 2 and 3.

Function fields of varieties of higher dimension provide examples of adelic fields
satisfying the product formula, and that are not global fields.

Example 3.10. Let K(S) be the function field of an irreducible normal variety S over
a field k of dimension s > 1, and F1, ..., Es_1 nef Cartier divisors on S. Set S for
the set of irreducible hypersurfaces of S. For each V € S| the local ring Oy is a
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discrete valuation ring. We associate to V' the absolute value and weight given, for
f e K(S), by

flv =W and 0, =degp, _m, ,(V),

with ¢, as in (3.2). The set of places My (s) is indexed by S and consists of these
absolute values and weights. For f € K(95)*,

Z ny log | f|, = log(cx) Z degEl,...,Es,l(V) ordy (f) = degEl,...,Es,l(diV(f)) =0,
Ves®) Vesm

because the Cartier divisor div(f) is principal. Hence (K(S),My(s)) satisfies the
product formula.

4. HEIGHT OF CYCLES

In this section, we introduce a notion of global height for cycles of a variety over an
adelic field, with respect to a family of metrized divisors generated by small sections.
We also recall the notion of local height of cycles from [BPS14l Chapter 1| and give a
more explicit description of this construction in the 0-dimensional case.

Let (K, 91) be an adelic field satisfying the product formula, and X a normal projec-
tive variety over K. For each place v € M, we denote by X" the v-adic analytification
of X. In the Archimedean case, if K, ~ C, then X" is an analytic space over C
whereas, if K, ~ R, then X3" is an analytic space over R, that is, an analytic space
over C together with an antilinear involution, as explained in [BPS14, Remark 1.1.5].
In the non-Archimedean case, X3" is a Berkovich space over K, as in [BPS14] §1.2].

Fix v € 91 and set

Xy = X x Spec(K,).

Given a 0-cycle Y of X, a usual construction in Arakelov geometry associates a signed
measure on X", denoted by Jy, that is supported on |Y|*" and has total mass equal
to deg(Y'), see for instance [BPS14, Definition 1.3.15] for the non-Archimedean case.
In what follows, we explicit this construction.

Let ¢ be a closed point of X,,. The function field K(g) is a finite extension of K, and
deg(q) = [K(q) : K,]. If v is Archimedean, then deg(q) is either equal to 1 or 2. In the
first case, the analytification of ¢ is a point of X7" whereas, in the second case, it is a
pair of conjugate points. If v is non-Archimedean, choose an affine open neighborhood
U = Spec(A) of ¢ and A — K(gq) the corresponding morphism of K,-algebras. The
analytification of ¢ is the point ¢*" € U?" C X3 corresponding to the multiplicative
seminorm given by the composition

A — K(q) Ly R>o0,
where | - | is the unique extension to K(q) of the absolute value | - |,.

Since the measure ¢, is supported on the point ¢*" and has total mass deg(q), it

follows that

(4.1) dq = [K(q) : Ko] dgan,

where d4on denotes the Dirac delta measure on ¢*". For an arbitrary O-cycle Y of X,
the signed measure dy is obtained from (4.1) by linearity. It is a discrete signed
measure of total mass equal to deg(Y).
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Let D be a Cartier divisor on X. A metric on the analytic line bundle O(D)3" is
an assignment that, to each open subset U C X3" and local section s on U, associates
a continuous function

[s(-)llo: U — Rxo
that is compatible with restrictions to open subsets, vanishes only when the local
section does, and respects multiplication of local sections by analytic functions, see

[BPS14, Definitions 1.1.1 and 1.3.1]. This notion allows to define local heights of
0-cycles.

Definition 4.1. Let D be a Cartier divisor on X, and || - ||, a metric on O(D)a". For a
O-cycle Y of X, and a rational section s of O(D) that is regular and non-vanishing on
the support of Y, the local height of Y with respect to the pair (|| - ||4, s) is defined as

h||~Hq;(Y§ s) = —/ log ||s|l dy -
Xgn

We now study the behavior of these objects with respect to adelic field extensions.
Let (F,91) be an extension of the adelic field (K, 9) (Definition and fix a place
w € Ny, so that Fy, is a finite extension of the local field K,. Let ¢ be a closed point
of X, and consider the subscheme ¢, of X, = X x Spec(FF,,) obtained by base change.
Decompose

K(q) @k, Fo = P G
jel
as a finite sum of local Artinian [F,,-algebras and, for each j € I, denote by ¢; the
corresponding closed point of X,,. Thus the associated cycle is given by [gw] =

> jerlc;(Gj) g;- Hence, by (4.1) and Remark
6[‘111)] = Z dime (G]) 65]?”'
jelI
The inclusion K, < F,, induces a map of the corresponding analytic spaces
(4.2) m X — X0

In the non-Archimedean case, this map of Berkovich spaces is defined locally by re-
stricting seminorms.

The following proposition gives the behavior of the measure associated to a 0-cycle
with respect to field extensions.

Proposition 4.2. With notation as above, let Y be a 0-cycle of X, and set Yy, for the
0-cycle of X, obtained by base change. Then

Ty Oy, = Oy

Proof. By the compatibility of the map 7 with restriction to subschemes, we have that
m(g3") = ¢*" for all j € I. Tt follows that

T Olgu) = D dimg,, (G;) 7 gn = (Zdimyw(Gj)> Sgan = [K(q) : Ky] 6gan = 0.

jel jel
O
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Let D be a Cartier divisor on X and || - ||, a metric on O(D)3". The extension of
this metric to a metric || - ||, on the analytic line bundle O(D)3" on X2" is obtained
by taking the inverse image with respect to the map 7 in (4.2)), that is

(4.3) -l =71 llo-

Proposition implies directly the invariance of the local height with respect to adelic
field extensions.

Proposition 4.3. With notation as above, let Y be a O-cycle of X, and s a rational
section of O(D)2" that is reqular and non-vanishing on the support of Y. Set Y, and
Sw = 7*s for the 0-cycle and rational section obtained by base extension. Then

By, (Yo, $w) = D, (Y ).

To define global heights of cycles over an adelic field, we consider adelic families of
metrics on the Cartier divisor D satisfying a certain compatibility condition.

Definition 4.4. An (adelic) metric on D is a collection || - ||, of metrics on O(D)3",
v € M, such that, for every point p € X (K) and a choice of a rational section s of O(D)
that is regular and non-vanishing at p and of an adelic field extension (I, 91) such that

p € X(F),
(4.4) (P ) lw =1

for all but a finite number of w € M. We denote by D = (D, (|| - ||»)veom) the corre-
sponding (adelically) metrized divisor on X.

In addition, D is semipositive if each of its v-adic metrics is semipositive in the
sense of [BPS14] Definition 1.4.1].

The condition (4.4) does not depend on the choice of the rational section s and of
the adelic field extension (I, 91).

Remark 4.5. When K is a global field, the classical notion of compatibility for a
collection of metrics || - ||, on O(D)a", v € M, is that of being quasi-algebraic, in the
sense that there is an integral model that induces all but a finite number of these
metrics [BPS14] Definition 1.5.13].

By Proposition 1.5.14 in loc. cit., a quasi-algebraic metrized divisor D is adelic in
the sense of Definition [£.4] The converse is not true, as it is easy to construct toric

adelic metrized divisors that are not quasi-algebraic (Remark [5.4).

For a 0-cycle Y of X and a place v € 91, we denote by Y, the O-cycle of X, defined
by base change. When Y = p is a closed point of X, by Lemma [3.4] applied to the
finite extension K(p) of K, the 0-dimensional subscheme p, = p x Spec(K,) of X,
decomposes as

Pv = SpeC(K(p) ®K Kv) = H Spec(Ew),
wEeMN,
where the E;’s are the local Artinian K,-algebras in . Let gy, w € M, be the
irreducible components of this subscheme. Then, the associated 0-cycle of X, writes

down as
[pv] = Z g, (Ew) qu
wEMN,

and, for each w € M, we have K(q,) ~ K(p)-. For an arbitrary Y, the 0-cycle Y, is
obtained by linearity.
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Let D = (D, (]| - |lv)veom) be a metrized divisor on X, Y a 0-cycle of X and s a
rational section of O(D) that is is regular and non-vanishing on the support of Y. For
each place v € M, we set

hy (Y5 8) =y, (Yo; 5),
where Y, is the 0-cycle of X, obtained by base change. The condition that D is adelic
implies that hy;  (Y;s) = 0 for all but a finite number of places.

If s’ is another rational section of O(D) that is regular and non-vanishing on |Y|,
then s’ = fs with f € K(X)* and, for v € 9,

(4.5) hg ,(Y;s') =hg  (Vis) —log|yle
where Y =" pipp and v =[], f(p)'» € K*.

Definition 4.6. Let D be a metrized divisor on X and Y a 0-cycle of X. The global
height of Y with respect to D is defined as

(4.6 hp(V) = 3 b, (Vis),
veEM
with s a rational section of O(D) that is is regular and non-vanishing on |Y|.

The local heights in are zero for all but a finite number of places, and so this
sum is finite. The equality together with the product formula imply that this
sum does not depend on the rational section s.

Given a metrized divisor D on X and an adelic field extension (F,91), we denote
by D the metrized divisor on Xy obtained by extending the v-adic metrics of D as

in (£3).

Proposition 4.7. Let D be a metrized divisor on X, Y a 0-cycle of X and (F,N) an
adelic field extension of (K,9). Then

hp, (Yr) = hpp(Y).

Proof. Let s be a rational section of O(D) that is is regular and non-vanishing on |Y|

and v € M. By Propositions and ,

Z nwhg, (Y, s) = Z ny hp (Y, 8) = ny hp (Y, 5).
weMNy weNy,

The statement follows by summing over all the places of K. O

Since the global height is invariant under field extension, it induces a notion of
global height for algebraic points, that is, a well-defined function

hy: X(K) — R.
When K is a global field, this notion coincides with the one in [BPRS15] Definition 2.2].
Now we turn to cycles of arbitrary dimension. Let V' be a k-dimensional irreducible
subvariety of X and Dy, ..., Dyr_1 a family of k semipositive metrized divisors on X.
For each place v € 9, we can associate to this data a measure on X" denoted by

c1(Do) A -+ Aci(Dg—1) A byan

and called the v-adic Monge-Ampére measure of V and Dy,..., Dy_1, see [Cha06],
Définition 2.4| or [BPS14, Definition 1.4.6]. For a k-cycle Y of X, this notion extends
by linearity to a signed measure on X2*, denoted by c1(Dg) A -+ A c1(Dg_1) A dyan.
It is supported on [Y;|*" and has total mass equal to the degree degp, p, ,(Y).
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We recall the notion of local height of cycles from [BPS14] Definition 1.4.11].

Definition 4.8. Let Y be a k-cycle of X and, for i = 0,...,k, let (D;,s;) be
a semipositive metrized divisor on X and a rational section of O(D;) such that
div(sg),...,div(sg) intersect Y properly (Definition 2.1)). For v € M, the local height
of Y with respect to (Dg, sg),...,(Dg,s:) is inductively defined by the rule

hbo,...,ﬁk,v(y; SUTERE ’Sk) = hﬁo,...,ﬁk,hv(div(sk> ' Y7 805+ Sk71>
— / lOg”Ska’v Cl(ﬁo) /\.../\Cl(ﬁk_l) /\(5Y1§1n
Xs,n

and the convention that the local height of the cycle 0 € Z_1(X) is zero.

Remark 4.9.

(1) The local height is linear with respect to the group structure of Zp(X). In
particular, the local heights of the cycle 0 € Z(X) are zero.

(2) For a O-cycle Y of X and v € 9, the v-adic Monge-Ampére measure coincides
with the measure associated to the O-cycle Y, of X, at the beginning of this
section. Hence, Definition applied to a 0-cycle coincides with Definition [4.1]

The following notion is the arithmetic analogue of global sections of a line bundle,
and Proposition below is an analogue for local heights of Proposition

Definition 4.10. Let D = (D, (|| - lv)vem) be a metrized divisor on X. A global
section s of O(D) is D-small if, for all v € M,

sup ||s(q)]l, < 1.

legn
Proposition 4.11. Let Y be an effective k-cycle of X and, for i = 0,...k, let
(D, si) be a semipositive metrized divisor on X and a rational section of O(D;) such

that div(sp), ..., div(sy) intersect Y properly and such that sy, is Dy-small. Then, for
all v e M,

hﬁovnyﬁkflyv(div(sk/’) ) Y; 805+ Sk—l) < h507..-75k,v(y§ 805+ Skz)'

Proof. Since the cycle Y is effective and the metrized divisors D; are semipositive,
their v-adic Monge-Ampere measure is a measure, that is, it takes only nonnegative
values. Since the global section sy is Dy-small, log ||sx(q) ||k < 0 for all ¢ € X2*. The
inequality follows then from the inductive definition of the local height. O

Our next step is to define global heights for cycles over an adelic field. We first
state an auxiliary result specifying the behavior of local heights with respect to change
of sections, extending to the higher dimensional case. The following lemma and
its proof are similar to [Gub97, Corollary 3.8].

Lemma 4.12. Let Y be a k-cycle of X and Dy, ..., D} semipositive metrized di-
visors on X. Let s;, s, be rational sections of O(D;), i = 0,...,k, such that both
div(sp),...,div(sg) and div(sg),...,div(s)) intersect Y properly. Then there exists
v € K* such that, for all v € M,

(4.7) hs 5.5 S0y -y Sp) = hs,  B.0(Yis0,...,86) —log vy
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Proof. Let s be rational sections of O(D;), ¢ = 0,...,k, such that (s,...,s]) is
generic enough so that, for every subset J C {0,...,k}, the family of divisors

(4.8) {div(s;) | j € J}U{div(s}) | j ¢ J}
intersects Y properly.

We proceed to prove the formula (4.7) with the s/’s in the place of the s}’s. Hence,
we want to prove that there is ¥ € K* such that, for every v € I,

(4.9) hi 5.5 Shs--esSh) = hs  5,.(Y5s0,...,86) —log|ylo.

To this end, consider first the particular case when s; = s/, i = 0,...,k — 1. Set

s = fs, with f € K(X)*, and (I]}Z) div(s;)) - Y = 3, upp. By [BPSI4, Theo-
rem 1.4.17(3)], the equality (4.7) holds with 7 € K* given by

=] fp).

By [BPS14, Theorem 1.4.17(1)], the local height is symmetric in the pairs (D;, s;). By
the hypothesis , we can reorder the metrized line bundles and rational sections,
and iterate the above construction for every ¢ = 0,...,k. This proves with
v = Hf:o Yi-

Assuming that the s]’s are generic enough so that the condition in also holds
with the s’s instead of the s;’s, similarly there exists 7/ € K* such that, for every
v €M,

(4.10) hy 50V SOy -y Sh) = hy 5o 80y -5 55) — log [7']y-
The statement follows by combining (4.9) and (4.10)). O

We consider the following notions of positivity of metrized divisors.

Definition 4.13. Let D be a metrized divisor on X.
(1) D is nef if D is nef, D is semipositive, and hz(p) > 0 for every closed point p
of X.
(2) D is generated by small sections if, for every closed point p € X, there is a

D-small section s such that p ¢ |div(s)|.

Lemma 4.14. Let Y be an effective k-cycle of X and (D;, s;) semipositive metrized di-

visors on X together with rational sections of O(D;), i = 0,..., k, such that div(s), ..., div(sg)|
intersect Y properly. Suppose that D;, i = 1,...,k, are generated by small sections.

Then there exists ¢ € K* such that, for all v € I,

k
hﬁo,--.ﬁk,v(Y; 50y .-, 8k) > log |Cly + hDO,v<<HdiV(5i)> Y, so> .
=1

Proof. For k = 0, the statement is obvious, so we only consider the case when k& > 1.
By Lemmal[£.12] it is enough to prove the statement for any particular choice of rational
sections s;, provided that their associated Cartier divisors intersect Y properly.

We can also reduce without loss of generality to the case when ¥ =V is an irre-

ducible variety of dimension k. We can then choose rational sections s;, i = 0,...,k,
such that s; is D;-small. By Proposition m,
hﬁo,...,ﬁk,v(v; 50, - - - 7Sk) > hﬁo’myﬁkilyv(diV(Sk) . V, S0y .-y Sk—1)~

Since div(sg)-V is an effective (k—1)-cycle, the statement follows by induction on k. O
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Proposition-Definition 4.15. Let Y be an effective k-cycle of X, and Do, ..., Dy,
semipositive metrized divisors on X such that D1, ..., Dy are generated by small sec-
tions. Let s; be rational sections of O(D;), i =0,...,k, such that div(so),...,div(sk)

intersects Y properly. The global height of Y with respect to Dy, ..., Dy, is defined as
the sum

(4.11) b, 5, (Y) =Y nuhp 5 o (Viso,...,sk).
veEM

This sum converges to an element in RU {400}, and its value does not depend on the
choice of the s;’s.

Proof. The existence of rational sections s; such that div(sp),...,div(sg) intersects Y’
properly follows from the moving lemma, with the hypothesis that X is projective.
By Lemma and the fact that the local heights of 0-cycles are zero for all but a
finite number of places, the local heights in are nonnegative, except for a finite
number of v’s. Hence, the sum converges to an element in RU{+oc}. Lemmal[f.12)and
the product formula imply that the value of this sum does not depend on the choice
of the s;’s. O

This definition generalizes the notion of global height of cycles of varieties over
global fields in [BPS14] §1.5], to cycles of varieties over an arbitrary adelic field, in the
case when the considered metrized divisors are generated by small sections.

In principle, the sum in (4.11)) might contain an infinite number of nonzero terms.
Nevertheless, we are not aware of any example where this phenomenon actually hap-
pens. Moreover, for varieties over global fields, the local heights of a given cycle are
zero for all but a finite number of places [BPS14, Proposition 1.5.14], and so their
global height is a real number given as a weighted sum of a finite number local heights.

In this context, we propose the following question.

Question 4.16. Let Y be a k-cycle of X and, for each i = 0,...,k, let (D;,s;)
be a semipositive metrized divisor on X and a rational section of O(D;) such that
div(sg),...,div(sg) intersect Y properly. Is it true that

hﬁ07'“75k7v(Y; S0y ey Sk) = O
for all but a finite number of v € Mg ?

A positive answer would imply that, for a variety over an adelic field and a family
of semipositive metrized divisors, the global height of a cycle is a well-defined real
number, given as a weighted sum of a finite number local heights.

The following results are arithmetic analogues of Proposition and Corollary [2.6]

Proposition 4.17. Let Y be an effective k-cycle of X, and Do, ..., Dy, semipositive
metrized divisors on X such that Dy is nef and Dy, ..., Dy are generated by small
sections. Let s be a Dy-small section. Then

0<hp, 5,  (div(sg) Y)<hp 5 (Y)

Proof. We reduce without loss of generality to the case when Y =V is an irreducible
subvariety of dimension k. If V' C |div(sg)|, the first inequality is clear. For the
second inequality, we choose rational sections s;, ¢ = 0,...,k — 1, and s} such that
div(sp), ..., div(sk—1),div(s}) intersect Y properly. Using Lemmas and the
product formula and the fact that Dy is nef, we deduce that hys,  5,(Y)>0.



20 MARTINEZ AND SOMBRA

Otherwise, V' ¢ | div(sg)| and we choose rational sections s;, i = 0,...,k — 1, such
that div(sg),...,div(sg) intersect Y properly. The first inequality follows by applying
the argument above to div(sg) Y, whereas the second one is given by Proposition m

O

Corollary 4.18. Let Dy, ..., D, be semipositive metrized divisors on X such that Dy
s nef and D1,..., D, are generated by small sections. Let s; be D;-small sections,
i1=1,...,n. Then

0 S hEO <Hd1V(SZ)> S hbo,...,ﬁn (X)
=1

5. METRICS AND HEIGHTS ON TORIC VARIETIES

In this section, we recall the necessary background on the arithmetic geometry of
toric varieties following [BPS14, BMPS16]. In the second part of we presented
elements of the algebraic geometry of toric varieties over a field. In the sequel, we will
freely use the notation introduced therein.

Let (K,9) be an adelic field satisfying the product formula. Let M ~ Z" be a
lattice and T =~ Gg,K its associated torus over K as in . For v € 9, we denote by
Ta" the v-adic analytification of T, and by S, its compact torus. In the Archimedean
case, S, is isomorphic to the polycircle (S')", whereas in the non-Archimedean case,
it is a compact analytic group, see [BPS14l §4.2] for a description. Moreover, there is

a map val,: T2" — Ng defined, in a given splitting, as
valy (21, ..., 2,) = (= log|z1]v, ..., —log|zp|y)-

This map does not depend on the choice of the splitting, and the compact torus S,
coincides with its fiber over the point 0 € Ng.

Let X be a projective toric variety with torus T given by a regular complete fan X
on Ng, and D a toric Cartier divisor on X given by a virtual support function ¥p on 3.
Recall that X contains T as a dense open subset. Let || - ||, be a toric v-adic metric
on D, that is, a metric on the analytic line bundle O(D)3" that is invariant under
the action of S,. The associated v-adic metric function is the continuous function
¢||Hv :Ng — R given by

(5.1) &), () = log [[sp(p)v,

for any p € Ta" with val,(p) = u and where sp is the distinguished rational section
of O(D). This function satisfies that [¢).|, — ¥p| is bounded on Nr and moreover,
this difference extends to a continuous function on Ny, the compactification of Ng
induced by the fan 3. Indeed, the assignment

(5.2) I llo — ¥y,

is a one-to-one correspondence between the set of toric v-adic metrics on D and the
set of such continuous functions on Ny [BPS14, Proposition 4.3.10]. In particular, the
toric v-adic metric on D associated to the virtual support function Wp is called the
canonical v-adic toric metric of D and is denoted by || - [|y.can-

Furthermore, when || - ||, is semipositive, 1|, is a concave function and it verifies
that |4y, — ¥p| is bounded on Ng, and the assignment in (5.2)) gives a one-to-one
correspondence between the set of semipositive toric v-adic metrics on D and the set
of such concave functions on Ng.
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When || - ||, is semipositive, we also consider a continuous concave function on the
polytope 9|, : Ap — R defined as the Legendre-Fenchel dual of ¢, that is
Iy, () = inf (x,u) — Py (w).
I (@) = inf (@, u) =), (u)
The assignment || - ||, — 9|, is a one-to-one correspondence between the set of

semipositive toric v-adic metrics on D and that of continuous concave functions on Ap.
Under this assignment, the canonical v-adic toric metric of D corresponds to the zero
function on Ap.

Definition 5.1. An (adelic) toric metric on D is a collection of toric v-adic metrics
(Il llv)vem, such that || - ||, = || - ||v,can for all but a finite number of v € 9. We denote
by D = (D, (|| - [[v)vem) the corresponding (adelic) toric metrized divisor on X.

Example 5.2. The collection (|| - ||y,can)vemm of v-adic toric metrics on D is adelic
in the sense of Definition We denote by D" the corresponding canonical toric
metrized divisor on X.

Let D be a toric metrized divisor on X. For each v € 9, we set

Voo =V, and 5, =),
for the associated v-adic metric function and v-adic roof function, respectively.

Proposition 5.3. Let D = (D, (||-[lv)vem) be toric divisor together with a collection of
toric v-adic metrics. If D is adelic in the sense of Definition then it is also adelic
in the sense of Definition [{.4l Moreover, both definitions coincide in the semipositive
case.

Proof. Let p € X(K) and choose an adelic field extension (IF,91) such that p € X (F).
Then pr is a rational point of Xy and the inclusion

L: pr — Xr

is an equivariant map. Hence the inverse image +* D is an adelic toric metric on pp and
so, for w € N,

log [|pFllw = ¥,.5,,(0),

and this quantity vanishes for all but the finite number of w € 9 such that || - ||, is not
the canonical metric. Since this holds for all p € X (K), we conclude that D is adelic
in the sense of Definition [£.4l

For the second statement, assume that D is semipositive and adelic in the sense
of Definition [£.4 Let x; € M, i = 1,...,s, be the vertices of the lattice polytope
Ap. By [BPS14, Example 2.5.13], for each i there is an n-dimensional cone o; € ¥
corresponding to x; under the Legendre-Fenchel correspondence, ¢ = 1,...,s. Each of
these n-dimensional cones corresponds to a O-dimensional orbit p; of X. Denote by
t;: p; < X the inclusion of this orbit.

Fix 1 <i < s. Modulo a translation, we can assume without loss of generality that
x; = 0. By [BPS14], Proposition 4.8.9], for v € 9N,

Up(2i) = 0,.5,,(0) = —log|lsp(pi) -

Hence 95 ,(x;) = 0 for all but a finite number of v’s.
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On the other hand, let 2y be the distinguished point of X, which coincides with the
neutral element of T, and denote by tg: g < X its inclusion. By [BPS14, Proposi-
tion 4.8.10],

111612); rl9D v( x) = ﬁLaﬁ,v(O) = —log HSD(xO)HU'

Hence maxgen,, 95, (z) = 0 for all but a finite number of v’s.

For every v € M such that ¥, (2;) = 0 for all i and maxzea,, U5, (z) = 0, we have
that 19— = 0 because this local roof function is a concave function on Ap. Hence,
Il o c01nc1des with the v-adic canonical metric of D for all these places. O

Remark 5.4. In the general non-semipositive case, Definitions [5.1] and [.4] do not
coincide. For instance, when X = Pk, a collection of metrics || - HU, v € M, satisfies
Definition [£.4] if and only if its associated metric functions satisfy that

¥5,(0)=0 and lim 5, (u) = ¥p(u) =0

u—+oo

for all but a finite number of places. In the absence of convexity, these conditions do
not imply that ¢, = ¥p for all but a finite number of places.

A classical example of toric metrized divisors are those given by the inverse image
of an equivariant map to a projective space equipped with the canonical metric on
its universal line bundle. Below we describe this example and we refer to [BPS14],
Example 5.1.16] for the technical details.

Let m = (mg,...,m,) € M™! and a = (ag, ..., o) € (K*)™" with r > 0. The
monomial map associated to this data is defined as

(5.3) oma: T —Pg, pr— (aox™ @) arx™ ()

For a toric variety X with torus T corresponding to fan that is compatible with the
polytope A = conv(my, ..., m;) C Mg, this extends to an equivariant map X — Pf,
also denoted by ¢, «.

Example 5.5. With notation as above, let E be the divisor of the hyperplane at
infinity of P, equipped with the canonical metric at all places. Then D = ¢f, E is
the nef toric Cartier divisor on X corresponding to the translated polytope A — my.
We consider the semipositive toric metrized divisor D = @3, F on X.

O(j)
v

:Np — R, u+— min(m-—m u) — log | —
Qpﬁﬂ; R ) 0<j<r < ] 07> g o

For each v € 9, the v-adic metric function of D is given by

The polytope corresponding to D is A —mq and, for each v € M, the v-adic roof
function of D is given by

V5,,(2) = max Z;) A log |aj|, — log |aglo,
j:

the maximum being over the vectors A = (A\g,..., \,) € RSBI with 377 5 Aj = 1 such
that 3% o Aj(m; —mg) = z. In other words, this is the piecewise affine concave
function on A — mg parametrizing the upper envelope of the extended polytope

conv ((mj — my, log ]aj/a0|v)0§j§7~) C Mg x R.
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Definition 5.6. For i = 0,...,n, let g; : A; — R be a concave function on a convex
body A; C Mg. The mized integral of go, ..., gy is defined as
n
Moo, ov9) =D (1077 Y[ gio BB gi, dvolyy,
=0 0<ig<<iy<n ¥ Big T+
where A, + -+ A;; denotes the Minkowski sum of polytopes, and g;, H---Hg;; the
sup-convolution of concave function, which is the function on A;, + -+ + A;; defined
as
Gio B8 9i; ('r) = sup (gi()(xio) +ot Gi; (le»v
where the supremum is taken over z;, € A;, 1 =0,...,j, such that x;, +---+x;;, = z.

The mixed integral is symmetric and additive in each variable with respect to the
sup-convolution. Moreover, for a concave function g: A — R on a convex body A, we
have MIp/(g,...,9) = (n+1)! [, gdvoly, see [PSO8] §8] for details.

The following is a restricted version of a result by Burgos Gil, Philippon and the
second author, giving the global height of a toric variety with respect to a family of
semipositive toric metrized divisors in terms of the mixed integrals of the associated
local roof functions [BPS14, Theorem 5.2.5].

Theorem 5.7. Let D;,i=0,...,n, be semipositive toric metrized divisors on X such
that D1, ..., D, are generated by small sections. Then
(54) hﬁm'“’ﬁn (X) = Z Ty MIM(ﬁﬁO’va s 779571711)'

veEM
Remark 5.8. The result in [BPS14) Theorem 5.2.5] is more general. Given semi-
positive toric metrized divisors D;, ¢ = 0,...,n, and rational sections s; such that
div(sp),...,div(sy) intersect X properly, the corresponding local heights are zero ex-

cept for a finite number of places, and the formula (5.4) holds without any extra
positivity assumption.

6. PROOF OF THEOREM

Let (K, 91) be an adelic field satisfying the product formula. Let f € K[M] be a
Laurent polynomial and A C My its Newton polytope. Let X be a projective toric
variety over K given by a fan on N that is compatible with A, and D the Cartier
divisor on X given by this polytope. To prove Theorem [I.I, we first construct a
toric metric on D such that the associated toric metrized divisor D is semipositive
and generated by small sections, and the global section of O(D) associated to f is
D-small. We obtain this metrized divisor as the inverse image of a metrized divisor on
a projective space.

For r > 0, let P be the r-dimensional projective space over K and E the divisor
of the hyperplane at infinity. We denote by E this Cartier divisor equipped with the
¢-norm at the Archimedean places, and the canonical one at the non-Archimedean

ones. This metric is defined, for p = (po : --- : ps) € Pi(K,) and a global section s
of O(F) corresponding to a linear form ps € K[xo,...,zs], by
‘,Os(p(]a cee 7ps)|v

if v is Archimedean,

Zj |pj"u
‘ﬂs(po, s 7ps)|v
max; |p; v

(6.1) Is()llo =

if v is non-Archimedean,
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The projective space Py has a standard structure of toric variety with torus Gy ,

included via the map (21,...,2,) = (1 : z; : --- : z.). Thus E is a toric metrized
divisor. It is a particular case of the weighted fP-metrized divisors on toric varieties
studied in [BPS15| §5.2].

The following result summarizes the basic properties of this toric metrized divisor
and its combinatorial data.

Proposition 6.1. The toric metrized divisor E on Py is semipositive and generated by
small sections. For v € M, its v-adic metric function is given, for u = (uy, ..., u,) €
R", by

—log(1+ ) e if v is Archimedean,
62)  wp,(u)= ( 2 )

min(0,uy,...,u,)  if v is non-Archimedean.

The polytope corresponding to E is the standard simplez A" of R". For v € I, the
v-adic roof function of E is given, for x = (x1,...,x,) € A", by

- ij log(z;) if v is Archimedean,
19@71](93) = 7=0

0 if v is non-Archimedean,
with zo =1-37"_; x;.

Proof. The distinguished rational section of the line bundle O(E) corresponds to the
linear form zy € Klzo,...,z,]. Hence, for an Archimedean place v and a point z =

(21, .., 2r) € Gk (Ky),
U (valy(2)) = log [ls(2) o = —log (14 I2]).
j=1

which gives the expression in for this case. The non-Archimedean case is done sim-
ilarly. We can easily check that these metric functions are concave. In the Archimedean
case, this can be done by computing its Hessian and verifying that it is nonpositive
and, in the non-Archimedean case, it is immediate from its expression. Hence, E is
semipositive.

Set s; for the global sections corresponding to the linear forms z; € K[zo,...,z,],
j=0,...,7. We have that (;_ | div(s;)| = 0, and so this is a set of generating global
sections. It follows from the definition of the metric in that these global sections
are E-small. Hence, F is generated by small sections.

The fact that the polytope corresponding to F is the standard simplex is classical,
see for instance [Ful93, page 27|. When v is Archimedean, the v-adic roof function
can be computed similarly as the one for the Fubini-Study metric in [BPS14] Exam-
ple 2.4.3]. When v is non-Archimedean, v-adic roof function is zero, because the metric

|| - |l is canonical. ‘
Set » > 0. Take m = (mg,...,m;) € M™ and a = (ag,...,q,) € (K¥)" L,
and consider the polytope A = conv(my,...,m,) C Mr. Let X be a projective toric

variety over K given by a fan on Ng that is compatible with A. Let @y, o: T — Pk
be the monomial map in (5.3) and set

Dy, = div(x ™) + cpfn’aE,
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which coincides with the Cartier divisor on X corresponding to A. For each v € I,
we consider the metric on O(Dy,)5" = O(¢y,, o F)3" defined by

(6.3) I llm.ao = laoly o all - I,

the homothecy by |agl, of the inverse image by ¢m o of the v-adic metric of E. We
then set

(6.4) Dma = (D, (|| + lma0)vem)-
Since ¢m, « is an equivariant map and F is toric, this is a toric metrized divisor on X.

Proposition 6.2. The toric metrized divisor D = Em@ on X is semipositive and

generated by small sections. For v € M, its v-adic metric is given, for p € T(K,), by

T -1
<Z o™ (p)]v> if v is Archimedean,
(6.5) Isp(p)llo = § i=0

-1
max |o;x"™ (p)]v) if v is non-Archimedean.
0<j<r

The v-adic metric function of D is given, for u € N, by
—log <Z s, e~ {miw ) if v is Archimedean,
(66) %,v(u) = j:[)

min (m;,u) — log|a;| if v is non-Archimedean,
0<j<r Y

and the v-adic roof function of D is given, for x € A, by

- ajlo :
Hl)é\lX ZO Ajlog (4> if v is Archimedean,
‘7:

Aj
67 p@={ %
max Z Ajlog |agly if v is non-Archimedean,
7=0
the mazimum being over the vectors A = (X, ..., \y) € Rrg)l with 377 _o Aj =1 such

that ' _o A\jmj = .

Proof. Set D’ = w%jaf for short. This is a toric metrized divisor on X that is semi-
positive and generated by small sections, due to Proposition and the preservation
of these properties under inverse image. Since the v-adic metrics of D are homothecies
of those of D', it follows that D is semipositive too. Moreover, a global section ¢ of
O(D") ~ O(D) is D’-small if and only if the global section g is D-small. It follows
that D is also generated by small sections.

Using and the definition of the monomial map ¢m, o, for v € M, the v-adic

metric of D’ is given, for p € T(K,), by

r -1
<Z ﬁij_mo (p) ) if v is Archimedean,
X (7))
Hle(p)H’U = 7=0 Y _1
.
< max |—Zx™ "0 (p) > if v is non-Archimedean.
0<j<r | "
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Since D = div(x~"™0) 4+ D', their distinguished rational sections are related by sp =
X "0spr. It follows from (6.3) that

lsp @)l = laols ™™ ()] 57 (D) o,

which implies the formulae in . As a consequence, we obtain also the expressions
for the v-adic metric functions of D.

For its roof function, consider first the linear map H: Ng — R"! given, for u € N,
by H(u) = ({(mo,u),...,(my,u)). For each place v, consider the concave function
gv: R™ — R given, for v € R™!, by

T
—log <Z lovjlp e > if v is Archimedean,
g(V) = ]

min v; — log|ajly if v is non-Archimedean.
02j 2, Vi J

Notice that ¢, = H*gy,. The domain of the Legendre-Fenchel dual of g, is the

simplex S given as the convex hull of the vectors in the standard basis of R™*!. This
Legendre-Fenchel dual is given, for A € S, by

Z Ajlog <| )‘\7|U) if v is Archimedean,

; J

gy (A) =477 - r

mfxz(:) Ajlog |ayl, if v is non-Archimedean.
J:

For the Archimedean case, this formula follows from [BPS15| Proposition 5.8|, whereas
in the non-Archimedean case, it is given by Example

By [BPS14] Proposition 2.3.8(3)], the v-adic roof functlon Y5, is the direct image
under the dual map H" of the Legendre-Fenchel dual g, Wthh gives the stated
formulae in (6.7)). O

Definition 6.3. Let f € K[M] be a Laurent polynomial and X be a projective toric
variety over K given by a fan on Ng that is compatible with the Newton polytope N(f).
Write f = Z;ZO a;x™ with m; € M and a; € K*. The toric metrized divisor on X
associated to f is defined as
Df = Dm,ou

the toric metrized divisor in for the data m = (mg,...,m;) € M"™! and a =
(g, ..., a;) € (KX)"*L It does not depend on the ordering of the terms of f. For v €
M, we denote by ¢, and U, the v-adic metric and roof functions of Dy, respectively.

Lemma 6.4. With notation as in Deﬁmtion the global section of O(Dy) associated
to f is Ds-small.

Proof. Set D = Dy for short, and let s = fsp be the global section of O(D) associated
to f. For v € 9 and p € T(K,),

sl = 17 @)l lsp@)]lo = @)ll-

It follows from (6.5]) that ||s|, <1 on T(KU), and so s is D-small. O

The following result corresponds to Theorem [I.T]in the introduction.
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Theorem 6.5. Let fi,..., f, € K[M], and let X be a proper toric variety with torus
Tar and Do a nef toric metrized divisor on X. Let Ag C Mg be the polytope of Dy
and, for v € M, let Yo,: A; — R be the v-adic roof function of Do. Fori=1,...,n,
let A; C Mg be the Newton polytope of f; and, for v € M, let ¥;,: A; — R be the
v-adic roof function on the metric associated to f;. Then

hEO(Z(fb o 7fn)) < Z Ny Ml(ﬁo,lh .. 'aﬁn,v)'

veEM

Proof. Let 3 be the complete fan corresponding to the proper toric variety X. By
taking a refinement, we can assume without loss of generality that X is regular and
compatible with the Newton polytopes A;, i = 1,...,n. Hence X is a projective toric
variety and Dy a nef toric metrized divisor, and there are nef toric Cartier divisors D;,
i =1,...,n, corresponding to these Newton polytopes.

Fori=1,...,n, we denote by D; the toric metrized divisor associated to f; (Defini-
tion . By Proposition each D; is semipositive and generated by small sections
and, by Lemma the global sections s; of O(D;) corresponding to f; are D;-small.
Applying Corollary and Theorem [5.7]

hp, <Hdiv(si)> <hp,  p,(X)= Z ny My (93, -+ 95, ,)-
=1 veEM

Due to Proposition , the inequality Z(f1,..., fn) <[], div(s;) holds. By the
linearity of the global height and the nefness of Dy,

hp (Z(f1,--- fa)) < h <Hd1v si )

which concludes the proof. U

Definition 6.6. Let a = (ap,...,a,) € (K*)" with » > 1. For v € M, the v-adic
(logarithmic) length of a is defined as

ly(a) = {10?;(2;:0 lajlv) if v is Archimedean,

log(maxo<j<y |aj|y) if v is non-Archimedean.

The (logarithmic) length of a is defined as {(a) = Y, cop Nolo ().

For a Laurent polynomial f € K[M], we define its v-adic (logarithmic) length,
denoted by £,(f), as the v-adic length of its vector of coefficients, v € 9. We also
define its (logarithmic) length, denoted by ¢(f), as the length of its vector of coefficients.

Lemma 6.7. Let 9;: A; — R be concave functions on convex bodies, i = 0,...,n.
Then

MI]\/[(ﬁo,..., <Z(;I1€%XI9 )MVM(Ao,...,Aifl,AZ#l,...,An)

Proof. Set ¢; = maxzen, ¥i(x) for short. By the monotonicity of the mixed integral
[PS08|, Proposition 8.1]

MIM(Q%, e ,ﬂn) S MIM(C()’AO, .. .,Cn|An),
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where ¢;|a, denotes the constant function ¢; on the convex body A;. By [PS08| for-
mula (8.3)]

n
MI]V[(CO|A07 e ,Cn‘An) = Zci MVM(A(), .. .,Aifl,AZ#l, e ,An),
=0

giving the stated inequality. (]
Corollary 6.8. With notation as in Theorem

iy (2o £ = (3 e 0,0 ) MV (1, 2
veM 0 n

) )MV (Do, Ai1, Aigs - D).
i=1
In particular, for the canonical metric on Dy (Ezample ,

n
(6.8) e (Z(fryes f)) < Y LS MVar(Do, -y Aim, Ayt An).
i=1
Proof. For 1 <17 < n and v € M, let ¥;, be the v-adic roof function of the toric
semipositive metric associated to f;. Using (6.7), we compute the value of v;,(0) =
~9,(0) to obtain that
(6.9) max ¥; ,(x) = Cy(fi).
TEA;
The first statement follows then from Theorem [6.5 and Lemma 7 The second
statement is a particular case of the first one, using the fact that the v-adic roof
functions of Dy are the zero functions on Ag. g

We readily derive from the previous corollary the following version of the arithmetic
Bézout theorem.

—~can

Corollary 6.9. Let f1,..., fn € K[z1,...,2,] and let D
of P equipped with the canonical metric. Then

be the divisor at infinity

hpeon (Z(f1y- - fa)) <) (Hdeg(fj))g(fi),

i=1  j#i

where deg(f;) denotes the total degree of the polynomial f;.

7. COMPARISONS, EXAMPLES AND APPLICATIONS

In this section, we first compare our main results (Theorem and Corollary
with the previous ones. Next, we compute the bounds given by these results in two
families of examples, and compare them with the actual height of the O-cycles. The
first family of examples illustrates a case in which these bounds do approach the height
of the 0-cycle, while the second one shows a situation where the bound of Theorem
is sharp and that of Corollary is not. Finally, we present an application bounding
the height of the resultant of a O-cycle defined by a system of Laurent polynomials.

The first arithmetic analogue of the BKK theorem was proposed by Maillot [Mai00),
Corollaire 8.2.3]. With notations as in Theorem [6.5 suppose that fi,..., f, € Z[M]
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and that Dy is the nef toric divisor corresponding to the polytope Ag = Y 1 ;| A;.
Then Maillot’s result amounts to the upper bound

(71) hﬁgan(Z(f17...7 <Z fz +L ))MVM<A07...,Al‘_l,AH_l,...,An),

where m(f;) denotes the logarithmic Mahler measure of f;, and L(4A;) a constant
associated to the polytope A;.

This result is similar to Corollary [6.8|specialized to a system of Laurent polynomials
with integer coefficients, and the toric divisor Dy associated to the polytope given
by the Minkowski sum > ; A;, equipped with the canonical metric. The factors
m(f;) + L(A;) in and £(f;) in are comparable, albeit the fact that the
constant L(A;) is not effective, see [Som05, Remark 4.2| for a discussion on this point.

Another previous result in this direction was obtained by the second author [Som05,
Théoréeme 0.3]. Using again the notation in Theorem , suppose that fi,..., fn €
Z[M] and that the polytope A associated to the nef toric divisor Dy contains A,
t=1,...,n. Then

hpeen (Z(f1, -5 fa)) < nlvolar(Ao) > Ut

=1

This result is equivalent to the specialization of the upper bound in to a system
of Laurent polynomials with integer coefficients and Newton polytopes contained in
the polytope Ag.

We next turn to the computation of the bounds given by Theorem and Corol-
lary [6.8] in two families of examples.

We keep the notation of We need the the following auxiliary computation of
mixed volumes. For its proof, we recall that the mixed volume of a family of polytopes

A; CR™ ¢ =1,...,n, can be decomposed in terms of mixed volumes of their lower
dimensional faces as
(7.2) MV, (Ay,...,A = A (W) MV, 1 (AY, .. AY),

uesSn—1

where S™~1 is the unit sphere of R”, WA, is the support function of A; as in , AY
is the unique face of A; that minimizes the functional u on this polytope, and MV,
and MV,,_; denote the mixed volume functions associated to the Lebesgue measure of
R” and u ~ R"! respectively. In fact, the sum ranges through the normal vectors
of the facets of each polytope. We refer to [Sch93| formula (5.1.22)] for more details.

Lemma 7.1. Let A C Mg be a lattice polytope, and m; € M, i = 2,...,n, linearly
independent lattice points. Denote by 0m; the segment between 0 and m;, and u € N
the smallest lattice point orthogonal to all the m;’s, which is unique up to a sign. Let
P =3%""Zm; C M be the sublattice generated by the m;’s, and P%* its saturation.
Then

MV (A, 0ma,...,0m,) = [P P]volz(A,u),
where (A, u) is the image of A under the functional u: Mg — R.

Proof. Choosing a basis, we identify M = Z"™. With this identification, MV ; = MVn,
the mixed volume assoc1ated to the Lebesgue measure of R™. The formula in
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applied to the polytopes A, 0msy,...,0m, implies that

MV, (A, 0ma, ..., 0my) = — <\IIA<HUTH) n szA( - ﬁ)) MV,_1(0ms, ..., 0my)

(7.3) - (WA (u) + Ua(—u) MVt (0mg, . . ., 0mn),

b

i
where ||u|| is the Euclidean norm. We have that

(7.4) Ua(u) +Va(—u) = mig(:n, u) + mig(m, —u) = —volz (A, u)
TE €

By the Brill-Gordan duality theorem [HB84) Lemma 1|, we have the equality |lu| =
vol,,_1(Pr/P*"), where vol,,_; denotes the Lebesgue measure of u'. Hence

1
(7.5) Tall MV,,_1(0ma,...,0my,) = MV psat (0ma, ..., 0m,) = [P : P].

The result follows then from (7.3), (7.4) and (7.5). O

Example 7.2. Let d,a > 1 be integers and consider the system of Laurent polynomials
given by
fi=x1—a, fo=zp—azl, ..., fo=x,—azl ; €QF',... 2]

Its zero set in Tzn = G&Q consists of the rational point

nm—1 m—2_ ...
p:(a,adJrl,...,Ozd +d" T+ +1) ETZ"(Q):(QX)H-
Let X be a proper toric variety over Q, and Egan a nef toric Cartier divisor on X
equipped with the canonical metric. Let Ay C R™ be the polytope corresponding
to Do and, for i = 1,...,n, set
u; =e; +dejp1 + -+ d"le, € ",

where the e;’s are the vectors in the standard basis of Z". The height of p with respect
to Eff‘“ is

(7.6) hipeen (p) = (VOlZ <A0, zn: u>> log(c).

=1
To prove this, let v € Mg. By (5.1), the local height of p with respect to the pair
(Do, sp,) is given by
hpean (P, D) = — 108 [0 (P) [[o,can = —Ta, (valu(p)).
Set u =" | u; for short. Since val,(p) = —log |a|y u,

log|al, max (m,u) ifv=o00,

—\IIA Val — meAgNZ"
o (valu(p)) log|al, min (m,u) if v # co.
meAgNZ"

By adding these contributions,

g 1) = lon() gy o) = i (o)),

which gives the formula in (7.6]).
Next we compare the value of the height of p with the bounds given by Corollary 6.8
We have £(f;) = log(a + 1) for all i. Consider the dual basis of the wu;’s, given by

mi =e|, My =ey —deq,...,My = e, —de,_1 € Z".
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For ¢ = 1,...,n, the Newton polytope A; of f; is a translate of the segment 0m,;,
and w; is the smallest lattice point in the line (3, Rm;)t. Moreover the sublattice

> j+i Lm; is saturated. By Lemma
MVZn(AO, ey Ai—h Ai+17 ey An) = V012<A0, ’LLZ>
Therefore, the bound given by Corollary [6.8] is

h*cm (Z VO]Z AQ, ul>> 10g(0¢ + 1)

Example in the introduction consists of the particular cases corresponding to the
polytopes Ag = A", the standard simplex of R, and Ay = conv(0,m1,...,my).

In the following example, we exhibit a situation where the difference between the
bounds given by the results in §6|is noticeable. Recall that passing from Theorem
to Corollary amounts to replacing the local roof functions by constant functions
on the polytope bounding them from above. Hence, to maximize the discrepancy
between these two concave functions, we look for local roof functions that are tent-
shaped, which is the situation where the difference between the mean value and the
maximum value of these functions is the greatest possible.

Example 7.3. Let o > 1 be an integer and consider the system of Laurent polynomials

+1 ,
fi=xi—aeQil,... 2, i=1,...,n,

Its zero set in GJ ¢ is the rational point p = (a,...,a) € (Q*)". Let X = Pg and let

Ca,Il

be the divisor of the hyperplane at mﬁmty equipped with the canonlcal metric.
Then the height of p with respect to E*

hgean (p) = log(a).

Next we compare the value of this height with the bound given by Theorem [6.5]
Since the explicit computation of the mixed integrals appearing in this bound is some-
what involved, instead of giving its exact value we are going to approximate them with
an upper bound that is easier to compute.

The polytope associated to the toric Cartier divisor F is Ay = A™, the standard
simplex of R™. For each v € Mg, the v-adic roof function Yo, of E“" is the zero
function on this simplex.

For each i = 1,...,n, let A; = N(f;) C R™ be the Newton polytope of f;, which
coincides with the segment Oe;. For v € Mq, let 9J;, be the v-adic roof function
associated to f; (Definition . This function is given, for te; € A; = 0e;, by

9 (1o — 4 (L=Dlog(a) —tlogt — (1 —t)log(1 —1) if v =oa,
zoo( )_ (1—t)10g|oz!v ifU;ﬁoo.

For the Archimedean place, the v-adic roof functions are nonnegative, and so their
mixed integral can be expressed as a mixed volume

(7.7) MIzn (90,00, - - - Tnoe) = MVzni1(Ag, ..., Ay),

with A; = conv (graph(¥;00), A x {0}) C R™ x R. Consider the concave function
¥ : A" — R defined by

n

x = (x1,...,2,) — log(2) + log(a) (1 — Zﬂcz),

=1



32 MARTINEZ AND SOMBRA

and set A = conv (graph(9), A" x {0}) C R™ x R. Notice that ¥;.c < ¥ on A;, and
so A; C ﬁ, 1=0,...,n. By the monotony of the mixed volume,

(7.8) Mvzn+1(£0,...,£n)gMVZnH(&...,&):(nH)!/ 9 de

=(n+ 1)!(log(2) vol(A"™) + log(a) /An Z x; dx) = (n+ 1) log(2) + log(a).
i=1

When v is non-Archimedean, we have that |a|, < 1 because « is an integer. Hence
Yi» < 0, and so the mixed integral of these concave functions is nonpositive. Theo-

rem together with ([7.7) and (7.8) gives the upper bound
hean (p) < (n + 1)log(2) + log(a).
To conclude the example, we compute the bound given by Corollary [6.8] For i =

1,...,n, we have that £(f;) =log(a+ 1) and MVzn (Ao, ..., Aj—1,Aiy1,...,A,) = 1.
Hence, this bound reduces to

hgean(p) < nlog(a +1),
concluding the study of this example.

As an application of our results, we bound the size of the coefficients of the u-
resultant of the direct image under an equivariant map of the O-cycle defined by a
family of Laurent polynomials. As in the previous sections, let (K,9%) be an adelic
field satisfying the product formula, K an algebraic closure of K, and M ~ Z" a lattice.

Definition 7.4. Let W € Zy(Pg) be a 0-cycle of a projective space over K and
u = (up,...,u;) aset of r + 1 variables. Write Wi = >_ 1iqq € ZO(P%) for the

0-cycle obtained from W by the base change K < K. The u-resultant (or Chow form)
of W is defined as

Res(W) = H(QOUO + - gup )t € K(U)X7
q

the product being over the points ¢ = (g0 : - : ¢,) € Pi(K) in the support of Wg. Tt
is well-defined up to a factor in K*.

The length of a Laurent polynomial (Definition is invariant under adelic field
extensions and multiplication by scalars. It is also submultiplicative, in the sense that
it satisfies the inequality

((fg) < U(f)+L(g),
for f,g € K[M]. The following result corresponds to Theorem in the introduction.

Theorem 7.5. Let fi,..., [, € K[M], mg € M"™" and g € (K*)™ with » > 0.
Set Ag = conv(moyp,...,mor) C Mr and let p : Tyr — P be the monomial map
associated to my and og as in . Fori=1,...,n, let A; C Mg be the Newton
polytope of f;, and o the vector of nonzero coefficients of f;. Then

((Res(paZ(frr -y fu))) D MVar(Ag, .o Ai1, Aig,y o, Ap) ).
1=0
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Proof. Write Z(f1,..., fu)g = Zp iy, the sum being over the points p € Ty (K).
Since the length is invariant under adelic field extensions and submultiplicative, we
deduce that

(7.9)  L(Res(psZ(f1,---,[fn))) < Z Lo L(0,0X0 (p) uo + - - - + o, X0 (p) ur).
P
Let X be a proper toric variety over K defined by a fan that is compatible with A;,
1 =20,...,n, and let Dy be the toric metrized divisor on X associated to mgy and oy

as in (6.4). Given a point p € Ty;(K), we deduce from (6.5) that
(7.10) (00X (p) uo + - - + g X" (p) ur) = h; (D).

By Proposition [6.2] the toric metrized divisor is semipositive and generated by
small sections. In particular, it is nef. Similarly as in , we also get from Proposi-
tion that the v-adic roof functions of Dy satisfy > vem Mo max o, = £(a). Hence,
Corollary [6.8] implies that

(7.11) > by, (p) <Y Ua) MV(Ag,. . Ajr, Mg, Ay).
p i=0
The statement follows then from (7.9)), (7.10) and (7.11)). O
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