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Abstract.
A major key to success for case-based reasoning systems widely recognized are

the definition of suitable case base maintenance policies. The aim of this paper is
two fold: (1) to analyse global versus local case base maintenance policies and (2) to
develop a unified technique between local and global policies. All the case base main-
tenance techniques studied in this paper share a common foundation: the Rough Sets
theory and its measures of coverage integrated in a Rough Sets competence model.
The main purpose of all Rough Sets case base maintenance techniques is to maintain
the competence and reduce, as much as possible, its size. Several experiments, using
different domains from the UCI and from our repositories, denote that the relation be-
tween local and global are quite similar and the unified approach can lead to successful
systems in some domains while maintains the competence in other domains.

1 Introduction

Case-Based Reasoning (CBR) is the process of reasoning and learning by storing prior cases
−records of specific prior reasoning episodes− and retrieving and adapting them to aid new
problem solving or interpretation in similar situations ([3],[9]). A major key to success of
large-scale and long-term case base reasoning application systems widely recognised are the
definition of suitable maintenance techniques.

The aim of this paper is two fold: (1) to analyse the behaviour of global and local mainte-
nance techniques, and (2) to present a unified approach between global and local techniques.
All the case base maintenance techniques presented and proposed in this paper are based on
our Rough Sets competence model [12]. The main issue of all the case base maintenance tech-
niques is to reduce the case memory, as much as possible, while maintaining and improving
-if possible- the competence of the system. The analysis of our global and local approaches
promotes the development of a mixed approach between them. Our motivation on the mixed
approach was mainly produced by the possibility to obtain a more reduced case memory, but
without losing our main proposal, to reduce the case base while maintaining −at least− its
competence.

Rough Sets case base maintenance approaches have been introduced into our Case-Based
Classifier System called BASTIAN [14]. This paper continues the initial Rough Sets ap-
proaches presented in our previous work [11, 12]. The global reduction technique analysed is
named Negative Accuracy-Classification Case Memory (NACCM). The local approach stud-
ied and improved is named Sort Out Internal Case Memory (SortOutInternalCM).



The paper is organised as follows. Section 2 introduces some relevant related work. Next,
section 3 describes the foundations of the Rough Sets Theory used in our reduction tech-
niques. Then, section 4 details the Rough Sets case base maintenance techniques based on
the Rough Sets competence model. Section 5 describes the test suite of the experiments and
the results obtained. Finally, section 6 presents some conclusions and further work.

2 Related Work

Many researchers have addressed the problem of case memory reduction [19, 18] and differ-
ent approaches have been proposed. One kind of approaches are related to Instance Based
Learning algorithms (IBL) [1].

Another kind of approaches have focused researchers on increasing the overall compe-
tence, the range of target problems that can be successfully solved [15], of the case memory
through case deletion. Strategies have been developed for controlling case memory growth.
Several methods such as competence-preserving deletion [15] and failure-driven deletion [7],
as well as for generating compact case memories through competence-based case addition
[16, 21, 17]. Leake and Wilson [4] examine the benefits of using fine-grained performance
metrics to directly guide case addition or deletion. These methods are specially important for
task domains with non-uniform problem distributions. The maintenance integrated with the
overall case-based reasoning process was presented in [8]. Finally, a case-base maintenance
method that avoids building sophisticated structures around a case-base or complex opera-
tions is presented by Yang and Wu [20]. Their method partitions cases into clusters that can
be converted to new smaller case-bases.

3 Rough Sets Theory

Zdzislaw Pawlak introduced Rough Sets theory in 1982 [6]. We use Rough Sets theory for
extracting the dependencies of knowledge. These dependencies are the basis for computing
the relevance of features and instances into the Case-Based Classifier System.

3.1 Introduction to Rough Sets Theory

We have a Universe (U ) (finite not null set of cases that describes our problem, i.e. the
case memory). We compute from our universe the concepts (cases) that form partitions. The
union of all the concepts make the entire Universe. Using all the concepts we can describe
all the equivalence relations (R) over the universe U . Let an equivalence relation be a set
of features that describe a specific concept. U/R is the family of all equivalence classes of
R. The universe and the relations form the knowledge base (K), defined as K =< U, R̂ >,
where R̂ is the family of equivalence relations over U . Every relation over the universe is
an elementary concept in K. All the concepts are formed by a set of equivalence relations
that describe them. Thus, the goal is to search for the minimal set of R that defines the same
concept as the initial set.

Definition (Indiscernibility Relations) IND(P̂ ) =
⋂

R̂ where P̂ ⊆ R̂. The indiscerni-
bility relation is an equivalence relation over U . Hence, it partitions the concepts (cases) into
equivalence classes. These sets of classes are sets of instances indiscernible with respect to



the features in P . Such a partition is denoted as U/IND(P ). In supervised machine learning
the sets of cases indiscernible, with respect to the class attribute, contain the cases of each
class.

Approximations of Set. The idea of Rough Sets relies on the approximation of a set by a
pair of sets. These sets are known as the lower and the upper approximation. These approxi-
mations are generated by the available data about the elements of the set.

Let K =< U, R̂ > be a knowledge base. For any subset of cases X ⊆ U and an equiva-
lence relation R ∈ R̂, R ⊆ IND(K) we associate two subsets called: Lower RX; and Upper
RX approximations. If RX=RX then X is an exact set (definable using subset R), otherwise
X is a rough set with respect to R.

Definition (Lower approximation) The lower approximation, defined as: RX =
⋃{Y ∈

U/R : Y ⊆ X} is the set of all elements of U which can certainly be classified as elements
of X in knowledge R.

Definition (Upper approximation) The upper approximation, RX =
⋃{Y ∈ U/R :

X
⋂

Y 6= ∅} is the set of elements of U which can possibly be classified as elements of X ,
employing knowledge R.

Reduct and Core of knowledge This part is related to the concept of reduction of the
feature search space that defines the initial knowledge base. Next, this reduced space is used
to extract the relevance of each case. Intuitively, a reduct of knowledge is its essential part
which suffices to define all concepts occurring in the knowledge, whereas the core is the most
important part.

Let R̂ be a family of equivalence relations and R ∈ R̂. We will say that:

• R is indispensable if IND(R̂) 6= IND(R̂−{R}); otherwise it is dispensable. IND(R̂−
{R}) is the family of equivalence R̂ extracting R.

• The family R̂ is independent if each R ∈ R̂ is indispensable in R; otherwise it is depen-
dent.

Definition (Reduct) Q̂ ∈ R̂ is a reduct of R̂ if : Q̂ is independent and IND(Q̂) =
IND(R̂). Obviously, R̂ may have many reducts. Using Q̂ it is possible to approximate the
same concept as using R̂. Each reduct has the property that a feature can not be removed from
it without changing the indiscernibility relation.

Definition (Core) The set of all indispensable relations in R̂ will be called the core of R̂,
and will be denoted as: CORE(R̂) =

⋂
RED(R̂). Where RED(R̂) is the family of all

reducts of R̂. It is the most characteristic part of knowledge and can not be eliminated.

3.2 Measures of relevance based on Rough Sets

AccurCoef and ClassCoef measures use the information of reducts and the core to compute
the relevance of each case.



Definition (AccurCoef) This measure computes the Accuracy coefficient (AccurCoef) of
each case t in the knowledge base (case memory T ) as:

For each instance t ∈ T it computes :

AccurCoef(t) =
card ( P (t))

card ( P (t))

(1)

Where AccurCoef(t) is the relevance of the instance t; T is the training set; card is the
cardinality of one set; P is the set that contains the reducts and core obtained from the original
data; and finally P (t) and P (t) are the presence of t in the lower and upper approximations,
respectively.

The accuracy measure expresses the degree of completeness of our knowledge about the
set P . The accuracy coefficient explains if an instance is on an internal region or on a border
line region, thus AccurCoef(t) is a binary value. When the value is 0 it means an internal
case, and a value of 1 means an outlier case. Inexactness of a set of cases is due to the exis-
tence of a borderline region. The greater a borderline region of a set, the lower the accuracy
of the set. The accuracy expresses the percentage of possible correct decisions made when
classifying cases employing knowledge P .

Definition (ClassCoef) In this measure we use the quality of classification coefficient (ClassCoef).
It is computed as:

For each instance t ∈ T it computes :

µ(t) =
card ( P (t)) ∪ card ( P (−t))

card ( all instances)

(2)

Where ClassCoef(t) is the relevance of the instance t; T is the training set; card is
the cardinality of a set; P is a set that contains the reducts and core; and finally P (t) is the
presence of t in the lower approximation.

The ClassCoef coefficient expresses the percentage of cases which can be correctly
classified employing the knowledge t. This coefficient has a range of values between 0 to
1, where 0 and 1 mean that the instance classifies incorrectly and correctly, respectively, the
range of cases that belong to its class. The higher the quality, the nearer to the outlier region.

4 Global, Local and Mixed approaches for CBM

This section presents the competence model and the local and global case base maintenance
techniques analyzed. Finally, it introduces the mixed approach between local and global tech-
niques. All these reduction techniques are based on the Rough Sets measures described along
this section, but their basis are described in section 3.2.

4.1 Rough Sets Competence Model

First of all, we present the key concepts in categorising the cases in the sort out case memory
model (see figure 1). The coverage and reachability concepts are modified, for our coverage
coefficients and to our problem task, with regard to B. Smyth and M. Keane [15]. However,
we maintain as far as possible the essence of the original ones. The coverage is computed
using the Rough Sets coefficients. On the other hand, the reachability in this case is adapted
to classification tasks.



Definition (Coverage) Let T = {t1, t2, ..., tn} be a training set of instances, ∀ ti ∈ T :
Coverage(ti)= AccurCoef(ti) ⊕ ClassCoef(ti)

The⊕ operation is the logical sum of both values. The coverage of a case is the accuracy
and quality when it is used to solve a target problem.

Definition (Reachability) Let T = {t1, t2, ..., tn} be a training set of instances, ∀ ti ∈ T :

Reachability(ti) =

{
class (ti) if it is a classification task

adaptable(ti, T ) if it is not a classification task
(3)

The original definition is maintained and extended to classification tasks. The reachability
of a target problem is the set of cases that can be used to provide its solution.

Definition (Coverage group]) Let T = {t1, t2, ..., tn} be a training set of instances and let
S be a subset of instances where S ∈ T . For all instances i and j in S:
CoverageGroup(S) = Coverage(i) = Coverage(j)

A coverage group (see figure 1) is a set of cases from the case memory where all the cases
have the same coverage without taking into account the class of each case. The coverage
group shows space regions of our knowledge. The bigger a coverage group, the higher outlier
the set of cases. The lower the coverage group, the higher an internal set of cases.

REACHABILITY
GROUP  1

REACHABILITY
GROUP  2

REACHABILITY
GROUP  3

REACHABILITY
GROUP  4

COVERAGE
GROUPS

Sort Out Model

CASE MEMORY���������������� �������������������������������� ���� ���� �������� �� ��� ���� �� ���� ������� ��� �������� ��� ������
Figure 1: Sort Out Case Memory

Definition (Reachability group) Let T = {t1, t2, ..., tn} be a training set of instances and
let S be a subset of instances where S ∈ T . For all instances i and j in S:
ReachabilityGroup(S) = Reachability(i) = Reachability(j)

A reachability group (see figure 1) is the set of instances that can be used to provide
a solution for the target. The reachability group produce the sort out of the case memory.
However, a reachability group can contain different coverage groups. Every coverage group
shows the levels of information (border line regions) in the reachability group.



Definition (Master case) Let S = {s1, s2, ..., sn} and T = {t1, t2, ..., tn} be two sets of
instances, where S ∈ T . For each CoverageGroup(s) ∈ ReachabilityGroup(S) we have a:
MasterCase(t) = A selected case t from ReachabilityGroup(S) ∧ CoverageGroup(s)

Each coverage group contains a master case. Thus each reachability group contains as
many master cases as coverage groups. The master cases will depend on the selection policies
we use in our reduction techniques. These will be explained in the following sections.

4.2 Global approach named Negative Accuracy-Classification Case Memory

The global approach treats all the cases that belong to the case memory at the same time, inde-
pendently from the knowledge included in each case. The Negative Accuracy-Classification
Case Memory (NACCM) is an algorithm that combines AccurCoef and ClassCoef mea-
sures to decide which cases have to be maintained in the case memory. The main idea of
this reduction technique is to take benefit from the advantages obtained when applied both
measures separately. There is also another possibility to combine both measures, it is an al-
gorithm called Accuracy-Classification Case Memory (ACCM). We decided to use NACCM
algorithm because it uses in its foundations the same concepts of ACCM algorithm and it
also obtains a higher reduction of the case memory. In a graphical manner, the process is
represented in figure 2, where it can be seen that the NACCM algorithm is based on ACCM,
doing the complementary process. An extended explanation of it can be found in [13].

NACCM
1. SelectCasesNACCM (CaseMemory T )

2. confidenceLevel = 1.0 and freeLevel = ConstantTuned (set at 0.01)

3. select all instances t ∈ T as SelectCase(t) if t accomplish:

coverage(t) ≥ confidenceLevel

4. while not ∃ at least a t in SelectCase for each class c that reachability(t) = c

5. confidenceLevel = confidenceLevel - freeLevel

6. select all instances t ∈ T as SelectCase(t) if t accomplish:

coverage(t) ≥ confidenceLevel

7. end while

8. Maintain in CaseMemory the set of cases selected as SelectCase, those cases not selected are deleted from CaseMemory

9. return CaseMemory T

The motivation for NACCM algorithm is to select a wider range of cases than ACCM
algorithm. The main process in ACCM is to select all the cases that are near to the outliers
to delete them and maintain those cases that are completely internal and have not any case
whose competence are contained. In NACCM the process is to select cases to be maintained
in the case memory until all the classes contain almost one case.

The NACCM algorithm is divided in two steps:
Step 1 converts coverage measure of each case to its negation measure in order to let us to
modify the selection process from internal to outliers points.
Step 2 uses the algorithm 4.2 that describes the SelectCases in NACCM process.
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ACCMoutliers internals

range of cases selected to delete
0.0 1.0

NACCMoutliers internals

Negation of values

range of cases selected to maintain

Figure 2: Description of ACCM and NACCM process.

SortOutInternalCM
SortOutInternalCM (CaseMemory T )

1. Sort out each instance t ∈ T in its corresponding ReachabilityGroup(S)

2. Order decremented each ReachabilityGroup(S) by CoverageGroup(s) ∈ ReachabilityGroup(S)

3. for each ReachabilityGroup(S)

4. for each CoverageGroup(s) ∈ ReachabilityGroup(S)

5. Select the first instance as a MasterCase(t)

6. if Coverage(t) 6= 1.0, Delete the rest of instances from T in the CoverageGroup(s)

7. elseif Coverage(t) = 1.0

Select the rest of instances as a MasterCase(t) to maintain in T

8. endif

9. end for

10. end for

11. return CaseMemory T

Thus, the selection of cases starts from internal cases to outliers ones. The aim is to main-
tain the minimal set of cases in the case memory. The behaviour of this reduction technique
will be very similar to ACCM, but NACCM allows less cases to be maintained in the case
memory. Figure 3 shows the behaviour of this technique using the example case memory
shown in figure 1. The experimental analysis of this global case base maintenance method
can be seen in section 5.2.

4.3 Local approach named Sort Out Internal Case Memory

The local approach uses the information of the knowledge to sort out the case memory. The
information of the case memory allows the algorithm to separate between different groups
of information, called ReachabilityGroups. After each ReachabilityGroup is formed, dif-
ferent CoverageGroups are builded using the information of the coverage measure. There
exists different case base maintenance approaches to use in the SortOut categorisation model
[12]. We have decided to use the Sort Out Internal Case Memory algorithm to test its behav-
iour in front of the global approach because it follows a similar approximation to the global
approach in its foundations but it changes the way of extract the most important part of the
knowledge, without modifying the instances as done in the building sort out techniques.

The behaviour of algorithm in the Sort Out Case Memory categorisation can be seen in



figure 3. The algorithm 4.3 modifies only the internal CoverageGroups and maintains all
the cases present in an outlier CoverageGroup. The outlier cases are isolated cases that no
other case but itself can solve. Thus, it is important to maintain them because a MasterCase
can not be a good representative of the CoverageGroup. In this case, each case in a outlier
CoverageGroup is an isolated space region of each class. It could be possible to find an
outlier coverage group whose MasterCase could be a good representative MasterCase,
but this part involves further work.

Thus, the algorithm 4.3 selects from each internal CoverageGroups a representative
case, denoted as MasterCase to be maintained in the case memory. Also, it selects as
MasterCases all the cases that are in an outlier CoverageGroup. Those cases not selected
are removed from the case memory. The behaviour of this technique are shown in figure 3.
The experimental analysis of the algorithm is described in section 5.2.

4.4 Mixed approach between SOI and NACCM

The reader will notice in figure 3 that algorithm 4.3 SOI selects -at least- one case for each
CoverageGroup. On the other hand, the global approach -algorithm 4.2 NACCM- selects
cases that are internal and the outlier ones. Thus, deleting all the cases that belong to some
CoverageGroups and maintaining all the cases of the remaining CoverageGroups. In both
approaches, we prefer to maintain or even improve the competence, selecting a fewer number
of cases to be deleted from the case memory. Thus, the reduction of the case memory is not
great enough.

After an analysis of the global and local techniques, detailed in section 5.2, the idea of
a great reduction promotes a unified approach between the previous techniques. At the same
time, our motivation is to analyse the behaviour of such a combined technique. The aim is
twofold: first, to reduce the case base; second to improve utility of our case memory maintain-
ing its diversity. Thus, an extension of the previous algorithm to include the global behaviour
is algorithm 4.4 SOI-NACCM.

The motivation of our mixed approach is founded in the analysis of the previous tech-
niques. Let see their behaviour in figure 3 using the example case memory of figure 1. As
it can be seen, the NACCM algorithm, figure 3(a), selects a subset of the training instances
to be maintained and a subset to be removed using the confidenceLevel computed but the
cases that belong to each subsets have, all of them, the same coverage measure. Thus, the
system maintains a group of coverageGroups while removing the remaining ones. Looking
carefully the behaviour of SOI algorithm, detailed in figure 3(b), it organise the case memory
in ReachabilityGroups and CoverageGroups. Once the sort out of the case memory is per-
formed it selects one case as a MasterCase for each CoverageGroup, except for the outlier
cases, while deleting the remaining ones. Thus, the system maintain at least one case for each
CoverageGroup. However, a question can arise when looking the way of doing the process
in both algorithms: it is necessary to maintain at least one case of each CoverageGroup in
the sort out model when the global approach does not maintain some of them?

The question suggests us to analyse the unified approach in order to improve the sort out
internal case memory. If we apply the global approach in the Sort out model, the resulting case
memory will be reduced. The unified approach behaviour can be seen in figure 3(c), where
some of the previous CoverageGroups have not a MasterCase selected to be maintained.
Also, the algorithm maintains the previous policy to do not remove outlier cases because it is



SortOutInternalCM
SortOutInternalCM (CaseMemory T )

1. Sort out each instance t ∈ T in its corresponding ReachabilityGroup(S)

2. confidenceLevel = 1.0 and freeLevel = ConstantTuned (set at 0.01)

3. while not ∃ at least a t in SelectCase for each class c that reachability(t) = c

4. select all instances t ∈ T as SelectCase(t) if accomplish:

5. confidenceLevel = confidenceLevel - freeLevel

6. end while

7. Order decremented each ReachabilityGroup(S) by CoverageGroup(s) ∈ ReachabilityGroup(S)

8. for each ReachabilityGroup(S)

9. for each CoverageGroup(s) ∈ ReachabilityGroup(S)

10. Select the first instance as a MasterCase(t)

11. if Coverage(t) 6= 1.0, Delete the rest of instances from T in the CoverageGroup(s)

12. elseif Coverage(t) = 1.0

Select the rest of instances as a MasterCase(t) to maintain in T

13. endif

14. end for

15. end for

16. return CaseMemory T
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Figure 3: Behaviour of the Global, Local and Mixed CBM techniques.

known that they contribute greatly to the competence of a system.

5 Experimental analysis

This section is structured as follows: first, we describe the test suite used in the experimental
analysis; then we discuss the results obtained from the ACCM method, the Sort Out Internal
method and the unification of the global approach in the local case base maintenance method.

5.1 Test suite

In order to evaluate the performance rate, we use ten datasets. Datasets can be grouped in
two ways: public and private (details in table 1). Public datasets are obtained from the UCI
repository [5]. They are: Breast Cancer Wisconsin (Breast-w), Glass, Ionosphere, Iris, Sonar
and Vehicle. Private datasets [2] come from our own repository. They deal with diagnosis
of breast cancer (Biopsy and Mammogram) and synthetic datasets (MX11 is the eleven input
multiplexer and TAO-grid is obtained from sampling the TAO figure using a grid). These
datasets were chosen in order to provide a wide variety of application areas, sizes, combina-
tions of feature types, and difficulty as measured by the accuracy achieved on them by current
algorithms. The choice was also made with the goal of having enough data points to extract
conclusions.

Table 1: Datasets and their characteristics used in the empirical study.
Dataset Ref. Samples Numeric feat. Symbolic feat. Classes Inconsistent

1 Biopsy BI 1027 24 - 2 Yes
2 Breast-Wisconsin BC 699 9 - 2 Yes
3 Glass GL 214 9 - 6 No
4 Ionosphere IO 351 34 - 2 No
5 Iris IR 150 4 - 3 No
6 Mammogram MA 216 23 - 2 Yes
7 MX11 MX 2048 - 11 2 No
8 Sonar SO 208 60 - 2 No
9 TAO-Grid TG 1888 2 - 2 No
10 Vehicle VE 846 18 - 4 No



The study described in this paper was carried out in the context of BASTIAN, a case-
BAsed SysTem In clAssificatioN. BASTIAN has been developed in JAVA, for details see
[10]. All techniques were run using the same set of parameters for all datasets. The configu-
ration of BASTIAN platform for this paper is set as follows. It uses a 1-Nearest Neighbour
Algorithm. The case memory is represented as a list of cases. Each case contains the set of
attributes, its class and the AccurCoef and ClassCoef coefficients. Our goal is to test the re-
liability and feasibility of the reduction techniques. Therefore, we have not focused on the
case representation used by the system. The retain phase use two policies: DifSim that only
store the new case if it has different similarity from the retrieved case, and DifClass) that only
store the new case if it has different class from the retrieved one. Thus, the learning process
is limited to two simple policies. Future work will be focused on improving the retain pol-
icy. Finally, no weighting method is used in this paper in order to test the reliability of our
reduction techniques.

The percentage of correct classifications has been averaged over stratified ten-fold cross-
validation runs. We analyse the significance of the performance using two-sided paired t-test
(p=0.1) on these runs.

5.2 Experiment 1- Analysis of global vs. local algorithms

First analysis corresponds to the comparison between global and local algorithms. The aim of
both reduction techniques is to reduce the case memory while maintaining the competence of
the system. This priority guides our reduction techniques based on Rough Sets competence
model. That fact is detected in the results shown in table 2, where NACCM and SOI algo-
rithms obtain on average a higher generalisation on competence than IBL. NACCM and SOI
algorithm improve on a significant level in some datasets (e.g. sonar,vehicle) while main-
taining the competence, with the exception of the TAO-grid example because it reduces too
much the case base. The performance of IBL algorithms declines, in almost all datasets (e.g.

Table 2: Mean percentage of correct classifications (%PA) and mean storage size (%CM). A ◦ and • stand for a
significant improvement or degradation of the reduction techniques related to the CBR. Bold font indicates the
best prediction accuracy and smallest case base.

Ref. CBR NACCM SOI IB2 IB3 IB4

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.15 100.0
96.28 100.0
72.42 100.0
90.59 100.0
96.0 100.0
64.81 100.0
78.61 100.0
84.61 100.0
95.76 100.0
67.37 100.0

%PA %CM
83.66 99.3
95.72 59.52
64.48 33.91
90.30 56.80
93.33 42.88
60.18 44.80
78.61 99.90
86.90◦ 78.24
90.25• 1.54
69.10◦ 72.35

%PA %CM
83.75 88.74
95.85 29.42
64.48 37.89
91.16 50.68
91.33• 13.18
58.04 25.36
78.61 99.90
86.42◦ 65.15
89.66• 1.37
69.70◦ 68.33

%PA %CM
75.77• 26.65
91.86• 8.18
62.53• 42.99
86.61• 15.82
93.98 9.85
66.19 42.28
87.07◦ 18.99
80.72 27.30
94.87• 7.38
65.46 40.01

%PA %CM
78.51• 13.62
94.98 2.86
65.56 44.34
90.62 13.89
91.33• 11.26
60.16 14.30
81.59 15.76
62.11• 22.70
95.04• 5.63
63.21• 33.36

%PA %CM
76.46• 12.82
94.86 2.65
66.40 39.40
90.35 15.44
96.66 12.00
60.03 21.55
81.34 15.84
63.06• 22.92
93.96• 5.79
63.68• 31.66

Breast-w, Biopsy), when case memory is reduced. On the other side, the mean storage size
obtained is higher in our reduction techniques than those using IBL schemes.



5.3 Experiment 2- Analysing the unified algorithm

Table 3 shows the results for all the reduction techniques explained in this paper. As it can
be seen, the unified approach (SOI-NACCM) has obtained a higher reduction of the case
memory, but the competence of the system varies from one dataset to another. However,
the competence is maintained in all datasets in a significance level. In some domains it is
improved (e.g. Glass and in other domains it is maintained while achieving a higher reduction.
It is interesting to worth noting that the competence is always between the competence values
of the NACCM and SOI algorithms. However, the maximum reduction is always obtained by
the new unified approach, the SOI-NACCM algorithm.

Table 3: Mean percentage of correct classifications (%PA) and mean storage size (%CM). A ◦ and • stand for a
significant improvement or degradation of the reduction techniques related to CBR. Bold font indicates the best
prediction accuracy and smallest case base.

Ref. CBR NACCM SOI SOI-NACCM

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.15 100.0
96.28 100.0
72.42 100.0
90.59 100.0
96.0 100.0
64.81 100.0
78.61 100.0
84.61 100.0
95.76◦ 100.0
67.37 100.0

%PA %CM
83.66 99.3
95.72 59.52
64.48 33.91
90.30 56.80
93.33 42.88
60.18 44.80
78.61 99.90
86.90◦ 78.24
90.25• 1.54
69.10◦ 72.35

%PA %CM
83.75 88.74
95.85 29.42
64.48 37.89
91.16 50.68
91.33• 13.18
58.04 25.36
78.61 99.90
86.42◦ 65.15
89.66• 1.37
69.70◦ 68.33

%PA %CM
83.75 88.74
95.85 27.87
64.93 29.33
90.32 49.44
91.33• 4.59
58.63 19.44
78.61 99.90
85.95◦ 64.90
87.97• 0.11
69.35◦ 66.07

Table 4: Mean percentage of correct classifications (%PA) and mean storage size (%CM). Two-sided paired
t-test (p = 0.1) is performed, where a ◦ and • stand for a significant improvement or degradation of the CBM
techniques related to CBR system. Bold font indicates the best prediction accuracy.

Ref. CBR SOI-NACCM IB2 IB3 IB4

BI
BC
GL
IO
IR
MA
MX
SO
TG
VE

%PA %CM
83.15 100.0
96.28 100.0
72.42 100.0
90.59 100.0
96.0 100.0
64.81 100.0
78.61 100.0
84.61 100.0
95.76◦ 100.0
67.37 100.0

%PA %CM
83.75 88.74
95.85 27.87
64.93 29.33
90.32 49.44
91.33• 4.59
58.63 19.44
78.61 99.90
85.95◦ 64.90
87.97• 0.11
69.35◦ 66.07

%PA %CM
75.77• 26.65
91.86• 8.18
62.53• 42.99
86.61• 15.82
93.98 9.85
66.19 42.28
87.07◦ 18.99
80.72 27.30
94.87• 7.38
65.46 40.01

%PA %CM
78.51• 13.62
94.98 2.86
65.56 44.34
90.62 13.89
91.33• 11.26
60.16 14.30
81.59 15.76
62.11• 22.70
95.04• 5.63
63.21• 33.36

%PA %CM
76.46• 12.82
94.86 2.65
66.40 39.40
90.35 15.44
96.66 12.00
60.03 21.55
81.34 15.84
63.06• 22.92
93.96• 5.79
63.68• 31.66

The unified approach does not achieve the best competence but it guarantees that the
system is robust between a maximum and minimum values, while achieving the most reduced
case memory. In order to finish the comparison, we also compared the unified approach with
the IBL schemes.



The competence of the SOI-NACCM algorithm is on average similar to those obtained
using the global and the local approaches, and in consequence better than those obtained
using the IBL schemes. The main difference between this approach and the previous ones
is that SOI-NACCM obtains a most similar reduction to IBL schemes. In some datasets the
reduction obtained is higher (e.g. Glass, iris, TAO-grid).

5.4 Discussion

The unified approach does not obtain a higher competence than the original reduction tech-
niques but it has obtained better reduction. It is worth noting that there are some facets that
have to be taken into account.

1. the analysis has been performed without using weighting methods. It could be interesting
to test the influence of such methods when applied at the same time as the reduction
techniques.

2. in some domains the reduction is extreme. This fact produce that the competence decrease
because the retain phase used is the most simple policies. As denoted by Leake , two cases
are better than one. Thus, it is also important to combine the reduction techniques with a
properly retain phase.

3. the analysis of the combined approach has to be extended to recommenders systems.

4. The most important part of the unified approach is that it is a starting point to combine
the Sort out techniques with different global reduction techniques.

6 Conclusions and further work

This paper presents an analysis between global and local approaches to case base mainte-
nance, and a unified approach. All the reduction techniques are developed under a compe-
tence model based on Rough Sets theory. The aim of the paper was twofold: (1) to denote
that the global and local approaches are focused in a different space regions, and (2) to show
that the unified approach can be an alternative for a robust CBR system. Experimental analy-
sis show that these reduction techniques produces a higher or equal generalisation accuracy
on classification tasks. We can conclude that the mixed approach between global and local
case base maintenance techniques can be a good alternative to maintain robust CBR systems.
However, it could be improved in some facets and it is necessary to increase the study to
quickly changing environments over time. This kind of environments are the focus of our
future work. Also, as shown in our discussion it is necessary to have a good retain policy to
improve the system. Finally, we want to analyse the influence of the weighting methods and
similarity functions in these reduction techniques.
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