
Dynamic update of experience for a
Case-Based Reasoning system

Maria Salaḿo and Elisabet Golobardes
Enginyeria i Arquitectura La Salle, Universitat Ramon Llull,

Quatre Camins, 2 - 08022 Barcelona, Spain

Abstract. Experience is one of the major factor of success of Case-Based Reasoning
systems. This paper presents a learning algorithm that introduces reminding to up-
date dynamically the experience of a system using a Reinforcement Learning model.
Current research focuses on maintaining the experience growth by applying reduction
techniques, but usually they do not consider adding new experience. For this reason,
we propose a learning algorithm combined with two oblivion algorithms. All the al-
gorithms are integrated into our model. Several experiments show the effectiveness of
all the approaches in different domains from the UCI repository.

1 Introduction

Experience in a Case-Based Reasoning (CBR) system is known as case base. The success of
CBR system depends critically on the relevance of the case base. In recent years, two prob-
lems have been addressed in research related to the case base. The first one is theswamping

problem which relates to the expense of searching large case-bases for appropriate cases with
which to solve the current problem. The second one is that theexperience can beharmful

and may degrade the system performance (understanding performance as problem solving
efficiency). Different techniques, known as case base maintenance techniques, have been re-
lated to solve both problems. However, few approaches are concerned about the relationship
between adding experience and reduction strategies.

Research on the area highlights to deal with negative knowledge using different strate-
gies. Negative Knowledge is correct knowledge that can be a source of unsuccessful per-
formance [Markovitch, S. and Scott, P.D., 1988]. One commonsolution is to use forgetting
strategies. Minton has also demonstrated byselective discarding knowledgein a system
[Minton, 1985] that the performance can be improved. It is usually also necessary to inte-
grate into the system a repeated case base maintenance during the problem solving process.
There are several methods that fulfill these requirements, like competence-preserving deletion
[Smyth and Keane, 1995] and failure-driven deletion [Portinale et al., 1999], as well as for
generating compact case memories [Smyth and Mckenna, 2001]through competence-based
[Zhu and Yang, 1999] case addition. More close to our proposal are the one that examines
the benefits of using fine-grained performance metrics to directly guide case addition or dele-
tion [Leake and Wilson, 2000] and the one that integrates thecase base maintenance process
[Reinartz and Iglezakis, 2001] with the overall case-based reasoning process.

Previously to this paper, we have presented different approaches to case base maintenance
[Salaḿo and Golobardes, 2003] that allow us to reduce the case base in a controlled way and,



at the same time, maintain the efficiency in the CBR system. However, research on the area
move us to go deeply into an extended treatment of the experience inside the CBR system.

This paper presents a learning algorithm combined with two oblivion algorithms based on
a Dynamic Case Base Maintenance (DCBM) model that update experience dynamically. The
experience update is based on Reinforcement Learning. This approach can be considered as
a ”wrapper” to case base maintenance. However, the authors propose it as a dynamic update
model because it depends completely on the problem solving process of the CBR system.

This paper is organized as follows. Section 2 introduces thedynamic case base mainte-
nance model and then the learning algorithm combined with two oblivion strategies. Section 3
details the fundamentals of our experiments and analyzes the effectiveness of the algorithms.
Finally, we present the conclusions and further work.

2 Dynamic Case Base Maintenance model

The foundation of our learning algorithm and oblivion algorithms are a Dynamic Case Base
Maintenance (DCBM) model based on Reinforcement Learning. So,first we summarize the
basis of Reinforcement Learning. Next, we describe how to useit in our system, how the
coverage of a CBR system can be modelled, and how the different algorithms exploit this
model to perform a dynamic experience update able to controland optimize the case base
growth while introducing new cases.

2.1 Reinforcement Learning

Reinforcement Learning (RL) [Sutton and Barto, 1998] combinesthe fields of dynamic pro-
gramming and supervised learning to yield powerful machine-learning systems. Reinforce-
ment Learning appeals to many researchers because of its generality.

Reinforcement Learning [Harmon, 1996] is an approach to learning by trial and error in
order to achieve a goal. A RL algorithm does not use a set of instances which show the desired
input/output response, as dosupervised learningtechniques. Instead, a reward given by the
environment is required. This reward evaluates the currentstate of the environment. The
Reinforcement Learning Problem(RLP) consists of maximizing the sum of future rewards.
The goal to be accomplished by RL is encoded in the received reward. To solve the problem,
a RL algorithm acts over the environment in order to yield maximum rewards. Any algorithm
able to solve the RLP is considered a RL algorithm.

Reinforcement Learning theory is usually based onFinite Markov Decision Processes
(FMDP). The use of FMDP allows a mathematical formulation ofthe RLP, therefore, the
suitability of RL algorithms can be mathematically proved.

Several elements appear in all RLPs. In each iteration the RL algorithm observes thestate

st of the environment and receives thereward rt. The reward is a scalar value generated by
the reinforcement functionwhich evaluates the current state and/or the last executed action
according to RLP. Following the rules of the RL algorithm, it generates anaction at. The
environment reacts to the action changing tostatest and generatingstatest+1. Thevalue
functioncontains the expected sum of future rewards. This function is used and modified by
the RL algorithm to learn the policy function. Apolicy functionindicates the action to be
taken at each moment.



Initially, the approximation of the optimal value functionis poor. Therefore, it is necessary
to approximate the value function in each iteration. There are several methods that can be
applied.

In order to find the optimal value functions, the Bellman equation is applied:V ∗(Xt) =
r(Xt) + γV ∗(Xt+1) , whereV ∗(Xt) is the optimal value function;Xt is the state vector at
time t; Xt+1 is the state factor vector at timet + 1; r(Xt) is the reinforcement function andγ
is the discount factor in the range[0, 1].

2.2 Dynamic Case Base Maintenance model

There are several methodologies to solve the RLP formulated as a FMDP: dynamic program-
ming, temporal difference algorithms and monte-carlo methods. We will use a Monte-Carlo
method because is the only one that use experience of the environment to learn the value
functions.

The question that arises now is how this idea can be applied toour model. Lets consider
the model by analogy of the elements described in section 2.1. For our purpose astate st is
a case of the environment that receives areward rt. The reward is a value generated by the
reinforcement functionwhich evaluates if the current state classifies or not classifies correctly.
In our model thereinforcement functionis introduced into the revise phase of the CBR cycle.
Following the rules of the RL algorithm, which includes the case base maintenance policy,
it generates anaction at. The action for us is to delete or to maintain a case from the case
base. Theenvironment is the CBR cycle. Theenvironment reacts to the action changing
to statest+1, if the action is to delete the case. Thus, reducing the case base. The environment
also generates a new reward after the problem solving process which has used the possibly
reduced case base. Thevalue functioncontains the expected sum of future rewards. This
function is used and modified by the RL algorithm to learn the optimal case base. We test
three different policy functions. Figure 1 shows the description of all the process. In our
case, the RL algorithm receives a set of states and a reward foreach one, and returns to the
environment a set of actions.

Environment (CBR)

RL algorithm

de
la

y

actions at

reward rt

statest

st+1

rt+1

Figure 1: Relation between RL algorithm and the environment.

Definition 1 (Coverage) Let T = {t1, t2, ..., tn} be a set of training cases,∀ ti ∈ T :
Coveragek(ti) will be the value of the metric used by the case base maintenance method
at iterationk.

Thecoverage is the goodness value of a case when it is used to solve a targetproblem. It
can be defined in several ways depending on the case base maintenance techniques used. For
instance, it can be defined [Smyth and Keane, 1995] as the set of target problems that it can
be used to solve. Here, we modify slightly the definition in order to adapt it to our model. The



coverage is defined as the initial sum of future rewards using a Rough Sets measure. That is,
Coveragek(ti) is the value function at iterationk for stateti.

As detailed previously, the most important part of the RL algorithm is to update the value
function. We use a Monte-Carlo (MC) which interacts with the environment following a par-
ticular policy function. In our model it is the optimizer of the case base. When the episode
finishes, the MC algorithm updates the value of all visited states based on the received re-
wards. The visited states for a CBR cycle will be thekNN cases retrieved to solve the new
problem. Equation 1 shows the general update rule to estimate the state-value function. Our
MC algorithm is detailed in definition 2.2.

Definition 2 (CoverageUpdate) Let T = {t1, t2, ..., tn} be a set ofKNN instances,∀ ti ∈
T :

Coveragek+1(ti)← Coveragek(ti) + α · |Rt − Coveragek(ti)| (1)

It can be observed that the current prediction of the state-valueCoveragek(ti) is modified
according to the received sum of rewardsRt. TheRt value is1.0 if the stateti solve the target
problem, otherwise it is0.0. There is also a learning rateα which averages the values obtained
in different episodes. The learning rate is usually set up tovalue 0.1 or 0.2 in RL systems. If
the states are updated quite often it is set up to value 0.1, otherwise to 0.2. The selection of
KNN neighbors in a CBR cycle may not often be repeated, so we have set up this learning
rate to 0.2 in order to accelerate the differences ofcoveragein few iterations.

Algorithm 1Dynamic Case Base Maintenance (DCBM)

DCBM (CaseMemoryT )

1. InitializeCoverage(ti) using a CBM metric in acquisition stage, for allti ∈ T

2. Tk+1← Reduce the initial case baseTk usingCoverage

3. Repeat until problem solving process of the CBR cycle is not finished

4. Tk ← Tk+1

5. Retrieval phase← selects fromTk theKNN used to solve the new problem

6. Reuse phase← selects the best1NN to solve the new problem

7. Revise phase← computes the rewardsRt of theKNN

8. Retain phase← computes :

9. CoverageUpdate← for eachti ∈KNN

10. Learning algorithm to decide if new case is added

11. Apply case base maintenancepolicy function to decide the set of ActionsA

12. Tk+1← Update case baseTk based on the ActionsA

Once described our case base coverage, we describe entirelythe dynamic case base main-
tenance model in algorithm 1, which shows that the retrievalphase selectsK Nearest Neigh-
bors, although it uses best neighbor to solve the new problem. We consider the selection of
KNN in order to accelerate the maintenance process of the casebase. Another important
point is the relation of the retain stage with the RL algorithm(step 9 and 10) in algorithm 1.
The retain phase receives the set of actions to improve the case base.



The most notable aspect of the dynamic case base maintenanceprocess is that the CBR
system improves the case base using its problem solving process. Moreover, the case base
improves or degrades the coverage of a case depending on their resolution accuracy. Thus,
the case base can be categorized at different levels of coverage. The lower the coverage of a
case, the most appropriate to disappear from the case base.

2.3 Learning based on Reinforcement Learning (LearnRL)

Learning is a process in which an organized representation of experience is constructed
[Scott, 1983]. The case base constructed is dynamic and it isnecessary having into account
previous generation changes. Algorithm 2 summarizes the process of the proposed learning
algorithm that lets the case base to add cases if knowledge isincomplete and proportionates
to them the generational experience.

Algorithm 2Learning based on Reinforcement Learning (LearnRL)

LearnRL (CaseMemoryT , CaseMemoryKNN , CasenewCase, CaseretrievedCase)

1. if retrievedCase solve correctlynewCase then store = false

2. else ifthere exists a case inKNN that solve correctlynewCase then Selects the most similar asauxiliarCase and store = true

3. else ifthere exists a case inT that solve correctlynewCase then Selects the most similar asauxiliarCase and store = true

4. end if

5. end if

6. end if

7. if storethen // update the information of thenewCase using the experience of theauxiliarCase

8. newCase.Coverage = auxiliarCase.Coverage

9. newCase.InitialPrecision = auxiliarCase.Coverage

10. Add newCase in T

11. end if

12. return CaseMemoryT

When a new experience takes place, it is not simply added to thecase base of prior expe-
riences. Most experiences are like others that have come before. Algorithm 2 is similar in its
foundations to theCondensed Nearest Neighborrule [Hart, 1968]. If a case is misclassified
using the case base, it is added to it. This rule is applied to avoid further misclassification.
Second part of algorithm 2 is to proportionate generationalexperience to the case that is be-
ing added. The algorithm finds experiences that are most closely related to the input case
(newCase) we are processing. In this algorithm, relatedness is defined by nearest neighbors.
Generational experience can be seen as the phenomenon ofreminding.

Reminding is a highly significant phenomenon that has much to say to us about the nature
of memory [Schank, 1982]. It tells us about memory organization. It also tells us about learn-
ing and generalization. In our case, reminding reveals something significant about the nature
of memory structures and the understanding process, shown in algorithm 2 asCoverage. The
equation 3 defines the nature of theCoverage. In this case, it is based onRough Setstheory.



2.4 Dynamic Case base Maintenance policy functions

Reminding is at the root of how we understand. It is also at the root of how we learn. However,
we also forget experiences that do not use when learning.

The RL process described in algorithm 1 illustrates how to update the reminding of the
system. The process to forget is enclosed into the case base maintenance policy function. We
describe two different policies that have been combined with ourLearning algorithmto test
the reliability of the proposed algorithm of reminding.

2.4.1 RLOC

This policy is called Reinforcement Learning Oblivion by difference of Coverage (RLOC).
The coverage is the relevance of a case. RLOC uses the coverageof each case in a different
way, trying to reduce the computational cost of the previouspolicy function. Algorithm 3
shows the simple policy function applied in RLOC.

Algorithm 3Reinforcement Learning Oblivion by difference of Coverage (RLOC)

1. RLOC (CaseMemoryT )

2. for each instanceti ∈ T

3. SelectCase(ti) if ti satisfies:
initialCoverage(ti)− coverage(ti)

initialCoverage(ti)
≥ 0.20 (2)

4. end for

5. Action A is to deletethose casesselected

6. return Action A

RLOC is quite fast to compute. By computing the balanced difference between its initial
coverage and the updated coverage, we obtain a metric of the behavior of the case. If it is
positive, the case produce a misconception when solving a new problem. The percentage of
misconception allowed for a case is set up to value 0.2 (this is a lost of 20% coverage). This
percentage lets a case classify incorrectly new cases only two times.

2.4.2 RLOCE

This policy is called Reinforcement Learning Oblivion by coverage and error (RLOCE). This
policy shows the simplest way to decide the actions.

Algorithm 4RL Oblivion by Coverage and Error (RLOCE)

1. RLOCE (CaseMemoryT )

2. for each instanceti ∈ T

3. if coverage(ti) < initialCoverage(ti) then SelectCase(ti) end if

4. Action A is to deletethose cases selected

5. return Action A



The policy is based also on coverage lost. However, here, a case will be deleted the first
time it classifies incorrectly one case. The case has a secondopportunity if it has classified
correctly previously. Thus, the cases that produce misconception are deleted, with the excep-
tion of those cases that let the system classify correctly onsome occasions.

3 Description of the experimental analysis

This section is structured as follows: first of all, it is important to understand the fundamen-
tals of our metric to initialize theCoverage of a case. Then, we describe the testbed used
and its characteristics. Finally, we analyze with different experiments the proposed learning
algorithm and its combination with 2 oblivion algorithms.

3.1 Fundamentals

The rough sets theory defined by Pawlak, which is well detailed in [Pawlak, 1982], is one of
the techniques for the identification and recognition of common patterns in data, especially
in the case of uncertain and incomplete data. The mathematical foundations of this method
are based on the set approximation of the classification space.

Each case is classified using the elementary set of features which can not be split up
any further, although other elementary sets of features mayexist. In the rough set model
the classification knowledge (the model of the knowledge) isrepresented by an equivalence
relationIND defined on a certain universe of casesU and relations (attributes)R. The pair
of the universe casesU and the associated equivalence relationIND forms an approximation
space. The approximation space gives an approximate description of any subsetX of U . Two
approximations are generated by the available data about the elements of the setX, called the
lower and upper approximations. Thelower approximationRX is the set of all elements ofU
which cancertainlybe classified as elements ofX in knowledgeR. Theupper approximation
RX is the set of elements ofU which canpossiblybe classified as elements ofX, employing
knowledgeR. In order to discover patterns of knowledge we should look for the minimal set
of attributes that discerns cases and classes from each other, such a combination is called a
reduct. The reduced space, composed by the set ofreducts(P ) is used as a metric to extract
the relevance of each case.

Coverage based on Rough SetsThis metric uses thequality of classificationcoefficient,
computed as:

For each instance ti ∈ T it computes :

Coverage(ti) =
card ( P (ti)) ∪ card ( − P (ti))

card ( all instances)

(3)

WhereCoverage(ti) will be the coverage of the instanceti; T is the training set;card is
the cardinality of a set;P is a set that contains the reducts; and finallyP (ti) andP (ti) is the
presence ofti in the lower and upper approximation respectively.

The Coverage(ti) coefficient expresses the percentage of cases which can be correctly
classified employing the knowledget. This coefficient has a range of real values in the interval
[0.0, 1.0]. Where 0.0 and 1.0 mean that the case is internal andoutlier respectively. The higher
the quality, the nearer to the outlier region.



We will use thecoverageasinitialCoveragein our DCBM model. Usingcoveragevalues,
we have two kind of cases relevant in the case base: the ones with coverage value of 1.0
(outlier) and the internal cases, having low coverage values. This coverage distribution is
not much suitable for the RL policy functions relying on high coverage value. Thus, we
convert previously to update phase thecoverage value with this formula:Coverage(t)′ =
1− Coverage(t), with the exception of those cases that have aCoverage(t) = 1.0.

3.2 Testbed

The evaluation performance of the approaches presented in this paper is done using different
datasets which are detailed in table 1. Datasets can be grouped in:public [Merz and Murphy, ]
and private [Golobardes et al., 2002] that comes from our own repository. These datasets
were chosen in order to provide a wide variety of sizes, combinations of feature types, and
difficulty because some of them contain a great percentage ofinconsistencies.

Table 1: Details of the datasets used in the experimental analysis
Dataset Ref. Samples Num. feat. Sym. feat. Classes %Inconsistent

1 Balance scale BL 625 4 3 2 2.0
2 Breast cancer Wisconsin BC 699 9 - 2 0.30
3 Credit-A CA 690 5 9 2 9.71
4 Heart-H HH 294 6 7 5 20.4
5 Heart-Statlog HS 270 13 - 2 0.0
6 Hepatitis HP 155 6 13 2 0.0
7 Horse-Colic HC 368 7 15 2 5.67
8 Ionosphere IO 351 34 - 2 0.0
9 Iris IR 150 4 - 3 0.0
10 Labor LB 57 8 8 2 0.0
11 Mammogram (private) MA 216 23 - 2 5.00
12 Soybean SY 683 - 35 19 10.08
13 TAO-Grid (private) TG 1888 2 - 2 0.0
14 Vehicle VE 846 18 - 4 0.0
15 Vote VT 435 - 16 2 4.13

The study described in this paper was carried out in the context of our CBR system:
BASTIAN (case-BAsedSysTem for classIficAtioN). All techniques were run using the same
set of parameters for all datasets: The case base is represented as a list of cases. Each case
contains the set of attributes, the class, theCoverage and theinitialCoverage. Furthermore,
the retrieval phase extracts theK-Nearest Neighbor to be updated in the RL process, not for
the reuse phase which uses a1-Nearest Neighbor.

The percentage of correct classifications and the percentage of case base maintained has
beenaveragedoverstratified ten-fold cross-validation runs. To study the performance we
usepaired t-test on these runs.

3.3 Analyzing LearnRL algorithm and the combination with OC and OCE

To analyze our approaches, we test different algorithms: (1) 1-Nearest Neighbor (1NN) with
no learning taking place; (2) 1NN-L using as learning theCNN rule; (3) LearnRL (L-RL)
algorithm; (4) LearnRL combined with oblivion policy OC and,finally LearnRL combined
with OCE. Table 2 shows for each algorithm tested the prediction accuracy, percentage of
final case base (size) when finishing the process computed astrain+stored−oblivion

train+test
and the

percentatge of test cases stored (ret) when retaining, it iscomputed asstored
test

.



The results obtained by 1NN-L are the same as 1NN which shows that the introduc-
tion of new experience in the CBR system does not help to improveprediction accuracy
(PA). LearnRL obtains a results very similar to 1NN-L although it improves when retaining
is smaller. The most important part of LearnRL is the acquisition of generational experience
into the cases added to the system. These experience is used by the oblivion policies to update
dynamically the case base. The combination between LearnRL with OC and OCE improves
most often than 1NN algorithm. Moreover, the final case base size is considerably smaller
than 1NN. The reduction of case base is due to 2 factors: (1) the algorithm stores few num-
ber of cases because it classifies correctly new experiences; (2) the oblivion procedure uses
generational experience to decide which cases to forget from the case base. We observe that
the best PA is often obtained by LearnRL combined with OCE, because OCE after a miscon-
ception of a case analyzes if it is necessary to delete it fromthe case base. Nevertheless, OC
is more conservative, thus needing a longer problem solvingprocess. However, all the results
improve, so they lead us to validate that the generational experience learned by the model lets
the system to improve dynamically its case base when solvingnew problems.

Table 2: Results for all methods using an update parameter KNN = 5. The mean value (Av) for all datasets is at
the bottom part of the table. We use paired t-test at the levelof 5% significance, where a• and a◦ stand for a
significant improvement or degradation of 1NN using learning (1NN-L), LearnRL (L-RL), LearnRL combined
with OC (OC) and LearnRL combined with OCE (OCE) to 1NN

Ref 1NN size 1NN-L size ret L-RL size ret OC size ret OCE size ret
BL 76.15 90.00 76.15 92.38 23.83 76.98 92.30 23.04 78.41• 86.80 21.60 78.41• 81.85 21.60
BC 95.86 90.00 95.86 90.41 4.14 95.86 90.44 4.43 95.55 89.97 4.43 95.99 88.19 4.00
HC 73.36 90.00 73.36 92.66 26.63 74.70 92.52 25.27 79.61• 89.83 20.38 80.79• 81.63 19.02
CA 81.76 90.00 81.76 91.87 18.69 81.76 91.87 18.69 81.76 90.14 18.26 82.19 82.24 17.82
MA 63.93 90.00 63.93 93.70 37.03 63.93 93.70 37.03 63.32 84.21 36.57 63.30 73.61 36.57
TG 96.13 90.00 96.13 90.38 3.86 96.45 90.35 3.54 96.29 89.41 3.70 96.60 88.03 3.39
HH 72.82 90.00 72.82 92.65 26.53 72.82 92.65 26.53 74.55• 87.92 25.51 75.90• 81.46 24.15
HS 74.07 90.00 74.07 92.51 25.18 74.07 92.51 25.18 75.18 87.18 24.81 74.07 80.55 25.92
HP 77.99 90.00 77.99 92.19 21.91 77.99 92.19 21.91 78.66 90.45 21.29 78.58 81.22 21.29
IO 86.92 90.00 86.92 91.31 13.10 86.92 91.31 13.10 87.76 88.97 12.53 87.48 83.56 12.53
IR 95.33 90.00 95.33 90.46 4.66 95.33 90.46 4.66 95.33 88.33 4.66 95.33 87.73 4.66
LB 83.38 90.00 83.38 91.75 17.54 83.38 91.75 17.54 85.38 88.24 15.78 87.04 80.17 14.02
SY 82.15 90.00 82.15 91.78 17.86 83.94 91.61 16.10 86.16• 90.05 13.90 86.85• 83.80 13.17
VE 69.43 90.00 69.43 93.06 30.61 69.43 93.06 30.61 69.54 88.55 30.37 69.65 75.35 30.26
VT 86.65 90.00 86.65 91.33 13.33 87.82 91.21 12.18 90.55• 89.49 9.42 92.60• 86.69 7.35
Av. 81.06 90.00 81.06 91.89 18.99 81.44 91.86 18.65 82.53 88.63 17.54 82.98 82.40 17.05

4 Conclusions

This paper proposes a learning algorithm that is able to introduce reminding while adding
new experience in the CBR system. Reminding is used later to learn to forget ”harmlful”
experience. The experimental analysis shows that the combination between LearnRL and
oblivion policy functions manage to improve case base whileaugmenting on average the
prediction accuracy. To sum up, reminding allows the systemto add new information and to
optimize their case base. Thus, maintaining and sometimes improving a significant degree of
5% the prediction accuracy. The lesson learned from the experiments is thatless is more. It
is necessary to add experience in a controlled way but it is also necessary to forget it. This



paper is the initial idea of introducing reminding in a CBR system and we think that there
are too much to do. Our further work will be focused on using generational experience as
relatedness between cases. We also think about testing differentcoverage metrics to test the
effectiveness of the model.

Acknowledgements This work is supported by theMinisterio de Ciencia y Tecnologia, Grant No.
TIC2002-04160-C02-02. We wish to thankOur Universityfor their support to our Research Group in
Intelligent Systems.

References

[Golobardes et al., 2002] Golobardes, E., Llorà, X., Salaḿo, M., and Mart́ı, J. (2002). Computer Aided Diag-
nosis with Case-Based Reasoning and Genetic Algorithms.Knowledge-Based Systems, (15):45–52.

[Harmon, 1996] Harmon, M. (1996). Reinforcement learning:A tutorial.

[Hart, 1968] Hart, P. (1968). The condensed nearest neighbour rule.IEEE Transactions on Information Theory,
14:515–516.

[Leake and Wilson, 2000] Leake, D. and Wilson, D. (2000). Remembering Why to Remember: Performance-
Guided Case-Base Maintenance. InProceedings of the Fifth European Workshop on Case-Based Reasoning,
pages 161–172.

[Markovitch, S. and Scott, P.D., 1988] Markovitch, S. and Scott, P.D. (1988). The Role of Forgetting in Learn-
ing. In Proceedings of the Fifth International Conference on Machine Learning, pages 459–465.

[Merz and Murphy, ] Merz, C. J. and Murphy, P. M. UCI Repository for Machine Learning Data-Bases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].

[Minton, 1985] Minton, S. (1985). Selectively generalizing plans for problem solving. InNinth International
Joint Conference on Artificial Intelligence, pages 596–599. Morgan Kaufmann.

[Pawlak, 1982] Pawlak, Z. (1982). Rough Sets. InInternational Journal of Information and Computer Science,
volume 11.

[Portinale et al., 1999] Portinale, L., Torasso, P., and Tavano, P. (1999). Speed-up, quality and competence in
multi-modal reasoning. InProceedings of the Third International Conference on Case-Based Reasoning,
pages 303–317.

[Reinartz and Iglezakis, 2001] Reinartz, T. and Iglezakis,I. (2001). Review and Restore for Case-Base Main-
tenance.Computational Intelligence, 17(2):214–234.

[Salaḿo and Golobardes, 2003] Salamó, M. and Golobardes, E. (2003). Hybrid Deletion Policies for Case
Base Maintenance. InProc. of the sixteenth International FLAIRS Conference, pages 150–154. AAAI Press.

[Schank, 1982] Schank, R. (1982). Dynamic Memory: A Theory of Learning in Computers and People.Cam-
bridge, England: Cambridge University Press.

[Scott, 1983] Scott, P. (1983). Learning: The constructionof a posteriori knowledge structures. InProceedings
of the Third National Conference on Artificial Intelligence.

[Smyth and Keane, 1995] Smyth, B. and Keane, M. (1995). Remembering to forget: A competence-preserving
case deletion policy for case-based reasoning systems. InProceedings of the Thirteen International Joint
Conference on Artificial Intelligence, pages 377–382.

[Smyth and Mckenna, 2001] Smyth, B. and Mckenna, E. (2001). Competence Models and the maintenance
problem.Computational Intelligence, 17(2):235–249.

[Sutton and Barto, 1998] Sutton, R. and Barto, A. (1998).Reinforcement Learning. An introduction. The MIT
Press.

[Zhu and Yang, 1999] Zhu, J. and Yang, Q. (1999). Rememberingto add: Competence-preserving case-
addition policies for case base maintenance. InProceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 234–239.


