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Abstract

Case-Based Reasoning systems retrieve cases using a similarity function based on the K-NN or some
derivatives. These functions are sensitive to irrelevant, interacting or noisy features. Many similarity
functions weigh the relevance of features to avoid this problem. This article proposes two weighting
methods based on Rough Sets theory: Proportional Rough Sets and Dependence Rough Sets. Both
weighting methods use the representative knowledge extracted from the original data to compute the
feature relevance using two different policies. The first one computes the proportional participation of
the features in the representative knowledge. The second one computes the dependence of each feature in
the representative knowledge. This dependence denotes if a feature is superfluous within the knowledge.
Experiments using different domains show that weighting methods based on Rough Sets maintain or
even improve the classification accuracy of Case-Based Reasoning Systems, compared to non-weighting
approaches or well-known weighting methods.
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1 Introduction

Case-Based Reasoning (CBR) systems [RS89]
retrieve cases using a similarity function. How-
ever, the similarity degrades when there are ir-
relevant or redundant features, or the data is
noisy and unreliable. Feature selection, also
known as weighting method, is the process of
identifying as much of the irrelevant informa-
tion as possible.

Many algorithms that perform feature selection
have been proposed in the Artificial Intelligence
literature in recent years. These algorithms can
be placed in two main categories: wrappers and
filters. Wrapper methods use the performance
algorithm itself as an evaluation function to es-
timate the accuracy of feature subsets [KJ97].

This approach tend to be expensive computa-
tionally because the learning algorithm is called
repeatedly. For this reason, wrappers do not
scale well on large data sets containing many
features. On the other hand, filter methods do
not use feedback of the learning algorithm. Un-
desirable features are filtered out of the data
set before learning takes place. Filters typi-
cally make use of all the available training data
when selecting a subset of features. For exam-
ple, some induce a decision tree [Qui93], keep-
ing the features selected that remain in the tree
after pruning [Car93].

This article presents two different filter ap-
proaches based on Rough Sets theory. Both
filter methods have been introduced into our
Case-Based Classifier System called BASTIAN.
Case-Based Reasoning and Rough Sets theory



has usually been used separately in the litera-
ture. The weighting methods are: Proportional
Rough Sets (PRS) and Dependence Rough Sets
(DRS). First weighting method, PRS, proposes
a measure that computes the proportional par-
ticipation of the features in the representative
knowledge. The second one, DRS, obtains the
dependence of each feature in the knowledge.
This dependence denotes if a feature is super-
fluous within the representative knowledge.

The article is structured as described: section 2
introduces the related work on filter methods;
next, section 3 explains the Rough Sets the-
ory; section 4 details the Rough Sets weighting
methods; section 5 exposes the experiments and
the results obtained using the weighting tech-
niques; and finally, section 6 presents the con-
clusions and further work.

2 Related work

Many filter methods for feature selection have
been proposed recently, a review of them can be
found in [BL97]. Filters use general characteris-
tics of the data to evaluate features and operate
independently of any learning algorithm. Fil-
ters have been proven to be much faster than
wrappers and hence they can be applied effi-
ciently to large data sets containing many fea-
tures. However, some weighting methods can
handle regression problems, that is, when the
class is a numeric rather than discrete valued
variable.

The simplest filtering scheme is to evaluate each
feature individually measuring its correlation
to the target function (e.g. using a mutual
information measure) and then select K fea-
tures with the highest value. Relief algorithm,
proposed by Kira and Rendell’s [KR92], fol-
lows this general paradigm. Relief samples ran-
domly an instance, locating its nearest neigh-
bour from the same and opposite class. It was
originally defined for two-class problems. Re-
lief selects features constructing a decision tree,
other induction methods can also be used. Re-
lief was extended by Kononenko. The exten-
sion called ReliefF [Kon94] can handle noisy
and multiclass problems. ReliefF smoothes
the influence of noise in the data by averag-
ing from the same and opposite class of each

sampled instance instead of a single nearest
neighbour. Domingos [Dom97] introduced RC,
an algorithm reminiscent of Relief. RC hill-
climbs features, guided by leave-one-out cross
validation error (LOOCE) on the training set,
only if feature selection increases predictive ac-
curacy. Unlike Relief, CFS [Hal00] evaluates
and hence ranks feature subsets rather than in-
dividual features. CFS algorithm is a subset
evaluation heuristic that takes into account the
usefulness of individual features for predicting
the class along with the level of intercorrela-
tion among them. Some filters induce a decision
tree, where the features selected for similarity
computations are those that remain in the tree
after pruning [Car93].

3 Rough Sets theory

Zdzislaw Pawlak introduced Rough Sets theory
in 1982 [Paw91]. The idea of Rough Sets con-
sists of the approximation of a set by a pair of
sets, called the lower and the upper approxima-
tions of this set. In fact, these approximations
are inner and closure operations in a certain
topology. These approximations are generated
by the available data about the elements of the
set. The nature of Rough Sets theory makes
them useful for reducing knowledge, extract-
ing dependencies in knowledge, pattern recog-
nition, etc.

We use Rough Sets theory for reducing and
extracting the representative knowledge. This
representative knowledge is the basis for com-
puting the relevance of each feature into the
Case-Based Reasoning system. We use that
representative knowledge in two different ways.
The first one is Proportional Rough Sets
(PRS) and the second one is Dependence
Rough Sets (DRS). First of all, we incorpo-
rate some basic concepts and definitions.
Then, we explain how to obtain the represen-
tative knowledge, in order to select the best
weighting.

We have a Universe (U) (finite not null set
of objects that describes our problem, i.e. the
case memory). We compute from our universe
the concepts (cases) that form partitions. The
union of all the concepts makes the entire Uni-
verse. Using all the concepts we can describe all



the equivalence relations (R) over the uni-
verse U . Let an equivalence relation be a set of
features that describes a specific concept. U/R
is the family of all equivalence classes of R.
The universe and the relations form the knowl-
edge base (K), defined as K =< U, R̂ >.
Where R̂ is the family of equivalence relations
over U . Every relation over U is an elementary
concept in the knowledge base. All the concepts
are formed by a set of equivalence relations that
describe them. Thus, we search for the mini-
mal set of equivalence relations that defines the
same concept as the initial set.

Definition 1 (Indiscernibility Relations)
The indiscernibility relation is an equivalence re-
lation over U , defined as:

IND(P̂ ) =
⋂

R̂ where P̂ ⊆ R̂

P̂ and R̂ are equivalence relations. Hence, it
partitions the concepts (cases) into equivalence
classes. These sets of classes are sets of in-
stances indiscernible with respect to the features
in P . Such a partition (classification) is denoted
as U/IND(P ). In supervised machine learning,
the sets of cases indiscernible with respect to the
class attribute contain the cases of each class.

4 Rough Sets as a weighting

method

In this section we explain how to extract the
representative knowledge and how to weigh fea-
tures using the Rough Sets theory. We obtain
the representative knowledge unifying two con-
cepts: (1) approximation sets of knowledge and
(2) reduction of search space.

This representative knowledge is the basis for
the PRS and DRS weighting methods. Both
methods are filters based on Rough Sets the-
ory. Next, it describes the unification of both
concepts to extract the feature relevance using
two policies: PRS and DRS.

Representative knowledge

Approximation Sets This is the main idea
of Rough Sets to approximate a set by other

sets. The condition set contains all the cases
present in the case memory. The decision set
presents all the classes that the condition set
has to classify. We are searching for a subset
of the condition set able to classify the same
as the initial set, so it approximates the same
decision set. The following definitions explain
this idea.

For any subset of cases X ⊆ U and two equiv-
alence relations P ,R ∈ IND(K) we associate
two subsets called: (1) Lower approximation
RX and (2) Positive Region POSP (R).

Definition 2 (Lower approximation)
The lower approximation defined as:

RX =
⋃{Y ∈ U/R : Y ⊆ X}

It is the set Y of all elements of U which can be
certainly classified as elements of X in knowledge
R.

Definition 3 (Positive Region)
Let P and R be equivalence relations over U . The
P -positive region of R defined as:

POSP (R) =
⋃

X∈U/P PX

It is the set X of all objects of the universe U
which can be properly classified to classes of U/R,
employing knowledge expressed by the classifica-
tion U/P .

Reduction search space: Reducts and
Core of knowledge Intuitively, a reduct of
knowledge is its essential part, which suffices
to define all concepts occurring in the consid-
ered knowledge, whereas the core is the most
important part of the knowledge.

Let R̂ be a family of equivalence relations and
let R ∈ R̂. We will say that:

• R is indispensable if:

– IND(R̂) 6= IND(R̂ − R)

– otherwise it is dispensable

IND(R̂ − R) is the family of equivalence
R̂ extracting R.

• The family R̂ is independent if each R ∈ R̂
is indispensable in R; otherwise it is depen-
dent.



Definition 4 (Reduct)
Q̂ ∈ R̂ is a reduct of R̂ if :

Q̂ is independent and IND(Q̂) = IND(R̂)

Obviously R̂ may have many reducts. Using Q̂
it is possible to approximate the same as using
R̂. Each reduct has the property that a feature
can not be removed from it without changing the
indiscernibility relation.

Definition 5 (Core)
The set of all indispensable relations in R̂ will be

called the core of R̂, and will be denoted as:

CORE(R̂) =
⋂

RED(R̂)

Where RED(R̂) is the family of all reducts of
R̂. The core can be interpreted as the set of the
most characteristic part of knowledge, which can
not be eliminated when reducing the knowledge.

Example 1
If we consider a set of 8 objects in our Uni-
verse, U = (x1, x2, x3, x4, x5, x6, x7, x8), using
R̂ = (P,Q, S) as a family of equivalence relations
over U . Where P can be colours (green, blue, red,
yellow); Q can be sizes (small, large, medium);
and S can be shapes (square, round, triangular,
rectangular). For example, we can suppose that
the equivalence classes are:
U/P = { (x1, x4, x5), (x2, x8), (x3),(x6, x7) }
U/Q ={ (x1, x3, x5), (x6), (x2, x4, x7, x8) }
U/S = { (x1, x5), (x6), (x2, x7, x8), (x3, x4) }

As it can be seen, every equivalence class divides
the Universe in a different way. Thus the relation
IND(R) has the equivalence classes:

U/IND(R̂) = {(x1, x5),(x2, x8),(x3),(x4),(x6),
(x7)}

The relation P is indispensable in R̂, since:

U/IND(R̂−P ) = { (x1, x5), (x2, x7, x8), (x3),
(x4), (x6) } 6= U/IND(R̂).

The information obtained removing Q is equal, so
Q is dispensable in R̂.

U/IND(R̂ − Q) = { (x1, x5), (x2, x8), (x3),
(x4), (x6), (x7) } = U/IND(R̂).

Hence the relation S is also dispensable in R̂.

U/IND(R̂−S) = { (x1, x5), (x2, x8), (x3), (x4),
(x6), (x7) } = U/IND(R̂).

That means that the classification defined by the
set of three equivalence relations P,Q and S is
the same as the classification defined by relation
P and Q or P and S. Thus, the reducts and core
are:

RED(R̂) = {(P,Q), (P, S)}

CORE(R̂) = {P}

Computing the Feature Relevance

Our weighting methods deal with continuous
and nominal features. Rough Sets weight-
ing methods perform search approximating sets
by other sets and both proposals are global.
Global means that we select the feature rele-
vance for all cases, without take into account
which class each case classify. PRS assumes a
proportional dependence in our reduced infor-
mation set, where irrelevant features are those
that do not appear. However, DRS irrelevant
features are those that do not contain signif-
icance dependence in the reduced set. These
policies induce two different behaviours. We
want to remark that PRS and DRS can be
used in multiclass tasks. Finally, PRS and DRS
can learn good features weights in different do-
mains, with continuous or nominal features and
missing values.

The definition of PRS and DRS weighting
methods use the information of reducts and
core to weigh the feature relevance.

Proportional Rough Sets (PRS). The rel-
evance of each feature in the system is com-
puted using the proportional appearance at the
reducts and core of information.

For each feature f computes :

µ(f) =
card(appearance f in RED(R))

card( all RED(R))

(1)

An attribute f that does not appear in the
reducts has a feature weight value µ(f) = 0,
whereas a feature that appears in the core has
a feature value µ(f) = 1. The remaining at-



tributes have a feature weight value depending
on the proportional appearance in the reducts.

Dependence Rough Sets (DRS). In this
weighting method we use the significant at-
tribute Dependence coefficient, computed using
the core and reducts of information. The sig-
nificant dependence coefficient is computed as:

For each feature f computes :

µ(f) =
card( POSP (r) − POS(P−f)(r) )

card( all cases)
(2)

where f is the feature from which we are com-
puting the weight; P is the set of feature
reducts, r = RED(R), obtained from the origi-
nal data; R is the set of all relations; card is the
cardinality; POSP (R) is the positive region of
all relations (features) present in the reducts;
and finally, POS(P−f)(R) is the positive region
of all relations present in the reducts extracting
feature f .

The value µ(f) = 1 means that R totally de-
pends on P . Whereas if the value is 0 < µ(f) <
1, we say that R partially depends on P . And
if µ(f) = 0 we say that R is totally indepen-
dent from P . The measure µ(f) does not cap-
ture how this partial dependency is actually dis-
tributed among the classes of U/R.

The study described in this article was carried
out in the context of BASTIAN, a case-BAsed
SysTem In clAssificatioN[SGVN00]. BAS-
TIAN configuration in this study is a simple 1-
NN algorithm using weighted Minkowski’s met-
ric. For details according to BASTIAN plat-
form see [SGVN00]. BASTIAN platform also
incorporates the Rough Sets theory as a reduc-
tion technique, minimising the number of cases
present in the case memory [SG01]. Although
the introduction of Rough Sets weighting meth-
ods is described in terms of BASTIAN plat-
form, these feature relevance methods can be
applied in other machine learning algorithms.

Figure 1 shows the meta-level process when in-
corporating the Rough Sets into the CBR sys-
tem. Three steps divide the Rough Sets pro-
cess. The first one discretises the cases, it is
necessary to use Rough Sets theory. In that
case, we discretise continuous features using
Fayyad and Irani’s algorithm [FI93]. The dis-
cretisation is only performed to extract the fea-

Examples Discretise BASTIAN

Rough Sets
Searching  

REDUCTS & CORE

Weights Extraction BASTIAN

Weight of 

each feature

Figure 1: High level process of Rough Sets.

ture relevance, whereas CBR system works us-
ing normalised data. The missing values are
treated by Rough Sets as values that matches
everything. CBR system treats missing values
as a value that can not be used to compute
the similarity between two cases. Second step
searches for the reducts and the core of knowl-
edge using the Rough Sets theory, as it has been
described. Finally, the third step uses the core
and the reducts of knowledge to decide the fea-
ture relevance values using PRS and DRS meth-
ods.

Rough Sets theory has been introduced as
weighting methods in two phases of the CBR
cycle. The first phase is the start-up phase and
the second one is the retain phase. The start-
up phase computes the weights from the initial
case memory, which will be used by the retrieval
phase later. The retain phase computes the
weights from the case memory if a new case is
stored. The code of Rough Sets theory into the
Case-Based Reasoning has been implemented
using a public Rough Sets Library [GS93].

5 Empirical study

This section is structured as follows: first,
we describe the testbed used in the empirical
study; next, we show the results using PRS and
DRS and we also compare them in front of the
Sample Correlation [GG97, LGSM00], ReliefF,
CFS and with unweighted CBR.

5.1 Testbed

In order to evaluate the performance rate, we
use twelve datasets grouped in two categories:
public and private. Table 1 shows the datasets
and their characteristics.



Dataset Ref. Samples Numeric Feat. Simbolic Feat. Classes Inconsistent

1 Biopsy BI 1027 24 - 2 Yes
2 Breast cancer (Wisconsin) BC 699 9 - 2 Yes
3 Glass GL 214 9 - 6 No
4 Ionosphere IO 351 34 - 2 No
5 Iris IR 150 4 - 3 No
6 LED LE 2000 - 7 10 Yes
7 Mammogram problem MA 216 23 - 2 Yes
8 MX11 MX 2048 - 11 2 No
9 Sonar SO 208 60 - 2 No
10 TAO-Grid TG 1888 2 - 2 No
11 Vehicle VE 846 18 - 4 No
12 Vowel VO 990 10 3 11 No

Table 1: Datasets and their characteristics used in the empirical study.

Ref. CBR CFS ReliefF Corr PRS DRS

BI 83.15(3.55) 79.87(2.81)× 83.17(3.15)
√

83.73(3.53)
√

84.42(2.39)
√

83.54(4.37)
√

BC 96.28(1.71) 96.00(1.45)× 96.00(1.45)× 95.99(1.69)× 96.85(1.69)
√

95.70(1.59)×
GL 72.42(7.46) 73.29(8.82)

√
66.30(10.93)× 71.96(6.23)× 72.89(5.60)

√
72.89(5.65)

√

IO 90.59(3.65) 89.46(4.26)× 86.92(4.86)× 90.88(4.38)
√

93.44(3.41)
√

90.59(3.39)
√

IR 96.0(3.26) 96.0(3.44) 96.00(3.26) 96.0(3.26) 96.0(3.26) 96.0(3.26)
LE 62.40(-) 62.40(-) 62.40(-) 62.72(-)× 62.40(-) 62.40(-)
MA 64.81(9.12) 59.58(12.40)× 63.47(12.15)× 65.27(8.06)

√
66.20(11.12)

√
65.27(10.57)

√

MX 78.61(3.96) 53.85(3.33)× 78.61(3.96) 50.97(3.62)× 81.44(2.91)
√

89.11(1.41)
√

SO 84.61(6.75) 85.30(7.01×) 87.27(9.70)
√

87.01(4.22)
√

85.09(6.54)
√

80.76(7.84)×
TG 95.76(1.27) 67.21(1.71)× 96.13(1.19)

√
95.97(1.18)

√
95.86(1.45)

√
95.97(1.82)

√

VE 67.37(5.05) 64.31(4.36)× 69.43(5.30)
√

64.77(3.65)× 68.67(4.70)
√

69.97(5.12)
√

VO 99.29(0.78) 62.32(4.85)× 99.09(1.00) 99.09(0.83)× 99.49(0.50)
√

98.78(1.67)×

Table 2: Results for all datasets showing the percentage of correct classifications and standard deviation.
Bold font indicates the best result for each dataset. A

√
and a × show an increase or decrease in

prediction accuracy with regard to unweighted CBR.

CBR CFS Corr ReliefF PRS DRS

CBR - 5 1 2 0 0
CFS 0 - 1 1 0 0
Corr 0 4 - 1 0 0
ReliefF 1 4 1 - 1 1
PRS 1 5 1 1 - 0
DRS 1 6 2 1 1 -

Table 3: Results of paired one-sided t-test (p= 0.01). Number indicates how often methods in a row
significantly outperforms methods in the column.



The Public datasets are obtained from the UCI
repository [MM98]. They are: breast cancer,
glass, ionosphere, iris, led, sonar, vehicle and
vowel. Private datasets are from our own repos-
itory. They deal with diagnosis of breast can-
cer and synthetic datasets. Datasets related to
diagnosis are biopsy and mammogram. Biopsy
is the result of digitally processed biopsy im-
ages, whereas mammogram consists of detecting
breast cancer using the N microcalcifications
present in a mammogram [GLSM01]. In mam-
mogram, each example contains the description
of several µCa present in the image, where each
image is described a real valued matrix. On
the other hand, we use two synthetic datasets:
MX11 is the eleven input multiplexer and TAO-
grid is obtained from sampling the TAO figure
using a grid.

These datasets were chosen in order to provide
a wide variety of application areas, sizes, combi-
nations of feature types, and difficulty as mea-
sured by the accuracy achieved on them by cur-
rent algorithms. The choice is also made with
the goal of having enough data points to extract
conclusions.

All systems were run using the same parame-
ters for all datasets. The percentage of correct
classifications has been averaged over stratified
ten-fold cross-validation runs, with their cor-
responding standard deviations. To study the
performance we use a paired one-sided t-test on
these runs, except for the LED dataset, which
was run using hold-out with a training set of
2000 instances and a test set of 4000 instances.

5.2 Experimental analysis of

weighting methods

Table 2 shows the experimental results for
each dataset using unweighted CBR sys-
tem (CBR), CFS (Correlation-Based Feature
Selection)[Hal00], ReliefF [Kon94], SampleCor-
relation (Corr) [GG97, LGSM00], PRS and
DRS. We compute the Sample Correlation be-
tween features and the class that classify. CFS
and Sample Correlation have the same original
nature, but they compute the feature relevance
in a different way. The CFS and ReliefF weight-
ing methods are coded into the Waikako Envi-
ronment Knowledge Analysis (WEKA) [WF00].
The classifier scheme used with these two

weighting methods is IB1 [AK91]. The ReliefF
was codified to use K=10 neighbours and equal
influence of nearest neighbours. CFS was used
with default configuration provided in WEKA.
We have select these filtering weighting meth-
ods because they can deal with numeric and
nominal features and with multiclass problems,
like both weighting methods proposed.

Comparing PRS and DRS approaches, we can
observe that PRS has a behaviour more con-
servative than the results obtained by DRS.
As it can be seen, PRS improves or maintains
the results in all data sets with respect to un-
weighted CBR. On the other hand, DRS fea-
ture weighting method improves or decreases
the results in some data sets, as it happens
in the Sample Correlation. This behaviour is
due to the weighting nature. DRS looks for
the significance into the reduced set of feature
space. Meanwhile, PRS selects a feature rel-
evance depending only if it is needed or not
in the representative space and not on the de-
gree of significance in this space. This effect
can be seen on the results presented in table
2. PRS does not decrease the classification
accuracy rate, it maintains the results in two
data sets and improves the results in ten data
sets. The results that are maintained belong
to iris and Led data sets. The iris problem
contains few instances and features to classify
three classes, so it is difficult to denote an ac-
curate weight settings. This effect is shown in
all weighting methods tested. Meanwhile, the
Led problem contains few instances to classify a
great number of classes. However, PRS weight-
ing method has been working successfully on
ten data sets, the most important point is that
can deal with problems that contains a great
number of features and also with multi class
problems. On the other hand, DRS decreases in
three data sets from the twelve data sets tested,
improves in seven data sets and maintains on
the rest. The most successful results have been
achieved in multiplexer and vehicle, which are
better than those obtained by the PRS. DRS
is able to deal better with non linear separable
problems.

Although the results sometimes decrease in
DRS approach, it is important to remark that
the maximum values obtained are higher than
these obtained using unweighted CBR. The
Sample Correlation obtains a similar classifica-
tion accuracy to that obtained by DRS, but the



results on average are worse than the results ob-
tained using PRS approach.

Table 3 shows the comparative using paired
one-sided t-test on all weighting methods. We
have notice that the results obtained by PRS
and DRS are similar to ReliefF, but the re-
sults on average are a bit higher. On the other
hand, the results using CFS are worse for some
datasets. The low percentage of CFS is due to
the original nature of some datasets (i.e. multi-
plexer) or to the configuration selected in these
experiments.

In conclusion, PRS and DRS obtain different
results because they follow a different policy
to compute the relevance of attributes. PRS
searches for the proportional appearance of a
feature in the reducts and core, in this sense it
maintains near all the features obtaining accu-
rate weighting values. The number of features
that PRS reduces is not as great as the DRS
approach. On the other hand, DRS searches
for the dependence in the representative knowl-
edge. This policy produces a slower number of
features than PRS. These two policies produce
different behaviours. The first one, PRS, main-
tains better the prediction accuracy but reduces
less the number of features. However, PRS
treats insignificant features with small weight
values. On the other hand, DRS reduces as
much as possible the number of features present
in the data. Thus, DRS behaviour produces
that the prediction accuracy decreases in some
data sets and obtains higher results in those
that are non linear separable.

6 Conclusions and further

work

This article introduces two weighting methods
based on the Rough Sets theory. Empirical
studies show that these weighting methods of-
ten produce a higher or equal accuracy on clas-
sification tasks. Comparing these results with
other weighting techniques, we show that on
average the results are good. We also show
that both weighting methods have different be-
haviours due to policy they follow. Further re-
search consists of improving some of the weak-
ness points as: searching new discretisations
methods in order to improve the preprocessing

of the data; analysing the influence of the case
memory size in these weighting methods; and
developing our weighting methods in order to
compute the feature relevance depending on the
class each case classify.
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de biòpsies de teixit de glàndules
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