
Rough Sets redution tehniques forCase-Based ReasoningMaria Salam�o and Elisabet GolobardesEnginyeria i Arquitetura La Salle, Universitat Ramon Llull,Psg. Bonanova 8, 08022 Barelona, Spainfmariasal,elisabetg�salleurl.eduAbstrat. Case Based Reasoning systems are often faed with the prob-lem of deiding whih instanes should be stored in the ase base. Anaurate seletion of the best ases ould avoid the system being sensitiveto noise, having a large memory storage requirements and, having a slowexeution speed. This paper proposes two redution tehniques based onRough Sets theory: Auray Rough Sets Case Memory (AurCM) andClass Rough Sets Case Memory (ClassCM). Both tehniques redue thease base by analysing the representativity of eah ase of the initial asebase and applying a di�erent poliy to selet the best set of ases. The�rst one extrats the degree of ompleteness of our knowledge. The se-ond one obtains the quality of approximation of eah ase. Experimentsusing di�erent domains, most of them from the UCI repository, showthat the redution tehniques maintain auray obtained when not us-ing them. The results obtained are ompared with those obtained usingwell-known redution tehniques.1 Introdution and motivationCase-Based Reasoning (CBR) systems solve problems by reusing the solutions tosimilar problems stored as ases in a ase memory [19℄ (also known as ase-base).However, these systems are sensitive to the ases present in the ase memory andoften its good auray rate depends on the signi�ant ases stored. Therefore,in CBR systems it is important to redue the ase memory in order to removenoisy ases. This redution allows us to ahieve a good generalisation auray.In this paper we present an initial approah to two di�erent redution teh-niques based on Rough Sets theory. Both redution tehniques was introduedinto our Case-Based Classi�er System alled BASTIAN. Case-Based Reasoningand Rough Sets theory have usually been used separately in the literature.The �rst one, Case-Based Reasoning [19, 10℄, is used in a wide variety of�elds and appliations (e.g. diagnosis, planning, language understanding). Weuse Case-Based Reasoning as an automati lassi�ation system.On the other hand, Rough Sets theory [16℄ is a Data Mining tehnique. Themain researh trends in Rough Sets theory -whih tries to extend the apabilitiesof reasoning systems- are: (1) the treatment of inomplete knowledge; (2) themanagement of inonsistent piees of information; and (3) the manipulation of



Maria Salam�o and Elisabet Golobardesvarious levels of representation, moving from re�ned universes of disourse tooarser ones and onversely.The redution tehniques proposed are: Auray Rough Sets Case Memory(AurCM) and Class Rough Sets Case Memory (ClassCM). Both Rough Setsredution tehniques use the redution of various levels of information. Fromthose levels of information we extrat relevant ases. The �rst tehnique, A-urCM, extrats an auray measure to apture the degree of ompleteness ofour knowledge. The seond one, ClassCM, obtains the quality of approximationof eah ase. It expresses the perentage of possible orret deisions when thease lassi�es new ases.The paper is strutured as follows: setion 2 introdues related work; next,setion 3 explains the Rough Sets theory; setion 4 details the proposed RoughSets redution tehniques; setion 5 desribes the Case-Based Classi�er Systemused in this study; setion 6 exposes the testbed of the experiments and theresults obtained; and �nally, setion 7 presents the onlusions and further work.2 Related workCase-Based Reasoning systems solve problems by reusing a orpus of previoussolving experiene stored (set of training instanes or ases T ) as a ase memoryof solved ases t. Redution tehniques are applied in Case-Based Reasoningsystems for two main reasons: (1) to redue storage requirements by inreasingexeution speed, and (2) to avoid sensitivity to noise. Thus, a performane goalfor any CBR system is the maintenane of a ase memory T maximizing overageand minimizing ase memory storage requirements. Redution tehniques removeinstanes of T obtaining a new training set S, S � T , that aims to maintain thegeneralization performane as well as redue the storage requirements.Many researhers have addressed the problem of ase memory redution [26℄.Related work on pruning a set of ases omes from the pattern reognition andmahine learning ommunity, most of them through studies of nearest neighbouralgorithm (NNA), and Instane-Based Learning (IBL) methods.The �rst kind of approahes to the redution of the ase memory are om-monly known as nearest neighbours editing rules. Most algorithms look for a sub-set of ases S of the original ase memory T . The �rst approah was CondensedNearest Neighbour (CNN) [9℄, whih ensures that all ases in T are lassi�edorretly, though it does not guarantee a minimal set and it is sensitive to noise.Seletive Nearest Neighbour (SNN) [20℄ extends CNN suh that every memberof T must be loser to a member of S of the same lass than to any member ofT (instead of S) of a di�erent lass. SNN is more omplex than other redutiontehniques and its learning time is signi�antly greater; it is also sensitive tonoise. Redued Nearest Neighbour (RENN) [6℄ removes an instane from S ifany other instane in T is mislassi�ed by the instanes remaining in S. RENNis omputationally more expensive than CNN, but it is able to remove noisyinstanes while retaining border ases (i.e. ases that are plaed at the bound-aries of two lasses). Edited Nearest Neighbour rule (ENN)[26℄, removes noisy



Rough Sets redution tehniques for Case-Based Reasoninginstanes, and maintains internal ases and lose border ones. Variable Similar-ity Metri (VSM)[13℄, removes instanes depending on a on�dene level and allthe K nearest neighbours. VSM is able to remove noisy instanes and internalinstanes and retains border ones.The seond kind of approahes are related to Instane Based Learning Algo-rithms (IBL) [1℄. IB1 is a simple implementation of NNA. IB2 is an inrementalalgorithm that does not neessarily lassify all the instanes orretly beauseit is sensitive to noise. IB2 is similar to CNN; it retains border points while iteliminates ases that are surrounded by members of the same lass. IB3 improvesIB2 retaining only those ases that have aeptable bounds. IB3 produes higherredution than IB2 and higher auray. It also redues sensitivity to noise. IB4extends IB3, by building a set of attribute weights for eah lass.There is another way to approah this problem. There are systems that mod-ify the instanes themselves, instead of simply deiding whih ones to keep. RISE[3℄ treats eah instane as a rule that an be generalised. EACH [23℄ introduedthe Nested Generalized Exemplars (NGE) theory, in whih hyperretangles areused to replae one or more instanes, thus reduing the original training set.Another approah to instane pruning systems are those that take into a-ount the order in whih instanes are removed [26℄. DROP1 is similar to RNNand RISE, with some di�erenes. DROP1 removes an instane from S (where S= T originally) if at least as many of its assoiates in S would be lassi�ed or-retly without it. This heuristi has some problems with noisy instanes, whihDROP2 tries to solve by removing an instane from S if at least as many of itsassoiates in T would be lassi�ed orretly without it. DROP3 is designed to�lter noise before sorting the instanes. DROP4 is a more areful noise �lter.Finally, DROP5 modi�es DROP2 trying to smooth the deision boundary.Finally, researhers have also foused on inreasing the overall ompetene,the range of target problems that an be suessfully solved, of the ase memorythrough ase deletion [24℄. Strategies have been developed for ontrolling asememory growth through methods suh as ompetene-preserving deletion [24℄and failure-driven deletion [18℄, as well as for generating ompat ase memoriesthrough ompetene-based ase addition [25, 28℄. Leake and Wilson [11℄ exam-ine the bene�ts of using �ne-grained performane metris to diretly guide aseaddition or deletion. This method is speially important for task domains withnon-uniform problem distributions. Finally, a ase-base maintenane methodthat avoids building sophistiated strutures around a ase-base or omplex op-erations is presented by Yang and Wu [27℄. Their method partitions ases intolusters where the ases in the same luster are more similar than ases in otherlusters. Clusters an be onverted to new smaller ase-bases.3 Rough Sets theoryZdzislaw Pawlak introdued Rough Sets theory in 1982 [16, 17℄. The idea ofRough Sets onsists of the approximation of a set by a pair of sets, alled thelower and the upper approximation of this set. In fat, these approximations



Maria Salam�o and Elisabet Golobardesare inner and losure operations in a ertain topology. These approximationsare generated by the available data about the elements of the set. The natureof Rough Sets theory makes them useful for reduing knowledge, extratingdependenies in knowledge, reasoning about knowledge, pattern reognition, et.We use Rough Sets theory for reduing and extrating the dependenies inknowledge. This redution of knowledge is the basis for omputing the relevaneof instanes into the Case-Based Classi�er System. We use that relevane in twodi�erent ways. The �rst one is Auray Rough Sets Case Memory and theseond one is Class Rough Sets Case Memory.First of all, we inorporate some onepts and de�nitions. Then, we explainhow to obtain the dependenies, in order to selet the set of instanes.Basi Conepts and De�nitionsWe have a Universe (U) (�nite not null set of objets that desribes our prob-lem, i.e. the ase memory). We ompute from our universe the onepts (objetsor ases) that form partitions. The union of all the onepts make the entire Uni-verse. Using all the onepts we an desribe all the equivalene relations (R)over the universe U . Let an equivalene relation be a set of features that desribea spei� onept. U=R is the family of all equivalene lasses of R.The universe and the relations form the knowledge base (K), de�ned asK =< U; R̂ >. Where R̂ is the family of equivalene relations over U . Everyrelation over the universe is an elementary onept in the knowledge base. Allthe onepts are formed by a set of equivalene relations that desribe them.Thus, we searh for the minimal set of equivalene relations that de�nes thesame onept as the initial set.Definition 1 (Indisernibility Relations)IND(P̂ ) = T R̂ where P̂ � R̂. The indisernibility relation is an equivalene relationover U . Hene, it partitions the onepts (ases) into equivalene lasses. These setsof lasses are sets of instanes indisernible with respet to the features in P . Suha partition is denoted as U=IND(P ). In supervised mahine learning, the sets ofases indisernible with respet to the lass attribute ontain the ases of eah lass.4 Rough Sets as redution tehniquesIn this setion we explain how to redue the ase memory using the Rough Setstheory. We obtain a minimal ase memory unifying two onepts: (1) approxi-mation sets of knowledge and (2) redution of searh spae. These two oneptsare the basis for the AurCM and ClassCM redution tehniques.Both redution tehniques deal with ases ontaining ontinuous, nominaland missing features. Rough Sets redution tehniques perform searh approxi-mating sets by other sets and both proposals are global. Global means that weselet the representative knowledge without taking into aount whih lass theases lassify. AurCM omputes an auray measure. ClassCM omputes the



Rough Sets redution tehniques for Case-Based Reasoninglassi�ation auray measure of eah ase in the representative knowledge. Wewant to remark that AurCM and ClassCM an be used in multilass tasks.First of all, this setion explains how to approximate and redue knowledge.Next, it desribes the uni�ation of both onepts to extrat the redued set ofases using two poliies: (1) Auray Rough Sets Case Memory (AurCM),and Class Rough Sets Case Memory (ClassCM).4.1 Approximating and Reduing the knowledgeApproximations of Set This is the main idea of Rough Sets, to approximate aset by other sets. The ondition set ontains all ases present in the ase memory.The deision set presents all the lasses that the ondition set has to lassify. Weare searhing for a subset of the ondition set able to lassify the same as theinitial set, so it approximates the same deision set. The following de�nitionsexplain this idea.LetK =< U; R̂ > be a knowledge base. For any subset of asesX � U and anequivalene relation R � IND(K) we assoiate two subsets alled: Lower RX ;and Upper RX approximations. If RX=RX then X is an exat set (de�nableusing subset R), otherwise X is a rough set with respet to R.Definition 2 (Lower approximation)The lower approximation, de�ned as: RX = SfY 2 U=R : Y � Xg is the set of allelements of U whih an ertainly be lassi�ed as elements of X in knowledge R.Definition 3 (Upper approximation)The upper approximation, RX = SfY 2 U=R : X TY 6= ;g is the set of elementsof U whih an possibly be lassi�ed as elements of X , employing knowledge R.Example 1If we onsider a set of 8 objets in our Universe, U = fx1; x2; x3; x4; x5; x6; x7; x8g,using R̂ = (A;B;C;D) as a family of equivalene relations over U . Where A =fx1; x4; x8g, B = fx2; x5; x7g, C = fx3g and D = fx6g. And we also onsider3 subsets of knowledge X1; X2; X3. Where X1 = fx1; x4; x5g, X2 = fx3; x5g,X3 = fx3; x6; x8g.The lower and upper approximations are:RX1 = ; and RX1 = A S B = fx1; x2; x4; x5; x7; x8gRX2 = C = fx3g and RX2 = B S C = fx2; x3; x5; x7gRX3 = C SD = fx3; x6g and RX3 = A S C S D = fx1; x3; x4; x6; x8gRedut and Core of knowledge This part is related to the onept of redu-tion of the searh spae. We are looking for a redution in the feature searhspae that de�nes the initial knowledge base. Next, redution tehniques applythis new spae to extrat the set of ases that represents the new ase memory.Intuitively, a redut of knowledge is its essential part, whih suÆes to de�neall onepts ourring in the onsidered knowledge, whereas the ore is the mostimportant part of the knowledge.Let R̂ be a family of equivalene relations and R 2 R̂. We will say that:



Maria Salam�o and Elisabet Golobardes{ R is indispensable if IND(R̂) 6= IND(R̂�fRg); otherwise it is dispensable.IND(R̂� fRg) is the family of equivalene R̂ extrating R.{ The family R̂ is independent if eah R 2 R̂ is indispensable in R; otherwiseit is dependent.Definition 4 (Redut)Q̂ 2 R̂ is a redut of R̂ if : Q̂ is independent and IND(Q̂) = IND(R̂). Obviously,R̂ may have many reduts. Using Q̂ it is possible to approximate the same as usingR̂. Eah redut has the property that a feature an not be removed from it withouthanging the indisernibility relation.Definition 5 (Core)The set of all indispensable relations in R̂ will be alled the ore of R̂, and will bedenoted as:CORE(R̂) = TRED(R̂). Where RED(R̂) is the family of all redutsof R̂. The ore an be interpreted as the set of the most harateristi part ofknowledge, whih an not be eliminated when reduing the knowledge.Example 2If we onsider a set of 8 objets in our Universe, U = fx1; x2; x3; x4; x5; x6; x7; x8g,using R̂ = fP;Q; Sg as a family of equivalene relations over U . Where P an beolours (green, blue, red, yellow); Q an be sizes (small, large, medium); and S anbe shapes (square, round, triangular, retangular). For example, we an suppose thatthe equivalene lasses are:U=P = f (x1; x4; x5), (x2; x8), (x3),(x6; x7) gU=Q =f (x1; x3; x5), (x6), (x2; x4; x7; x8) gU=S = f (x1; x5), (x6), (x2; x7; x8), (x3; x4) gAs an be seen, every equivalene lass divides the Universe in a di�erent way.Thus the relation IND(R) has the following equivalene lasses:U=IND(R̂) = f(x1; x5);(x2; x8);(x3);(x4);(x6);(x7)gThe relation P is indispensable in R̂, sine:U=IND(R̂� fPg) = f (x1; x5); (x2; x7; x8); (x3); (x4); (x6) g 6= U=IND(R̂).The information obtained removing relation Q is equal, so it is dispensable in R̂.U=IND(R̂� fQg) = f (x1; x5); (x2; x8); (x3); (x4); (x6); (x7) g=U=IND(R̂).Hene the relation S is also dispensable in R.U=IND(R̂� fSg) = f (x1; x5); (x2; x8); (x3);(x4); (x6); (x7) g=U=IND(R̂).That means that the lassi�ation de�ned by the set of three equivalene re-lations P;Q and S is the same as the lassi�ation de�ned by relation P and Qor P and S. Thus, the reduts and the ore are: RED(R̂) = f(P;Q); (P; S)g andCORE(R̂) = fPg.4.2 Reduing the set of asesAuray Rough Sets Case Memory and Class Rough Sets Case Memory, themethods whih we propose, use the information of reduts and ore to selet theases that are maintained in the ase memory.



Rough Sets redution tehniques for Case-Based ReasoningAuray Rough Sets Case Memory This redution tehnique omputesthe Auray reduts oeÆient (AurCM) of eah ase in the knowledge base(ase memory). The oeÆient �(t) is omputed as:For eah instane t 2 T it omputes :�(t) = ard ( P (t))ard ( P (t)) (1)Where �(t) is the relevane of the instane t; P is the set that ontainsthe reduts and ore obtained from the original data; T is the ondition set;ard is the ardinality of one set; and �nally P and P are the lower and upperapproximations, respetively.For eah ase we apply the following algorithm, where the on�deneLevel isthe �(t) value omputed:1. Algorithm SeletCases2. onfideneLevel = 0:03. for eah ase4. selet the ase if it aomplishes this on�deneLevel5. end for6. end AlgorithmIn this algorithm the onfideneLevel is set at to zero, in order to only seletthe set of ases that aomplishes this spae region. Inexatness of a set of asesis due to the existene of a borderline region. The greater a borderline region of aset, the lower the auray of the set. The auray measure expresses the degreeof ompleteness of our knowledge about the set P . This redution tehniqueobtains the minimal set of instanes present in the original ase memory. Theauray oeÆient explains if an instane is needed or not, so �(t) is a binaryvalue. When the value �(t)= 0 it means an internal ase, and a �(t) =1 means aborderline ase. This tehnique does not guarantee that all lasses will be presentin the set of instanes seleted. However, it guarantees that all the internal pointsthat represent a lass will be inluded. The auray expresses the perentage ofpossible orret deisions when lassifying ases employing knowledge P . Thismeasure approximates the overage of eah ase.Class Rough Sets Case Memory In this redution tehnique we use the qual-ity of lassi�ation oeÆient (ClassCM), omputed using the ore and redutsof information. The lassi�ation auray oeÆient �(t) is omputed as:For eah instane t 2 T it omputes :�(t) = ard ( P (t))ard ( all instanes) (2)Where �(t) is the relevane of the instane t; P is the set that ontains thereduts and ore obtained from the original data; T is the ondition set; ard isthe ardinality of one set; and �nally P is the lower approximation.



Maria Salam�o and Elisabet GolobardesThe ClassCM oeÆient expresses the perentage of ases whih an be or-retly lassi�ed employing the knowledge t. This oeÆient (�(t)) has a rangeof values between 0 to 1, where 0 means that the instane lassi�es inorretlythe range of ases that belong to its lass and a value of 1 means an instanethat lassi�es orretly the range of ases that belong to its lass. In this redu-tion tehnique the ases that obtain a higher value of �(t) represent ases thatlassify orretly the ases, but these ases are to be found on the searh spaeboundaries.This redution tehnique guarantees a minimal set of instanes of eah lassalso applying the following algorithm, where the on�deneLevel is the �(t)omputed previously:1. Algorithm SeletCases2. onfideneLevel = 1:0 and freeLevel = ConstantTuned (set at 0.01)3. selet all possible ases that aomplish this on�deneLevel4. while all lasses are not seleted5. on�deneLevel = on�deneLevel - freeLevel6. selet all possible ases that aomplish this on�deneLevel7. end while8. end AlgorithmDue to the range of values, it is possible to selet not only the best set ofinstanes as ClassCM omputes. We selet a set of instanes depending on theon�dene level of �(t) that we ompute. The on�dene level is redued untilall the lasses have a minimum of one instane present in the new ase memory.The introdution of these tehniques into a CBR system is explained in se-tion 5.1.5 Desription of the BASTIAN SystemThe study desribed in this paper was arried out in the ontext of BASTIAN, aase-BAsed SysTem In lAssi�atioN [22, 21℄. This setion details two points:(1) the main apabilities of the BASTIAN platform used in the study arried outin this paper, in order to understand what kind of CBR yle has been appliedin the experimental analysis; (2) how to introdue the Rough Sets redutiontehniques into a Case-Based Reasoning System.The BASTIAN system is an extension of CaB-CS (Case-Based Classi�erSystem) system [5℄. The BASTIAN system allows the user to test several vari-ants of CBR (e.g. di�erent retrieval or retain phases, di�erent similarity fun-tions and weighting methods). For details related to the BASTIAN platform see[22℄. BASTIAN has been developed in JAVA language and the system is beingimproved with new apabilities.BASTIAN platform apabilitiesThe system apabilities are developed to work separately and independently ino-operation with the rest. Eah apability desribed in the general struture



Rough Sets redution tehniques for Case-Based Reasoninghas a desription of the general behaviour that it has to ahieve. The main goalis to obtain a general struture that ould hange dynamially depending on thetype of Case-Based Reasoner we want to develop. The main apabilities are:{ The CaseMemory de�nes the behaviour for di�erent ase memory organi-zations. In this study, we use a list of ases. Our main goal in this paperis to redue the ase memory; for this reason, we have not fous on therepresentation used by the system.{ The SimilarityFuntionInterfae onentrates on all the harateristis re-lated to similarity funtions. It allows us to hange the similarity funtiondynamially within the system. In this paper, we use the K-Nearest Neigh-bour similarity funtion.{ The WeightingInterfae ontains the main abilities to ompute the featurerelevane in a Case-Based Classi�er System [22℄. It is related to the Retrieval-Interfae and the SimilarityFuntionInterfae. This paper does not use themin order to test the reliability of our new redution tehniques. Further workwill onsist of testing the union of both proposals.{ The fRetrieval, Reuse, Revise, RetaingInterfae are the four phases of theCBR yle. These interfaes desribe the behaviour of eah phase.� Retrieval interfae is applied using K=1 and K=3 values in the K-NNpoliy.� fReuse, Revise, Retaing interfae are applied hoosing a standard on�g-uration for the system, in order to analyse only the redution tehniques.Our aim, is to improve the generalisation auray of our system by reduingthe ase memory in order to remove the noisy instanes and maintain borderpoints [26℄.5.1 Rough Sets inside the BASTIAN platformFigure 1 shows the meta-level proess when inorporating the Rough Sets intothe CBR system. The Rough Sets proess is divided into three steps:The �rst one disretises the instanes, it is neessary to �nd the most relevantinformation using the Rough Sets theory. In that ase, we disretise ontinuousfeatures using [4℄ algorithm. The seond step searhes for the reduts and theore of knowledge using the Rough Sets theory, as was desribed in setion 4.Finally, the third step uses the ore and the reduts of knowledge to deidewhih ases are maintained in the ase memory using AurCM and ClassCMtehniques, as explained in 4.2.Rough Sets theory has been introdued as redution tehniques in two phasesof the CBR yle. The �rst phase is the start-up phase and the seond one isthe retain phase. The system adds a previous phase Startup, whih is not in theCase-Based Reasoning yle.This initial phase prepares the initial start-up of the system. It omputes thenew initial ase memory from the training ase memory; this new ase memoryis used by the retrieval phase later. The retain phase omputes a new ase



Maria Salam�o and Elisabet Golobardesmemory from the ase memory if a new ase is stored. In this paper, we fousour redution tehniques on the retrieval phase. The ode of Rough Sets theoryin the Case-Based Reasoning has been implemented using a publi Rough SetsLibrary [7℄.
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instancesFig. 1. High level proess of Rough Sets.6 Empirial studyThis setion is strutured as follows: �rst, we desribe the testbed used in theempirial study; then we disuss the results obtained from the redution teh-niques based on Rough Sets. We ompare the results ompared to CBR systemworking with the original ase memory. And �nally, we also ompare the resultswith some related learning systems.6.1 TestbedIn order to evaluate the performane rate, we use twelve datasets. Datasets anbe grouped in two ways: publi and private. The datasets and their harateristisare listed in table 1.Publi datasets are obtained from the UCI repository [15℄. They are: breastaner Wisonsin (breast-w), glass, ionosphere, iris, sonar and vehile. Privatedatasets omes from our own repository. They deal with diagnosis of breastaner and syntheti datasets. Datasets related to diagnosis are biopsy and mam-mogram. Biopsy [5℄ is the result of digitally proessed biopsy images, whereasmammogram onsists of deteting breast aner using the miroali�ationspresent in a mammogram [14, 8℄. In mammogram eah example ontains thedesription of several �Ca present in the image; in other words, the input in-formation used is a set of real valued matries. On the other hand, we use twosyntheti datasets to tune up the learning algorithms, beause we knew their so-lutions in advane. MX11 is the eleven input multiplexer. TAO-grid is a datasetobtained from sampling the TAO �gure using a grid [12℄.These datasets were hosen in order to provide a wide variety of appliationareas, sizes, ombinations of feature types, and diÆulty as measured by theauray ahieved on them by urrent algorithms. The hoie was also madewith the goal of having enough data points to extrat onlusions.



Rough Sets redution tehniques for Case-Based ReasoningAll systems were run using the same parameters for all datasets. The per-entage of orret lassi�ations has been averaged over strati�ed ten-fold ross-validation runs, with their orresponding standard deviations. To study the per-formane we use paired t-test on these runs.Table 1. Datasets and their harateristis used in the empirial study.Dataset Refe Sam- Nume- Simbo- Cla- Inon-rene ples ri feats. li feats. sses sistent1 Biopsy BI 1027 24 - 2 Yes2 Breast-w BC 699 9 - 2 Yes3 Glass GL 214 9 - 6 No4 Ionosphere IO 351 34 - 2 No5 Iris IR 150 4 - 3 No6 Mammogram MA 216 23 - 2 Yes7 MX11 MX 2048 - 11 2 No8 Sonar SO 208 60 - 2 No9 TAO-Grid TG 1888 2 - 2 No10 Vehile VE 846 18 - 4 No6.2 Experimental analysis of redution tehniquesTable 2 shows the experimental results for eah dataset using CBR system RoughSets redution tehniques: AurCM and ClassCM, IB2, IB3 and IB4 [1℄. This ta-ble ontains the mean perentage of orret lassi�ations (%PA)(ompeteneofthe system) and the mean storage size (%MC). We want to ompare the resultsobtained using the proposed ClassCM redution tehnique with those obtainedby these lassi�er systems. Time performane is beyond the sope of this paper.Table 2. Mean perentage of orret lassi�ations and mean storage size. Two-sidedpaired t-test (p = 0.1) is performed, where a � and Æ stand for a signi�ant improvementor degradation of our ClassCM approah related to the system ompared. Bold fontindiates the best predition auray.Ref. CBR AurCM ClassCM IB2 IB3 IB4BIBCGLIOIRMAMXSOTGVE
%PA %CM83.15 100.096.28 100.072.42 100.090.59 100.096.0 100.064.81 100.078.61 100.084.61 100.095.76 100.067.37 100.0

%PA %CM75.15� 2.7594.56 58.7658.60� 23.8888.60� 38.9894.00Æ 96.5066.34Æ 81.5668.00� 0.5475.48� 33.0196.34Æ 95.3964.18� 34.75
%PA %CM84.41 1.7396.42 43.9571.12 76.1192.59 61.0087.40 8.8559.34 37.5078.74 99.9086.05 67.0586.97 13.1468.42 65.23

%PA %CM75.77� 26.6591.86� 8.1862.53� 42.9986.61� 15.8293.98Æ 9.8566.19 42.2887.07Æ 18.9980.72 27.3094.87Æ 7.3865.46� 40.01
%PA %CM78.51� 13.6294.98 2.8665.56� 44.3490.62 13.8991.33 11.2660.16 14.3081.59 15.7662.11� 22.7095.04Æ 5.6363.21� 33.36

%PA %CM76.46� 12.8294.86 2.6566.40� 39.4090.35 15.4496.66 12.0060.03 21.5581.34 15.8463.06� 22.9293.96Æ 5.7963.68� 31.66Both Rough Sets redution tehniques have the same initial onept: to usethe redution of knowledge to measure the auray (AurCM) or the qualityof lassi�ation (ClassCM).



Maria Salam�o and Elisabet GolobardesAlthough redution is important, we deided to use these two di�erent poli-ies in order to maintain or even improve, if possible, predition auray whenlassifying a new ase. That fat is deteted in the results. For example, thevehile dataset obtains good auray as well as redues the ase memory, inboth tehniques. However, the ase memory redution is not large.There are some datasets that obtain a higher redution of the ase memorybut derease the predition auray, although this redution in not signi�ant.Comparing AurCM and ClassCM, the most regular behaviour is ahievedusing ClassCM. This behaviour is due to its own nature, beause it introduesall the border ases lassifying the lass orretly into the redued ase memory,as well as the internal ases needed to omplete all lasses. AurCM alulatesthe border points of the ase memory. AurCM alulates the degree of om-pleteness of our knowledge, whih an be seen as the overage [25℄. AurCMpoints out the relevane of lassi�ation of eah ase.ClassMC redution tehnique obtains on average a higher generalisation a-uray than IBL, as an be seen in table 2. There are some datasets whereClassCM shows a signi�ant inrease in the predition auray. The perfor-mane of IBL algorithms delines when ase memory is redued. CBR obtainson average higher predition auray than IB2, IB3 and IB4.On the other hand, the mean storage size obtained for ClassCM is higherthan that obtained when using IBL shemes (see table 2). IBL algorithms obtaina higher redution of the ase memory. However, IBL performane delines,in almost all datasets (e.g. Breast-w, Biopsy). This degradation is signi�antin some datasets, as happens with the sonar dataset. Our initial purpose forthe redution tehniques was to redue the ase memory as muh as possible,maintaining the generalisation auray. We should ontinue working to obtaina higher redution on the ase memory.Table 3. Mean perentage of orret lassi�ations and mean storage size. Two-sidedpaired t-test (p = 0.1) is performed, where a � and Æ stand for a signi�ant improvementor degradation of our ClassCM approah related to the system ompared. Bold fontindiates the best predition auray.Ref. ClassCM CNN SNN DEL ENN RENNBIBCGLIOIRMAMXSOTGVE
%PA %CM84.41 1.7396.42 43.9571.12 76.1192.59 61.0087.40 8.8559.34 37.5078.74 99.9086.05 67.0586.97 13.1468.42 65.23

%PA %CM79.57� 17.8295.57 5.8767.64 24.9788.89� 9.9496.00Æ 14.0061.04 25.0689.01Æ 37.1783.26 23.4594.39Æ 7.1569.74 23.30
%PA %CM78.41� 14.5195.42 3.7267.73 20.5185.75� 7.0094.00Æ 9.9363.42Æ 18.0589.01Æ 37.1580.38 20.5294.76Æ 6.3869.27 19.90

%PA %CM82.79� 0.3596.57Æ 0.3264.87� 4.4780.34� 1.0196.00Æ 2.5262.53Æ 1.0368.99� 0.5577.45� 1.1287.66 0.2662.29� 2.55
%PA %CM77.82� 16.5295.28 3.6168.23 19.3288.31� 7.7991.33 8.5963.85Æ 21.6685.05Æ 32.5485.62 19.3496.77Æ 3.7566.91 20.70

%PA %CM81.03� 84.5197.00Æ 96.3468.66 72.9085.18� 86.3996.00Æ 94.4465.32Æ 66.9299.80Æ 99.8982.74 86.4995.18Æ 96.5168.67 74.56To �nish the empirial study, we also run additional well-known redutionshemes on the previous data sets. The redution algorithms are: CNN, SNN,DEL, ENN, RENN, DROP1, DROP2, DROP3, DROP4 and DROP5 (a ompleteexplanation of them an be found in [26℄). We use the same data sets desribed



Rough Sets redution tehniques for Case-Based Reasoningabove but with di�erent ten-fold ross validation sets. We want to ompare theresults obtained using the proposed ClassCM redution tehnique with thoseobtained by these redution tehniques. Tables 3 and 4 show the mean preditionauray and the mean storage size for all systems in all datasets, respetively.Table 3 shows the behaviour of our ClassCM redution tehnique in om-parison with CNN, SNN, DEL, ENN and RENN tehniques. The results are onaverage better than those obtained by the redution tehniques studied. RENNimproves the results of ClassCM in some data sets (e.g. Breast-w) but its redu-tion on the ase memory is lower than ClassCM.Table 4. Mean perentage of orret lassi�ations and mean storage size. Two-sidedpaired t-test (p = 0.1) is performed, where a � and Æ stand for a signi�ant improvementor degradation of our ClassCM approah related to the system ompared. Bold fontindiates best predition auray.Ref. ClassCM DROP1 DROP2 DROP3 DROP4 DROP5BIBCGLIOIRMAMXSOTGVE
%PA %CM84.41 1.7396.42 43.9571.12 76.1192.59 61.0087.40 8.8559.34 37.5078.74 99.9086.05 67.0586.97 13.1468.42 65.23

%PA %CM76.36� 26.8493.28 8.7966.39 40.8681.20� 23.0491.33 12.4461.60 42.6987.94Æ 19.0284.64 25.0594.76Æ 8.0364.66� 38.69
%PA %CM76.95� 29.3892.56 8.3569.57 42.9487.73� 19.2190.00 14.0758.33 51.34100.00Æ 98.3787.07 28.2695.23Æ 8.9567.16 43.21

%PA %CM77.34� 15.1696.28 2.7067.27 33.2888.89 14.2492.66 12.0758.51 12.6082.37 17.1076.57� 16.9394.49Æ 6.7666.21 29.42
%PA %CM76.16� 28.1195.00 4.3769.18 43.3088.02� 15.8388.67 7.9358.29 50.7786.52 25.4784.64 26.8289.41Æ 2.1868.21 43.85

%PA %CM76.17� 27.0393.28 8.7965.02� 40.6581.20� 23.0491.33 12.4461.60 42.6486.52 18.8984.64 25.1194.76Æ 8.0364.66� 38.69In table 4 the results obtained using ClassCM and DROP algorithms areompared. ClassCM shows better ompetene for some data sets (e.g. biopsy,breast-w, glass), although its results are also worse in others (e.g. multiplexer).The behaviour of these redution tehniques are similar to the previously stud-ied. ClassCM obtains a balane behaviour between ompetene and size. Thereare some redution tehniques that obtain best ompetene for some data setsreduing less the ase memory size.All the experiments (tables 2, 3 and 4) point to some interesting observa-tions. First, it is worth noting that the individual AurCM and ClassCM workswell in all data sets, obtaining better results on ClassCM beause the redutionis smaller. Seond, the mean storage obtained using AurCM and ClassCMsuggest omplementary behaviour. This e�et an be seen on the tao-grid dataset, where AurCM obtains a 95.39% mean storage and ClassCM 13.14%. Wewant to remember that ClassCM omplete the ase memory in order to obtainat least one ase of eah lass. This omplementary behaviour suggests that theyan be used together in order to improve the ompetene and maximise the re-dution of the ase memory. Finally, the results on all tables suggest that allthe redution tehniques work well in some, but not all, domains. This has beentermed the seletive superiority problem [2℄. Consequently, future work onsistsof ombining both approahes in order to exploit the strength of eah one.
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