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Abstract

Multi-Agent Systems (MAS) are computerised systems composed of autonomous
software agents that interact to solve complex problems. Within a MAS, agents
require some mechanism to coordinate their activities. In the MAS literature,
norms have been widely used to coordinate agents’ activities. Thus, given
a MAS, a major research challenge is how to synthesise a normative system,
namely a collection of norms, which supports its agents’ coordination.

This dissertation focuses on the automated synthesis of norms for open Multi-
Agent Systems. In an open MAS, the agent population may change along time,
agents may be developed by third parties and their behaviours are not known
beforehand. These particular conditions make specially challenging to synthesise
a normative system to govern an open MAS.

The MAS literature has mainly investigated two general approaches to norm
synthesis: off-line design, and on-line synthesis. The first approach aims at
synthesising a normative system at design time. With this aim, it assumes
that the MAS state space is known at design time and does not change at
runtime. This goes against the nature of open MAS, and thus off-line design is
not appropriate to synthesise their norms. Alternatively, on-line norm synthesis
considers that norms are synthesised at runtime. Most on-line synthesis research
has focused on norm emergence, which considers that agents synthesise their own
norms, thus assuming that they have norm synthesis capabilities. Again, this
cannot be assumed in open MAS.

Against this background, this dissertation introduces a whole computational
framework to perform on-line norm synthesis for open Multi-Agent Systems.
Firstly, this framework provides a computational model to synthesise norms for
a MAS at runtime. Such computational model requires neither knowledge about
agents’ behaviours beforehand nor their participation in the norm synthesis pro-
cess. Instead, it considers a regulatory entity that observes agents’ interactions
at runtime, identifying situations that are undesirable for coordination to sub-
sequently synthesise norms that regulate these situations. Our computational
model has been conceived to be of general purpose so that it can be employed
to synthesise norms in a wide range of application domains by providing little
domain-dependent information. Secondly, our framework provides an abstract
architecture to implement such regulatory entity (the so-called Norm Synthesis
Machine), which observes a MAS and executes a synthesis strategy to synthe-
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sise norms. Thirdly, our framework encompasses a family of norm synthesis
strategies intended to be executed by the Norm Synthesis Machine. Overall,
this family of strategies supports multi-objective on-line norm synthesis.

Our first synthesis strategy, the so-called base, aims at synthesising effective
normative systems that successfully avoid situations that are undesirable for a
MAS’ coordination. Then, two further strategies (called iron and simon) go
beyond effectiveness and also consider compactness as a norm synthesis goal.
iron and simon take alternative approaches to synthesise compact normative
systems that, in addition to effectively achieve coordination, are as synthetic
as possible. This allows them to reduce agents’ computational efforts when
reasoning about norms. A fourth strategy, the so-called lion, goes beyond
effectiveness and compactness to also consider liberality as a synthesis goal. lion
aims at synthesising normative systems that are effective and compact while
preserving agents’ freedom to the greatest possible extent. Our final strategy is
desmon, which is capable of synthesising norms by considering different degrees
of reactivity. desmon allows to adjust the amount of information that is required
to decide whether a norm must be included in a normative system or not. Thus,
desmon can synthesise norms either by being reactive (i.e., by considering little
information), or by being more deliberative (by employing more information).

We provide empirical evaluations of our norm synthesis strategies in two
application domains: a road traffic domain, and an on-line community domain.
In this former domain, we employ these strategies to synthesise effective, compact
and liberal normative systems that successfully avoid collisions between cars. In
the latter domain, our strategies synthesise normative systems based on users’
complaints about inappropriate contents. In this way, our strategies implement a
regulatory approach that synthesises norms when there is enough user consensus
about the need for norms.

Overall, this thesis advances in the state of the art in norm synthesis by
providing a novel computational model, an abstract architecture and a family of
strategies for on-line norm synthesis for open Multi-Agent Systems.



Resum

Els sistemes Multi-Agent (MAS) són sistemes computeritzats composats
d’agents autònoms que interaccionen per resoldre problemes complexos. A un
MAS, els agents requereixen algun mecanisme per coordinar les seves activitats.
A la literatura en Sistemes Multi-Agent, les normes han sigut àmpliament util-
itzades per coordinar les activitats dels agents. Per tant, donat un MAS, un dels
majors reptes d’investigació és el de sintetizar el sistema normatiu, és a dir la
col·lecció de normes, que suporti la coordinació dels agents.

Aquesta tesi es centra en la śıntesi automàtica de normes per sistemes Multi-
Agent oberts. A un MAS obert, la població d’agents pot canviar amb el temps,
els agents poden ésser desenvolupats per terceres parts, i els comportaments dels
agents són desconeguts per endavant. Aquestes condicions particulars fan espe-
cialment complicat sintetizar el sistema normatiu que reguli un sistema Multi-
Agent obert.

En general, la literatura en Sistemes Multi-Agent ha investigat dúes aprox-
imacions a la śıntesi de normes: disseny off-line, i śıntesi on-line. La primera
aproximació consisteix en sintetizar un sistema normatiu en temps de disseny.
Amb aquest propòsit, aquesta aproximació assumeix que l’espai d’estats d’un
MAS és conegut en temps de disseny i no canvia en temps d’execució. Això va
contra la natura dels sistemes Multi-Agent oberts, i per tant el disseny off-line no
és apropiat per sintetitzar les seves normes. Com a alternativa, la śıntesi on-line
considera que les normes són sintetizades en temps d’execució. La majoria de
recerca en śıntesi on-line s’ha centrat en la emergència de normes, que considera
que els agents sintetizen les seves pròpies normes, per tant assumint que tenen
la capacitat de sintetitzar-les. Aquestes condicions tampoc es poden assumir en
un MAS obert.

Donat això, aquesta tesi introdueix un marc computacional per la śıntesi on-
line de normes en sistemes Multi-Agent oberts. Primer, aquest marc proveeix
un model computacional per sintetizar normes per un MAS en temps d’execució.
Aquest model computacional no requereix ni coneixement sobre els comporta-
ments dels agents per endavant ni la seva participació en la śıntesi de normes. En
canvi, considera que una entitat reguladora observa les interaccions dels agents
en temps d’execució, identificant situacions indesitjades per la coordinació i sin-
tetizant normes que regulen aquestes situacions. El nostre model computacional
ha sigut dissenyat per ésser de propòsit general per tal que pugui ser utilitzat
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en la śıntesi de normes en un ampli ventall de dominis d’aplicació proporcio-
nant només informació clau sobre el domini. Segon, el nostre marc proveeix una
arquitectura abstracta per implementar aquesta entitat reguladora, anomenada
Màquina de Śıntesi, que observa un MAS en temps d’execució i executa una
estratègia de śıntesi que s’encarrega de sintetizar normes. Tercer, el nostre marc
incorpora una familia d’estratègies de śıntesi destinades a ésser executades per
una màquina de śıntesi. En general, aquesta familia d’estratègies soporta la
śıntesi multi-objectiu i on-line de normes.

La nostra primera estratègia, anomenada base, està dissenyada per sin-
tetitzar sistemes normatius eficaços que evitin de manera satisfactòria situa-
cions indesitjades per la coordinació d’un sistema Multi-Agent. Després, dúes
estratègies de śıntesi, anomenades iron i simon, van més enllà de la eficàcia i
també consideren la compacitat com a objectiu de śıntesi. iron i simon prenen
aproximacions alternatives a la śıntesi de sistemes normatius compactes que, a
més d’aconseguir la coordinació de manera efectiva, siguin tant sintètics com
possible. Això permet a aquestes estratègies reduir els esforços computacionals
dels agents a l’hora de raonar sobre les normes. Una quarta estratègia, anom-
enada lion, va més enllà de la eficàcia i la compacitat per considerar també la
liberalitat com a objectiu de śıntesi. lion sintetitza sistemes normatius que són
eficaços i compactes mentre preserven la llibertat dels agents tant com possi-
ble. La nostra última estratègia és desmon, que és capaç de sintetizar normes
considerant diferents graus de reactivitat. desmon permet ajustar la quantitat
d’informació necessària per decidir si una norma ha d’ésser o no inclosa a un
sistema normatiu. desmon pot sintetizar normes éssent reactiu (considerant
poca informació), o éssent més deliberatiu (considerant més informació).

En aquesta tesi presentem avaluacions emṕıriques de les nostres estratègies
de śıntesi en dos dominis d’aplicació: el domini del tràfic, i el domini de les
comunitats on-line. En aquest primer domini, utilitzem les nostres estratègies
per sintetizar sistemes normatius eficaços, compactes i liberals que eviten coli-
sions entre cotxes. Al segon domini, les nostres estratègies sintetizen sistemes
normatius basant-se en les queixes dels usuaris de la comunitat sobre continguts
inapropiats. D’aquesta manera, les nostres estretègies implementen un mecan-
isme de regulació que sintetiza normes quan hi ha suficient consens entre els
usuaris sobre la necessitat de normes.

Aquesta tesi avança en l’estat de l’art en śıntesi de normes al proporcionar
un novedós model computacional, una arquitectura abstracta i una familia
d’estratègies per la śıntesi on-line de normes per sistemes Multi-Agent oberts.



Acknowledgements

I am so grateful to so many people that I do not know where to start by. During
the years this adventure lasted, I had the chance to work side by side with
brilliant minds and to know wonderful people. Somehow, all of them have left
an indelible mark on me.

First, and foremost, I want to express my most sincere gratitude to my
advisors. Because thanks to you I could learn from the best. To Maite López-
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Chapter 1

Introduction

A norm is a behavioural pattern that specifies how the individuals of a society
are expected to behave [Bicchieri, 2006]. Typically, norms impose restrictions on
the behaviour of individuals. These behavioural constraints play two important
roles. At the individual (micro) level, they ease decision making by ruling out
various courses of action, thus reducing the decision space of alternatives that
need to be considered. At the social (macro) level, they provide means whereby
individuals can coordinate their activities using only local decision-making [Bin-
more, 2005]. Norms have thus played an essential role in facilitating cooperation
[Elster, 1989b] and coordination [Bicchieri, 2006] in human societies. For in-
stance, humans employ traffic rules to coordinate drivers’ activities and hence
ensure traffic safety and fluidity [Åberg, 1998].

During the last three decades, the rise of technology has promoted the ad-
vent of Multi-Agent Systems (MAS), these computerised systems in which au-
tonomous agents meet and interact to solve complex problems. Within a MAS,
agents are typically assumed to have preferences or goals that may not be aligned
with each other. To successfully interact, they require some mechanism whereby
they can coordinate their activities. Inspired on human societies, researchers
have widely used norms to coordinate agents’ activities in Multi-Agent Systems
[Dignum, 1999a, Boella et al., 2006, Shoham and Leyton-Brown, 2009]. Co-
ordination in this sense is usually understood as regulating agents’ actions in
such a way that (1) each agent can successfully achieve its goals without pre-
venting other agents from achieving theirs; and (2) some global, system-level
goals can be achieved. Since the seminal work of Shoham et al. [Shoham and
Tennenholtz, 1995] the problem of synthesising norms to achieve coordination in
a Multi-Agent System has attracted considerable attention. Solving this norm
synthesis problem is specially challenging in the case of open Multi-Agent Sys-
tems, which are typically characterised by their uncertainty. Briefly, in an open
MAS, the behaviours of its participants are unknown, which makes highly dif-
ficult to determine what type of norms should govern the system to achieve
coordination.

Against this background, this dissertation introduces a computational frame-

1
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work to synthesise norms for open Multi-Agent Systems. This framework is
composed of: (1) a computational model to synthesise norms for a MAS without
requiring previous knowledge about the agents’ behaviours and their potential
interactions; (2) an abstract architecture to support the implementation of this
norm synthesis model; and (3) a family of synthesis strategies that implement
this norm synthesis model and focus on different synthesis goals. Overall, these
strategies allow to synthesise normative systems (i.e., sets of norms) that are
effective to coordinate a MAS, while reducing the agents’ efforts when reasoning
about norms and preserving their freedom as much as possible.

The remainder of this chapter is organised as follows. Section 1.1 introduces
the reasons that motivated this dissertation. Then, Section 1.2 presents the re-
search questions this dissertation aims at answering and settles some research
goals. Next, Section 1.3 introduces two case studies in which norms can be
employed to achieve coordination. Thereafter, Section 1.4 introduces the contri-
butions of this thesis and the publications produced as a result of it, and Section
1.6 outlines the publications derived from this thesis.

1.1 Motivation

Open Multi-Agent Systems are those whose population is open, namely in
which the agents can freely join and leave the system at any time. Examples
of open MAS include agent-mediated electronic commerce [Tsvetovatyy et al.,
1997, Guttman et al., 1998, Dellarocas and Klein, 2000], search and rescue oper-
ations [Kitano et al., 1997, Jennings et al., 1997, Kitano et al., 1999], and virtual
supply chains [Fischer et al., 1996, Fox et al., 2000]. One of the most relevant
characteristics of open MAS is the heterogeneity of their participants. In such
systems, agents can be designed independently (maybe by third parties) and
thus there is no possible access to their internal machinery. Therefore, as pre-
viously detailed, no assumptions can be made about their behaviours a priori.
These particular conditions make specially challenging to determine the norms
that should govern such kind of systems. The uncertainty about the situations
that will arise in a MAS make challenging to assess what and how to regulate.

In the literature, we can differentiate two strands of work regarding the syn-
thesis of norms for MAS: off-line design of norms, and on-line synthesis of norms.
On the one hand, the off-line design of norms aims at computing the norms of
a MAS at design time, namely before the agents start to interact. On the
other hand, on-line norm synthesis mainly focuses on how developing techniques
whereby norms can emerge at runtime within a MAS. The subsequent sections
analyse the strengths and weaknesses of both approaches. Furthermore, they
motivate the need for a norm synthesis framework such as the one introduced in
this dissertation.
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1.1.1 Off-line norms design

When facing the problem of computing the norms that will coordinate a MAS,
one may naturally think that a good approach is to design the norms while
designing the MAS. This is the case of off-line norms design [Goldman and
Rosenschein, 1993, Conte and Castelfranchi, 1995, Shoham and Tennenholtz,
1995, Castelfranchi et al., 1998, Saam and Harrer, 1999, Fitoussi and Tennen-
holtz, 2000, Schelling, 2006]. Briefly, off-line design consists in: (i) characterising
all the possible states of a MAS at design time; (ii) identifying those states that
must be regulated to achieve coordination; (iii) designing norms to regulate such
states; and (iv) hard-wiring norms into the agent machinery (logic). In essence,
this top-down regulation approach equals to designing a software system. An
example is the seminal work by Shoham and Tennenholtz [Shoham and Tennen-
holtz, 1995], in which norms are designed off-line to coordinate a group of robots
to prevent them from colliding while moving through a grid.

The main advantage of off-line design is that it allows a greater degree control
of a MAS from its very initial stages, since norms govern it from the beginning.
Nevertheless, the off-line design problem has been proven to be highly complex
(NP-complete) [Shoham and Tennenholtz, 1995]. Briefly, going trough the entire
system state space is infeasible in systems where the size of the state space is
large. These complexity issues have prompted research into the development of
methods for managing the size of the system state space [Christelis and Rovatsos,
2009], but even so the state space is typically unmanageable. Therefore off-line
design can be applied only whenever the system state space can be computed
in a reasonable amount of time. Unfortunately, even if the state space were
manageable, off-line design cannot be used to synthesise norms for open MAS
for the following reasons. First, it assumes that the agents’ behaviours and
the population composition are known at design time and do not change at
runtime. Second, it assumes that norms can be hard-wired into the agents. As
previously discussed, these conditions cannot be guaranteed in an open MAS,
where the agents’ behaviours are unpredictable and their internal architectures
are inaccessible.

1.1.2 On-line norm synthesis

Against the disadvantages of off-line design, an alternative approach to norm
synthesis is computing norms at runtime (i.e., on-line). Most previous research
in on-line norm synthesis has focused on norm emergence (e.g., [Shoham and Ten-
nenholtz, 1992a, Kittock, 1995, Walker and Wooldridge, 1995, Sen and Airiau,
2007a, Sen and Sen, 2010, Villatoro et al., 2011]), which investigates how norms
can emerge bottom-up at runtime within the agent population. As stated in
[Turner and Killian, 1957], typically norm emergence can be employed when-
ever change and uncertainty are characteristics of a MAS. The main advantage
of norm emergence is that it does not require any global state representation
or centralised control. Instead, agents employ some computational mechanism
whereby they synthesise their own norms at runtime based on local information.
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Norm emergence is based on the agents’ capability to converge to a solution
from a space of alternative solutions, and it assumes that the agents will choose to
cooperate in the emergence process. A norm is considered to have emerged when
a significant proportion of the agent population has adhered to some common
behaviour. For instance, in a traffic scenario with autonomous cars (agents),
two alternative norms may emerge: driving on the left, or driving on the right.
When most agents drive on the same side of the road, it is said that a norm
has emerged. A paradigmatic example of norm emergence is the tee-shirt game
[Shoham and Tennenholtz, 1992a], in which a group of agents choose wearing
either a blue or a red t-shirt. Initially, each agent wears either a blue or a
red t-shirt randomly. The game is played in rounds. At each round agents
are grouped in pairs and each agent is able to see the colour of its partner’s t-
shirt. Afterwards, each agent decides what colour to wear based on its memory
about encountered agents. After some rounds, the agents are expected to end up
wearing the same coloured t-shirt. It is worth noticing that agents only employ
local information to decide which colour to wear – they are never able to see the
colour of all the agents in the MAS simultaneously.

Approaches based on norm emergence have the advantage that they do not
suffer from the computational complexity issues of off-line approaches, since
there is no need to compute the system state space at design time. Another
advantage is that on-line synthesised norms are more likely to be aligned with
the agents’ behaviour at runtime, and thus to effectively achieve coordination.
However, norm emergence techniques make assumptions that hinder their use to
synthesise norms for open MAS. First, they assume that the agents’ machinery
is endowed with the computational capability to participate in norm emergence,
and that the agents will choose to collaborate in the emergence process. Second,
with some exceptions (such as [Salazar et al., 2010b]), most norm emergence
approaches rely on the fact that the agents know at design time an initial set
of alternative norms (e.g., driving on the left and driving on the right). In
this sense, norm emergence consists in choosing to adhere to one (or more) of
the initially available norms. Therefore, it requires previous knowledge about
the domain and the possible norms that may govern the system. Again, all
these conditions cannot be guaranteed in an open MAS – not only the agents’
computational capabilities cannot be guaranteed, but also their willingness to
collaborate in norm emergence. In fact, the agents within an open MAS are
self-interested, and may be buggy, or even malicious [Klein et al., 2003].

1.1.3 Analysis

At this point, we have the necessary background to conclude that synthesising
norms that will help coordinate an open MAS remains an open problem. On
the one hand, off-line design approaches are appropriate to synthesise norms for
closed MAS whose state space can be computed in a reasonable amount of time,
and whose agents’ internal architectures are accessible. On the other hand,
existing on-line approaches mainly focus on norm emergence, which assumes
that agents are endowed with the computational capabilities to collaborate in
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the emergence process, and that they will choose to collaborate.
In the literature, most off-line and on-line approaches have focused on how to

synthesise norms that effectively coordinate a MAS. However, there are further
objectives that can be considered when synthesising norms. As an example,
[Fitoussi and Tennenholtz, 2000] aimed at designing minimal and simple norms
at design time. On the one hand, minimality is concerned with minimising the
number of constraints that are imposed on agents. The intuition is that, ideally,
the agents should be provided with norms that constrain their behaviour just
the necessary to achieve coordination. In this way, minimality can be seen as
attempting to compute liberal normative systems (i.e., sets of norms) [Ågotnes
et al., 2007] that avoid over-regulation, namely that regulate agents’ behaviours
while preserving their freedom as much as possible. On the other hand, simplicity
is concerned with synthesising norms that are easy to reason about by agents.
Thus, simplicity can be seen as an attempt to synthesise compact normative
systems that reduce agents’ computational efforts when reasoning about norms.
However, in the literature there seems to be no previous work that has considered
compactness and liberality as objectives to synthesise norms on-line.

Moreover, there is a criterion that is worth considering during norm synthesis:
the reactivity of the norm synthesis mechanism. Reactivity is directly related
to the reaction time of a system. As stated in [Knight, 1993], reactive systems
move in real time and require little information, but cannot guarantee efficient
solutions (norms in our case). By contrast, being more deliberative is bound
to generate more efficient solutions, but it also requires more information and
may incur in increasing time and computation costs. Therefore, reactivity is
also closely related with the amount of information required to take a decision
(e.g., creating a norm). A key point is then to adjust the degree of reactivity in
order to generate efficient solutions (norms) without requiring too much time and
computation costs. Reactivity and deliberation are two criteria that have been
widely considered in multi-agent planning [Georgeff and Lansky, 1987, Knight,
1993, Stoytchev and Arkin, 2001, Iocchi et al., 2001, Mavromichalis and Vouros,
2001]. However, they have not been considered in the on-line synthesis of norms.

1.2 Research questions

As previously introduced, there is no computational approach in the literature
to synthesise norms at runtime for open MAS and without involving the agents
within a MAS’ domain (namely, domain agents) in norm synthesis. Ideally, in
an open MAS, norms should be synthesised by some computational mechanism
that observes agents’ activities, and creates norms to coordinate their interac-
tions. These norms should be then published so that agents become aware of
them. Such mechanism should ensure that norms provided to domain agents are
effective in coordinating their activities so that they can successfully interact.
Also, it should be designed as generally as possible so that it can be applied to a
wide extent of domains by providing little domain-dependent information. From
this discussion, a fundamental question of this dissertation is:
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Research Question R1. Can we develop computational means for the on-line
synthesis of norms in Multi-Agent Systems without involving domain agents in
norm synthesis?

From [Fitoussi and Tennenholtz, 2000], Fitoussi et al. derive that, in addition
to effectively avoid conflicts, a normative system should be as compact and
liberal as possible. On the one hand, a normative system should be compact to
reduce agents’ computational efforts when reasoning about norms. On the other
hand, a normative system should be liberal to preserve agents’ freedom as much
as possible. Therefore the two next research questions are:

Research Question R2. Can we synthesise compact normative systems?

Research Question R3. Can we synthesise liberal normative systems?

As detailed in Section 1.1.3, it is worth being able to adjust the amount of
information that is required to create norms. In other words, to adjust the degree
of reactivity of the norm synthesis mechanism. Therefore, the final research
question of this dissertation is:

Research Question R4. Can we synthesise normative systems by considering
different degrees of reactivity?

1.3 Case studies

As detailed in previous section, one of the desired properties of the aforemen-
tioned norm synthesis mechanism is domain independence. This mechanism
should be able to successfully synthesise norms regardless of the scenario it op-
erates in. This section introduces two different scenarios that can be modelled
as a Multi-Agent System and in which norms can be employed to coordinate the
activities of their participants. These two scenarios not only will help illustrate
the norm synthesis mechanism introduced in this dissertation, but also will be
employed to empirically evaluate it in order to prove its generality. First, a road
traffic scenario is introduced in which autonomous cars travel through an inter-
section to reach their destinations. Thereafter, an on-line community scenario
is described in which a population of users interact by exchanging contents.

1.3.1 The road traffic scenario

Road traffic is a highly complex problem that has attracted considerable atten-
tion in Multi-Agent Systems research [Burmeister et al., 1997, Wiering et al.,
2000, France et al., 2003, Adler et al., 2005]. Traffic networks are open systems
whose participants have different goals and motivations, and their behaviours
are unexpected. Also, the traffic environment is highly dynamic. The weather
conditions, the lighting, and even the topology of the network may change along
time. For instance, a car accident may oblige to cut lanes, hence forcing other
drivers to re-plan their trajectories, which eventually may lead to traffic jams
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and even other accidents. These conditions make particularly challenging to de-
termine the norms that will effectively achieve coordination in a traffic network.
In an attempt to coordinate traffic activities, humans have developed traffic
rules, which describe general situations in which drivers are permitted, obliged
and prohibited to perform certain actions. Generally, traffic rules have proven
to effectively coordinate drivers’ activities. However, such rules must be con-
tinuously adapted to the changing environment – e.g., bad weather conditions
force the traffic authorities to decrease speed limit.

One of the main reasons why coordination is particularly important in road
traffic is the preservation of human lives. Briefly, the lack of coordination be-
tween drivers often leads to collisions, which occasionally lead to casualties. This
is why, for example, when a traffic light does not work properly, the traffic au-
thorities rapidly send officers to regulate the situation. In this sense we could
say that the traffic authorities are highly reactive to conflictive traffic situations
because it is essential to guarantee traffic safety and fluidity.

The traffic scenario used in this dissertation is a simplified version of the
widely-used traffic intersection scenario [Wiering et al., 2000, Dresner and Stone,
2008, Doniec et al., 2008]. Here, the traffic scenario is modelled as a Multi-Agent
System to be used throughout this dissertation. It is composed of two orthogonal
roads represented by a 21× 21 grid. Figure 1.1a shows a 11× 11 sub-grid that
corresponds to the centre of the junction. Each agent is a car that travels along
the grid at one cell per tick by following a randomly chosen trajectory. A car
enters the scenario from four possible start points (light/green arrows in Figure
1.1a), and travels towards randomly chosen destinations (exit points, depicted in
dark/red in Figure 1.1a). Cars’ behaviours and their destinations are unknown,
aiming at simulating the conditions of an open MAS. Each car has its own local
view of the road, which corresponds to the perception of cars in its vicinity. As
Figure 1.1b depicts, each car is able to perceive the three cells in front of it (i.e.,
the left, front and right cells). Likewise in actual-world traffic, the main objective
in this scenario is that drivers reach their destinations safely. Therefore, norms
are aimed at coordinating the drivers’ activities to prevent them from colliding.

1.3.2 The on-line community scenario

During the last two decades, the diffusion of the Internet and the advancement
in information technologies has promoted the advent of on-line communities as
communication channels (e.g., Facebook, Reddit, Twitter). On-line communi-
ties are open, virtual systems in which users with different preferences, goals and
beliefs continuously interact by exchanging contents. These continuous interac-
tions may occasionally lead to frictions between users (e.g., arguments), which
cause discomfort to the users and complicate information exchange. The design-
ers of on-line communities have widely used norms to avoid frictions between
users. In this case, norms come typically in the form of pre-defined terms and
conditions that describe what is acceptable and what is not. The idea is that
norms can help achieve healthy on-line communities [Hinds and Lee, 2011], in
which frictions rarely occur and contents are fluidly exchanged.
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Figure 1.1: a) Traffic intersection scenario. b) A car’s perception of the scenario.

The particular features of an on-line community make norms design specially
challenging. Within an on-line community, frictions will arise or not depending
on what its users consider that is (not) acceptable, which may differ from the
designers’ opinion. Therefore, the norms should be aligned with the users’ pref-
erences to effectively achieve a healthy on-line community. Nevertheless, the
preferences of the participants are unknown beforehand, which makes challeng-
ing to design norms that will effectively regulate their behaviours. An alternative
solution could be monitoring their interactions in real time to determine their
preferences, and then synthesise norms based on these preferences. Unlike the
traffic case, in this scenario being more deliberative may allow synthesise better
norms. Briefly, the more evidences gathered about the users’ preferences before
creating a norm, the more likely the norm will reflect the preferences of the over-
all community, instead of the preferences of a reduced group of users (or even a
single user, in the most reactive case).

This scenario has been modelled as an on-line community with a popula-
tion of users that exchange contents in different sections.Users are allowed to
(1) upload contents to the different sections, (2) view uploaded contents, and
(3) complain about those viewed contents that they consider as inappropriate.
Uploaded contents may have a type out of {correct, spam, porn, violent, insult}.
On the one hand, correct contents are those that the users feel comfortable
with, and hence do not trigger users’ complaints. On the other hand, inappro-
priate contents (i.e., spam, porn, violent, insult) may cause discomfort between
the users, hence triggering complaints. Reported complaints can be thus seen
as user feedback that can be used to determine their preferences, and hence to
synthesise norms.



1.4. Contributions 9

1.4 Contributions

This dissertation contributes to the research questions posed in Section 1.2 by in-
troducing a whole computational framework to synthesise norms for open Multi-
Agent Systems. This framework is composed of:

1. A computational model to perform on-line norm synthesis without involv-
ing domain agents in norm synthesis. Such model does not require previous
knowledge of agents’ behaviours and their potential interactions, which
makes it appropriate for open MAS. Moreover, it is described generally
enough to be applied in different application domains by providing little
domain-dependent information.

2. An abstract architecture to support the implementation of such norm syn-
thesis model.

3. A family of synthesis strategies that implement the computational norm
synthesis model, and focus on achieving different synthesis objectives.
Overall, this family of strategies can be employed to synthesise effective,
compact, and liberal normative systems at runtime for open MAS.

Subsequent sections detail these contributions.

Contribution C1: a computational model for on-line norm synthesis

Aiming at answering Research question R1, Chapter 3 introduces an abstract,
domain-independent computational model to synthesise norms at runtime for a
MAS without requiring the agents’ participation in norm synthesis. Such model
considers that norm synthesis is done by a regulatory entity that iteratively
observes a MAS at runtime, detecting situations that are undesirable for coordi-
nation, and synthesising norms to regulate such situations. This norm synthesis
model is highly relevant and original, since it is the first computational model
to synthesise norms:

• While the agents interact within a MAS at runtime.

• Without considering an initial set of norms.

• Without requiring previous knowledge about the agents’ behaviours.

• Without involving domain agents in norm synthesis.

Moreover, it is general enough to be applicable in multiple domains by providing
little domain-dependent information. All this together make this on-line norm
synthesis model to be appropriate to synthesise norms for open MAS.

To support the implementation of the aforementioned model, the chapter
also introduces an abstract architecture to implement such regulatory entity –
the so-called Norm Synthesis Machine – that iteratively observes a MAS, and
executes a synthesis strategy, which implements the norm synthesis model, and
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is in charge of performing norm synthesis. A Norm Synthesis Machine is based
on three core components: (1) a data structure, to keep track of synthesised
norms; (2) a collection of operators to manage such data structure; and (3) a
synthesis strategy, which decides when and how to add or remove norms to such
data structure, and which norms to make public to the agents.

Contribution C2: a strategy to synthesise effective normative systems

Chapter 4 introduces base, a synthesis strategy intended to be executed by
a Norm Synthesis Machine to perform norm synthesis. base implements the
aforementioned norm synthesis model, and produces normative systems that are
effective in avoiding conflicts as long as agents comply with their norms. To prove
both base’s performance and the validity of our norm synthesis model, base
is empirically evaluated in agent-based simulations of the road traffic scenario
introduced in Section 1.3.1. Initial results prove that base can synthesise norms
that successfully avoid collisions between cars as long as they comply with norms.

Contribution C3: strategies to synthesise compact normative systems

Chapters 5 and 6 aim at answering research question R2 by introducing two
strategies to synthesise compact normative systems. With this aim, norm gen-
eralisations are introduced in the norm synthesis process. Briefly, norm gen-
eralisations allow to represent several norms by means of a single norm, hence
compacting a normative system. As an example, in a traffic scenario, a nor-
mative system with one single norm to give way to emergency vehicles is more
compact than another one with a norm for each type of emergency vehicle (e.g.,
police, ambulance, fire brigade, etc.).

Firstly, Chapter 5 introduces iron (I ntelligent Robust On-line N orm syn-
thesis), which takes a conservative approach to norm generalisation. Briefly,
iron generalises a norm only whenever there is enough evidence, to ensure gen-
eralisation. Secondly, Chapter 6 introduces simon (S imple M inimal On-line
N orm synthesis). simon takes an optimistic approach to norm generalisation:
it generalises norms when there is a minimum amount of evidence to performs
generalisations. Thus, simon manages to synthesise normative systems that are
more compact than those synthesised by iron. simon’s generalisation is inspired
in the anti-unification of terms [Armengol and Plaza, 2000], which consists in
generalising a set of feature terms to their least common subsumer or most spe-
cific generalisation. Both strategies are evaluated to analyse how they perform
in synthesising norms in the traffic scenario and the on-line community scenario
described in Sections 1.3.1 and 1.3.2, respectively. Finally, they are compared
in terms of the compactness of the normative systems they synthesise.

From the literature reviewed in the related work, we observe that iron and
simon are the first computational on-line norm synthesis algorithms that con-
sider the goal of synthesising compact normative systems. By using these strate-
gies, one can provide the agents within an open MAS with compact normative
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systems that, in addition to effectively coordinate their activities, reduce their
computational efforts when reasoning about norms.

Contribution C4: a strategy to synthesise liberal normative systems

Chapter 7 aims at answering research question R3 by introducing lion (Liberal
On-line N orm synthesis), a strategy to synthesise liberal normative systems.
Building on simon, lion detects synergies between norms to detect and disre-
gard norms that are dispensable to regulate a MAS. In this way, lion reduces
the amount of constraints that are imposed on agents, thus increasing their free-
dom. lion’s performance is evaluated and compared with simon’s in terms of
the liberality of the normative systems they synthesise.

To the best of our knowledge, lion is the first on-line computational on-
line norm synthesis algorithm that considers liberality as a synthesis objective.
lion can be employed to synthesise compact and liberal normative systems that
effectively coordinate agents’ interactions within open MAS. In the literature, no
other computational approach had been presented before that could detect and
exploit synergies between norms at runtime. Thus, lion not only contributes
to the synthesis of liberal normative systems, but also paves the way for future
research in on-line detection and exploitation of semantic relationships between
norms.

Contribution C5: a strategy that can operate with different degrees
of reactivity

Chapter 8 aims at answering research question R4 in Section 1.2 by introduc-
ing desmon (DE liberative S imple M inimal On-line N orm synthesis). desmon
extends simon to synthesise norms with different degrees of reactivity. In this
way, desmon successfully synthesises effective, compact and liberal normative
systems for MAS in which it is convenient to be reactive (e.g., the traffic sce-
nario), and for MAS in which being more deliberative is more convenient (e.g.,
the on-line community scenario). To the best of our knowledge, desmon is the
first computational approach that can consider different degrees of reactivity
during on-line norm synthesis, namely that can consider different amounts of
information to synthesise norms.

1.5 Dissertation outline

The remainder of this dissertation is organised as follows.

Chapter 2 contextualises this work within the state-of-the-art, and discusses
different existing approaches to off-line and on-line norm synthesis.

Chapter 3 characterises the norm synthesis problem and introduces a domain-
independent model along with an architecture to synthesise norms for open MAS
without involving domain agents in norm synthesis.
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Chapter 4 introduces base, a synthesis strategy that implements the com-
putational norm synthesis model introduced in Chapter 3. base’s synthesis is
driven by the goal of synthesising effective normative systems that successfully
coordinate a MAS.

Chapter 5 addresses the synthesis of compact normative systems by introducing
iron (I ntelligent Robust On-line N orm synthesis), a synthesis strategy that
extends base to include norm generalisations in the synthesis process.

Chapter 6 introduces an alternative strategy to synthesise compact normative
systems. It introduces simon (S imple M inimal On-line N orm synthesis), which
takes an optimistic approach to norm generalisation.

Chapter 7 introduces lion (Liberal On-line N orm synthesis), a strategy to
synthesise liberal normative systems. lion extends simon by incorporating the
detection and treatment of negative synergies between norms. This allows lion
to remove dispensable norms, hence reducing the amount of constraints that are
imposed on the agents and increasing their freedom.

Chapter 8 introduces the criterion of reactivity in norm synthesis by introducing
desmon (DE liberative S imple M inimal On-line N orm synthesis). desmon is
capable of synthesising norms with different degrees of reactivity, and thus by
considering different quantities of information.

Chapter 9 draws the conclusions derived from this work, and outlines possible
directions for future research.

1.6 Publications derived from this thesis

Below are detailed the publications derived from the work developed during this
thesis. Regarding Chapter 3, the following publications introduce and evalu-
ate our computational norm synthesis model, and the base strategy. base is
empirically evaluated in the road traffic scenario introduced in Section 1.3.1.

• Koeppen, J., Lopez-Sanchez, M., Morales, J., and Esteva, M. (2011).
Learning from experience to generate new regulations. In Coordination,
Organizations, Institutions, and Norms in Agent Systems VI, volume 6541
of Lecture Notes in Artificial Intelligence (LNAI), pages 337–356. Springer.

• Morales, J., López-Sánchez, M., and Esteva, M. (2011b). Using experi-
ence to generate new regulations. In IJCAI ’11: Proceedings of the 22nd
International Joint Conference in Artificial Intelligence, pages 307–312,
Barcelona, Spain. AAAI Press, USA.

• Morales, J., López-Sánchez, M., and Esteva, M. (2011a). Evaluation of
an automated mechanism for generating new regulations. In Proceedings
of the 14th international conference on Advances in artificial intelligence:



1.6. Publications derived from this thesis 13

spanish association for artificial intelligence, CAEPIA’11, pages 12–21,
Berlin, Heidelberg. Springer-Verlag.

As for Chapter 5, the following publications introduce iron’s synthesis strat-
egy and empirically evaluate it in the road traffic scenario:

• Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, J. A., Wooldridge, M.,
and Vasconcelos, W. (2013a). Automated synthesis of normative systems.
In AAMAS ’13: Proceedings of the 12th international conference on au-
tonomous agents and multiagent systems, pages 483–490. International
Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).

• Morales, J., López-Sánchez, M., Rodŕıguez-Aguilar, J. A., Wooldridge, M.,
and Vasconcelos, W. W. (2013b). Iron: A machine for the automated syn-
thesis of normative systems (demonstration). In AAMAS ’13: Proceedings
of the 12th international conference on autonomous agents and multia-
gent systems, pages 1389–1390, Saint Paul, Minnesota, USA. International
Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).

• Morales, J., Mendizabal, I., Sánchez-Pinsach, D., López-Sánchez, M., and
Rodŕıguez-Aguilar, J. A. (2015e). Using iron to build frictionless on-line
communities. AI Communications, 28:55–71.

• Morales, J., López-Sánchez, M., Rodŕıguez-Aguilar, J. A., Vasconcelos, W.,
and Wooldridge, M. (2015a). On-line automated synthesis of compact nor-
mative systems. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 10(1):2:1–2:33.

Additionally, the publication below illustrates an empirical evaluation of iron
in the on-line community scenario described in Section 1.3.2:

• Morales, J., Mendizabal, I., Sánchez-Pinsach, D., López-Sánchez, M., and
Rodŕıguez-Aguilar, J. A. (2015e). Using iron to build frictionless on-line
communities. AI Communications, 28:55–71.

With regard to chapter 6, the following publications introduce and empiri-
cally evaluate simon in the aforementioned road traffic scenario:

• Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, J. A., Wooldridge, M.,
and Vasconcelos, W. (2014a). Minimality and simplicity in the on-line au-
tomated synthesis of normative systems. In AAMAS ’14: Proceedings of
the 13th international conference on autonomous agents and multiagent
systems, pages 109–116, Richland, SC. International Foundation for Au-
tonomous Agents and Multiagent Systems (IFAAMAS).

• Morales, J., Mendizabal, I., Sanchez-Pinsach, D., Lopez-Sanchez, M.,
Wooldridge, M., and Vasconcelos, W. (2014b). Normlab: A framework
to support research on norm synthesis. In AAMAS ’14: Proceedings of the
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13th international conference on autonomous agents and multiagent sys-
tems, pages 1697–1698. International Foundation for Autonomous Agents
and Multiagent Systems (IFAAMAS).

Regarding chapter 7, the following publications introduce and empirically
evaluate lion in the road traffic scenario:

• Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, J. A., Wooldridge,
M., and Vasconcelos, W. (2015c). Synthesising liberal normative sys-
tems. In AAMAS ’15: Proceedings of the 14th international conference on
autonomous agents and multiagent systems, pages 433–441. International
Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).

• Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, J. A., Wooldridge, M.,
and Vasconcelos, W. (2015b). Extending normlab to spur research on norm
synthesis (demonstration). In Printing, S., editor, AAMAS ’15: Proceedings
of the 14th international conference on autonomous agents and multiagent
systems, pages 1931–1932, Istanbul, Turkey. International Foundation for
Autonomous Agents and Multiagent Systems (IFAAMAS).

The source code implemented during this thesis is publicly available via
Github. There, two projects are available:

1. A project called Norm Synthesis Machine, which implements the architec-
ture for on-line norm synthesis introduced in this dissertation, along with
software implementations of all the synthesis strategies introduced in this
thesis: base, iron, simon, lion, and desmon.

2. A project with two Multi-Agent simulators of the road traffic scenario and
the on-line community scenario described in Section 1.3.

• Morales, J. (2010–2015). The norm synthesis machine, a library
to synthesise norms for multi-agent systems. https://github.com/

NormSynthesis/NormSynthesisMachine.

• Morales, J., Mendizabal, I., and Sánchez-Pinsach, D. (2010–2015d). Norm-
lab, a framework to support research on norm synthesis. https://github.
com/NormSynthesis/NormLabSimulators.

https://github.com/NormSynthesis/NormSynthesisMachine
https://github.com/NormSynthesis/NormSynthesisMachine
https://github.com/NormSynthesis/NormLabSimulators
https://github.com/NormSynthesis/NormLabSimulators


Chapter 2

State of the art

2.1 Introduction

Norms are a fundamental technique for coordinating activities [Lewis, 1969].
The role of norms in societies has been studied from several disciplines includ-
ing sociology [Gibbs, 1965, Elster, 1989a, Coleman and Coleman, 1994], phi-
losophy [Von Wright, 1951, von Wright, 1963, Kanger, 1971, Hilpinen et al.,
1971, Bicchieri, 2006], economics [North, 1990, Epstein, 2001], and computer sci-
ence [Shoham and Tennenholtz, 1992a, Shoham and Tennenholtz, 1995]. Within
the field of computer science, particularly in the area of Multi-Agent Systems
(MAS), norms have been a subject of interest for many researchers. The commu-
nity in MAS research has widely studied different problems related to norms and
Normative Multi-Agent Systems (NMAS). One of the most relevant problems
is how to synthesise norms to effectively coordinate a given MAS. This chapter
provides a general overview of the different problems that have been studied in
the literature in NMAS research, and contextualises the norm synthesis problem
within this general frame. Thereafter, it provides a review and a classification of
the most relevant norm synthesis mechanisms for MAS, and also identifies open
problems and research opportunities.

This chapter is structured as follows. Section 2.2 gives a brief introduction
to norms and Normative Multi-Agent Systems. Section 2.3 provides a critical
review of the research on norm synthesis, and classifies the most relevant contri-
butions based on how they tackle the norm synthesis problem and the synthesis
techniques they employ. Thereafter, Section 2.4 analyses the literature in norms
research and identifies the problems that still remain unsolved, and Section 2.5
draws some conclusions.

2.2 Norms in Multi-Agent Systems

Norms are rules that represent the expected behaviour towards specific situa-
tions. [Bicchieri, 2006]. In the literature in Multi-Agent Systems, the concept

15



16 Chapter 2. State of the art

of norm has been presented in different manners, such as convention [Jennings,
1993, Walker and Wooldridge, 1995] and social law [Lewis, 1969]. Researchers
in NMAS have widely discussed about the difference between conventions and
social laws. However, it is generally understood that conventions are established
patterns of behaviour that are not associated with sanctions (e.g., style of dress,
or forming a queue when waiting for the bus); and social laws carry with them
some authority [Shoham and Leyton-Brown, 2009].

In an attempt to understand norms, the NMAS community has classified
norms into different categories. Next, a review of some of these classifications is
provided in order to characterise the type of norms that are of interest in this
dissertation.

2.2.1 Classification of norms

For the purpose of this dissertation, two norm classifications are specially inter-
esting: Coleman’s classification ([Coleman and Coleman, 1994]), and Boella’s
classification ([Boella and van der Torre, 2004]). Coleman classifies norms into
two main categories: conventions and essential norms.

• Conventions are self-enforced norms that emerge naturally within an
agents’ population. Conventions solve coordination problems when there
is no conflict between the individual goals and the collective goals. In
his seminal 1969 work, David Lewis [Lewis, 1969] argued that conventions
are regularities in behaviour such that: everyone conforms; everyone ex-
pects everyone else to conform; and everyone prefers to conform, on the
assumption that everyone else does. Lewis explicitly argued that the role
of conventions in a society is to solve coordination problems.

• Essential norms are aimed at solving coordination problems when there
is conflict between the individual goals and the collective goals. Essential
norms mandate behaviour that is beneficial to others but costly to the
individual [Piskorski and Gorbatai, 2013], and prohibit behaviour harmful
to others but gratifying for the individual [Hechter, 1988]. A paradigmatic
example of essential norm is the norm not to pollute urban streets, which
is beneficial to the society but it requires the individual to carry her trash
until she finds a dustbin.

According to Coleman’s classification, the type of norms that are considered
in this dissertation are essential norms. Our aim is to synthesise norms that
regulate agents’ behaviours, even though sometimes they may imply a certain
cost for them. For instance, consider the road traffic scenario introduced in
Section 1.3.1. There, avoiding car collisions may require to force some cars to
give way to other cars, or to limit their speed under certain situations.

According to their purpose, Boella and van der Torre classified norms into
three different categories: regulative norms, constitutive norms, and procedural
norms.
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• Regulative norms. Norms of this type describe the expected behaviour
of the agents in certain situations by means of deontic statements (i.e.,
obligations, prohibitions, and permissions). These norms regulate activi-
ties that can exist independently of the norm. An example of a regulative
norm could be a “Give way to emergency vehicles” traffic norm.

• Constitutive norms. This type of norms are aimed at creating institutional
facts, such as the rules of a game (e.g., chess). Constitutive norms give an
abstract meaning to facts of the environment (e.g., property or marriage).

• Procedural norms. Also known as enforcement norms, procedural norms
define a practical connection between a regulation and its consequences.
In other words, they define how rewards and punishments are allocated
within a normative system. An example of procedural norm is one like
“Those drivers that do not give way to emergency vehicles will be punished
with a traffic ticket”.

Against this background, this dissertation focuses on the synthesis of reg-
ulative norms. Thus, a norm is assumed to be a formal specification of a de-
ontic statement that imposes prohibitions, obligations, or permissions on the
behaviour of agents.

2.2.2 Normative Multi-Agent Systems

A Normative Multi-Agent System is the result of introducing norms in a Multi-
Agent System to regulate agents’ behaviours [Boella et al., 2006]. Recently,
Boella and van der Torre [Boella et al., 2008a] defined a Normative Multi-Agent
System (NMAS) as “a multi-agent system organised by means of mechanisms
to represent, communicate, distribute, detect, create, modify and enforce norms,
and mechanisms to deliberate about norms and detect norm violation and fulfil-
ment”.

In a later work, Boella et al. [Boella et al., 2008b] proposed five levels in the
development of NMAS. At level 1 (off-line design), norms are designed off-line
and hard-wired into the internal machinery of the agents. In this way, norms are
automatically enforced and agents are not free to choose to comply or not with
norms. At level 2 (norm representation), norms are explicitly represented and
made available to the agents, who can choose whether to comply with norms
or not. Thus, at this level norm-compliance becomes a key issue and norm
enforcement mechanisms become necessary. At level 3 (norm manipulation),
agents can manipulate norms (i.e., to add and remove norms) following the rules
of the normative system. Thus, norms can be dynamically adapted in response
to changes of the system. Nowadays, the NMAS community is moving to level 4
(social reality), in which the norms are synthesised based on agents’ interactions.
At this level, norms are emergent patterns of behaviour that emerge within the
agent population. Further ahead, level 5 is concerned with ethical issues, and
norms create a moral reality.
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Against this background, the scope of this dissertation can be located at level
4 of NMAS (social reality), since here we focus on the synthesis of norms based
on the observation of agents’ interactions. Notice therefore that this dissertation
is framed within the current state of the art of NMAS research. Next, a review
of the research in Normative Multi-Agent Systems is provided.

2.3 Research on Normative Multi-Agent Sys-
tems

The NMAS community has studied a wide extent of problems related to the the-
ory, design and implementation of Normative Multi-Agent Systems. Hereafter,
some of the problems that have been studied are presented and described.

1. Normative architectures. Research has focused on the design and devel-
opment of architectures to build normative agents [Castelfranchi et al.,
1999, Dignum et al., 2000, Broersen et al., 2001, Governatori and Rotolo,
2007, Criado et al., 2010] and Normative Multi-Agent Systems [Omicini,
2001, Esteva et al., 2001, Dignum et al., 2004]. Such architectures can be
employed to endow agents with capabilities to recognise and to process
norms, and to build Multi-Agent Systems wherein the agents’ behaviours
are governed by norms, respectively.

2. Norm representation. In a NMAS, norms must be presented in such a
way that they can be understood and processed by the agents. The lit-
erature has employed different means to represent norms, such as deontic
logic [Boella and van der Torre, 2006, Sadri et al., 2006], binary vari-
ables[Epstein, 2001, Flentge et al., 2001, Chalub et al., 2006, Sen and
Airiau, 2007b], and game-theoretical strategies [Axelrod, 1986, Shoham
and Tennenholtz, 1992b, Kittock, 1993].

3. Norm reasoning. Once the agents know the norms of a NMAS, they must
be able to think about these norms to incorporate them in their decision
making process. Norm reasoning studies mechanisms whereby the agents
can assess norm applicability and decide on norm compliance [Conte et al.,
1998, Castelfranchi et al., 1999, Dignum et al., 2000, Boella and Lesmo,
2001].

4. Norm enforcement. Some works, such as [Axelrod, 1986, Kittock,
1993, Walker and Wooldridge, 1995, Epstein, 2001], regard norms as soft
constraints that agents are free to fulfil or infringe. Consequently, the
problem of non-compliance (also called deviance) is a concern in NMAS
research. The literature has studied different approaches to discourage
deviant agents through some form of sanctioning, such as punishments
[Axelrod, 1986, López et al., 2002], and reputation [Castelfranchi et al.,
1998, Huynh et al., 2006].
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5. Norm synthesis. Within the NMAS community, a problem that has at-
tracted considerable attention is that of determining what is the set of
norms that will effectively coordinate a NMAS. Since the seminal work
of Shoham and Tennenholtz [Shoham and Tennenholtz, 1992b], several
approaches have been proposed by which norms can come to exist in a
NMAS [Kittock, 1993, Walker and Wooldridge, 1995, Epstein, 2001, Sen
and Airiau, 2007b, Salazar et al., 2010a].

The remainder of this section analyses some relevant contributions in the
literature in the research areas identified above. The analysis below is not meant
to be extensive, but to identify the issues that have been dealt and are being
dealt by the state of the art. Due to the special relevance of the norm synthesis
problem in this dissertation, norm synthesis research is analysed in more detail
in Section 2.4.

2.3.1 Architectures for Normative Multi-Agent Systems

The literature offers several architectures to develop normative agents and nor-
mative multi-agent systems. Most researchers have focused on providing archi-
tectures to develop normative agents, generally by extending the BDI architec-
ture [Rao and Georgeff, 1991]. Castellfranchi et al. [Castelfranchi et al., 1999]
introduced a BDI-based generic architecture for deliberative normative agents
whereby norms can be communicated, adopted and used as meta-goals on the
agent’s own processes. Deliberative normative agents are agents that have ex-
plicit knowledge about the enacted norms in a multi-agent environment and can
make a choice whether to obey the norms or not in specific cases. Dignum et
al. [Dignum et al., 2000] proposed an extension of the classic BDI architecture
to consider norms. They study how to explicitly represent norms to infer the
agents’ intentions, and they modify the original BDI algorithm to consider the
existence of normative beliefs. Additionally, Kollingbaum et al. [Kollingbaum,
2005] introduced a BDI-based architecture (the so-called NoA architecture) for
developing normative agents that can detect norm applicability and determine
which norms are relevant to them at a given moment. They employed predicate
logic as a representation language. In this work, agents do not have internal
motivations, though, and they are considered to always try to fulfil norms.

In a later work, Broersen et al. [Broersen et al., 2001] introduced the BOID
architecture, which incorporates obligations into the BDI architecture [Rao et al.,
1995]. The BOID architecture contains feedback loops to consider all effects of
actions before committing to them, and mechanisms to resolve the conflicts of
its four components (i.e., beliefs, obligations, intentions and desires). Based on
the BOID architecture, Governatori and Rotolo [Governatori and Rotolo, 2007]
introduced the BIO architecture (Beliefs, Intentions, and Obligations), in which
agents and agent types are described in defeasible logic. In such architecture,
the system develops a positive account of those modalities that match to mental
states and obligations. Thus, norms are aimed at devising appropriate logical
conditions to introduce modalities. Criado et al. [Criado et al., 2010] extended
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the BDI architecture with a recognition model and a normative context in order
to allow agents to acquire norms from their environment and consider norms in
their decision making processes.

Alternatively, other contributions have not considered the BDI architecture
as a basis. An example is the work by Sadri et al. [Sadri et al., 2006], which pre-
sented a framework that extends the logical model of agency known as the KGP
model (Knowledge, Goals and Plans) to support agents with normative concepts
(e.g., obligations and prohibitions). They illustrated how these concepts can be
combined with the existing capabilities of KGP agents in order to plan for their
goals, react to changes in the environment, and interact with other agents.

As for architectures for Normative Multi-Agent Systems, significant contri-
butions have been made. Boella and van der Torre [Boella and van der Torre,
2006] introduced an architecture for a Normative System, containing separate
subsystems for institutional rules, obligations and permissions. Their architec-
ture contains a norm database in which the three kinds of norms are stored, and
uses a coordination model to describe the relations among the normative compo-
nents. Andrea Omicini [Omicini, 2001] introduced SODA, an extension to GAIA
[Wooldridge et al., 2000] that enables open societies to design and enforce norms
to coordinate individuals’ interactions. In this work, normative aspects reduce to
the notion of permission to access infrastructure services. Alternatively, Esteva
et al. [Esteva et al., 2001] introduced a model for the formal specification of open
systems as Electronic Institutions (EI). Briefly, an Electronic Institution is an
electronic implementation of a classical organisation of the human society (e.g.,
an auction house). This work presented a specification formalism for Electronic
Institutions that founded their design, analysis and development. Artikis et
al. [Artikis et al., 2009] introduced a theoretical and computational framework
for the executable specification of open, norm-governed agent societies. They
demonstrate how to apply their framework to specify and run a Contract-net
protocol ([Smith, 1980]). Similarly, Dignum et al. [Dignum et al., 2004] intro-
duced the OperA model to build normative organizations where individuals can
collaborate, while prescribing a formal structure for organisational processes.

2.3.2 Norm representation

We identify several approaches in the literature to represent norms, such as
deontic logic, variables, and game-theoretical strategies.

Deontic logic

Deontic logic [Von Wright, 1951] is the result of extending modal logic to deal
with obligations, prohibitions, and permissions [Meyer and Wieringa, 1993]. In
NMAS research, some works have employed deontic logics to define and represent
norms. Mainly, deontic logic has been used as a norm representation language
for developing architectures for Normative Multi-Agent Systems. An example
is given by Boella and van der Torre [Boella and van der Torre, 2006], which
introduced an architecture for Normative Multi-Agent Systems that considered
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obligations and permissions, represented as deontic statements. Garćıa et al.
[Garćıa-Camino et al., 2006] included an explicit representation of permissions,
prohibitions and obligations in Electronic Institutions. Further ahead, Sadri et
al. [Sadri et al., 2006] used deontic logic to represent the normative concepts of
obligation and prohibition in their KGP architecture.

However, most computational approaches have not considered deontic logic
to represent norms. Instead, they have represented norms with simple data
types, mainly to simplify the model and to reduce the computation required.

Variables

Some works have employed a simpler representation of norms as binary variables
[Epstein, 2001, Flentge et al., 2001, Chalub et al., 2006, Sen and Airiau, 2007b].
Briefly, a binary variable is a string composed of ones and zeros digits, where
the digit one represents the occurrence of a norm, and digit zero represents the
absence of a norm. This model is often used in research that examines the
transmission, evolution and emergence of norms in a population. Representing
norms as variables has the advantage that norms are quite simple and easy
to process by agents. However, in complex, open MAS, the representation of
norms needs to be flexible and dynamic. For example, at a given point it may
be necessary to regulate situations that had not been considered before, and
thus creating norms that had never been explored. Therefore, a richer model of
norm representation is required.

Game theoretical strategies

Other works have represented norms as game-theoretical strategies [Axelrod,
1986, Kittock, 1993, Kittock, 1995, Axelrod, 1997]. In these works, norms are
represented by the strategies that the agents use to make their decisions. Briefly,
an agent’s decisions yield to a particular pay-off matrix. The idea is that an
agent decides its actions based on what it thinks its opponents will do, with
the aim of maximising its pay-off. After a certain time, it is said that a norm
emerges when a significant number of agents end up playing the very same
strategy. This representation model has the disadvantage that norms are not
explicitly represented, but they are implicit in the strategies played by the agents.
Furthermore, likewise the binary-variable-based representation, this model is not
flexible enough to be employed in open MAS.

2.3.3 Norm reasoning

Norm reasoning is the process of thinking about norms to make decisions [Van
Der Torre and Tan, 1999]. From the agents perspective, norm reasoning is a
decision making process whereby an agent decides, at each moment, what actions
to perform, considering its goals and the restrictions that norms impose on it.
This implies that the agents are capable of recognising the norms in force and are
capable of managing normative beliefs. Mainly, the norm reasoning mechanisms
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provided in the literature are logic-based. Conte et al. [Conte et al., 1998]
described what information should be considered for the recognition of norms
and the determination of norm compliance. With this aim, they used a logic-
based language defined in [Dignum, 1999b]. However, this work does not describe
how this information can be managed and considered by an agent. Along these
lines, Castelfranchi et al. [Castelfranchi et al., 1999] proposed a model to extend
an agent architecture with capabilities to represent norms explicitly as deontic
statements, and to deliberatively decide whether to comply or not with them.
In [Dignum et al., 2000], Dignum et al. proposed an architecture to develop
BDI agents with norm reasoning capabilities, in which norms are represented by
means of PDL (Prohairetic Deontic Logic) [van der Torre and Tan, 1998]. In this
work, agents can detect norm applicability, namely when norms hold for them,
and to decide what action to perform based on applicable norms. However,
agents cannot consider their own goals to decide norm compliance. Instead,
their behaviour is completely determined by norms.

Kollingbaum et al. [Kollingbaum, 2005] employed predicate logic as a repre-
sentation language in his NoA architecture for normative agents. Alternatively,
Lopez et al. [López et al., 2006] proposed a model to develop agents that can
decide norm compliance by considering both norms and their own goals. There,
the norm representation language was the Z language [Spivey and Abrial, 1992],
which is based on set-theory and first order logic. Lopez et al. developed strate-
gies to allow agents to make decisions about norm compliance. They assumed
that there is an enforcement mechanism that rewards compliant agents and pun-
ishes deviant agents.

In this thesis, agents are assumed to have their own goals and motivations.
Moreover, they are assumed to be able to interpret norms and detect norm
applicability, while they are free to decide norm compliance. Since we represent
norms as deontic statements, agents are required to have the computational
capability to process and reason about deontic notions. The problem of how the
agents decide norm compliance is out of the scope of this dissertation. The norm
synthesis mechanisms proposed in this dissertation reasons about what happens
when agents fulfil and infringe norms, but it does not reason about the agents’
motivations to take these decisions.

2.3.4 Norm enforcement

Norms can be used to pursue a desired collective behaviour in a given society.
However, if the agents are free to choose whether to abide by norms or not,
this ideal behaviour cannot be guaranteed. Norm enforcement studies how de-
viant agents can be discouraged through some form of sanctioning. Typically,
an enforcement agent is given the task of implementing and applying sanctions
in order to discourage other agents from infringing norms. A widely used mech-
anism for sanctioning is the punishment of deviant behaviour. A paradigmatic
example is the well-known work of Axelrod [Axelrod, 1986], which introduced
the use of meta-norms to punish deviant agents. In this work, a stable norm
emerged within the agent population only when the punishment mechanism was
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employed. Later, Lopez et al. [López et al., 2002] argued that punishments
can be used as an enforcement mechanism only if they affect an agent’s goals.
They proposed to use the motivation of an agent as the main driving force be-
hind norm compliance. They also considered punishments and rewards in their
model. However, these works do not explicitly consider the cost of sanction-
ing on the part of the agent imposing this punishment. They assume that all
punishments and rewards are applied by someone else in a society.

Alternatively, reputation mechanisms have also been used to enforce norms
in an agent society. Reputation studies how the (positive or negative) opinion
about an agent can be used to discourage deviant agents, for instance by making
agents not being willing to interact with an agent that does not abide by norms.
A relevant work in reputation is that of Castelfranchi et al. [Castelfranchi et al.,
1998]. In this work, agents are endowed with a mechanism to recognise whether
an agent is norm-compliant – namely, it abides by norms (good reputation) –
or it is deviant (bad reputation). This allows norm-compliant agents to adapt
their behaviour when interacting with deviant agents in order to better achieve
their goals. Sabater et al. [Sabater and Sierra, 2002] focus on the computation
of reputation, and propose a reputation system that employs social relations
between agents to calculate an agent’s reputation in large multi-agent systems.
Other works have proposed alternative approaches to enforce norms. The work
in [de Pinninck et al., 2007] proposed a distributed mechanism to enforce norms
by ostracising agents that do not abide by them. This work showed that the
ostracism mechanism substantially reduces the number of norm infringements
in a society.

In this thesis, no enforcement mechanism is considered. Our aim is not to
enforce norms to guarantee a desired overall behaviour, but to synthesise norms
that allow the agents to successfully interact as long as they comply with them.

2.4 Research on norm synthesis

As detailed in Section 1.1.3, a key, open problem in NMAS research is the pro-
cess whereby norms come to exist in a Normative Multi-Agent System. This
norm synthesis problem, which in fact is the problem this dissertation focuses
on, has been studied from different perspectives. This section provides a review
of the research on norm synthesis. First, Section 2.4.1 establishes some crite-
ria to analyse the different contributions in the literature, and classifies these
contributions based on the identified criteria, pointing out their strengths and
weaknesses. Thereafter, Section 2.4.2 analyses the problems that still remain
unsolved in the literature.

2.4.1 Classifying research on norm synthesis

Since the work by Shoham et al. [Shoham and Tennenholtz, 1995], the norm
synthesis problem has attracted considerable attention within the MAS com-
munity. Several works have made significant contributions that have shed light
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on how to synthesise the norms that will effectively coordinate a MAS. These
works have been classified in several manners. For instance, Savarimuthu and
Cranefield [Savarimuthu et al., 2009] classified norm synthesis approaches into
top-down and bottom-up. Briefly, top-down approaches (also known as prescrip-
tive approaches) are those in which an institutional entity (e.g., a designer, or
a regulation mechanism) specifies how agents should behave; and bottom-up
approaches consider that norms emerge within the agent population (i.e., norm
emergence). Alternatively, Walker and Wooldridge [Walker and Wooldridge,
1995] classified norm synthesis into off-line design and on-line emergence. On
the one hand, off-line design approaches aim at designing the norms of a MAS
before its operation. In this way, the MAS starts running with norms that regu-
late its agents’ behaviours from the very beginning. On the other hand, on-line
emergence corresponds to the bottom-up approaches described by Savarimuthu,
in which a norm emerges within the agent society.

This section aims at providing a richer classification to characterise the dif-
ferent norm synthesis contributions in the literature along several dimensions.
Additionally, it aims at contextualising the norm synthesis mechanism provided
in this dissertation within this general frame. We consider that a norm synthe-
sis mechanism can be analysed based on five different dimensions: (1) the type
of Multi-Agent System for which to synthesise norms; (2) the synthesis time,
namely when norms are synthesised; (3) the actor(s) running the synthesis pro-
cess; (4) the synthesis scope, namely if the search of normative systems is reduced
to a sub-area of the total space of possible normative systems, or the full space is
considered; and (5) the objectives of a norm synthesis process. Subsequent sec-
tions describe in detail these dimensions and classifies the different contributions
in the literature in terms of these dimensions.

Multi-Agent System type

Firstly, the different norm synthesis approaches in the literature may be classified
by the type of MAS to synthesise norms for. In short, a MAS may be either
closed or open [Hewitt, 1986]. Closed systems are those for which the agents
population is known at design time, and does not change at runtime. In closed
systems, the system state space is known beforehand and the agents’ internal
machinery is accessible. For these reasons, closed systems can take benefit of off-
line design approaches, such as [Shoham and Tennenholtz, 1992b, Shoham and
Tennenholtz, 1995, Fitoussi and Tennenholtz, 2000, Conte and Castelfranchi,
1995, Agotnes and Wooldridge, 2010]. However, not only off-line design applies
to closed systems. Other on-line synthesis approaches such as [Axelrod, 1986,
Shoham and Tennenholtz, 1992a, Walker and Wooldridge, 1995] have studied
mechanisms whereby norms can emerge within a closed agent society.

By contrast, in open systems the agent population is open, which means
that (i) the agents may be designed by third parties, and (ii) the agents can
freely join and leave the system at runtime [Dignum, 2009]. This implies that
the agents’ behaviours cannot be predicted at design time, and thus off-line
design is not appropriate. Instead, norms should be synthesised at runtime,
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namely on-line synthesis is required. Some examples of open systems include
agent-mediated electronic commerce [Tsvetovatyy et al., 1997, Guttman et al.,
1998, Dellarocas and Klein, 2000], search and rescue operations [Kitano et al.,
1997, Jennings et al., 1997, Kitano et al., 1999], and virtual supply chains [Fischer
et al., 1996, Fox et al., 2000].

Synthesis time

According to when norms are synthesised, we identify to main approaches in the
literature: synthesising norms at design time (off-line design), and synthesising
norms at run time (on-line synthesis). As detailed above, in off-line design
norms are designed before the system starts running, and cannot be changed
at runtime. By contrast, on-line synthesis approaches consider that the agents
within a MAS synthesise their own norms at runtime, and thus they can adapt
norms while the system is running.

– Off-line design. The first work tackling off-line norms design was
[Shoham and Tennenholtz, 1992b] (later extended in [Shoham and Tennenholtz,
1995]), which introduced the useful social law problem. There, a social law was
implemented as a set of restrictions on the agents’ behaviour that constrain
them so that they will not interfere with each other, while allowing them enough
freedom to achieve their goals. Later, Goldman and Rosenschein [Goldman
and Rosenschein, 1993] presented a way to characterise domains as multi-agent
deterministic finite automata. They characterised norms for cooperation as
transformations of these automata; and proved that agents were capable of
coordinating by abiding to norms, without any explicit coordination mechanism.
Conte and Castellfranchi [Conte and Castelfranchi, 1995] designed norms for
a group of agents finding food in a simulated grid environment. Norms were
simple rules for movement and food collection, which were proved to effectively
allow the agents to reach their goals (i.e., gaining strength by consuming food).

More recently, Bulling et al. [Bulling and Dastani, 2011] applied methods
from mechanism design to verify whether some norm restrictions imposed on a
MAS agree with the behaviour the designer expects. They introduced normative
behaviour functions to represent the “ideal” behaviour of MAS with respect to
different sets of agents’ preferences. Then they applied concepts from game
theory to identify agents’ rational behaviour. These formal ideas can be used
to verify whether a set of norms and sanctions is sufficient to motivate agents
to act in such a way that the behaviour described by the normative behaviour
function is met.

Generally, off-line design approaches are often intractable in the general case
or not easily applicable in real world (open) systems, due to their computa-
tional complexity. These complexity issues have prompted research into the
problem of managing the size of the system state space. For instance, in [Onn
and Tennenholtz, 1997] the off-line design problem is reduced to a graph routing
problem and computed efficiently using existing graph theoretic methods. How-
ever, that approach is very domain-specific, and alternative problems can be
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difficultly expressed by employing that representation. Agotness et al. [Agotnes
and Wooldridge, 2010] modelled the problem of implementing a social law as an
optimisation problem, and characterised the computational complexity of the
problem. They showed how the optimisation problem can be solved using inte-
ger linear programming, an approach that has been successfully and widely used
to tackle computationally hard problems in other domains. Later, Christelis
et al. [Christelis and Rovatsos, 2009] proposed to design norms by perform-
ing local search around declarative specifications of states using AI planning
methods. Using their approach, norms can be synthesised over incomplete state
specifications.

However, even if off-line design approaches were computationally feasible,
they assume that norms must be hard-wired into an agent’s reasoning mech-
anism. Moreover, they assume that agents always abide by norms. These
assumptions make off-line design inappropriate to synthesise norms for dynamic,
open MAS.

– On-line synthesis. The literature provides a wide extent of approaches
to synthesise norms at runtime. Mostly, research on on-line synthesis focuses
on norm emergence, yet other approaches have been considered, such as norm
negotiation, norm agreement, and norm learning. Particularly, norm emergence
[Shoham and Tennenholtz, 1992a, Kittock, 1993, Kittock, 1995, Griffiths and
Luck, 2010, Epstein, 2001] studies how norms can emerge within an agent
society. A norm is considered to have emerged when a significant proportion of
the agent population has adhered to some common behaviour. Researchers have
employed different techniques to develop norm emergence. Of these, maybe the
simplest has been imitation, which is based on the principle “When in Rome,
do as the Romans”. Imitation considers that agents learn how to behave (that
is, which norms to follow) by imitating the most commonly followed pattern
of behaviour. This implies that the agents are endowed with capabilities to
recognise and to reason about other agents’ behaviours. In this sense, imitation
can be regarded as a spreading mechanism whereby a norm can be propagated
through an agent society.

More sophisticated spread-based techniques have employed Learning. In this
approach, agents are endowed with the computational capability to learn which
norms are better to achieve their goals. The key issue is to design a strat-
egy update function that represents an agent’s decision-making process. This
function considers what the agent has observed so far to decide its actions. A
paradigmatic example is the work by Shoham and Tennenholtz [Shoham and
Tennenholtz, 1992a], which employed a reinforcement learning algorithm to al-
low agents to reach an agreement on norms. This work inspired later works
like [Walker and Wooldridge, 1995], which empirically evaluated sixteen differ-
ent strategies for the emergence of norms. Similarly, Pujol et al. [Pujol, 2006]
employed Shoham’s algorithm as a mechanism for the emergence of social con-
ventions. In a more recent work, Riveret et al. [Riveret et al., 2014] proposed
a probabilistic rule-based argumentation framework that can be employed to
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develop learning agents, thus enabling norm emergence.

Tag-based cooperation [Riolo et al., 2001, Traulsen and Schuster, 2003, Ax-
elrod et al., 2004] has also been employed to spread norms through an agent
society. Briefly, in this approach each agent cooperates with other agents that
are sufficiently similar to itself according to some arbitrary characteristic, or tag.
Along these lines, Griffiths et al. [Griffiths and Luck, 2010, Griffiths and Luck,
2011] investigated on the issue of group recognition using tag-based cooperation
as the interaction model. In this work, norms are in fact tags. The main draw-
back of this approach is that only the agents that have a certain tag possess the
corresponding norm. Moreover, it does not allow multiple norms to co-exist in
a group.

The main disadvantage of spread-based mechanisms is that they limit them-
selves to analysing how a single norm can be spread through an agent population.
In an open MAS, though, typically there will be a wide space of possible norms
that may be spread, and thus the agents should be able to adopt several norms.
With this problem in mind, Salazar et al. [Salazar et al., 2010a] proposed an
emergence mechanism whereby agents could explore new norms at runtime, and
several norms can be spread through an agent population. Nevertheless, what
is common to all emergence approaches is that: (1) they require the agents
to be endowed with the computational capability to synthesise norms; and (2)
they assume that the agents will collaborate in norm synthesis. As argued in
Section 1.1.2, these assumptions cannot be taken in open MAS, whose agents’
computational capabilities and behaviours cannot be predicted.

As an alternative to norm emergence, other works have studied how norms
can be synthesised at runtime through an explicit negotiation process [Rosen-
schein, 1986, Sycara, 1988, Rosenschein and Zlotkin, 1994, Boella and Van
Der Torre, 2007]. In norm negotiation, agents negotiate on how to coordinate
their activities. Negotiation can be thus seen as a process whereby the agents
agree on a (maybe non-explicitly represented) norm that coordinates their in-
teractions to achieve their goals. Nevertheless, negotiation approaches assume
that the agents in a MAS count on negotiation capabilities and choose to co-
operate when negotiating. These assumptions cannot be ensured in an open
MAS. Alternatively, Artikis et al. [Artikis, 2009, Artikis, 2012] investigated
norm agreement, in which empowered agents of a MAS’ domain can use a meta-
level argumentation protocol to modify the MAS’ specification (i.e., its norms)
at run-time.

Finally, further research has focused on norm learning. Bou et al. [Bou et al.,
2007a, Bou et al., 2006, Bou et al., 2007b] studied how norms may be adapted
at runtime by a regulative institution. They provided mechanisms whereby the
computational environment hosting the agents (an Electronic Institution) moni-
tors the agents’ behaviour at runtime, and synthesises norms in order to achieve
some institutional goals. They employed learning techniques – such as Genetic
Algorithms (GA) – to learn how to synthesise norms. Along these lines, Campos
et al. [Campos et al., 2008, Campos et al., 2009, Campos et al., 2011] studied
how to adapt norms’ parameters to the changes of agents’ behaviours at run-



28 Chapter 2. State of the art

time. They proposed to endow a MAS organisation (e.g., Electronic Institutions)
with capabilities to adapt norms to agents, instead of having agents adapt to
norms. They employed Case-Based Reasoning (CBR) as the learning technique.
However, neither of these approaches considered the creation of new norms at
runtime, but they simply limit themselves to adapt an initial set of norms at
runtime.

Synthesis making

Research on norm synthesis can be also classified based on the actors involved
in the synthesis making, namely based on who synthesises norms. We here con-
sider that norm synthesis can be either endogenous or exogenous. Endogenous
synthesis considers that norms are internalised by agents, who are in charge of
synthesising their own norms. This approach mainly applies to on-line synthesis
techniques such as norm emergence [Shoham and Tennenholtz, 1992a, Kittock,
1993, Kittock, 1995, Griffiths and Luck, 2010, Villatoro et al., 2011], norm nego-
tiation [Boella and Van Der Torre, 2007], and norm agreement [Artikis, 2009, Ar-
tikis, 2012]. Endogenous approaches require the agents within a MAS’ domain
to be endowed with computational capabilities to synthesise norms.

Alternatively, exogenous synthesis is agnostic about norm internalisation,
and considers that norms are synthesised by some regulatory entity, which may
be an external regulatory mechanism, or even a group of regulatory agents.
Thus, in exogenous synthesis, agents within a MAS’ domain are not assumed
to be capable of synthesising their own norms. In the literature, exogenous
synthesis mainly maps to off-line design approaches, in which either a human
designer or a computational mechanism defines norms at design time. However,
as argued previously, off-line approaches are not appropriate for open MAS. The
only on-line synthesis approaches that have used exogenous synthesis are those
in Bou et al [Bou et al., 2007a, Bou et al., 2007b] and Campos et al. [Campos
et al., 2008, Campos et al., 2011]. There, norms are synthesised by either a
computational mechanism ([Bou et al., 2007a]), or a group of special agents that
do not belong to the population to regulate, and who are in charge of synthesising
norms [Campos et al., 2008, Campos et al., 2011].

However, some works have investigated how to combine both endogenous
and exogenous synthesis, instead of considering them separately. This is the
case of the work by Müller-Schloer et al. [Müller-Schloer, 2004, Richter et al.,
2006]. They introduced the so-called observer/controller architecture to develop
systems whose individuals can self-organise. In such a self-organising system, its
rules may emerge (endogenous synthesis) while an external observer monitoring
the system detects errors to apply appropriate counteractive measures when
necessary (exogenous synthesis). Thus, this approach supports self-organisation,
but it is also reactive to control a system’s emerging global behaviour.
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Synthesis scope

In short, we consider that a synthesis scope may be either constrained or uncon-
strained. A synthesis scope is constrained whenever norm synthesis limits itself
to exploiting an initial set of alternative norms. In that case, the amount of
normative systems that can be explored is limited to all possible combinations
between those norms. Norm emergence is an illustrative example. With the ex-
ception of [Salazar et al., 2010a], norm emergence techniques typically consider
an initial set of alternative norms, and the emergence process limits to exploit
this initial set. Eventually, the system may converge either to a single norm
or a combination of these norms. However, norm emergence techniques cannot
explore alternative norms, and thus the space of normative systems they can
explore is constrained. This may be a problem if the normative system that
would successfully regulate a MAS is out of scope, namely it considers norms
that are not available in the initial set of norms.

Alternatively, an unconstrained synthesis scope implies that there are no
restrictions, and any normative system may be synthesised. In the literature, this
approach mainly applies to off-line design techniques. Briefly, such techniques
consider a designer that may synthesise any possible normative system before
the MAS starts operating. However, it is worth to notice that once the system
has started running, the normative system cannot be changed, and hence no
alternative normative system can be explored. Again, this is not appropriate
for open MAS. To summarise, in the literature no on-line synthesis mechanism
has been proposed that can explore any possible normative system at runtime,
namely that has an unconstrained scope.

Synthesis objectives

A key issue that has been scarcely studied in norm synthesis is the different
objectives that a norm synthesis process may consider. Typically, the literature
has considered the goal of synthesising effective norms, which is crucial to assess
to what extent norms are successful in helping a MAS coordinate. Shoham and
Tennenholtz [Shoham and Tennenholtz, 1992b, Shoham and Tennenholtz, 1995]
proposed the design of social laws that effectively coordinate an agent society.
However, they also considered the objective of allowing agents enough freedom
to achieve their goals. In other words, the goal of not to over-restrict agents’
behaviours. Thus, this work was maybe the first one considering the liberality
of the agents as a synthesis objective. Briefly, liberality is concerned with pre-
serving the agents’ freedom to the greatest possible extent while regulating their
behaviour to achieve MAS coordination. Later, Fitoussi and Tennenholtz [Fi-
toussi and Tennenholtz, 2000] introduced minimality and simplicity as objectives
for the off-line design of norms. While minimality attempts to reduce agents’
computational efforts when reasoning about norms, simplicity is concerned with
preserving their freedom to the greatest possible extent. Therefore, minimality
can be understood as an attempt to synthesise compact normative systems, and
simplicity can be understood as a means to synthesise liberal normative systems.
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In this dissertation, effectiveness, compactness, and liberality are considered
as crucial synthesis objectives. These three objectives have been considered in
the literature that focus on off-line design, but no contribution has been made
that considers them together as on-line norm synthesis objectives.

riveret2014self

2.4.2 Analysing research on norm synthesis

Table 2.1 provides an overview of selected norm synthesis contributions, and
classifies them based on the different dimensions analysed in Section 2.4.1. By
observing this table, we draw the following conclusions:

1. Off-line design approaches are only appropriate for closed systems. Re-
search in off-line design has mainly focused on closed systems [Shoham and
Tennenholtz, 1995, Fitoussi and Tennenholtz, 2000, Goldman and Rosen-
schein, 1993, van Der Hoek et al., 2007]. The main reason of this is that
off-line design is not appropriate for synthesising norms for open MAS. Ap-
proaches based on off-line design are computationally infeasible, and make
assumptions that go against the nature of open MAS – that the norms can
be hard-wired into the agents’ machinery; and that the agents’ behaviours
are predictable at design time.

2. Existing on-line synthesis mechanisms are mainly endogenous. Most on-
line synthesis mechanisms in the literature assume that the agents within
a MAS synthesise their own norms, either by means of norm emergence
[Shoham and Tennenholtz, 1992a, Kittock, 1995, Walker and Wooldridge,
1995, Epstein, 2001, Pujol, 2006, Sen and Airiau, 2007b, Griffiths and
Luck, 2010], through norm negotiation [Boella and Van Der Torre, 2007]
or by means of norm agreement [Artikis, 2009, Artikis, 2012]. The only
exogenous norm synthesis approaches in the literature are those on-line in
[Bou et al., 2007a, Campos et al., 2011]. Nevertheless, as detailed above,
these approaches have a constrained synthesis scope.

3. Existing on-line synthesis approaches have a constrained synthesis scope.
Generally, the literature provides on-line synthesis approaches with con-
strained scopes. Existing approaches for norm emergence, norm negotia-
tion, norm agreement, and norm learning consider an initial set of norms
that they exploit to converge to either a single norm, or a normative sys-
tem. One exception is Salazar et al. [Salazar et al., 2010a], which can
explore new norms at runtime. Alternatively, all off-line design approaches
have unconstrained scopes, yet they are not appropriate for open MAS.

4. No on-line work has considered multi-objective synthesis. With the excep-
tion of [Shoham and Tennenholtz, 1992b], which considered effectiveness
and liberality as synthesis objectives, and [Fitoussi and Tennenholtz, 2000],
which considered the synthesis of compact and liberal normative systems,
the literature has mainly considered effectiveness as a driving for norm
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synthesis. Furthermore, no approach has been proposed that considers
together effectiveness, compactness and liberality as synthesis objectives.

2.5 Conclusions

In the literature, off-line design approaches have mainly focused on norm synthe-
sis for closed systems. As for open systems, on-line synthesis is the only feasible
approach. Existing on-line synthesis approaches are mainly endogenous, that is,
they require the agents within a MAS to synthesise their own norms. This im-
plies assuming that agents are capable of synthesising norms, and that they are
benevolent and will choose to cooperate in norm synthesis. These assumptions
go against the nature of open MAS, which are populated by heterogeneous, self-
interested agents. Against this background, here we argue that norm synthesis
in open MAS should be performed exogenously.

Moreover, existing on-line synthesis approaches have constrained synthesis
scopes, namely can only explore normative systems that are combinations of an
initial set of norms. This represents a disadvantage in the sense that they may
never find the normative system that effectively will coordinate a given MAS
if it is out of scope. Finally, no on-line synthesis approach has considered the
three key objectives of effectiveness, compactness, and liberality to drive norm
synthesis. We consider that these three synthesis objectives are crucial and they
should be all considered together during norm synthesis.

At this point, the necessary background has been provided to argue that no
computational mechanism has been proposed to synthesise norms for open MAS
while having the following characteristics:

1. The capability to synthesise norms at runtime, namely on-line.

2. The capability to synthesise norms exogenously, that is, without requir-
ing domain agents to synthesise their own norms.

3. An unconstrained scope that allows it to explore any possible normative
system.

4. A multi-objective approach to norm synthesis that considers the key ob-
jectives of synthesising effective, compact, and liberal normative systems.

Therefore, the remainder of this dissertation is focused on introducing such
mechanism, answering each research question proposed in Section 1.2.



Chapter 3

Synthesising norms for open
Multi-Agent Systems

3.1 Introduction

In the previous chapter we argued that the norm synthesis problem, namely
the problem of synthesising the norms that will coordinate agents’ activities
within an open MAS, still remains an open problem. Particularly, we argued
that the literature does not provide any computational approach to perform
multi-objective norm synthesis for open MAS at runtime, and without involving
the agents in the norm synthesis, namely exogenously. Moreover, existing on-line
norm synthesis approaches have constrained synthesis scopes. That is, they limit
themselves to exploit an initial set of norms, thus only being able to synthesise
normative systems that are combinations of those norms.

Against this background, this chapter introduces a computational model
along with an architecture to perform exogenous, on-line and multi-objective
norm synthesis for open MAS. In this model, the synthesis scope is uncon-
strained, since new norms can be synthesised (explored) at runtime. The agents
within a MAS are not required to synthesise their own norms. Instead, a synthe-
sis machine, the so-called Norm Synthesis Machine (nsm), observes the agents’
interactions at runtime, and iteratively executes a synthesis strategy to decide (i)
when it is necessary to synthesise new norms and to discard synthesised norms;
(ii) how to create these norms; and (iii) which normative system (i.e., set of
norms) must be provided to the agents at each time. A nsm is aimed at produc-
ing norms that effectively coordinate agents’ interactions as long as the agents
comply with them. Furthermore, a nsm is designed to be domain-independent
in order to be applicable to different application domains by providing little
domain-dependent information. With all this, this chapter aims at answering
research question R1, introduced in Section 1.2.

The remainder of this chapter is organised as follows. Section 3.2 introduces
the general framework that will underpin the rest of this work and provides
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some definitions to better characterise the norm synthesis problem at hand. Sec-
tion 3.3 introduces an abstract and domain-independent computational model
to perform exogenous, on-line and multi-objective norm synthesis in open MAS.
Finally, Section 3.4 provides an abstract architecture to support the implemen-
tation of such norm synthesis model.

3.2 Basic definitions and problem statement

This section is structured as follows. Section 3.2.1 introduces a formal framework
to be used throughout this dissertation, and provides some basic definitions.
Thereafter, Section 3.2.2 provides the formal definition of the norm synthesis
problem at hand.

3.2.1 Basic definitions

Let us consider a Multi-Agent System composed of a finite set of agents Ag =
{ag1, . . . , agm} with a shared finite set of actions Ac = {ac1, . . . , acn} that
these agents can perform. Let S be the set of all possible states of the MAS.
Let T : S × Ac|Ag| → S be a state transition function that leads the MAS to
a state s′ from a state s after the agents perform a set of actions A ∈ Ac|Ag|.
The differences between these states capture the changes that occurred when
the MAS evolved from s to s′. For convenience, Ac includes a special action nil
that stands for not performing any action.

To describe the states of a MAS, let us consider two different languages. On
the one hand, a MAS language LMAS describes the states of a MAS from a
global, external observer’s perspective. On the other hand, an agent language
LAg describes MAS states from an agent’s local, individual perspective. Both
languages are first-order languages with grounded terms containing the standard
classical connectives, and a notion of consequence defined for it via a relation
|=. Hereafter, given a state s ∈ S, ds will denote an expression of LMAS that
describes a MAS from a global perspective. In particular, a MAS state descrip-
tion (ds) is a set of first-order predicates of the form p(τ1, . . . , τk), with p being
a predicate symbol and τ1, . . . , τk being terms of LMAS .

Now, let us introduce a running example to be used throughout the remainder
of this dissertation. With this aim, we assume a further simplification of the
traffic scenario described in Section 1.3.1. Let us consider a traffic junction with
two lanes, modelled as a 3×3 grid. Figure 3.1a shows a graphical representation
of this scenario, with two cars (car a and car b) going through an intersection.
The actions available to the cars are Ac = {go, stop}. In particular, action go
means that a car moves forward towards its target direction at a constant speed
of 1 cell per move (in particular it may include turns); and stop means that a
car remains stopped at its position. Figure 3.1a shows a state of the junction
(state s). Its description (ds) would be composed of the predicates describing
each cell in the grid from a external observer’s perspective. These predicates
are described in terms of a language LMAS with one unary predicate symbol
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Car a 

Car b 

Car a 

Car b 

Car A: “go” 
Car B: “go” 

State s State s' 

“There is a car to my left” 

“There is a car to my right” 
0
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0        1               2 0        1               2 

(a) (b) 

Figure 3.1: Collision between two cars in a traffic junction. In state s, car a has
context “there is a car to my right”, and car b has context “there is a car to my
left”.

“cell”, used to describe the contents in each particular cell of the scenario. This
predicate may have the following terms:

• Two numerical values representing the coordinates (x, y) of a cell.

• One term out of a set of terms {car-heading-north, car-heading-east, car-
heading-south, car-heading-west, wall, nil}, which represent either a car
heading towards different cardinal points, a wall, or nothing.

• A numerical value that represents the identifier of a car.

With this LMAS language, state s in Figure 3.1a could be described as follows:

ds = { cell(0,0,wall), cell(0,1,nil), cell(0,2,wall),
cell(1,0,car-heading-east,a), cell(1,1,nil), cell(1,2,nil),
cell(2,0,wall), cell(2,1,car-heading-north,b), cell(2,2,wall) }

The notion of partial view of some state s can be captured as a sub-expression
(subset) of ds. For instance, given expression ds above, an example of partial
view of s could be a subset of ds describing a subgroup of cells in s. Hereafter,
νsi will stand for the i-th partial view of state s. Thus, a given state s could
be described as a set of partial views {νs1 , . . . , νsj } such that νsi ∩ νsj = ∅ and

ds = {
j⋃
i=1

νsi }.
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Each agent has her own local view of the state of the system that she is
part of. For instance, car a located in the junction in Figure 3.1a will have
its own local perception of the junction, which corresponds to the perception
of cars in its vicinity, without including other cars further away in the road.
In this model, an agent’s context is an expression of LAg that represents the
agent’s representation of a MAS from her local perspective. Formally, the local
representation (context) of an agent is defined as:

Definition 1 (Agent context). Given a state s ∈ S and an agent ag ∈ Ag that
is part of s, function context : Ag × S → P(LAg) yields the context of ag in s,
namely a description of state s from ag’s local perspective.

An agent’s context is a set of first-order predicates of the form p(τ1, . . . , τk),
with p being a predicate symbol and τ1, . . . , τk being terms of LAg. In
our running example, language LAg contains three unary predicate symbols
{left , front , right} employed to represent what occupies the three road positions
(i.e., cells) in front of a car from its perspective. Each predicate has a single
term from {car-heading-left, car-heading-right, car-opposite-heading, car-same-
heading, wall, nil}, representing either a car heading to different directions from
the perspective of a reference car, a wall, or nothing. With this language, the
context of car a in state s in Figure 3.1a can be described as follows:

context(a,s) = {left(nil), front(nil), right(car-heading-left)}

At each moment, agents can perform actions that change the state of a
MAS. For instance, in Figure 3.1, if cars a and b perform action go, this leads
to a different state s′ (Figure 3.1b) in which the two cars have changed their
positions. Assuming that agents’ actions are observable, it is possible to infer
the action that an agent performed during the transition between a state and its
subsequent state by computing the differences between those states. Next, we
define a function that yields the action that an agent performed during a state
transition.

Definition 2 (Agent action). Given an agent ag, and a state transition
〈s,A, s′〉, function action : Ag × S × S → Ac yields the action that agent ag
performed in the transition from s to s′.

As an example, by observing the differences between state s and state s′ in
Figure 3.1, we can infer that both cars performed action go, since during the
state transition each car advanced one cell following its direction.

Let C ⊆ S be a set of undesirable states of a MAS. In particular, we say that
a MAS state is undesirable if it is detrimental to achieve coordination, namely if
it contains conflicts. Considering our running example, and the goal of avoiding
car collisions, the set of undesirable states would correspond to those states con-
taining collisions, and each particular collision in a given state would be regarded
as a particular conflict. For instance, state s′ in Figure 3.1b is undesirable, since
it contains a collision between cars a and b. The notion of conflict in some
state can be captured as a sub-expression of its representation that describes a
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particular conflict (e.g., a collision). Considering that ds′ describes state s′, a
particular conflict in s′ would be a sub-expression of ds′ that describes the cars
colliding in cell (1, 1).

Definition 3 (Conflict). Let s ∈ C be an undesirable MAS state, and ds an ex-
pression that describes s in terms of LMAS . A conflict c ⊆ ds is a sub-expression
of ds describing an situation in s that is detrimental to achieve coordination.

Notice therefore that an undesirable state must at least contain a conflict.
Hereafter, csi will stand for the i-th conflict of state s. Considering undesirable
state s′ in Figure 3.1b, the conflict in such state could be described as follows:

cs
′

1 = { cell(1,1,car-heading-east,a), cell(1,1,car-heading-north,b) }

which describes cars a and b occupying the same cell of the junction (i.e., a
collision between the two cars). Next, we define a function that we can use to
detect conflicts in a given state.

Definition 4 (Conflict detection). Given an undesirable state s ∈ C with rep-
resentation ds, and a partial view νsi , the conflict detection function conflict :
C ×P(LMAS )→ {true, false} indicates whether the partial view contains a con-
flict. If so, conflict(s, νsi ) = true and we say that νsi contains a conflict in s.

Given an undesirable state, and a particular conflict of that state, we say
that the agents described in the conflict are conflicting agents. Formally:

Definition 5 (Conflicting agents). Given an undesirable state s ∈ C, and a
partial view csi representing a conflict, we note the set of agents involved in the
conflict as agents(cs

i ).

As an example, if we consider conflict cs
′

1 introduced above, its set of con-
flicting agents is agents(cs

′

1 ) = {a, b}.
Next, our notion of norm is introduced. As detailed in Section 2.3, this

dissertation focuses on the synthesis of regulative norms. Thus, a norm is a
deontic statement that imposes restrictions (i.e., obligations, permissions and/or
prohibitions) on agents’ behaviours whenever some pre-conditions are fulfilled.
Also, as argued in Section 2.3.2, the norms of a NMAS must be presented in such
a way that the agents are able to interpret and reason about them. Therefore,
norms are described from the agents’ perspective, and thus expressed as formulae
of LAg .

Definition 6 (Norm). A norm is a pair 〈ϕ, θ(ac)〉 where ϕ ∈ LAg stands for
the precondition of the norm, ac ∈ Ac is an action available to the agents, and
θ ∈ {obl , perm, prh} is an atomic deontic operator: obl indicates an obligation,
perm indicates a permission, and prh indicates a prohibition.

More concretely, we assume that the precondition ϕ is a set of first-order
predicates p(τ1, . . . , τk), with p being a predicate symbol and τ1, . . . , τk being
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terms of LAg (the set of predicates represents their conjunction); and θ(ac) is
an atomic deontic formula. Next, we provide a formal definition of a normative
system as a set of norms.

Definition 7. A normative system is a possibly empty set of norms Ω =
{〈ϕ1, θ1(ac1 )〉, . . . , 〈ϕl, θl(acl)〉}. In particular, Ω = ∅ stands for a normative
system with no norms.

In particular, we regard a norm as a soft constraint on the behaviours of
agents. Thus, agents are free to decide whether to comply or not with the norms
that apply to them. An agent ag ∈ Ag evaluates whether a norm n = 〈ϕ, θ(ac)〉
applies to her in a state s by checking if her context in state s satisfies the
precondition of norm n. In this case, norm n applies to agent ag and the deontic
expression θ(ac) holds for her. Formally:

Definition 8 (Norm applicability). Let s be a MAS state, ag an agent that is
part of s, and n = 〈ϕ, θ(ac)〉 a norm. We say that n applies to ag in state s iff
context(ag, s) |= ϕ.

Using our running example, a norm could be defined to prohibit car a in
Figure 3.1a to go forward if it observes a car to its right (hence giving way to
it), and nothing to its front and right positions as follows:

n : 〈{left(nil), front(nil), right(car-heading-left)}, prh(go)〉

The precondition ϕ contains two predicates left(nil) and front(nil) that are true
when the positions to the left and to the front of the reference car are empty; and
a predicate right(car -heading-left) that is true if there is a car to the right of the
reference car which is heading to its left, from the perspective of the reference car.
So, if the reference car’s context is {left(nil), front(nil), right(car -heading-left)},
then, context(ag , s) |= ϕ holds, and prh(go) applies to the agent. Note that
this norm is similar to the “Give way to your right” norm employed in human
societies.

Now that we know the concepts of conflict and norm applicability, let us in-
troduce the concept of unregulated conflict. We say that a conflict is unregulated
iff, for each agent involved in the conflict, no norms applied to the agent in the
state previous to the state containing the conflict. Formally:

Definition 9 (Unregulated conflict). Let 〈s,A, s′〉 be a transition state
such that s′ is undesirable, cs

′
a conflict in state s′, and Ω =

{〈ϕ1, θ1(ac1)〉, . . . , 〈ϕj , θj(acj)〉} a normative system. We say that cs
′

is un-

regulated iff for each agent ag ∈ agents(cs′
), context(ag , s) 2 ϕi for each norm

〈ϕi, θi(aci)〉 ∈ Ω.

Analogously, we say that a conflict is regulated iff, for some agent involved in
the conflict, some norm applied to the agent in the state previous to the state
containing the conflict. Formally:
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Definition 10 (Regulated conflict). Let 〈s,A, s′〉 be a transition state
such that s′ is undesirable, cs

′
a conflict in state s′, and Ω =

{〈ϕ1, θ1(ac1)〉, . . . , 〈ϕj , θj(acj)〉} a normative system. We say that cs
′

is regu-

lated iff there is at least an agent ag ∈ agents(cs′
) such that context(ag , s) |= ϕi

for some norm 〈ϕi, θi(aci)〉 ∈ Ω.

Now, let us formally define norm compliance. Given a state transition
〈s,A, s′〉, and a norm n that applies to an agent ag in s, the agent is con-
sidered to have fulfilled n during the state transition iff (i) she carried out an
action that is obliged by n; or (ii) did not perform an action prohibited by n.

Definition 11 (Norm fulfilment). Given a state transition 〈s,A, s′〉, an agent
ag, and a norm 〈ϕ, θ(ac)〉 applicable to ag in s, we say that ag fulfilled the norm
during the transition from s to s′ iff (i) θ = prh and action(ag , s, s′) 6= ac; or
(ii) θ = obl and action(ag , s, s′) = ac.

Analogously, the agent is considered to have infringed the norm iff, during
the state transition, (i) she performed an action that is prohibited by the norm;
or (ii) she did not perform an action mandated by the norm.

Definition 12 (Norm infringement). Given a state transition 〈s,A, s′〉, an agent
ag, and a norm 〈ϕ, θ(ac)〉 applicable to ag in s, we say that ag infringed the norm
during the transition from s to s′ iff (i) θ = prh and action(ag , s, s′) = ac; or
(ii) θ = obl and action(ag , s, s′) 6= ac.

Given a state transition 〈s,A, s′〉, and an agent ag that fulfilled a norm n in
the transition from s to s′, we say that the fulfilment of norm n is:

• Successful if agent ag is not part of a conflict in state s′.

• Harmful if agent ag is part of a conflict in state s′.

For instance, in the road traffic scenario, a fulfilment would be successful if
a car avoided colliding by fulfilling a norm, and it would be harmful if the car
collided after the norm fulfilment. Formally:

Definition 13 (Successful fulfilment). Let 〈s,A, s′〉 be a state transition, ds′ a
description of s′ in terms of language LMAS , ag an agent, and n = 〈ϕ, θ(ac)〉 a
norm such that ag fulfilled norm n in the transition from s to s′. We say that
the fulfilment of norm n was successful if either (i) s /∈ C, or (ii) s ∈ C and, for
each csi in s, ag /∈ agents(cs

i ).

Definition 14 (Harmful fulfilment). Let 〈s,A, s′〉 be a state transition, ds′ a
description of s′ in terms of language LMAS , ag an agent, and n = 〈ϕ, θ(ac)〉 a
norm such that ag fulfilled norm n in the transition from s to s′. We say that
the fulfilment of norm n was harmful iff s ∈ C and there is a conflict csi such
that ag ∈ agents(cs

i ).

Analogously, given a state transition 〈s,A, s′〉, and an agent ag that infringed
a norm n in the transition from s to s′, we say that the infringement of norm n
is:
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• Successful if agent ag is not part of a conflict in state s′.

• Harmful if agent ag is part of a conflict in state s′.

In our road traffic example, a successful infringement can be regarded as a
car that infringes a norm and does not collide with other cars, and a harmful
infringement may be a car that infringes a norm and collides. Formally:

Definition 15 (Successful infringement). Let 〈s,A, s′〉 be a state transition, ds′

a description of s′ in terms of language LMAS , ag an agent, and n = 〈ϕ, θ(ac)〉
a norm such that ag infringed norm n in the transition from s to s′. We say
that the infringement of norm n was successful if either (i) s /∈ C, or (ii) s ∈ C
and, for each csi in s, ag /∈ agents(cs

i ).

Definition 16 (Harmful infringement). Let 〈s,A, s′〉 be a state transition, ds′ a
description of s′ in terms of language LMAS , ag an agent, and n = 〈ϕ, θ(ac)〉 a
norm such that ag infringed norm n in the transition from s to s′. We say that
the infringement of norm n was harmful iff s ∈ C and there is a conflict csi such
that ag ∈ agents(cs

i ).

3.2.2 Research problem

This dissertation focuses on Normative Multi-Agent Systems, particularly those
whose population is open. As described in Section 2.2.2, a NMAS is a Multi-
Agent System whose agents have their actions regulated by some normative
system they are aware of. Moreover, the system itself can assess whether and
to whom norms in the normative system apply. The particular notion of NMAS
that we adopt in this dissertation is the one that follows.

Definition 17 (Normative MAS). A Normative Multi-agent System (NMAS)
is a tuple 〈Ag ,Ac,Ω,LAg , S, s0, sc〉, where: (i) Ag is a set of agents; (ii) Ac is
a set of actions; (iii) Ω is a normative system, whose norms are expressed in
terms of the agent language LAg ; (iv) S is a set of the states; (v) s0 is the initial
state; and (vi) sc is the current state at a given moment.

Hereafter, for the sake of simplicity, we will refer to a Normative Multi-Agent
System (NMAS) as a MAS.

As detailed In Section 1.1, the norm synthesis problem is that of computing
the norms that will allow the agents in a MAS to effectively coordinate their
interactions. Therefore, Section 1.1.3 introduced the goal of synthesising effective
normative systems. In this dissertation, a normative system is considered to be
effective if the norms it contains are effective to avoid conflicts (c.f. Definition
3). For instance, in the traffic scenario, a normative system will be effective if its
norms avoid collisions. Note therefore that the synthesis objective of effectiveness
can be achieved by synthesising norms that are effective. Thus, we consider a
norm evaluation criterion – the so-called effectiveness – to evaluate to what
extent a norm is successful in avoiding conflicts. This norm evaluation criterion
will be employed to pursue the synthesis of effective normative systems.
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Also, Section 1.1.3 introduced the goal of synthesising liberal normative sys-
tems that give to agents enough freedom to interact. In this dissertation, liberal-
ity is approached as the avoidance of over-regulation, namely to avoid to impose
on the agents more restrictions than strictly necessary to avoid conflicts. That
is, the less unnecessary norms a normative system contains, the more liberal it
is. Note therefore that the synthesis objective of liberality can be achieved by
synthesising norms that are necessary. Thus, we consider a second norm evalu-
ation criterion – the so-called necessity – to evaluate to what extent a norm is
necessary to avoid conflicts. Such norm evaluation criterion will be employed to
pursue the synthesis of liberal normative systems.

However, a third synthesis objective, the so-called compactness, was also
introduced in Section 1.1.3. In short, compactness is regarded with reducing the
norms’ reasoning costs. Thus, the more compact a normative system, the easier
to reason about its norms. In this thesis, the compactness of a normative system
is not pursued through the individual evaluation of its norms. In other words, we
do not consider a norm evaluation criterion to pursue compactness. Instead, we
aim at achieving compactness by reducing the amount of norms that a normative
system contains, as well as the amount of predicates and terms that norms
contain. Overall, the norm evaluation criteria of effectiveness and necessity allow
to synthesise effective and liberal normative systems, and reducing the amount
of norms in a normative system and simplifying norms’ representations allow to
achieve compactness.

At this point, enough background has been provided to characterise the norm
synthesis problem in the context of (normative) open MAS. As detailed in Chap-
ters 1 and 2, within an open MAS, agents’ behaviours are unpredictable and can
change at runtime. Therefore, a normative system should be adapted at runtime
to these changes, searching for a normative system that effectively regulates con-
flicts. In this thesis, the norm synthesis problem does not consist in finding a
particular (target) normative system, but in finding a normative system that is
successful enough. In particular, a normative system is considered as successful
enough if, for a long enough period of time:

1. It remains stable (unchanged).

2. The norms it contains are successful enough in terms of some norm evalu-
ation criteria (e.g., effectiveness, necessity).

Formally, an evaluation criterion is a pair 〈µi, αi〉, where:

• µi : Ω × N × C → [0, 1] is a function that, given a norm of a normative
system Ω, a time step t, and a set C of conflicting states, returns the utility
of the norm at time t in terms of the i-th norm evaluation criterion (e.g.,
effectiveness).

• αi stands for a threshold that sets a satisfaction degree for the i-th norm
evaluation criterion. Such threshold sets the minimum utility a norm must
have in terms of such criterion to be part of the normative system.
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Thus, we consider that a norm’s performance is evaluated in terms of a non-
empty set of norm evaluation criteria EC = {〈µ1, α1〉 . . . , 〈µr, αr〉}. Formally,
the norm synthesis problem is:

Definition 18 (Norm Synthesis Problem). Let 〈Ag ,Ac,Ω,LAg , S, s0, sc〉, be a
MAS, C ⊆ S a set of undesirable (conflicting) states, ψ a function that returns
the normative system at each given time t, t0 the time at which the MAS starts
operating, and T = [tbegin, . . . , tend] a time interval. The norm synthesis problem
(NSP) amounts to finding a normative system Ω̄ such that for some tbegin ≥ t0,
and for all t in T , the following conditions hold: (1) for each norm n ∈ ψ(t),
µi(n, t, C) > αi for all 〈µi, αi〉 ∈ EC; and (2) ψ(t) = Ω̄.

3.3 A computational model for runtime exoge-
nous norm synthesis

This section introduces an abstract and domain-independent computational
model aimed at solving the norm synthesis problem formalised by Definition
18. In particular, this model is intended to synthesise normative systems at
runtime, and exogenously. In this model, a regulatory entity observes agents’
interactions at runtime, and synthesises norms to avoid conflicts when necessary.
Figure 3.2 illustrates an abstract view of this model. On top of a MAS, there is
a Norm Synthesis Machine (nsm) that monitors its evolution. Based on the per-
ceptions collected from the MAS, the nsm synthesises a normative system that
eventually makes public for the agents. With this aim, it carries out a norm
synthesis process implemented by a synthesis strategy. This strategy decides
when and how to change the current normative system, and which normative
system publish for the agents.

As detailed in Section 3.2.2, in this dissertation norms are aimed to avoid
conflicts. In particular, this model is not intended to avoid any possible conflict
from the very beginning. That would be infeasible in an open MAS, since it
would require to know all the possible conflicts that may arise. Instead, our
model detects when conflicts arise at runtime. Then, it synthesises norms aimed
at avoiding such conflicts in the future. A nsm can operate by considering an
initially empty normative system, or by considering an initial normative system
with norms. Therefore, given a MAS, a nsm can be employed either to synthesise
its norms from scratch, or to adapt an initial normative system as the MAS
evolves. To carry out the norm synthesis process described above, a nsm requires
to perform four essential tasks:

1. Detect conflicts. A nsm creates new norms when it detects new conflicts.
For this purpose, it is endowed with the computational capabilities to
detect conflicts in a given MAS.

2. Create new norms. For each new conflict a nsm detects, it creates a new
norm aimed at avoiding that particular conflict in the future. Therefore, a
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Figure 3.2: Abstract view of our model for runtime exogenous norm synthesis.

nsm is also endowed with the computational capabilities to create norms
based on detected conflicts.

3. Evaluate created norms. Once a nsm has created a norm, it does not
have any evidence about its performance in regulating conflicts. For this
reason, a nsm evaluates along time how each synthesised norm performs
in regulating conflicts in terms of some norm evaluation criteria.

4. Refine the normative system. A nsm exploits norms’ performances to even-
tually decide whether to preserve or discard each synthesised norm. The
purpose is to preserve norms that are successful enough, and discard those
that are not.

Note that this norm synthesis model is conflict-driven. Norms are created
based on detected conflicts, and they are then continuously evaluated based on
the conflicts that arise once agents comply (or not) with them. Each one of the
processes described above are detailed in subsequent sections.

3.3.1 Detecting conflicts within a MAS

The starting point of the norm synthesis process is the perception of the MAS.
A nsm permanently observes a MAS through a set of sensors that have a partial
view of the MAS. Each sensor monitors agents’ activities and generates descrip-
tions of what it perceives in terms of language LMAS (described in Section 3.2).
Particularly, given a MAS state s ∈ S, each sensor encodes its partial view of
the state in the form of a view νsi . A nsm employs partial views to generate an
overall description ds of state s.

Note that perceiving the state of a specific MAS requires domain-dependent
information. That is, it requires to identify “what is going on” in the state,
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and how to describe it. As an example, as discussed in Section 3.2, perceiving
the state of a traffic junction requires the identification and description of cars’
positions and headings. Therefore, a sensor considers a domain-dependent func-
tion to perceive a MAS whose signature is perceive : S → P(LMAS ). It inputs
a state s ∈ S, and returns a description of s in terms of LMAS . In particular,
each sensor has a particular implementation of function perceive that encodes
its partial perception of the MAS in the form of a view.

After perceiving a MAS, a nsm proceeds to detect conflicts. Likewise per-
ception, conflict detection requires domain information to assess what types of
situations are undesirable in a specific scenario. Therefore, a nsm considers a
domain-dependent function to detect conflicts whose signature is getConflicts :
P(LMAS ) → P(LMAS ). It inputs the description of a state s (that is, ds), and
returns a (possibly empty) set of conflicts {cs1, . . . , csq} such that csi ⊂ ds. Such
function is an implementation of function conflict , formally described in Defini-
tion 4 (Section 3.2). Obviously, if the set of conflicts of a state s is empty, then
s is not undesirable. As an example, state s′ in Figure 3.1b has a single conflict
(a collision between cars a a b), which can be described as follows:

{cell(1,1,car-heading-east,a), cell(1,1,car-heading-north,b)}

3.3.2 Creating new norms when necessary

A nsm creates new norms when it considers that it is necessary to avoid conflicts.
Particularly, conflicts are not avoided before they arise for the first time. Instead,
once a conflict has arisen, a nsm creates a new norm aimed at avoiding the
conflict in the future. Given a detected conflict, a nsm proceeds to create a
norm by first guessing the source of the conflict, and then creating a norm that
regulates that source. In particular, a nsm considers that a conflict’s source is
an agent that performed an action during the transition to the state containing
the conflict. Therefore, to guess a conflict’s source, a nsm analyses the state
previous to the state containing the conflict, and then it blames the conflict on
an agent whose action the nsm considers that caused it. Finally, it creates a
norm aimed at prohibiting the action the agent performed in the state previous
to the state containing the conflict. The rationale is that prohibiting one of the
actions that the agents performed during the transition from a state s to an
undesirable state s′ (i.e., a state with a conflict) may avoid state s′ from arising
in the future, and thus, the conflict. There are three main assumptions implicit
in this model:

1. A conflict is caused by the actions of the agents involved in the conflict. In
other words, a nsm considers that one of the agents involved in a conflict
is the agent responsible for the conflict. As an example, in Figure 3.1b
(Section 3.2), the car responsible for the collision in state s′ is either car a
or car b.

2. The source of a conflict is an observable action. In Figure 3.1, action go
performed by car a and car b can be inferred by observing the differences
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between states s and s′. That makes possible to infer a single action
go to be prohibited in order to avoid the state transition. Therefore, non-
observable actions, which cannot be inferred, cannot be employed to create
norms.

3. The consequences of performing an action in a state arise in the next state
(i.e., the state resulting from a state transition). In Figure 3.1, a collision
arises in s′ immediately after car a and car b perform respective actions
go during the transition from state s to s′. If the collision between both
cars arose several states after they performed action go, a nsm could not
yield this action by analysing the state previous to the state containing
the collision. Therefore, it could never find the conflict’s source.

In what follows, we detail how a nsm guesses the source of a given conflict,
and how it creates a norm to regulate the source of a conflict.

Guessing a conflict’s source

Given a state transition 〈s,A, s′〉 such that s′ is undesirable, and a particular
conflict cs

′
in s′, a nsm guesses the conflict’s source by employing a function

getSource : P(LMAS ) × P(LMAS ) → Ag. Such function inputs a conflict cs
′

in state s′, and a description ds of the state s previous to the conflict; and
returns an agent that is part of cs

′
and is considered as responsible for the

conflict. This function is domain-dependent and must be implemented for each
particular nsm and each particular application domain. For example, a naive
nsm may use an implementation of such function that, given a conflict, chooses
an agent randomly. This particular strategy may work when a conflict may be
caused for any agent involved in it. An example can be illustrated with the
collision in Figure 3.1b, whose responsible agent may be either car a or car b,
indistinctly. However, in more complex situations it may be necessary to make
more informed decisions. Consider an alternative traffic situation in which a car
performs a dangerous overtaking, and collides with another car. In this case,
there is only one agent responsible for the conflict – the car that performed
the overtaking. Therefore, the “choose randomly” strategy is not appropriate.
Instead, some domain knowledge should be considered to choose the right agent.

Regulating a conflict’s source

Given a state transition 〈s,A, s′〉, a conflict cs
′

of s′, and an agent ag that is
considered as responsible for conflict cs

′
, a nsm aims at preventing conflict cs

′

in the future by creating a norm. Such norm prohibits the action that agent
ag performed during the state transition for any agent encountering the same
context that agent ag had in state s. Note that, likewise in the case of MAS
perception, yielding an agent’s context, as well as the action an agent performed
during a state transition, requires domain-dependent information. Therefore, to
create norms, a nsm considers the following domain-dependent functions:
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• Function getContext(ag, s), which yields the local context of an agent (ag)
in a given state (s). Such function is an implementation of function context ,
formally defined in Definition 1 from Section 3.2.

• Function getAction(ag, s, s′), which yields the action an agent (ag) per-
formed during the transition from one state s to another state s′. This
function is an implementation of function action, formally defined in Def-
inition 2 from Section 3.2.

Let us illustrate an example with car a in Figure 3.1. By using function
getContext , a nsm can yield the local context of car a in state s, which is

{left(nil), front(nil), right(car-heading-left)}

Also, by means of function getAction, a nsm can obtain the observable action
that car a performed during the transition from state s to state s′ (i.e., action
go). Finally, a nsm can create a new norm composed of the car’s context as its
precondition, and a prohibition of the observed action as its postcondition (cf.
Definition 6). With this aim, it employs a grammar G that a nsm can employ
to create norms of the form 〈ϕ, θ(ac)〉. This grammar has been adapted from
[Garćıa-Camino et al., 2009], using as building blocks atomic formulae of the
form pn(τ1, . . . , τk), p being an n-ary predicate symbol and τ1, . . . , τk terms of
LAg . Such grammar is as follows:

Norm ::= 〈{LHS},RHS 〉
LHS ::= LHS ,LHS | ρ
RHS ::= prh(Ac)
Ac ::= ac1 | . . . | acn
ρ ::= pn(τ1, . . . , τk)
τ ::= tr1| . . . |tr j

where aci and tr j are constants. The set of all norms which comply with the
grammar above are represented as N. Considering the running example intro-
duced in Section 3.2, the generic grammar above could be instantiated as:

Norm ::= 〈{LHS},RHS 〉
LHS ::= LHS ,LHS | ρ
RHS ::= prh(Ac)
Ac ::= go | stop
ρ ::= left(τ) | front(τ) | right(τ)
τ ::= car-heading-left | car-heading-right

car-opposite-heading | car-same-heading
wall | nil

In our example, the resulting norm would correspond to norm n described in
Section 3.2, which is described below again for convenience:

n : 〈{left(nil), front(nil), right(car-heading-left)}, prh(go)〉
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Particularly, a nsm creates new norms only for those conflicts that are un-
regulated (cf. Definition 9 in Section 3.2). The reason of this is the following.
Consider that a nsm is monitoring a MAS, and a conflict arises. Then, the nsm
creates a new norm to avoid the conflict in the future. Thereafter, the nsm con-
siders the conflict as regulated (cf. Definition 10 in Section 3.2). Consider that
the created norm is ineffective, and thus unable to avoid the conflict. Therefore,
after some time the conflict arises again. Initially, one may think that the norm
should be immediately discarded, and an alternative norm should be created.
However, as previously detailed, a nsm evaluates norms along time, and thus
may take some time to detect whether a norm performs poorly. During this
time, the same conflict may arise several times, but a nsm cannot assess if the
conflict arises because the norm is ineffective, or for another reason. Therefore,
the nsm will not create new norms to regulate the conflict until it has detected
that the original norm is ineffective, and thus removes it from the normative
system. Thereafter, the conflict will be unregulated again, and the nsm will be
able to create a new, alternative norm when the conflicts arises again.

Note that implicit within this model is a reduction of deontic operators to
only prohibitions. It is natural to ask whether this represents a problematic
restriction. But, notice that obligations and permissions are frequently and nat-
urally interpreted as dual notions: an action is obligatory if it is not permitted
to refrain from performing the action; and an action is permissible if it is not
obligatory to refrain from performing the action. In this case, obligations can
be reduced to prohibitions: to make an action obligatory, prohibit everything
else. With this in mind, this approach of focussing on prohibitions can also
be seen as encompassing obligations. Of course, richer deontic operators (e.g.,
conditional obligations) have also been considered in the literature, and we do
not claim that our approach encompasses a full range of these: but with respect
to core operators, this approach is sufficient. Moreover, this approach can also
handle permissions. Observe that the interpretation of permissions can vary.
For instance, there may be normative systems whereby all actions are prohib-
ited unless they are explicitly permitted. Alternatively, there may be systems
whereby all actions are permitted unless explicitly prohibited, and permissions
are ways of encouraging certain behaviours. When dealing with obligations and
permissions, the undesirable states are idealised situations which did not occur,
and the context of an agent is used to establish an obligation or permission on
a missing action (which would have reached the idealised situation).

3.3.3 Evaluating norms’ performances

Once a nsm creates a new norm, it has no guarantee that the norm will succeed
in regulating conflicts. Therefore, a nsm needs to evaluate each created norm
to assess how it performs in regulating conflicts. Particularly, a nsm iteratively
evaluates a norm along time by:

1. Gathering empirical evidences about what happens in the MAS after agents
fulfil and infringe the norm.
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2. Exploiting these empirical evidences to compute the norm’s utility in terms
of some norm evaluation criteria.

These norm evaluation criteria, already introduced in Section 3.2.2, are crucial to
determine to what extent synthesised norms perform well at regulating conflicts.

In Section 3.2.2, two essential norm evaluation criteria were introduced – the
so-called effectiveness and necessity – to pursue the synthesis of effective and lib-
eral normative systems, respectively. These two criteria can be computed based
on the conflicts that arise in a MAS after agents fulfil/infringe norms, namely
based on norms’ compliance outcomes. On the one hand, a nsm can compute a
norm’s effectiveness based on the conflicts that arise after agents fulfil the norm,
specifically as its ratio of successful fulfilments (i.e., fulfilments that did not lead
to conflicts, see Definition 13 from Section 3.2). Briefly, the more conflicts a
norm avoids after being fulfilled, the more effective. Analogously, a norm’s ne-
cessity can be computed based on the conflicts that arise after agents infringe
the norm, specifically as its ratio of harmful infringements (i.e., infringements
that lead to conflicts, see Definition 16 from Section 3.2). The intuition is that,
if no conflicts arise after agents infringe a norm, maybe the norm is unnecessary.

Note the are three main assumptions implicit in this norm evaluation model:

1. A nsm can detect norm applicability. Namely, it can detect when a given
norm holds for an agent.

2. A nsm can assess norm compliance. That is, it can assess whether an agent
has fulfilled or infringed a given norm that held for her.

3. A nsm can detect the conflicts that arise after an agent fulfils or infringes
a norm.

The concepts of norm applicability and norm compliance were already intro-
duced in Section 3.2.1 (Definitions 8, 11, and 12), and conflict detection was
detailed in Section 3.3.1. Briefly, to detect norm applicability a nsm needs to
yield the local context of each agent in a given state s to detect if any norm ap-
plies to her context. With this aim, it employs function getContext introduced
in Section 3.3.2. To assess norm compliance, a nsm must be able to detect when
a norm has been fulfilled or infringed by an agent. With this aim, it employs
function getAction introduced in Section 3.3.2 to yield the action that an agent
performed during the transition from a state s to another state s′. This will
allow the nsm to assess if the agent has complied with the norm or not. Finally,
it employs function getConflicts introduced in Section 3.3.1 to detect conflicts
in a given state s.

Next, we describe an information model whereby a nsm can keep track of
norms’ compliance outcomes.

Gathering norms’ compliance outcomes

For each norm a nsm synthesises, it creates a tuple of finite series

〈SFn,HFn,SIn,HIn〉
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that accumulate, respectively, its (i) successful fulfilments (SFn) along time; (ii)
harmful fulfilments (HFn) along time; (iii) successful infringements (SIn) along
time; and (iv) harmful infringements (HIn) along time. Formally, these series
are:

SFn = 〈sf n1 , . . . , sf nm〉 ∈ Nm (3.1)

HFn = 〈hf n1 , . . . , hf nm〉 ∈ Nm (3.2)

SIn = 〈sin1 , . . . , sinm〉 ∈ Nm (3.3)

HIn = 〈hin1 , . . . , hinm〉 ∈ Nm (3.4)

where sf nt ∈ SF
n, hf nt ∈ HF

n , sint ∈ SI
n and hint ∈ HI

n stand for the
number of successful fulfilments, harmful fulfilments, successful infringements,
and harmful infringements of norm n at time t, respectively. As an example,
if at a given time t a norm n is fulfilled by an agent, and it leads to a conflict
(harmful fulfilment), we will set hf nt = 1 and sf nt = 0. Analogously, if norm n
is infringed by two agents at time t, and neither of the infringements lead to
conflicts (successful infringements), we will set sint = 2 and hint = 0.

A nsm can exploit norm compliance outcomes to assess how a given normative
system performs at regulating conflicts after agents fulfil and infringe its norms.

3.3.4 Refining the normative system

A nsm exploits computed norms’ performances to refine the normative system,
both by discarding those norms that do not perform well, and by preserving
those norms that perform properly. Particularly, a nsm decides that a norm
does not perform well whenever its utility in terms of some norm evaluation
criterion is below a corresponding threshold. For instance, let us consider the
effectiveness norm evaluation criteria introduced in Section 3.2.2 It could be
formally described as 〈µeff , αeff 〉. If, at a given moment, the effectiveness (µeff )
of a norm is below threshold αeff , then the norm will be considered as ineffective,
and will be discarded from the normative system.

3.4 An abstract architecture for runtime exoge-
nous norm synthesis

Next, an abstract architecture is provided to support the implementation of
the computational model described in Section 3.3. Figure 3.3 illustrates the
architecture of our nsm, which is composed of the following core elements:

1. An abstract synthesis strategy in charge of norm synthesis.

2. A data structure – the so-called normative network – to store the norms
synthesised (explored) so far, along with their relationships.

3. A collection of operators to apply changes to the normative network.
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Figure 3.3: Abstract architecture to support the implementation of our norm
synthesis model.

A nsm continuously perceives a target MAS by means of state transitions (box
a in Figure 3.3), which describe both the current state of the MAS and the
previous state (s′ and s, respectively). After that, it executes a synthesis strategy
that synthesises norms based on the perceptions collected from the MAS. This
strategy implements the computational model described in Section 3.3. Thus, it
is in charge of detecting conflicts within the MAS perceptions, and synthesising
norms to avoid these conflicts. In this way, it aims at synthesising a normative
system that solves the norm synthesis problem (cf. Definition 18 in Section
3.2.2). During this synthesis process, the strategy employs a set of operators to
manipulate a normative network, adding/removing norms when necessary, and
establishing relationships between these norms.

After executing a synthesis strategy, a nsm publishes the resulting normative
system Ω (box b in Figure 3.3) so that the agents become aware of it. Once the
new normative system is deployed, the nsm keeps on perceiving the MAS and
executing its strategy. This cyclic process continues until the strategy deploys a
normative system that, for a long enough period of time, remains stable, and its
norms are successful enough in terms of some evaluation criteria, hence solving
the norm synthesis problem.

To perform norm synthesis, a nsm receives as an input a set of domain-
dependent elements (Φ in box c in Figure 3.3) that must be implemented for the
particular domain for which norms are synthesised. These elements are:
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1. Function perceive to describe a MAS state from a global, external ob-
server’s perspective (introduced in Section 3.3.1).

2. Function getConflicts to detect conflicts within a MAS state (see Section
3.3.1).

3. Function getContext to yield an agent’s context in a MAS state (see Section
3.3.2).

4. Function getAction to infer an agent’s action in a MAS state transition
(see Section 3.3.2).

5. A grammar G to define norms (introduced in Section 3.3.2).

6. Function getSource to guess a conflict’s source, namely the agent respon-
sible for a given conflict (introduced in Section 3.3.2).

Moreover, a nsm receives as an input a set of domain-independent norm
synthesis settings (Ψ in box d in Figure 3.3) to evaluate norms’ performances and
to determine the convergence to a normative system. In particular, it contains:

1. A set EC of norm evaluation criteria (cf. Section 3.2.2), where each evalu-
ation criterion is a pair 〈µi, αi〉 ∈ EC.

2. A time interval T to assess the convergence to a normative system that
solves the NSP (cf. Definition 18 in Section 3.2.2).

Moreover, a nsm receives as an input a set of additional inputs (Γ in box e
in Figure 3.3) that a particular synthesis strategy may require to perform norm
synthesis. Subsequent sections describe the three core elements that compose a
nsm, namely the normative network, the operators, and the synthesis strategy.

3.4.1 A normative network to keep track of norms

A nsm employs a graph-based data structure – the so-called normative network –
to keep track of the norms it explores during the synthesis process. A normative
network is a graph whose nodes stand for norms and whose edges stand for
relationships between norms. In a normative network, a norm may have different
states. We assume that a nsm can represent the current normative system at
a given time based on the norms the normative network contains at that time.
For instance, a normative system may be computed as all the norms of the
normative network, or it may be computed as those norms that satisfy certain
conditions (such as being in a certain state). Formally, a normative network is:

Definition 19 (Normative network). A normative network (NN) is a tuple
〈N ,R,∆, δ〉 where: (i) (N ,R) is a graph such that: N is a set of norms that
correspond to the vertices in the graph, and R ⊆ N × N is a set of directed
edges representing relationships between norms; (ii) ∆ is a set of possible states
of a norm in N ; and (iii) δ : N → ∆ returns a norm’s state in the normative
network.
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Figure 3.4: Possible states of a norm in our normative network, along with their
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Figure 3.5: Evolution of a normative network (and its corresponding normative
system) by changing norms’ states.

We now identify a basic set of norm states that we consider as essential to
perform norm synthesis. This set of states will be employed (and extended) in
the remainder of this dissertation. In short, a norm in a network may be either
active or inactive. Formally, the set of possible states is ∆ = {active, inactive}.
Moreover, we consider that a normative network represents a normative system
as its active norms. Formally, Ω = {n |n ∈ N , δ(n) = active}. Thus, the
normative system can be changed both: (1) by changing the set of norms of
the normative network (N ); and (2) by changing norms’ states in the network
(δ). Figure 3.4 depicts the states in which a norm may be in a network, along
with the transitions between these states. Initially, a norm may be activated
by setting its state to active (transition labelled with “a” in Figure 3.4). In
this way, the norm would be included in the normative system. Thereafter, the
norm may be deactivated, by setting its state to inactive (transition b in Figure
3.4), hence removing it from the normative system. Finally, an inactive norm
may be activated again (transition c in Figure 3.4), and thus re-included to the
normative system.
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Figure 3.5 illustrates how to change a normative system by changing norms’
states in a normative network. Initially, the normative network NN contains
two active norms n1, n2 (represented as white circles), hence representing nor-
mative system Ω = {n1, n2} (Figure 3.5a). Then, norm n2 is deactivated in NN
(represented as a gray circle), yielding NN ′ = {n1, n2} and Ω′ = {n1} (Figure
3.5b). Finally, norm n2 is activated in NN ′, giving rise to NN ′′ = {n1, n2} and
Ω′′ = {n1, n2} (Figure 3.5a). In general, a nsm performs norm synthesis by
continuously iterating over (applying changes to) the normative network until it
finds a normative system that solves the norm synthesis problem.

3.4.2 Operators for normative networks

A nsm transforms a normative network through a collection of operators.
Each operator transforms a normative network 〈N ,R,∆, δ〉 into another one
〈N ′,R′,∆, δ′〉, consequently leading from one normative system to another. We
identify three basic types of operations that a synthesis strategy may require to
transform a normative network:

• Modifying the set of norms in a normative network. The basic operations
that a nsm performs in a network are the addition and removal of norms
to/from the normative network, hence changing N .

• Changing norms’ states in a normative network. Since the norms in a
network may be at a certain state, a nsm requires operators to change
these states. Examples of this are depicted in Figure 3.5.

• Establishing relationships between norms in the normative network. As
detailed above, norms in a network may have relationships between them.
Therefore, a nsm should provide operators to establish and to remove these
relationships. These type of operations will be illustrated in subsequent
chapters (from Chapter 5 onwards), which exploit relationships between
norms.

We now introduce a basic set of normative network operators to be used
(and extended) in the remainder of this dissertation. These operators, which are
described in Table 3.1, can be employed to:

1. Add a norm to the normative network. The add operator extends the
normative network with norm n (N ′ = N ∪ {n}).

2. Activate a norm in the normative network. The implementation of this
activate operator sets the state of a given norm to active (δ′(n) = active),
which consequently becomes part of the normative system.

3. Deactivate a norm in the normative network. This deactivate operator
sets the state of a given norm to inactive (δ′(n) = inactive). Hence,
although the norm remains in the normative network, it is no longer part
of the normative system.
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Operator Specification
add(n,NN ) N ′ ← N ∪ {n}

NN ′ ← 〈N ′, R,∆, δ〉
activate(n,NN ) δ′(n)← active

NN ′ ← 〈N , R,∆, δ′〉
deactivate(n,NN ) δ′(n)← inactive

NN ′ ← 〈N , R,∆, δ′〉

Table 3.1: Basic operators for a nsm.

Note that, while operator add is employed to modify the set of norms of a
normative network, operators activate and deactivate are employed to change
the states of its norms. In our particular case, synthesised norms are never
removed from the normative network, and thus no remove operator has been
included. Instead, a norm can be activated/deactivated to add it to/discard it
from the normative system, respectively.

3.4.3 A strategy to synthesise normative systems

As previously discussed, a synthesis strategy implements the norm synthesis
computational model described in Section 3.3, which consists in:

1. Detecting conflicts as described in Section 3.3.1.

2. Creating norms to prevent conflicts as described in Section 3.3.2.

3. Evaluating norms as described in Section 3.3.3.

4. Refining the normative system as described in Section 3.3.4.

By performing these four steps, a synthesis strategy should be able to find,
after some time, a normative system that effectively achieves coordination, avoid-
ing conflicts as long as agents comply with norms.

3.5 Conclusions

This chapter has contributed to answer research question R1 described in Section
1.2 by introducing:

1. An abstract and domain-independent computational model to per-
form on-line, exogenous and multi-objective norm synthesis for open Multi-Agent
Systems. In this model, a Norm Synthesis Machine (nsm) monitors agents’ ac-
tivities at runtime, and synthesises normative systems based on the perceptions
collected from the MAS. With this aim, a nsm iteratively executes a synthesis
strategy that is in charge of performing norm synthesis. In particular, a synthesis
strategy implements such norm synthesis model and performs the four essential
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tasks of (1) conflict detection, (2) norm creation, (3) norm evaluation, and (4)
norm refinement. The introduced computational model has been described in
an abstract manner so that it can be applied to different application domains
by providing key domain-dependent information.

2. An abstract architecture to support the implementation of the norm
synthesis computational model described above. Our abstract architecture is
composed of

• A synthesis strategy in charge of directing the norm synthesis process.

• A normative network whereby the synthesis strategy can keep track of
synthesised norms.

• A collection of operators to apply changes to the normative network.

Such architecture considers a set of domain-dependent elements to perform norm
synthesis in a given application domain, a set of domain-independent settings
to configure the norm synthesis strategy, and a set of additional inputs that a
particular synthesis strategy may require to perform norm synthesis.

One can use this computational model to perform norm synthesis on different
domains by implementing relatively simple domain-dependent functions such as
conflict detection and retrieval of agents’ context and actions. We thus claim
that this innovative approach can be highly relevant for open MAS. To the
best of our knowledge, and as argued by our analysis of the state of the art
in Chapter 2, the literature does not provide any general approach to perform
on-line, exogenous, and multi-objective norm synthesis for open MAS.

Hereafter, subsequent chapters introduce a family of synthesis strategies in-
tended to be executed by a nsm to perform norm synthesis. These synthe-
sis strategies implement the computational model introduced in this chapter,
each focusing on one of the key synthesis objectives introduced in Section 1.1.3.
Thus, Chapter 4 introduces a strategy to synthesise effective normative systems.
Then, Chapters 5 and 6 present two strategies to synthesise compact normative
systems, and Chapter 7 introduces a strategy to synthesise liberal normative
systems. Finally, Chapter 8 introduces a synthesis strategy that can consider
different degrees of reactivity during norm synthesis.





Chapter 4

Synthesising effective
normative systems

4.1 Introduction

Aiming at answering research question R1 (introduced in Section 1.2), the previ-
ous chapter introduced a computational model to synthesise norms for a MAS at
runtime and without requiring the agents’ participation in norm synthesis. This
computational model considers a regulatory entity – the so-called Norm Synthe-
sis Machine (nsm) – that observes agents’ activities, and executes a synthesis
strategy in charge of performing norm synthesis.

Against this background, this chapter contributes to answer research ques-
tion R1 (Section 1.2) by introducing base, a synthesis strategy intended to be
executed by a nsm to perform norm synthesis. base implements the computa-
tional model introduced in Chapter 3 to synthesise norms for open MAS, and
achieves the synthesis of effective normative systems (see Section 1.1.3). Thus,
base is intended to be executed by a nsm to synthesise normative systems that
successfully avoid conflicts within a MAS. base divides norm synthesis into three
stages: norm generation, norm evaluation, and norm refinement. During norm
generation, it detects conflicts within a MAS as detailed in Section 3.3.1, and
creates norms for each conflict it detects as detailed in Section 3.3.2. Thereafter,
during norm evaluation, base evaluates norms based on their outcomes in the
MAS as detailed in Section 3.3.3. Finally, during norm refinement, base refines
the normative system by discarding those norms that are not successful enough
(i.e., under-perform) in terms of some norm evaluation criteria. It performs this
operation as detailed in Section 3.3.4.

base aims at creating effective norms by learning from experience. In short,
each time base creates a norm from a conflict, it keeps detailed information
about the conflict, and how it solved it. Thereafter, if the norm is successful in
avoiding conflicts, it employs this information to solve similar conflicts, thus cre-
ating similar norms. We empirically evaluate base in agent-based simulations of
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the road traffic scenario introduced in Section 1.3.1. In this way, we demonstrate
not only base’s performance, but also the validity of the computational norm
synthesis model introduced in Chapter 3.

The remainder of this chapter is organised as follows. Section 4.2 describes
the information model employed by base to perform norm synthesis. Section 4.3
describes how base creates norms by learning from experience. Then, Section
4.4 introduces base’s approach to evaluate norms’ performances. Section 4.5
details how base refines the normative system. Section 4.6 introduces base’s
synthesis strategy. Section 4.7 provides an analysis of the base’s computational
complexity. Next, Section 4.8 provides an empirical evaluation of base in the
road traffic scenario. Finally, Section 4.9 draws some conclusions and identifies
the strengths and weaknesses of base.

4.2 Information model

base considers the formal model and the basic definitions introduced in Section
3.2, with a MAS that has a set of states S, a set of conflicting states C ⊆ S, and
a set of agents Ag that can perform actions out of a set of actions Ac. A state
transition function T : S ×Ac|Ag| → S leads the MAS to a state s′ from a state
s after the agents perform a set of actions A ∈ Ac|Ag|. There are two languages
to describe the states of the MAS. On the one hand, a MAS language (LMAS )
can be employed to describe the states of the MAS from a external observer’s
perspective. On the other hand, an agent’s language (LAg) can be employed to
describe a MAS from the agents’ perspective. Norms are of the form 〈ϕ, θ(ac)〉,
being ϕ ∈ LAg the precondition of the norm, and θ(ac) its post-condition.

To keep track of synthesised norms, base employs the normative network
described in Section 3.4.1. Moreover, base considers that a norm in a norma-
tive network may be in a state out of a set of states ∆ = {active, inactive}, and
it represents a normative system as the set of norms that are active in the nor-
mative network. To apply changes to the normative network, base incorporates
the normative network operators employed by described in Table 3.1 (Section
3.4.2). These operators allow base to: (i) add norms to the normative network;
(ii) activate norms so that they become part of the normative system; and (iii)
deactivate so that they no longer belong to the normative system.

4.3 Creating norms by learning from experience

base starts norm synthesis by detecting conflicts within a MAS as detailed in
Section 3.3.1. Thereafter, for each detected conflict, it creates a norm aimed at
avoiding the conflict in the future. Given a conflict, base creates a norm by:

1. Guessing the conflict’s source. It retrieves the agents involved in the con-
flict, and then blames one of these agents for the conflict. With this aim, it
implements function getSource (introduced in Section 3.3.2), which given
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a conflict, guesses its source. That is, it returns an agent considered re-
sponsible for the conflict.

2. Regulating the conflict’s source. It creates a norm that prohibits the action
the chosen agent performed during the transition to the state containing
the conflict. With this aim, it employs two domain-dependent functions
getContext and getAction (introduced in Section 3.3.2) to retrieve: (i) the
context that the agent had in the state previous to the state containing
the conflict; and (ii) the action the agent performed during the transition
to the state containing the conflict, respectively. Then, it creates a norm
composed of the agents’ context as its precondition, and a prohibition of
the agent’s action as its post-condition.

Further details of these two operations above are provided in Section 3.3.2.

Once base has created a norm n, it keeps track of it by including it in the
normative network. With this aim, it employs operator add(n,NN ) described
in Table 3.1 in Section 3.4.2. Finally, it adds the norm to the normative system
by activating it in the normative network. With this aim, it employs operator
activate(n,NN ) described in Table 3.1 in Section 3.4.2.

Note that a key step during the creation of a norm is the process of guessing a
conflict’s source. During such operation, base “chooses” an agent as responsible
for a conflict, thus indirectly choosing the norm that will be created to avoid the
conflict. Therefore, given a conflict, choosing the incorrect agent may lead to
create an ineffective norm. As an example, consider a traffic situation in which
there is a car stopped in a jam, and a second car collides with it from behind.
In this case, this second car is the only responsible for the collision. Hence,
choosing the stopped car as responsible for the collision may lead to create a
norm that prohibits to remain stopped in a jam. This norm would be ineffective
in avoiding collisions.

Against this background, it is natural to see that, the more informed the
process of guessing a conflict’s source, the more likely to synthesise effective
norms. Following this rationale, base incorporates a computational mechanism
that learns from experience to guess the correct source of a conflict. Briefly, once
base determines a conflict’s source, it keeps information about the conflict, its
source, and the norm created to regulate the conflict. Thereafter, if the norm
is successful in regulating conflicts, base exploits this information to guess the
source of similar conflicts in the future.

Note that this rationale is very similar to the way in which humans learn
how to solve problems. Briefly, humans usually solve new problems by anal-
ogy, namely by considering how similar problems were solved in the past. The
literature provides a Machine Learning technique that is based on this ratio-
nale, the so-called Case-Based Reasoning (CBR). CBR [Riesbeck and Schank,
1989, Aamodt and Plaza, 1994] is a supervised Machine Learning technique that
solves new problems (i.e., cases) by retrieving similar problems from a knowledge
base (i.e., a case base) and adapting their solutions. However, during this pro-
cess CBR requires the supervision of a human expert, which cannot be assumed
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in our norm synthesis model. Therefore, we have implemented an unsupervised
approach of classical CBR. Our unsupervised CBR can operate with an ini-
tially empty case base (i.e., with no previous knowledge), and does not require
an expert to evaluate generated solutions. Instead, cases and their solutions
are elicited at runtime, and case solutions are evaluated experimentally in an
unsupervised manner during the norm evaluation phase.

Particularly, base keeps track of arisen conflicts and their sources in the
form of cases and their solutions in a case base. Subsequent sections detail how
base represents cases, and how it exploits cases to effectively choose the correct
source of a conflict.

4.3.1 Cases and solutions

In classic CBR, a case contains the description of a problem, and a single solution
for that problem. Formally, a case in classic CBR is a tuple 〈desc, sol〉, being
desc the description of a problem, and sol its solution. However, base employs
an unsupervised approach to CBR. This means that, given a problem, it may
need to explore alternative solutions to solve it. Therefore, a base’s case is a
tuple 〈desc, {〈sol1, u1〉, . . . , 〈solj , uj〉}〉, being desc the problem description, sol i
a solution proposed for the case, and ui the utility of the i-th solution. This
utility allows base to, given a problem, choose its best solution.

In the case of base, a case description is a pair containing a conflict and
a description of the state previous to the state containing the conflict; and a
solution contains an agent proposed as responsible for the conflict. Formally,
given a state transition 〈s,A, s′〉 such that s′ is undesirable, and a conflict cs

′

in s′, a case description is a tuple 〈ds, cs
′〉, being ds a description of state s in

terms of language LMAS , and cs
′

the conflict in state s′. The case solution is an
agent proposed as responsible for conflict cs

′
. Note therefore that a base’s case

is a tuple 〈〈ds, cs
′〉, {〈ag1, u1〉, . . . , 〈agj , uj〉}〉.

Let us illustrate an example in the road traffic scenario in Figure 3.1 from
Section 3.2.1. Figure 3.1a shows two cars (car a and car b) in state s, perceiving
one another in a traffic junction. Figure 3.1b shows a collision between these
cars in the central cell of the junction in a state s′. Given this problem (i.e., the
collision), base can create a case whose description describes state s and the
collision in state s′. Figure 4.1 shows a graphical representation of this case. Its
corresponding description is desc = 〈ds, cs

′〉, where ds and cs
′

are as follows:

ds = { cell(0,0,wall), cell(0,1,nil), cell(0,2,wall),
cell(1,0,car-heading-east,a), cell(1,1,nil), cell(1,2,nil),
cell(2,0,wall), cell(2,1,car-heading-north,b), cell(2,2,wall) }

cs
′

1 = { cell(1,1,car-heading-east,a), cell(1,1,car-heading-north,b) }

In particular, ds describes each cell of state s in terms of language LMAS ,
and cs

′
describes the central cell of state s′, containing the colliding cars. base

can employ this case description to choose an agent responsible for the conflict
in s′ (either car a, or car b). As an example, consider base blames the collision
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Figure 4.1: A case describing a conflict (a collision) between cars a and b (desca),
with a solution (sola) proposing car a as responsible for the collision.

on car a. The corresponding case solution is 〈a, 0〉, being a the identifier of
the car, and 0 the initial utility of the solution. From this solution, base can
create a norm by retrieving the context of car a in state s, and the action car a
performed during the state transition. Such norm is as follows:

n : 〈{left(nil), front(nil), right(car-heading-left)}, prh(go)〉

Thereafter, if norm n performs well in avoiding conflicts, it will mean that the
proposed solution (i.e., blaming car a for the collision) is useful. To keep track
of the utility of this solution, base employs the utility of the norm that was
created from it (i.e., norm n’s utility). That is, each time the utility of norm n
is updated, base updates the utility of its corresponding case solution (〈a, 0〉)
described above. More details about this process are provided in Section 4.6.2.

4.3.2 Using experience to guess a conflict’s source

Given a conflict, base guesses its source by learning from experience. For this
purpose, it creates a new case describing the conflict as described in Section
4.3.1. Then, it searches in the case base for a similar case. Finally, it retrieves
the solution that best solved the case (the conflict), and exploits it to guess
the source of the current conflict to solve. base performs these operations by
carrying out a complete execution of the unsupervised CBR cycle, which is
composed of 4 different phases: retrieve, reuse, revise and retain. Hereafter, we
describe each one of the 4 phases of the unsupervised CBR cycle, and we provide
an algorithm that implements these phases.

Retrieving similar cases

Given a a state transition 〈s,A, s〉 such that s′ is undesirable, a description ds of
state s, and a conflict cs

′
in s′, base retrieves a conflict similar to cs

′
as follows.
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First, it creates a new case whose description is a tuple 〈ds, cs
′〉. Then, it searches

in the case base for the case whose description is most similar. With this aim,
base employs a domain-dependent function getSimilarity(desc, desc′) ∈ [0, 1]
that returns the similarity between two case descriptions (desc, desc′). Specifi-
cally, two case descriptions are considered as similar iff their similarity is above
a threshold αsim . This amounts to satisfying the following condition:

getSimilarity(desc, desc′) > αsim (4.1)

In this sense, retrieving a similar case equals to finding a conflict that is similar
to the conflict base aims at regulating. Note that, since function getSimilarity is
domain-dependent, it must be implemented for each particular domain in which
base is executed. As an example, in the road traffic scenario, the similarity
between two cases may be computed as the number of cells that are equal in
two states. Figure 4.2 illustrates an example. On its top, the figure depicts a
case describing a conflict base aims at solving (case). On its bottom, it depicts
a case that contains a similar conflict (casesim). Such case corresponds to the
case depicted in Figure 4.1. As we will see next, base can exploit the solution
of casesim to guess a source for the conflict in the case to solve (case).

Reusing a case

If base has retrieved a similar case (i.e., a similar conflict), it reuses its solution
to propose a solution for the conflict at hand. In particular, once a conflict has
been retrieved, there may be two possible situations:

– The retrieved case is similar to the current case. This means that base has
found a conflict that is similar to the conflict to solve. In this case, base retrieves
its solution (〈agi, ui〉) with the greatest utility (ui). Thereafter, it exploits the
solution to create a norm that solves the conflict to solve (cs

′
). With this aim, it

employs a domain-dependent function exploitSolution(〈ds , c
s′〉, 〈ag ′i , u

′
i〉)), which

inputs the description of the current conflict (〈ds, cs
′〉), and the solution of the

similar conflict (〈ag′i, u′i〉), and returns an agent that is considered as responsible

for the current conflict (cs
′
).

Let us illustrate an example with Figure 4.2, which contains a case to solve
(case), and a similar, solved case (casesim). In particular, casesim contains a
solution with high utility (〈a, 0.9〉). This solution, which proposes car a as
responsible for the collision in casesim , yielded the creation of norm n introduced
in Section 4.3.1. base can adapt casesim ’s solution to solve case, thus creating
a similar norm. With this aim, it proposes car a in state s in the case to solve
(case) as responsible for conflict cs

′
. This will lead base to create a norm like

n′ : 〈{left(nil), front(car-same-heading), right(car-heading-left)}, prh(go)〉

which is very similar to norm n solving casesim (see Section 4.3.1).

– The retrieved case is equal to the current case. This may happen whenever
a norm that was created to avoid a particular conflict is eventually considered
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Figure 4.2: A traffic case to solve (case), and a similar case (simCase).
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as unsuccessful, and then deactivated. In that case, the conflict would arise
again, and the original case (the case from which the norm was created) may be
retrieved. When that happens, base avoids creating the same norm again by
choosing an alternative, randomly chosen agent as the one responsible for the
conflict.

Finally, if base did not retrieve a similar case, this means that there are
no similar conflicts, and thus there is no experience available that can help in
choosing the source of conflict cs

′
. Therefore, base generates a random solution,

namely it randomly chooses an agent to be responsible for the conflict.

Revising generated solutions

In classic CBR, case solutions are evaluated by means of a human expert. How-
ever, our unsupervised CBR approach cannot consider a human evaluator. In-
stead, it revises the utility of each generated solution by continuously updating
it with the utility of the norm created from that solution. For instance, in Figure
4.2, the utility of solution solsim corresponds to the utility of norm n described
in Section 4.3.1, which was created from solsim . Particularly, norms’ utilities
are empirically evaluated along time during base’s norm evaluation stage (see
Section 4.6.2).

Retaining new cases

During this phase, base keeps track of the resulting experience in the case base.
For this purpose, it stores the new case in the case base. Eventually, base may
employ the new case to solve similar conflicts in the future

An algorithm to guess a conflict’s source

We now provide an algorithm that implements the unsupervised CBR phases de-
scribed above. Algorithm 1 illustrates the implementation of function getSource,
which base employs to guess the source of a given conflict. It takes as input a
description (ds) of the state s previous to a conflict, and a description of a con-
flict (cs

′
) in a state s′. It starts by carrying out case retrieval. It creates a new

case description containing ds and cs
′

(line 2). Then, it retrieves the case whose
description is most similar to the recently created description (line 3). With this
aim, it employs function getSimilarity described in Equation 4.1 above. There-
after, it reuses the case. If a similar case was retrieved, then it retrieves its
description (line 5). If the descriptions of the current case and the similar case
are different, then it retrieves the best solution of the similar case (line 7). If
there is a solution available, then it employs function exploitSolution (line 9) to
exploit it, thus choosing an agent as responsible for conflict cs

′
. Otherwise, if the

descriptions of the current case and the similar case are equal, then it chooses
an alternative agent as the source of the conflict (line 11). By contrast, if no
similar case was retrieved, it randomly chooses an agent as the source of conflict
cs

′
(line 13). Finally, it retains the case in the case base (lines 14–15).
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ALGORITHM 1: Function getSource

Input : ds, c
s′

Output: ag

/* Retrieve phase: */

[1] ag ← null;

[2] desc ← 〈ds, cs
′
〉;

[3] simCase ← getMostSimilarCase(desc);
/* Reuse phase: */

[4] if simCase 6= null then
[5] simDesc ← getDescription(simCase);
[6] if desc 6= simDesc then
[7] bestSol ← getBestSolution(sim);
[8] if bestSol 6= null then
[9] ag ← exploitSolution(bestSol , simDesc, desc);

[10] else
[11] ag ← getAlternativeAgent(simCase);

[12] if ag = null then

[13] ag ← getRandomAgent(cs
′
);

/* Retain phase: */

[14] case ← 〈desc, {ag, 0}〉;
[15] CB ← addToCaseBase(case,CB);
[16] return ag;

4.4 Evaluating norms’ performances

At each time step, base evaluates each norm individually to assess how successful
it is in regulating conflicts. base considers a norm is successful if it (1) avoids
conflicts after agents fulfil it (i.e., it is effective); and (2) conflicts arise after
agents infringe it (i.e., it is not unnecessary). Therefore, to evaluate norms,
base considers a norm evaluation criterion 〈µsuccess , αsuccess〉 (see Section 3.2.2),
being µsuccess a function that computes how successful a norm is in regulating
conflicts after the agents fulfil and infringe the norm, and αsuccess ∈ [0, 1] a
satisfaction degree that sets the minimum utility µsuccess for a norm to be active.

In particular, function µsuccess computes the utility of a norm as its ratio of
successful outcomes for a certain period of time, namely its ratio of successful
fulfilments (fulfilments that did not lead to conflicts) and harmful infringements
(infringements that led to conflicts). With this aim, it proceeds as follows.
Whenever a norm n is fulfilled or infringed at a given time t, base first computes
the number of successful outcomes of n at time t as follows:

so(n, t) = sf nt + hint (4.2)

where n ∈ N and t ∈ N, being N the set of norms in the normative network;
and sf nt ∈ SF

n, hint ∈ HI
n stand for the number of successful fulfilments and
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harmful infringements of norm n at time t, respectively (see Section 3.3.3).
Analogously, it computes the number of unsuccessful outcomes of n at time t

as its number of harmful fulfilments at time t (fulfilments that led to conflicts),
and its number of successful infringements at time t (infringements that did not
lead to conflicts).

uo(n, t) = hf nt + sint (4.3)

where hf nt ∈ HF
n, sint ∈ SI

n stand for the number of harmful fulfilments and
successful infringements of norm n at time t, respectively (see Section 3.3.3).

Thereafter, base computes a new evaluation for norm n at time t that de-
termines how successful it has been in regulating conflicts at time t. With this
aim, it employs function evaluation described below.

evaluation(n, t) =


so(n, t)

so(n, t) + uo(n, t)
if applicable(n, t) = true

⊥ otherwise

(4.4)

which computes a norm evaluation as the ratio of successful outcomes of n at
time t iff the norm was applicable at time t, namely if applicable(n,t) = true,
and returns an undefined evaluations ⊥ if n has not been applicable at time t.
In particular, function applicable(n,t) returns true if there are compliance out-
comes of n at time t, that is, if n has either successful outcomes or unsuccessful
outcomes at time t. Formally:

applicable(n, t) =

{
true if so(n, t) + uo(n, t) > 0
false otherwise

(4.5)

Finally, base computes the utility of a norm (µsuccess) as its averaged evaluations
along time. In particular, it only considers the latest q evaluations that are
not undefined. In other words, it considers the values contained in a window
containing the latest q defined evaluations. This q-window allows to compute a
norm’s utility based on the most recent q evaluations of n, allowing to “forget”
old evaluations that may no longer be relevant at time t.

With this aim, let us first define a set Rnl of defined evaluations of n from a
given time l:

DEnl = {evaluation(n, j) | l ≤ j ≤ m, evaluation(n, j) 6=⊥} (4.6)

Then, we consider an index i(q) such that |deni(q)| = q and 1 ≤ i(q) ≤ m. Thus,
set deni(q) contains the latest q defined evaluations of n. Finally, base computes
the utility of a norm n at time t as the average of the values in deni(q).

µsuccess(n, t, q) =

∑
de∈DEn

i(q)

de

q
(4.7)

where n ∈ N , t ∈ N, and 1 ≤ q ≤ t ≤ m.
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Note that this approach to norm evaluation supports the indirect evaluation
of multiple norms that apply simultaneously in a given state s. Although norms
are evaluated individually, their evaluation depends on the state sc reached after
they are fulfilled and infringed, and this state depends on all the norms appli-
cable in previous state s. Thus, if the application of a group of norms leads to
a non-conflictive situation in sc, the score of each norm would increase, while if
their application leads to a conflict in sc, the score of each norm would decrease.
It is natural to see that this may lead to sporadic erroneous norm evaluations,
since multiple norms may be evaluated as unsuccessful at a given time based
on a conflict that was caused by only one of these norms. Nevertheless, norm
evaluation is performed in an iterative manner, thus cumulating punctual norm
evaluations along time. This allows to minimise the impact of sporadic erroneous
norm evaluations, making the method quite robust.

4.5 Refining the normative system

During norm refinement, base exploits norms’ performances to yield normative
systems whose norms are successful enough in terms of some norm evaluation
criteria. In this way, it tries to synthesise a normative system whose norms
are successful to regulate conflicts, hence solving the norm synthesis problem
(cf. Definition 18 in Section 3.2.2). In particular, base considers that a norm
is unsuccessful if its utility (µsuccess) is below threshold αsuccess , introduced in
Section 4.4. This amounts to satisfying the following condition:

µsuccess(n, t, q) < αsuccess (4.8)

where µsuccess(n, t, q) stands for the utility of norm n at time t, given a q-window
of n’s evaluations.

Whenever base detects that condition 4.8 above holds for a norm n,
then it deactivates the norm in the normative network by invoking operator
deactivate(n,NN ) described in Table 3.1 in Section 3.4.2. In this way, the norm
is removed from the normative system.

4.5.1 Evaluating normative systems

Additionally, we now introduce a means to compute the overall utility of a
normative system at a given time. The utility (µsuccess) of a normative system
Ω can be computed as a whole up to a given time t based on the average utility
of its norms for the last q utility values up to time t.

µsuccess(Ω, t, q) =

∑
n∈Ω

µsuccess(n, t, q)

|Ω|
(4.9)
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4.6 BASE’s synthesis strategy

At this point, we have provided enough background to introduce base’s synthe-
sis strategy. base is intended to be executed y a nsm to synthesise normative
systems that effectively avoid conflicts. With this aim, base monitors the evo-
lution of a MAS at regular time intervals (i.e., ticks), and carries out a norm
synthesis process by performing the three synthesis stages of norm generation,
norm evaluation, and norm refinement. During norm refinement, base creates
norms as described in Section 4.3. During norm evaluation, it evaluates norms
as detailed in Section 4.4. Finally, during norm refinement, base refines the
normative system as described in Section 4.5. During this synthesis process,
it changes from one normative system to another by modifying the normative
network described in Section 3.4.1 through the collection of operators in Table
3.1 (Section 3.4.2). As a result of norm synthesis, base publishes a normative
system Ω so that the agents within a MAS become aware of it.

Algorithm 2 illustrates base’s strategy, which takes as input a tuple with a
description of the previous state of a MAS (ds) and a description of the cur-
rent MAS state (dsc), and outputs a normative system to regulate the agents’
behaviour. To perform norm synthesis, base considers the following globally
accessible elements:

• A normative network NN , formally defined in Section 3.4.1.

• A set of operators O = 〈add , activate, deactivate〉 described in Section
3.4.2.

• A set Φ of domain-dependent elements (box c in Figure 3.3 in Section
3.4) to perform norm synthesis in a given application domain. Specif-
ically, Φ = 〈perceive, getConflicts, getContext , getAction,G〉. Functions
perceive, getConflicts, getContext and getAction correspond to the domain-
dependent functions introduced in Chapter 3 to (1) describe a MAS state
from a global perspective (see Section 3.3.1); (2) retrieve the conflicts in a
given MAS state (see Section 3.3.1); (3) yield an agent’s context in a given
MAS state (see Section 3.3.2); and (4) yield an agent’s action in a transi-
tion state (see Section 3.3.2). Additionally, G is a grammar to construct
norms, formally described in Section 3.3.2.

• A set Ψ of domain-independent norm synthesis settings (box d in Figure
3.3 in Section 3.4). Particularly, Ψ = 〈EC, T 〉, being EC a set of norm
evaluation criteria (cf. Section 3.3.3), and T a time interval to determine
when a nsm has converged to a normative system (cf. Definition 18 in
Section 3.2.2). In particular, base will take in EC = 〈µsuccess , αsuccess〉
(introduced in Section 4.4).

• A set Γ of additional synthesis inputs (box e in Figure 3.3 in Section
3.4), which contains (1) a case base (CB) that base employs during norm
generation (see Section 4.3); (2) function getSimilarity considered by base
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during norm generation to compute the similarity between two cases (see
Section 4.3.2); (3) function exploitSolution employed by base during norm
generation to adapt a exploit a case solution (see Section 4.3.2); and (4)
a constant q that base employs to compute norms’ performances during
norm evaluation (see Section 4.4).

ALGORITHM 2: base’s synthesis strategy

Input : 〈ds, dsc〉
Output : Ω
Initialisations: NCO ← ∅, P ← ∅

[1] NN ← normGeneration(〈ds, dsc〉,P);
[2] P ← normEvaluation(〈ds, dsc〉,NCO,P);
[3] NN ← normRefinement(NCO,P);
[4] Ω ← {n ∈ NN | δ(n) = active};
[5] return Ω

Additionally, base considers the following data structures that it initialises
the first time it is invoked:

1. A structure (NCO) to keep track of the compliance outcomes of each norm
(see Section 3.3.3)

2. A structure (P) to keep track of the performance (µsuccess) of each norm
it creates during norm synthesis.

Each time base is invoked by a nsm, it starts by carrying out norm gener-
ation. With this aim, function normGeneration in line 1 detects unregulated
conflicts in the current MAS state (sc) and creates (and adds to the normative
network) norms to avoid detected conflicts in the future as discussed in Section
4.3. Next, normEvaluation in line 2 evaluates norms in terms of their capability
to regulate conflicts as discussed in Section 4.4. As a result, it outputs a set
P of norms’ performances, which keeps track of the performances of each norm
in regulating conflicts. Then, the norm refinement function (line 3) refines the
normative system based on computed norms’ performances (P) as detailed in
Section 4.5. Finally, base publishes a normative system for the agents (line 4).
This includes the active norms in the normative network. Subsequent sections
detail each synthesis stage.

4.6.1 Norm generation

As detailed above, during norm generation, base detects conflicts and creates
norms. Algorithm 3 depicts base’s norm generation. It starts by perceiving
conflicts in the current MAS state (line 1) by invoking function getConflicts.
Then, for each detected conflict, it creates a norm as follows. If the conflict is
not yet regulated (cf. Definition 9 in Section 3.2), base:
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1. Guesses the conflict source by choosing an agent as responsible for conflict
csc (line 4). With this aim, it invokes function getSource described in
Algorithm 1 (Section 4.3.2).

2. Retrieves the local context of ag in the previous MAS state s (line 5).

3. Retrieves the action that ag performed during the transition from state s
to sc (line 6).

4. Employs grammar G to create a new norm that prohibits to perform the
retrieved action for any agent encountering the retrieved context (line 7).

5. Adds the recently created norm to the normative network (if it does not
exist yet), and activates it. With this aim, if employs operator add (line
9), and operator activate (line 10).

ALGORITHM 3: base normGeneration

Input : 〈ds, dsc〉,P
Output: Ω

[1] conflictssc ← getConflicts (dsc);
[2] for csc ∈ conflictssc do
[3] if not regulated(csc , ds) then
[4] ag ← getSource(ds, csc ,P);
[5] context ← getContext(ag , s);
[6] action ← getAction(ag , s, sc);
[7] n← buildNorm(context , action,G);
[8] if n /∈ getNorms(NN ) then
[9] NN ′ ← add(n,NN );

[10] NN ′ ← activate(n,NN );

[11] return NN ;

4.6.2 Norm evaluation

During norm evaluation (line 2 in Algorithm 2), base evaluates norms as de-
scribed in Section 4.4. Algorithm 4 illustrates base’s normEvaluation function,
which starts by invoking function getComplianceOutcomes (line 1). It updates
norms’ compliance outcomes (NCO) in current state sc as described in Section
3.3.3. Next, function evaluateNorms (line 2) evaluates norms based on their
compliance outcomes by employing Equation 4.7. It outputs a set P containing
updated values of each norm’s performance. Finally, in line 3 it invokes function
updateCases, which employs the set of norms’ performances (P) to update the
utilities of their corresponding case solutions in the case base (see Section 4.3.2).



4.7. Complexity analysis 71

ALGORITHM 4: base’s normEvaluation

Input : 〈ds, dsc〉,NCO,P
Output: P

[1] NCO ← getComplianceOutcomes(〈ds, dsc〉,NCO);
[2] P ← evaluateNorms(NCO,P);
[3] CB ← updateCases(P);
[4] return P;

4.6.3 Norm refinement

The final step of the base strategy is the refinement of norms (line 3 of Algorithm
2). During this stage, base refines the normative system as detailed in 4.5.
In short, it discards those norms that are unsuccessful to regulate conflicts.
Algorithm 5 illustrates base’s norm refinement stage. For each norm that has
been fulfilled and infringed during the transition to the current MAS state (line
1), it retrieves its utility from set P (line 2). Then, it deactivates the norm in
the normative network in case its utility is under threshold αsuccess (lines 3–4).
As a result, the norm will no longer belong to the normative system.

ALGORITHM 5: base normRefinement

Input : NN ,O,Ψ,NCO,P
Output: NN

[1] for n ∈ getNormsFulfilledInfringedThisState(NCO) do
[2] un ← getUtility(n,P);
[3] if un < αsuccess then
[4] NN ′ ← deactivate(n,NN );

[5] return NN ;

4.7 Complexity analysis

At this point, the complexity of base can be computed. Before that, let us
consider the number of norms that can be generated by a particular grammar
G. If p is the maximum number of predicates of any norm generated by the
grammar, r is the maximum arity of any predicate, and d is the maximum
number of terms at any position of any given predicate, the number of norms
that can be generated by grammar G is dr·p. Given a grammar G, let ηG note
the number of norms that G can generate. Moreover, given a CBR base CB , let
ηCB note the number of norms in the case base. With all this in mind, base’s
complexity is as follows.

Lemma 1. The norm synthesis performed by the base algorithm when em-
ploying grammar G and case base CB when detecting κ conflicts takes time
O(κ · ηCB + 3 · |Ag| · |NN |+ |NN |).
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Proof. The norm generation stage involves generating norms for each detected
conflict. This operation has cost O(κ · ηCB ). The cost of the norm evaluation
process is O(3 · |Ag||NN |), since it involves assessing the applicability of norms
(O(|Ag||NN |)), assessing the compliance with norms (O(|Ag||NN |)), and up-
dating norms’ utilities (O(|Ag||NN |)). Finally, the cost of norm refinement is
O(|NN |), which amounts to the worst case cost of considering all the norms in
the normative network to decide either to discard or to preserve them. Putting
all together, the resulting worst-case time is O(κ·ηCB +3·|Ag|·|NN |+|NN |).

As a final remark, notice that given a grammar G, the number of normative
systems is 2ηG . This is precisely the size of the search space that base must
explore in search for compact normative systems. However, recall that base is
an approximate algorithm for norm synthesis, and it does not require exploring
the whole search space, as it will be demonstrated in Section 4.8.

4.8 Empirical evaluation

We now empirically evaluate base’s norm synthesis. The aim is to demonstrate
not only base’s performance, but also the validity of the norm synthesis model
introduced in Chapter 3. In these experiments base is iteratively executed by a
nsm that runs on top of a simulated MAS. For this experiment, we have chosen
a scenario we are already familiar with: the road traffic scenario. Hereafter,
Section 4.8.1 describes the empirical settings of this evaluation, whereas Section
4.8.2 illustrates its empirical results.

4.8.1 Empirical settings

base has been empirically evaluated in a discrete agent-based simulation of the
traffic junction scenario introduced in Section 1.3.1, whose graphical representa-
tion is depicted here again for convenience. Figure 4.3a shows a 11×11 sub grid
that corresponds to the centre of a traffic junction modelled as a 21 × 21 grid,
with cars travelling towards randomly chosen destinations. Each car has been
modelled as an agent that can perceive the three cells in front of it (Figure 4.3b).
The actions available to the agents are Ac = {go, stop}. Particularly, agents are
permitted to go by default unless a norm prohibits them to go forward.

In this scenario, base is aimed at synthesising norms that avoid collisions
between cars. Therefore, we consider a scenario that potentially leads to a large
number of collisions. With this aim, we use a high traffic density (from 41%
to 48% of occupied cells) by having three cars entering the scenario per time
step (i.e., tick). At each tick, each car decides whether to comply or not with
the norms published by base according to some probability, namely the norm
infringement rate (NIR). This norm infringement rate is fixed at the beginning
of each simulation and is the same for all cars.

In these experiments, base starts each simulation with an empty normative
system. As the simulation progresses, collisions among cars occur, and base
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Figure 4.3: a) Central area of our traffic junction scenario. b) An agent’s context.

synthesises normative systems to avoid future collisions. A simulation finishes
whenever it reaches 10,000 ticks or base converges to a stable normative system
that avoids unregulated conflicts, hence solving the norm synthesis problem.
Subsequent sections describe (1) the implementation of the different domain-
dependent elements employed by base in this scenario (inputs Φ,Γ in Figure
3.3 in Section 3.4); and (2) the norm synthesis settings that base considers
during the synthesis process (input Ψ in Figure 3.3 of Section 3.4).

Norm synthesis in the traffic scenario

We now describe how each domain-dependent element required by base has been
implemented for the traffic scenario. First, we describe each domain-dependent
element required by a nsm to perform norm synthesis (Φ). These elements are:

– Function perceive . base describes a traffic state (i.e., a grid) by generating
an expression of LMAS that describes each particular cell in the state. With this
aim, it employs language LMAS described in Section 3.2.1 to illustrate the traffic
example.

– Function getContext . Given a state s of the traffic scenario, and a car that
is part of s, function context infers the car’s context in s by describing the three
cells in front of the car from the car’s perspective. With this aim, it employs
language LAg described in Section 3.2.1 to illustrate the traffic example.

– Function getAction . Given a transition between two states s, s′ of a traffic
junction, and a car that is part of states s, s′, function action returns action
“go” if the car has changed its position during the state transition. Otherwise,
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it returns action “stop”.

– Function getConflicts. Given a state s, function getConflicts returns a
(possibly empty) set of expressions of LMAS , each describing a conflict in s. An
example is illustrated in Section 4.3.1.

– Grammar G. The grammar base employs to generate norms is the same
grammar described in Section 3.3.2 to illustrate norm generation, which we
regard here again for convenience:

Norm ::= 〈{LHS},RHS 〉
LHS ::= LHS ,LHS | ρ
RHS ::= prh(Ac)
Ac ::= go | stop
ρ ::= left(τ) | front(τ) | right(τ)
τ ::= car-heading-left | car-heading-right | car-opposite-heading |

car-same-heading | wall | nil

In particular, the precondition of each norm has three predicates (left, front,
right), and each predicate may have one out of 6 different terms. Therefore, the
employed grammar can synthesise 63 = 216 different norms, and the number of
normative systems to consider amounts to 2216 (> 1065).

We now describe the implementation for this scenario of each domain-
dependent function that base’s getSource function (see Section 4.6.1) requires to
guess the source of a given conflict. That is, function getSimilarity to compute
the similarity between two cases, and function exploitSolution to exploit a case
solution.

– Function getSimilarity . In this scenario, the similarity between two case
descriptions 〈das , cs

′

a 〉, 〈dbs, cs
′

b 〉 is computed as the ratio of predicates that are
equal in descriptions das , d

b
s. Figure 4.4 illustrates an example. It illustrates a

graphical representation of two states s and s′ of a traffic junction, highlighting
each cell of state s that is different from its analogous cell in state s′. In the
example, 7 of 9 cells are equal in the two states. Therefore, base considers
that they are 78% similar, that is, getSimilarity(s, s′) = 0.78. Note though
that two states may be symmetric, namely they may be equal but one of them
may be rotated with respect to the other. Our similarity function considers this
possibility while computing the similarity between two states , and compares
each pair of states by performing rotations of 0◦, 90◦, 180◦, and 270◦ to one of
them.

– Function exploitSolution . In this scenario, we consider that similar colli-
sions are caused by cars in similar positions. Therefore, given a case to solve
(case), and a similar, solved case (casesim), this function takes the car of the so-
lution in casesim , retrieves its position in casesim before colliding, and proposes
the car in that position in the case to solve (case). Figure 4.4 (Section 4.3.2)
depicts an example. There, base exploits the solution in casesim (i.e., blaming
car a for the collision in cs

′

sim) to choose a source for the car collision in cs
′
. With
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Figure 4.4: Equal cells and different cells in two different traffic states s and s′.

Parameter Description Value

q
Number of evaluations considered to compute
a norm’s utility (µsuccess)

100

αsuccess
Threshold below which a norm is considered
as unsuccessful

0.2

αsim
Threshold above which two case problems are
considered as similar

0.9

T
Time period considered when assessing
convergence (cf. Definition 18 in Section 3.2.2)

5,000

Table 4.1: base’s norm synthesis settings

this aim, it proposes as the conflict’s source the car in the same position of car a
in state ssim in casesim . Particularly, this process considers that two cases may
be symmetric.

Norm synthesis settings

Finally, base’s norm synthesis parameters have been set as shown in Table 4.1.
In short, we have taken a conservative approach to configure base. Firstly,
base considers a great amount of evidences when computing a norm’s utility.
In particular, the utility of a norm n at time t is computed by considering the
last 100 undefined evaluations of n up to time t (q = 100). Secondly, base
refines the normative system by deactivating norms only when they perform
very poorly (αsuccess = 0.2). Thirdly, base considers that two cases are similar
when their similarity is greater than 90% (αsim = 0.9). Finally, base considers
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a convergence interval of 5,000 ticks (T = 5, 000). Thus, base is said to have
converged to a normative system, hence solving the norm synthesis problem, if
during a 5,000-tick period: (i) the normative system remains unchanged; and
(ii) no new (unregulated) conflicts are detected.

4.8.2 Empirical results

We now analyse base’s results. With this aim, this section provides:

• A micro analysis of base’s convergence process. It analyses how base
manages to synthesise a stable normative system that solves the norm
synthesis problem; and what type of normative systems base synthesises.

• A macro analysis of base’s performance for a given number of simulations.
It analyses the dispersion of the distribution of the normative systems
synthesised by base out of a number of different simulations.

• An analysis of base’s robustness (i.e., its convergence rate) for different
norm infringement rates (NIR) of the agent society.

Micro analysis: BASE’s convergence process

This section illustrates a prototypical execution of base in the road traffic sce-
nario to show how it synthesises a normative system that successfully avoids
collisions. Figure 4.5 depicts a run of base with 0.1 norm infringement rate
(NIR). That is, on average, 1 of each 10 agents’ decisions lead to norm in-
fringements. On the x-axis, it shows the normative changes (i.e., the ticks at
which the the normative network and/or the normative system changed) for
a single simulation. On the y-axis, it depicts (1) the ratio of unregulated car
collisions at a given tick1; (2) base’s normative network cardinality (the total
number of synthesised norms); and (3) the cardinality of the normative system
provided to the agents.

At tick 12 (which corresponds to the second normative change), the first
collision arises and base synthesises the first norm. From that tick onwards,
base keeps generating norms when needed, hence increasing the cardinality of
both the normative network and the normative system. At tick 309 (twelfth
normative change), base generates the last norm, yielding a normative system
with 16 norms. From that point onwards, unregulated collisions are reduced to
0, and the normative system remains stable. By using the resulting normative
system, cars that comply with norms do not cause collisions. After 5,000 further
ticks (at tick 5309), base fulfils the convergence criteria, after synthesising a
normative system that, during a 5,000-tick period, remained unchanged and
avoided unregulated collisions. Overall, base created 16 different norms (out of
216 possible ones), converging to a 16-norm normative system that solved the
norm synthesis problem.

1Computed as the moving average of unregulated collisions of the last 10 ticks.
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Figure 4.5: Prototype execution of base.

Note that both the normative network and the normative system have he
same cardinality along all the simulation. This happens because all the norms
in the normative network remain active during the whole simulation, and thus
are included in the normative system. Particularly, synthesised norms are never
deactivated since they are successful in regulating collisions.

It is worth noticing that, though in this experiment base starts a simulation
with an empty normative system, it may also start operating with an initial
normative system containing norms. In that case, base would provide the ini-
tial normative system to the agents, who would be able to fulfil and infringe
its norms. base would evaluate these norms in terms of their compliance out-
comes, and would refine the normative system by discarding those norms that
are unsuccessful to avoid conflicts, while preserving successful norms. Therefore,
base may be employed not only to synthesise a normative system for a given
MAS, but also to evaluate how a particular normative system would perform in
achieving coordination in a given MAS.

Table 4.2 shows the normative system base converged to in this run. Each
norm establishes a prohibition for a reference car to go forward whenever it
encounters different situations. Norms n1 to n6 represent variations of a general
left-hand side priority norm. They prohibit a car to go whenever it perceives, to
its left, a car heading to the right from its perspective, and different variations to
its front and right positions. Norms n7 to n11 represent variations of a general
“keep your distance” norm. They prohibit a car to go if it perceives a car
in front heading to different directions. In these situations, a car should stop
“just in case” the car in front stops. Finally, norms n12 to n16 represent different
variations of a general right-hand side priority norms. Note though that left-hand
side priority norms and right-hand side priority norms can replace one another
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Norm Pre-condition (θ) Norm target
n1 left(car-to-right), front(car-to-right), right(nil) prh(go)
n2 left(car-to-right), front(car-to-right), right(car-to-right) prh(go)
n3 left(car-to-right), front(car-same-heading), right(nil) prh(go)
n4 left(car-to-right), front(nil), right(nil) prh(go)
n5 left(car-to-right), front(nil), right(car-to-right) prh(go)
n6 left(car-to-right), front(car-same-heading), right(car-to-right) prh(go)
n7 left(nil), front(car-same-heading), right(wall) prh(go)
n8 left(nil), front(car-same-heading), right(nil) prh(go)
n9 left(nil), front(car-same-heading), right(car-to-right) prh(go)
n10 left(nil), front(car-to-right), right(car-to-right) prh(go)
n11 left(car-to-left), front(car-to-left), right(nil) prh(go)
n12 left(car-to-left), front(car-same-heading), right(car-to-left) prh(go)
n13 left(car-to-left), front(car-to-left), right(car-to-left) prh(go)
n14 left(car-to-left), front(nil), right(car-to-left) prh(go)
n15 left(nil), front(car-to-left), right(car-to-left) prh(go)
n16 left(nil), front(car-same-heading), right(car-to-left) prh(go)

Table 4.2: A normative system synthesised by base upon convergence.

in use. That is, to avoid collisions, a car should give way either to its left (norms
n1 to n6) or to its right (norms n12 to n16), but not to both sides. Therefore,
base’s normative system contains more norms than necessary, and thus over-
constrains the agents’ freedom. This comes as a consequence of base’s approach
to detect unnecessary norms. As discussed in Section 4.4, base evaluates norms
individually in terms of their effectiveness and necessity. However, individually
evaluating norms is not enough to detect if a norm becomes unnecessary when
another norm exists. Instead, it is necessary to detect the synergies between
these norms to be able to disregard one of them, while preserving the other.

Macro analysis

Next, we perform a macro analysis of base’s performance. First, we analyse
the dispersion of the distribution of the normative systems synthesised by base.
For this purpose, we now focus on the histogram in Figure 4.6. On the x-axis,
it shows different normative systems synthesised by base in 100 different simu-
lations, each with a 0.1 infringement rate. On the y-axis, it shows the number
of times each normative system was synthesised out of these 100 simulations.
Overall, base converged to 7 different normative systems. Notice that base’s
dispersion is low, since it converged to only 7 different normative systems out of
1065 possible normative systems. In fact, base synthesised 81 times (81%) the
first 2 normative systems (Ω1,Ω2), which at convergence time had, on average,
respective utilities 0.71 and 0.69 (computed as described in Equation 4.9. To
summarise, base consistently focused on an area of the space of normative sys-
tems where successful normative systems are (namely, normative systems that
can avoid unregulated collisions).

Next, we explore base’s robustness by testing its synthesis capabilities under
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Figure 4.6: Histogram depicting the dispersion of normative systems synthesised
by base out of 100 simulations.
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different norm infringement rates. With this aim, we analyse base’s stability
degree for different norm infringement rates (NIR), ranging from 0.1 to 0.9.
Particularly, base’s stability degree is computed as the ratio of simulations that
converged to a stable normative system. We performed 100 simulations per
norm infringement rate. The analysis is performed for very low (0.1), low (0.2),
medium (0.3 to 0.6) and high (beyond 0.6) norm infringement rates. Figure 4.7
shows, for each norm infringement rate, the ratio of simulations that converged
to a stable normative system. For very low norm infringement rates (0.1), base
successfully converged to a normative system that effectively solved the norm
synthesis problem for all the simulations. Nevertheless, beyond low norm in-
fringement rates (0.2), base decreased its stability degree (i.e., it became more
inefficient in synthesising a stable normative system). In fact, it could not man-
age to converge to a normative system beyond the 0.3 norm infringement rate,
and collisions were never completely eradicated, hence leading to a 0 stability
degree.

This lack of stability of base stems from its approach to refine the normative
system (cf. Section 4.6.3). Briefly, the utility of norms (µsuccess) fluctuate above
and below the deactivation threshold (αsuccess) along time, provoking that base
continuously deactivates/re-activates norms, and making impossible to converge
to a stable normative system. Let us illustrate an example with the chart in
Figure 4.8. On the x-axis, it shows consecutive evaluations of a norm n as
evaluated by base. On the y-axis, it shows (1) the utility (µsuccess) of norm n,
(2) the trend of n’s utility (computed as the power trend of µsuccess), and (3)
threshold αsuccess , below which n is considered as unsuccessful. Note that n’s
long-term utility (i.e., its trend) remains above the deactivation threshold along
time. Therefore, in general, n may be considered as successful. However, n’s
utility (µsuccess) has short-term fluctuations, punctually going below threshold
αsuccess (norm evaluations 9 and 15). When that happens, base deactivates the
norm and discards it from the normative system. Thereafter, the conflict the
norm avoided is no longer regulated, and hence the next time the conflict arises,
base may create (i.e., re-activate) the norm again, and add it to the normative
system. This may happen several times along a simulation, provoking that
base continuously deactivates and re-activates norms, and making impossible
to converge to a stable normative system.

4.9 Conclusions

This chapter has introduced base, a synthesis strategy intended to be executed
by a Norm Synthesis machine (nsm) to perform norm synthesis. base imple-
ments the norm synthesis model introduced in Section 3.3 and pursues the syn-
thesis of effective normative systems that successfully avoid conflicts within a
MAS. base creates new norms by learning from experience. Specifically, once
base creates a norm to regulate a conflict, it keeps detailed information about
the conflict, how base determined its source, and the norm created to regulate
it. Thereafter, if the norm succeeds in regulating the conflict, base employs this
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Figure 4.8: Utility (µsuccess) of a norm n along time.

information to regulate similar conflicts, thus synthesising similar norms.
base has been evaluated in an agent-based simulation of a the road traffic

scenario introduced in Section 1.3.1. It has been proven to be capable of syn-
thesising a normative system that successfully avoids car collisions as long as
cars comply with norms. base’s performance has been analysed along several
dimensions. We have studied the type and distribution of normative systems
base synthesises, and we have analysed its robustness.

However, from the observations realised in base’s empirical results, here we
argue that it suffers from some limitations:

1. Lack of compactness. As argued in Section 1.1.3, there are further syn-
thesis objectives that can be considered in on-line norm synthesis in addition
to simply avoiding conflicts effectively. More specifically, normative systems
should be ideally as compact as possible to reduce the agents’ computational
efforts when reasoning about norms. Against this background, here we argue
that the normative systems that base synthesises could be more compact. As an
example, in the road traffic scenario (see Section 4.8), base synthesised multiple
variations of a general left-hand side priority norm. It is natural to think that
these norms could be compactly represented by a more general norm like

〈{left(car-to-right)}, prh(go)〉

which represents a general left-hand side priority norm. It prohibits a car to
go if it perceives a car on the left, and no matter what it perceives to its front
and right positions. In this way, the number of norms and terms that agents
should consider to detect norm applicability could be reduced, thus easing norm
reasoning.
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2. Lack of liberality. As discussed in Section 1.1.3, a crucial synthesis ob-
jective is that of synthesising liberal normative systems. Liberality is concerned
with not imposing on agents more constraints than necessary to avoid conflicts.
base aims at pursuing liberality by individually evaluating norms’ necessities,
and discarding unnecessary norms. However, there may be redundant norms
that cannot be detected by means of their individual necessity. Briefly, two
norms may replace one another in use, thus becoming one of them unnecessary
when the other norm exists. In base’s empirical results (Section 4.8.2) we saw
that it synthesised normative systems containing left-hand side priority norms,
and right-hand side priority norms, which together constrain the cars’ behaviour
to a great extent. This came as a result of base’s incapability to detect the syn-
ergies between these norms to realise that cars should give way either to the left
or to the right, but not to both sides.

3. Ill-defined evaluation. As detailed in 4.6.2, base evaluates the utility of a
norm both in terms of the conflicts it avoids after it has been fulfilled, and the
conflicts that arise after it has been infringed. In this sense, we may say that
base aggregates the effectiveness and the necessity of a norm into a single value
representing its overall utility (µsuccess). This causes a coupling effect between
effectiveness and necessity, and makes it impossible to evaluate whether a norm is
necessary independently of its effectiveness. For instance, a norm may be highly
unnecessary, but also highly effective. An example may be a traffic norm like
“remain stopped forever”, which would be highly effective to avoid collisions, but
also highly unnecessary. base would never be able to discard such norm, since
its high effectiveness would balance its low necessity, leading base to evaluate
the norm as successful enough.

4. Lack of stability. Norm stability is essential to provide agents with a
common framework for their interactions. From the macro analysis of base,
we observe that it is rather unstable, only being able to synthesise a stable
normative system when the number of norm infringements in the system is very
low. This means that base very frequently changes the rules of the game (the
norms) to the agents in an agent society. This limitation stems from base’s
approach to norm refinement, which is highly reactive to short-term fluctuations
in the utility of norms, leading to continuous deactivations and re-activations of
norms that are punctually evaluated as ineffective or unnecessary.

Against these drawbacks, we conclude that there is room for developing al-
ternative strategies that can synthesise more compact and liberal normative
systems, while improving base’s norm evaluation mechanism and overcoming
its stability drawbacks. Therefore, the next chapters provide alternative syn-
thesis strategies that extend base and outperform it in terms of compactness
(Chapters 5 and 6) and liberality (Chapter 7).



Chapter 5

Synthesising compact
normative systems: a
conservative approach

5.1 Introduction

The previous chapter introduced base, a synthesis strategy intended to be ex-
ecuted by a Norm Synthesis Machine (nsm) to perform norm synthesis. base
was proven to be capable of synthesising effective normative systems that suc-
cessfully prevent conflicts in a MAS as long as agents comply with their norms.
As discussed in Section 4.9, base does not consider the compactness synthesis
objective, which in Section 1.1.3 was identified as essential to reduce agents’
norm reasoning efforts. Moreover, base suffers from some drawbacks. On the
one hand, base’s norm evaluation approach makes it unable to evaluate whether
a norm is necessary independently of if its effectiveness. This may lead to the
synthesis of normative systems whose norms are highly effective, but slightly
necessary, or the other way around. On the other hand, base lacks stability.
This comes as a consequence of its norm refinement mechanism, which is highly
sensitive to fluctuations in norms’ utilities.

Against this background, this chapter introduces iron (I ntelligent Robust
On-line N orm synthesis), a synthesises strategy that extends base by consider-
ing compactness as a synthesis objective, and by incorporating alternative norm
evaluation and norm refinement mechanisms. In this way, this chapter aims at
answering research question R2 in Section 1.2. iron synthesises compact norma-
tive systems by performing norm generalisations. Briefly, norm generalisations
allow to synthesise general norms that concisely represent groups of (more spe-
cific) norms. For instance, in a road traffic scenario, a norm like “give way to
emergency vehicles” is a generalisation of (and hence concisely represents) norms
to give way to different emergency vehicles (e.g., ambulances, police cars, and
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fire-brigades). Thus, norm generalisations allow to reduce the number of norms
in the normative system, simplifying agents’ norm reasoning process.

iron approaches norm generalisation from a conservative point of view: it
requires full evidence to generalise. Briefly, iron will never synthesise a norm
like “give way to emergency vehicles” until it: (1) has previously synthesised
norms to give way to each particular type of emergency vehicle (namely, ambu-
lances, police cars, and fire brigades); (2) has empirically evaluated these norms;
and (3) considers that all of them perform well in regulating conflicts. In this
way, iron’s norm generalisations do not increase the amount of constraints that
a normative system imposes on agents, but they simply represents existing con-
straints in a compact manner. To generalise norms, iron is endowed with the
computational capabilities to detect potential norm generalisations, and to es-
tablish generalisation relationships between norms. With this aim, we extend
the collection of normative network operators introduced in Chapter 3 by in-
cluding operators to generalise norms, and to backtrack norm generalisations.
Additionally, to overcome base’s stability limitations, we endow iron with al-
ternative norm evaluation and norm refinement mechanisms. In order to prove
both the performance of iron in synthesising compact normative systems, and
the domain-independence of the computational model introduced in previous
chapter, we empirically evaluate iron in the two application domains introduced
in Section 1.3: the road traffic scenario, and the on-line community scenario.

The remainder of this chapter is thus organised as follows. Section 5.2 intro-
duces some preliminary definitions that are essential to understand the concepts
of norm generalisation and compactness. Next, Section 5.3 introduces some ba-
sic components to perform norm generalisations so that Section 5.4 describes
how to generalise norms. Analogously, Section 5.5 details how to backtrack
norm generalisations, specialising general norms into more specific norms. Next,
Section 5.6 explains how iron evaluates norms to overcome base’s evaluation
drawbacks. Section 5.7 introduces the iron strategy, which details how it man-
ages to synthesise compact normative systems for a MAS. Next, Section 5.8
analyses the computational complexity of iron. Finally, Sections 5.9 and 5.10
show an empirical evaluation of iron in the two application domains introduced
in Section 1.3.

5.2 Preliminary definitions

This section introduces some preliminary definitions to introduce norm general-
isation. With this aim, it considers the basic definitions introduced in Section
3.2, and a MAS (cf. Definition 17 in Section 3.2.2) with a set of agents Ag,
and a set of actions Ac that these agents can perform. An agent’s context can
be described as an expression of an agent language LAg , employed to describe
a MAS from the agents’ perspective. Norms are of the form 〈ϕ, θ(ac)〉, being
ϕ ∈ LAg the precondition of the norm, and θ(ac) its post-condition.

Let us denote the set of terms in language LAg by T . We now define a
generalisation relationship between the terms in T .
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Figure 5.1: Relationships between terms

Definition 20 (Terms generalisation relationship). Let T be the set of terms of
a language LAg, τ, τ ′ ∈ T two terms, and ≤ a relationship that defines a partial
order over the elements of T . We denote as τ ′ ≤ τ a generalisation relationship
between terms τ, τ ′, where τ is more general than τ ′.

Let us refer to the pair T = (T ,≤) as the taxonomy over the terms in T . A
taxonomy has a (possibly singleton) set of root terms T R = {τR1 , . . . , τRk }, called
most general terms, that are not generalised by any other terms. Furthermore,
for any given term τ ∈ T , there is exactly one (possibly empty) sequence of
terms τ ′0, . . . , τ

′
m, τ

′
j 6= τ, 0 ≤ j ≤ m, such that τ ≤ τ ′0 ≤ · · · ≤ τ ′m ≤ τRi and

τRi ∈ T R. Hence, a taxonomy is a forest of directed trees rooted at some term
τRi ∈ T R, and whose edges capture generalisation relationships.

An example can be illustrated by using again the road traffic example in-
troduced in Section 3.2.1, with travelling cars that can perform actions Ac =
{go, stop}. Each car describes its local context by means of three unary predi-
cates left , front , right that represent the three positions in front of it. However,
in this case let us consider a different set of terms that will help illustrate norm
generalisation. In particular, each predicate has a single term from {ambulance,
police,fire-brigade, emergency , car , bike, private, vehicle,nil , anything} of LAg,
representing different vehicle types, term “nil” standing for no vehicle, and term
“anything” representing either any type of vehicle, or nothing. Figure 5.1 illus-
trates a taxonomy that captures taxonomical knowledge between these terms.
On the one hand, ambulances, police cars and fire-brigades can be regarded as
different types of emergency vehicles. On the other hand, cars and bikes are
private vehicles, and both emergency and private vehicles can be generalised
as vehicle. Finally, a vehicle and nil can be generalised as anything. The on-
tology is thus rooted at the “anything” term (and thus, T R = {anything}).
Particularly, term “emergency” is more general than “ambulance”, term “vehi-
cle” is more general than “emergency”, and term “anything” is more general
than “emergency”, that is, ambulance ≤ emergency ≤ vehicle ≤ anything .

Using this traffic scenario, a norm could be represented to establish a pro-
hibition to go (hence giving way) for any car that observes an ambulance to its
left, and a car to its front and right positions, as:

n1 : 〈{left(ambulance), front(car), right(car)}, prh(go)〉
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where the norm’s precondition has a predicate left(ambulance) that is true if
there is an ambulance to the left of a reference car (i.e., a car evaluating the
norm), and front(car) and right(car) are predicates that are true when there is
a car to the front and right positions of the reference car, respectively.

We say that a norm is grounded if all its terms are grounded. Particularly,
a term is grounded if does not generalise any term, namely it if is a leaf in a
taxonomy. Formally:

Definition 21 (Grounded term). Let T be the set of terms of a language LAg,
and τ ∈ T a term. Term τ is grounded iff there is no term τ ′ ∈ T such that
τ ′ ≤ τ .

As an example, n1 is a grounded norm, since all the terms in its precondition
(i.e., ambulance,car) are grounded in the taxonomy of Figure 5.1. Next, let us
define the subsumption relationship between the terms of a taxonomy.

Definition 22 (Terms subsumption). For τ, τ ′ ∈ T , we say that τ subsumes
τ ′, denoted as τ ′ v τ , iff there is a possibly empty sequence of terms τ ′0, . . . , τ

′
m

such that τ ′ ≤ τ ′0 ≤ · · · ≤ τ ′m ≤ τ .

In particular, τ strictly subsumes τ ′, and it is denoted by τ ′ < τ , iff τ ′ v τ and
τ ′ 6= τ . Thus, term “emergency” subsumes terms “emergency” and “ambulance”
(that is, emergency v emergency , and ambulance v emergency), and strictly
subsumes term “ambulance”, that is, ambulance < emergency .

Let us denote by τ̄ a vector of terms of T . We will refer to the i-th component
of τ̄ as τi. A predicate p(τ̄ ) ∈ LAg subsumes another predicate p(τ̄ ′) ∈ LAg iff,
for each pair of terms in τ̄ , τ̄ ′, term τi subsumes term τ ′i . Formally:

Definition 23 (Predicates subsumption). For p(τ̄ ), p(τ̄ ′) ∈ LAg, we say that
p(τ̄ ) subsumes p(τ̄ ′), denoted as p(τ̄ ′) v p(τ̄ ), iff τ ′i v τi for all 1 ≤ i ≤ m.

Given a term τ ∈ T , its potential generalisation is the most specific term that
strictly subsumes it. For instance in Figure 5.1, the potential generalisation of
term “ambulance” is term “emergency”, since there is no other term which is
more specific and strictly subsumes it. However, the potential generalisation
for term “anything” does not exist because there is no term strictly subsuming
“anything”. Formally:

Definition 24 (Potential term generalisation). For τ ∈ T , its potential gener-
alisation is a term τg ∈ T such that τ < τg and there is no other term τ ′′ ∈ T
such that τ < τ ′′ and τ ′′ < τg.

As an example, consider norms n2, . . . , n3 below, which work in conjunction
with norm n1 to regulate priority of emergency vehicles:

n2 : 〈{left(police), front(car), right(car)}, prh(go)〉
n3 : 〈{left(fire-brigade), front(car), right(car)}, prh(go)〉

Let us suppose that n1, n2, n3 comprise a normative system Ω = {n1, n2, n3}.
Notice that the three norms only differ in their “left” predicate, which describes
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different emergency vehicles. That is, the potential generalisation of terms am-
bulance, police and fire-brigade is term emergency. Therefore, these three norms
may be generalised into a single, more general norm to give way to emergency
vehicles coming from the left:

n4 : 〈{left(emergency), front(car), right(car)}, prh(go)〉

yielding a new normative system Ω′ = {n4}, containing one single norm. No-
tice that n4 generalises the left predicate of norms n1, n2, n3 as left(emergency).
This generalisation is possible because n4 caters for the same situations (pre-
conditions) of {n1, n2, n3}, and establishes the same constraints. Thus, even
though norms n1, n2, n3 are no longer explicitly included in the normative sys-
tem, they are implicitly represented by n4. Therefore, whenever norms n1, n2 or
n3 are applicable, their parent (n4) will be applicable as well.

Next, a definition of the generalisation relationship between norms is pro-
vided:

Definition 25 (Norm generalisation relationship). A norm n = 〈ϕ, θ(ac)〉 is
more general than another norm n′ = 〈ϕ′, θ(ac)〉, denoted as n′ ⊆ n, iff n 6= n′,
|ϕ| = |ϕ′|, and for each predicate p(τ̄ ′) ∈ ϕ′, there is a predicate p(τ̄ ) ∈ ϕ such
that p(τ̄ ′) v p(τ̄ ).

Note that the applicability condition of n4 is more general than that of
n1 because a car is prohibited to go if it finds any type of emergency vehi-
cle (including ambulances) to its left position, and a car to its front and right
positions. Specifically, predicate left(ambulance) ∈ ϕ1 (ϕ1 being the precondi-
tion of n1) has a corresponding predicate left(emergency) ∈ ϕ4, ambulance v
emergency (ϕ4 being the precondition of n4). Similarly, front(car) ∈ ϕ1 has
front(car) ∈ ϕ4, front(car) v front(car), and right(car) ∈ ϕ1 has right(car) ∈
ϕ4, right(car) v right(car). Norm n4 is thus more general than n1, namely
n1 ⊆ n4. In general, if a norm n′ is generalised by a norm n, then we also
say that n is specialised by n′. If there exists at least some n′′ ∈ N such that
n′ ⊂ n′′ ⊂ n, then we say that n is an ancestor of n′. Otherwise, n is a parent
of n′. If n′ is not generalised by n, we denote it by n′ * n.

Notice that norm generalisations allow to yield smaller normative systems,
namely normative systems that include less norms (and hence, less norm predi-
cates and terms). In other words, norm generalisations increase the compactness
of the normative system. In the example above, the generalisation of norms
n1, n2, n3 as norm n4 leads from a normative system with 3 norms and 9 terms
in total (Ω) to another one with 1 norm and 3 terms in total (Ω′).

To conclude this section, let us introduce a measure of compactness of a
normative system:

Definition 26 (Compactness). The compactness of a normative system Ω is
the total number of terms in the preconditions of its norms, namely

∑
n∈Ω |n|,

where |n| stands for the number of terms in a norm’s precondition.
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5.3 Components for norm generalisation

To perform norm generalisations, iron requires a means to represent generali-
sation relationships between norms. With this aim, it is necessary to extend the
normative network and the operators for normative networks considered by a
nsm to perform norm synthesis (see Section 3.4). Subsequent sections describe
iron’s normative network and operators.

5.3.1 A network to represent generalisation relationships

To keep track of synthesised norms, iron employs a normative network like
the one described in Definition 19 (Section 3.4.1). Thus, formally an iron’s
normative network is a tuple 〈N ,R,∆, δ〉, being (N ,R) a graph such that: N is
a set of norms , and R ⊆ N×N a set of directed edges representing relationships
between norms; ∆ = {active, inactive} a set of possible norm states; and δ a
function that retrieves a norm’s state in the normative network. Particularly, to
represent norm generalisations iron considers thatR = {EG}, being EG ⊆ N×N
a set of directed edges representing generalisation relationships between norms.
Additionally, iron represents the normative system at a given time as the norms
whose state is “active” in the normative network at that time.

Figure 5.2 illustrates how iron transforms a normative network to perform a
norm generalisation. Initially, the normative network NN contains three active
norms n1, n2, n3 described in Section 5.2 (represented as white circles), hence
representing normative system Ω = {n1, n2, n3}. As described in Section 5.2,
these three norms can be concisely represented by norm n4, which is more gen-
eral than {n1, n2, n3}. Then, n1, n2, n3 are generalised as n4, and deactivated
(represented as gray circles), yielding NN ′ = {n1, n2, n3, n4} and Ω′ = {n4}.
Note then that the number of norms of the normative system is reduced from 3
norms to 1, increasing its compactness. Nevertheless, it is worth noticing that
norm generalisations do not decrease the number of grounded norms a norma-
tive system represents. Therefore, they do not reduce the amount of constraints
imposed on agents. In Figure 5.2, normative system Ω′ contains a single norm,
but it represents 3 grounded norms (give way to ambulances, give way to police
cars, and give way to fire brigades).

5.3.2 Operators for norm generalisation

To manage the normative network, iron considers the basic collection of op-
erators described in Table 3.1 in Section 3.4.2, which can be employed to add,
activate, and deactivate norms. Additionally, it considers two new operators to
perform the following operations:

1. The generalisation of a set of norms in the normative system into a sin-
gle, more general norm. An example is depicted in Figure 5.2, where
norms n1, n2, n3 are generalised into norm n4. As Table 5.1 shows, the
generalise operator generalises a set of norms (children) into a more
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Figure 5.2: Generalisation of norms n1, n2, n3 to n4.

general norm (parent) by performing the following operations. First, if the
parent norm does not exist in the normative network, its adds the par-
ent norm to the network and establishes new generalisation relationships
between each child norm and its parent. Thereafter, it sets the state of
each child to “inactive”, and the parent’s state to “active”. As a result, the
child norms will no longer belong to the normative system, while the parent
norm will. Note though that the child norms (norms n1, n2, n3) are repre-
sented by the parent norm (n4), and thus they are implicitly represented
in the normative system, even though they are not explicitly included.

2. The specialisation of a norm into more specific norms. As Table 5.1 shows,
this specialise operator undoes the result of a generalisation by setting
the state of the parent norm to “inactive”, and setting its children’s to
“active”. In this way, all the child norms become candidates to belong to
the normative system, while the parent norm does not any longer. Figure
5.3 illustrates the specialisation of n4 into its children (n1, n2, n3) by first
deactivating n4, and finally activating n1, n2, n3.

Note that specialising a parent norm does not imply removing the generalisa-
tion relationships it has with its children. The reason of this is that generalisation
is a syntactical relationship between norms that never changes, independently of
the states of the norms. In the example, although norm n4 is specialised, it will
always be more general than its children. Therefore, there is no need to remove
this relationship.

5.4 Conservative norm generalisation

As detailed in Section 5.1, iron takes a conservative approach to norm gener-
alisation that requires full evidence to generalise norms. Briefly, iron will not
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Operator Specification
generalise(children, parent ,NN ) if parent /∈ N

N ′ ← N ∪ {parent}
for all child ∈ children
E ′G ← EG ∪ (child , parent)

for all child ∈ children
δ′(child)← inactive

δ′(parent)← active
NN ′ ← 〈N ′,R′,∆, δ′〉

specialise(parent , children,NN ) δ′(parent)← inactive
for all child ∈ children

if (child , parent) ∈ EG
δ′(child)← active

NN ′ ← 〈N ,R,∆, δ′〉

Table 5.1: iron’s operators to generalise and specialise norms.
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Figure 5.3: Specialisation of norm n4 to n1, n2.
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synthesise a general norm until it has first synthesised each one of the norms it
represents, it has empirically evaluated them, and it considers that they perform
well in regulating conflicts. As an example, consider norm n4 described in Sec-
tion 5.2, which generalises three norms n1, n2, n3 to give way to different types
of emergency vehicles coming from the left (i.e., ambulances, police cars, and fire
brigades). iron would be capable of synthesising a norm like n4 only if it has
previously synthesised norms n1, n2, n3, and considers that they perform well
in regulating conflicts. If, for any reason, norm iron never synthesised one of
the three norms, (e.g., norm n3), or if it synthesised the norm but it performed
poorly in avoiding conflicts, then iron would never generalise n1, n2, n3 into n4.

iron’s generalisation is based on the creation of potential generalisations.
Briefly, once iron creates a norm, it creates all the potential generalisations of
the norm (namely, those norms that it may be potentially generalised to), to
subsequently analyse whether each one of them can be enacted or not. During
this process it checks, for each potential generalisation, if the norms that are
necessary to generalise to a potential parent have been synthesised, and per-
form well. When this happens, it performs the generalisation by invoking the
generalise operator described in Section 5.3.2. Subsequent sections detail how
to build potential generalisations and how to enact potential generalisations.

5.4.1 Building potential generalisations

Given a norm, the first step to build its potential generalisations is to find those
general (parent) norms that it may be potentially generalised to. Specifically,
iron creates a potential generalisation for each potential term generalisation in
the norm’s precondition. With this aim, it employs a terms taxonomy (T) (cf.
Section 5.2) to find the potential generalisation of each term. As an example,
consider norm n1 described in Section 5.2. Its precondition contains predi-
cates left(ambulance), front(car), and right(car). According to the taxonomy
in Figure 5.1, the potential generalisations of these predicates are, respectively,
left(emergency), front(private), and right(private). Therefore, n1 has three po-
tential generalisations:

n4 : 〈{left(emergency), front(car), right(car)}, prh(go)〉
n5 : 〈{left(ambulance), front(private), right(car)}, prh(go)〉
n6 : 〈{left(ambulance), front(car), right(private)}, prh(go)〉

where each potential parent norm generalises one of the terms of n1’s precon-
dition. Specifically, norm n4 generalises term “ambulance” of its left predicate,
while n5 and n6 generalise terms “car” of its front and right predicates, respec-
tively.

The second step is to find all the child norms that each potential parent
represents. With this aim, iron employs again the terms taxonomy to retrieve
the terms that each potential generalisation represents. As an example, term
“emergency” of norm n4’s left predicate represents terms “ambulance”, “police”,
“fire-brigade”. Therefore, the norms that are necessary to generalise to n4 are
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n1, n2, n3. Finally, for each potential generalisation, iron generates and records
a triple 〈n, n′, S〉, where n is a generalisable norm, n′ is a potential generalisation
of n, and S is a (possibly empty) set of norms that n′ generalises (disregarding
n). In our example, the resulting potential generalisation is 〈n1, n4, {n2, n3}〉,
containing a generalisable norm (n1), its potential generalisation (n4), and the
siblings that are necessary to generalise (n2, n3).

Algorithm 7 illustrates iron’s createPotentialGeneralisations function, which
it employs to create the potential generalisations of a norm n. It inputs a norm n,
and outputs a set of n’s potential generalisations. First, it takes the precondition
ϕ of a norm n (line 1) and employs function getPotentialGeneralisations (line 3)
to obtain its parent preconditions (Pϕ) by using a taxonomy T. Thereafter, in
lines 4–5, for each parent precondition ϕ′ ∈ Φ, it builds n′ (a potential parent)
based on the general precondition ϕ′ and the same consequent θ(ac) from n
(that is, n′ = 〈ϕ′, θ(ac)〉). Next, function generateChildren (line 6) computes
(using again taxonomy T) the child norms that are necessary to generalise into
norm n′, disregarding n. In other words, it generates the siblings of n. Finally,
it builds a new potential generalisation 〈n, n′, S〉, which is finally added to the
potential generalisations of norm n, namely potentialn (line 7).

ALGORITHM 6: iron’s createPotentialGeneralisations function
Input : n
Output: potentialn

1 let n = 〈ϕ, θ(ac)〉;
2 potentialn ← ∅;
3 Pϕ ← getPotentialGeneralisations(ϕ,T);
4 for ϕ′ ∈ Pϕ do
5 n′ ← 〈ϕ′, θ(ac)〉;
6 S ← generateNecessaryChildren(n′,T, n);
7 potentialn ← potentialn ∪ {〈n,n ′,S〉};
8 return potentialn

5.4.2 Enacting potential generalisations

A potential generalisation 〈n, n′, S〉 can be enacted if, and only if, both n and
its siblings (the norms in S) satisfy the following conditions:

1. They belong to the normative network. That is, iron has previously cre-
ated them, and has added them to the normative network.

2. They are active in the normative network (and thus, they belong to the
normative system).

3. They perform well in regulating conflicts. Particularly, the way in which
iron considers that a norm performs well is detailed in Section 5.6.1.

If the conditions above conditions hold, a potential generalisation is enacted
to transform both the normative network and the normative system. With this
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Figure 5.4: Specialisation of norm n10 into norms n4 and n7.

aim, iron invokes operator generalise (cf. Table 5.1) to generalise norm n and
its siblings (the norms in S) into norm n′. As an example, consider the potential
generalisation 〈n1, n4, {n2, n3}〉, and the normative network NN = {n1, n2, n3}
in Figure 5.2, which contains n1, n2, n3 as active norms, and represents norma-
tive system Ω = {n1, n2, n3}. Considering that norms n1, n2, n3 perform well
in regulating conflicts, the aforementioned potential generalisation can be en-
acted by invoking operator generalise({n1, n2, n3}, n4), hence generalising norms
n1, n2, n3 into n4, and yielding normative system Ω′ = {n4}.

By generalising norms, iron can provide the agents with normative systems
containing a reduced number of norms and norm predicates. In this way, it can
reduce the agents’ computational efforts when reasoning about norms. How-
ever, note that even though agents are provided with general norms, iron keeps
track of both general norms and the (more specific) norms they represent in the
normative network. As an example, although agents are provided with norm
n4, iron keeps track in the normative network of both n4 and the norms it
represents (n1, n2, n3).

5.5 Backtracking norm generalisations

iron performs norm specialisations as a dual operation to generalisation, al-
lowing to backtrack generalisations of norms that under-perform in regulating
conflicts (see Section 5.6). The idea is that a norm that under-performs must
not be included in the normative system. Initially, one may think that it should
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be enough with deactivating the norm in the normative network, thus ensuring
that it does not belong to the normative system. However, recall that an in-
active norm can be implicitly represented in the normative system by a more
general norm. Therefore, whenever iron detects that a norm under-performs,
it deactivates the norm along with all those norms that generalise it. In other
words, it specialises its ancestors in the normative network. In this way, the
norm will no longer be neither explicitly included nor implicitly represented in
the normative system. Let us illustrate an example with the normative network
(NN ) depicted in Figure 5.4a. It contains a single active norm n10, and thus
represents normative system Ω = {n10}. The network contains norms n1, n2, n3

and n4 (defined in Section 5.2), together with:

n7 : 〈{left(car), front(car), right(car)}, prh(go)〉
n8 : 〈{left(bike), front(car), right(car)}, prh(go)〉
n9 : 〈{left(private), front(car), right(car)}, prh(go)〉
n10 : 〈{left(vehicle), front(car), right(car)}, prh(go)〉

Norms n7 and n8 prohibit a car from proceeding whenever there is a car or a bike
to its left, and car in front and to its right. Norm n9 is a generalisation of norms
n7 and n8 to give way to private vehicles coming from the left, whereas norm n10

is a generalisation of all norms from n1 to n9 to give way to any vehicle coming
from the left. Let us now consider that giving way to bicycles is not convenient to
avoid conflicts (i.e., collisions), and thus n8 under-performs (depicted as a dashed
red circle). Even though norm n8 is inactive, it is implicitly represented by norm
n10. Therefore, iron proceeds by recursively invoking operator specialise (cf.
Table 5.1 in Section 5.3.2) to perform the the following steps:

1. Specialisation of norm n10. This operation involves deactivating norm
n10 and activating its children (n4, n9). As a result, norms n4, n9, which
were implicitly represented by n10, will now be explicitly included in the
normative system.

2. Specialisation of norm n9. It deactivates norm n9, and activates norms
n7, n8 to explicitly include them in the normative system.

3. Deactivation of norm n8.

The resulting normative network (NN ′) is depicted in 5.4b. It contains two
active norms n4, n7, hence representing normative system Ω′ = {n4, n7}. Note
that norm n8 is no longer represented in the normative system neither by itself
nor by a general norm. Moreover, iron has preserved the generalisation of norms
n1, n2, n3 as norm n4, keeping the normative system as compact as possible.

5.6 Evaluating norms’ performances

iron incorporates a novel norm evaluation mechanism to overcome base’s sta-
bility drawbacks (described in Section 3.5). In short, iron’s norm evaluation
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mechanism is an improvement of the one described in 4.4. Briefly, iron per-
forms two main improvements:

1. It decouples effectiveness and necessity, allowing to evaluate the necessity
of a norm independently of its effectiveness. In other words, iron eval-
uates norms in terms of the norm evaluation criteria of effectiveness and
necessity (see Section 3.2.2). Formally, it considers a set of evaluation
criteria EC = {〈µeff , αeff 〉, 〈µnec , αnec〉}, being µeff , µnec two functions to
compute a norm’s effectiveness and necessity, respectively, and αeff , αnec

two thresholds that set the minimum effectiveness and necessity of a norm
to be included in the normative system, respectively.

2. It computes additional metrics to make more informed decisions when re-
fining the normative system. Specifically, after evaluating a norm, iron
computes its effectiveness and necessity performance ranges, which repre-
sent the ranges in which the effectiveness and the necessity of the norm
move along time. In this way, it smooths out short-term fluctuations of ef-
fectiveness and necessity, and highlights longer-term trends when detecting
under-performance.

Briefly, iron computes a norm’s effectiveness by iteratively aggregating its
effectiveness rewards along time. In particular, it computes a effectiveness re-
ward of a norm n that has been fulfilled at a given time t as its ratio of successful
fulfilments at time t (see Section 3.3.3). With this aim, it employs the equation
below.

reff (n, t) =


sf nt

sf nt + hf nt
if fulfilled(n, t) = true

⊥ otherwise

(5.1)

where n ∈ N , t ∈ N (being N the set of norms in the normative network), and
sf nt ∈ SF

n adn hf nt ∈ HF
n are the number of successful fulfilments and harmful

fulfilments of n at time t, respectively (see Section 3.3.3). Specifically, function
reff computes a effectiveness reward as the ratio of successful fulfilments of n
at time t iff n has been fulfilled at time t, namely if fulfilled(n,t) = true, and
returns an undefined reward value ⊥ if n has not been fulfilled at time t. Par-
ticularly, function fulfilled returns true if there are either successful fulfilments
or unsuccessful fulfilments of n at time t. Formally:

fulfilled(n, t) =

{
true if sf (n, t) + hf (n, t) > 0
false otherwise

(5.2)

Thereafter, iron computes the effectiveness of norm n at time t as:

µeff (n, t) =

{
(1− γeff )× µeff (n, t′) + γeff × reff (n, t) if reff (n, t) 6=⊥

⊥ otherwise
(5.3)
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where µeff (n, t′) 6=⊥; 0 ≤ γeff ≤ 1 is a learning rate; t′ < t; and there is no t′′

such that µeff (n, t′′) 6=⊥ and t′ < t′′ < t. In particular, at an initial time t0 the
effectiveness of a norm is set to an initial constant value keff ∈ [0, 1]. Formally,
µeff (n, t0) = keff

Notice therefore that iron’s norm evaluation approach is akin to reinforce-
ment learning [Sutton and Barto, 1998], since the effectiveness of a norm (µeff )
is somehow learned by iteratively aggregating rewards computed from the out-
comes of agents’ norm compliance. In this way, a norm’s effectiveness in iron
evolves more smoothly than in the case of base, avoiding high fluctuations in
its values.

Analogously, iron computes a norm’s necessity by iteratively aggregating its
necessity rewards along time. It computes the necessity reward of a norm n that
has been infringed at a given time t as its ratio of harmful infringements at time
t (see Section 3.3.3). For this purpose, it employs the following equation.

rnec(n, t) =


hint

hint + sint
if infringed(n, t) = true

⊥ otherwise

(5.4)

where n ∈ N , t ∈ N, and hint ∈ HI
n and sint ∈ SI

n are the number of
harmful infringements and successful infringements of n at time t, respectively
(see Section 3.3.3). More specifically, function rnec computes a necessity reward
as the ratio of harmful infringements of n at time t iff n has been infringed at
time t, and returns an undefined reward value ⊥ if n has not been infringed at
time t. Particularly, function infringed returns true if there are either harmful
infringements or successful infringements of n at time t. Formally:

infringed(n, t) =

{
true if hi(n, t) + si(n, t) > 0
false otherwise

(5.5)

Thereafter, iron computes the necessity of norm n at time t as:

µnec(n, t) =

{
(1− γnec)× µnec(n, t′) + γnec × rnec(n, t) if rnec(n, t) 6=⊥

⊥ otherwise
(5.6)

where µnec(n, t′) 6=⊥; 0 ≤ γnec ≤ 1 is a learning rate; t′ < t; and there is no t′′

such that µeff (n, t′′) 6=⊥ and t′ < t′′ < t. Likewise in the case of effectiveness,
at an initial time t0 the necessity of a norm is set to an initial constant value
knec ∈ [0, 1]. Formally, µnec(n, t0) = knec .

As previously introduced, iron computes additional metrics to make more
informed decisions when refining the normative system. With this aim, once
iron has computed new effectiveness/necessity values for a norm n (µeff /µnec),
it computes the effectiveness/necessity performance ranges of n to smooth out
short-term fluctuations and to highlight long-term trends of its effectiveness/ne-
cessity. These ranges are essential to determine whether a norm performs well,
or it under-performs, in order to perform generalisations and specialisations.
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Basically, a performance range consists in the Bollinger Bands [Bollinger,
2001] of a q number of effectiveness/necessity values (µeff /µnec), and is composed
of: (i) a q-period moving average; (ii) an upper band at a q-period standard
deviation above the moving average; and (iii) a lower band at a q-period standard
deviation below the moving average. iron computes the effectiveness range of a
norm n at a given time t by considering the latest q effectiveness values (µeff )
of n that are not undefined at time t. First, it computes the q-period moving
average of the effectiveness of n at time t. With this aim, let us define a set Eff n

l

of defined effectiveness values of n from a given time l:

Eff n
l = {µeff (n, j) | l ≤ j ≤ m,µeff (n, j) 6=⊥} (5.7)

Then, we consider an index i(q) such that |Eff n
i(q)| = q and 1 ≤ i(q) ≤ m. Thus,

set Eff n
i(q) contains the latest q defined effectiveness values of n. iron computes

the average effectiveness of norm n as the average of the values in Eff n
i(q).

µ̂neff =

∑
eff∈Eff n

i(q)

eff

q
(5.8)

where n ∈ N , q ∈ N, and 1 ≤ q ≤ m.
Next, iron computes the standard deviation of the last q effectiveness values

in set Eff n
i(q) to be able to compute the higher bound and the lower bound of

n’s effectiveness range. It computes a standard deviation as follows.

σneff =

√√√√1

q

∑
eff∈Eff n

i(q)

(eff − µ̂neff )2 (5.9)

Finally, the effectiveness range of norm n is a tuple ERn = 〈lbneff , ubneff 〉,
being lbneff the effectiveness lower bound of the range and lbneff is the effectiveness
upper bound of the range, which are computed as follows:

lbneff = µ̂neff − σneff (5.10)

ubneff = µ̂neff + σneff (5.11)

Analogously, iron computes the necessity range of a norm n at a given time
t by considering the latest q necessity values (µnec) of n that are not undefined
at time t. It first computes the q-period moving average of the necessity of n at
time t. With this aim, let us define a set Necnl of defined necessity values of n
from a given time l:

Necnl = {µnec(n, j) | l ≤ j ≤ m,µnec(n, j) 6=⊥} (5.12)

Then, we consider an index i(q) such that |Necni(q)| = q and 1 ≤ i(q) ≤ m. Thus,
set Necni(q) contains the latest q defined necessity values of n. iron computes
the average necessity of norm n as the average of the values in Necni(q).

µ̂nnec =

∑
nec∈Necn

i(q)

nec

q
(5.13)
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where n ∈ N , q ∈ N, and 1 ≤ q ≤ m.
Next, iron computes the standard deviation of the last q necessity values in

set Necni(q) in order to compute the higher bound and the lower bound of n’s
necessity range. It computes this standard deviation as follows.

σnnec =

√√√√1

q

∑
nec∈Necn

i(q)

(nec − µ̂nnec)2 (5.14)

Finally, the necessity range of norm n is a tuple NRn = 〈lbnnec , ubnnec〉, being
lbneff the necessity lower bound of the range and lbneff is the necessity upper
bound of the range, which are computed as follows:

lbnnec = µ̂nnec − σnnec (5.15)

ubnnec = µ̂nnec + σnnec (5.16)

5.6.1 Detecting good performance

As described in Section 5.4, iron generalises norms only whenever it considers
they perform well in regulating conflicts. This section details how iron manages
to check that condition. Briefly, iron considers that a norm n performs well at a
given time t iff the lower bounds of its effectiveness and necessity ranges for the
last q values up to time t are above some satisfaction (generalisation) thresholds.
This amounts to satisfying the following generalisation conditions:

lbneff > αgen
eff (5.17)

lbnnec > αgen
nec (5.18)

where lbneff , lb
n
nec are the lower bounds of the n’s effectiveness range (ERn) and

n’s necessity range (Nn), respectively; and αgen
eff ∈ [0, 1] and αgen

nec ∈ [0, 1] are
thresholds that set the minimum effectiveness/necessity of a norm to be consid-
ered to perform well enough to be generalised. Note that these conditions are
highly conservative, since generalising a norm requires that both its effectiveness
and its necessity range are above a some thresholds.

Let us illustrate this with an example. Consider now the normative network
NN in Figure 5.2, the effectiveness and necessity ranges in Table 5.2, and αgen

eff =
0.5, αgen

nec = 0.4 as generalisation thresholds. Initially, the normative network
contains three active norms n1, n2, n3. From Table 5.2, we can observe that
these three norms fulfil the generalisation conditions in equations 5.17 and 5.18,
namely they perform well in terms of effectiveness and necessity. Thus, the three
norms can be considered to be generalised as detailed in Section 5.4.2, enacting
their corresponding potential generalisation.

5.6.2 Detecting under performance

iron takes a conservative approach when assessing if a norm under-performs.
In short, it requires to cumulate greats amounts of negative evidences about a
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ER NR
n1 [0.6, 0.7] [0.5, 0.6]
n2 [0.7, 0.7] [0.6, 0.7]
n3 [0.7, 0.8] [0.7, 0.8]
n4 [0.8, 0.9] [0.4, 0.5]
n7 [0.6, 0.7] [0.6, 0.7]
n8 [0.0, 0.1] [0.7, 0.8]
n9 [0.4, 0.4] [0.6, 0.7]
n10 [0.5, 0.6] [0.5, 0.6]

Table 5.2: Effectiveness and necessity ranges for the norms in Figures 5.2 and
5.4. Each range contains two values representing the lower bound and the upper
bound of the range, respectively.

norm’s performance to ensure that it is either ineffective or unnecessary. This
implies that, once iron has activated a norm, it is resistant to deactivating it.
Briefly, iron considers that a norm n under-performs at time t if the higher
bounds of its effectiveness or necessity performance ranges of the last q values
up to time t are below some satisfaction thresholds. This amounts to satisfying
either (or both) of the two following conditions.

ubneff < αeff (5.19)

ubnnec < αnec (5.20)

where ubneff , ubnnec are the higher bounds of n’s effectiveness range (ERn) and
n’s necessity range (NRn), respectively; and αeff ∈ [0, 1] and αnec ∈ [0, 1] are
the two thresholds of iron’s evaluation criteria (EC, described at the beginning
of Section 5.6), which set the minimum effectiveness/necessity of a norm to be
included in the normative system. Let us illustrate an example with normative
network NN ′ in Figure 5.4b, the effectiveness and necessity ranges in Table 5.2,
and αeff = 0.3, αnec = 0.1 as effectiveness and necessity thresholds. As the table
shows, the higher bound of n8’s effectiveness range (0.2) is under threshold αeff

(0.3). Therefore, n8 is considered to under-perform in terms of effectiveness and
must be deactivated, triggering the specialisation of its parent norms, namely
n9, n10.

To conclude, note that, when agents fulfil and infringe general norms, iron is
capable of evaluating both these general norms, and the norms they represent in
the normative network. For instance, whenever agents fulfil norm n4 in Figure
5.2 (Section 5.4) in the specific context described by n2, iron will detect that
both n4 and n2 were applicable to the agent, and thus will evaluate both norms in
terms of their effectiveness. This allows iron to detect whenever grounded norms
under-perform, even though they are not explicitly included in the normative
system. This is possible because iron does not remove generalised norms, but
simply deactivates them in the normative network.
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5.6.3 Evaluating normative systems

We now introduce a means to compute the overall effectiveness and necessity of
a normative system at a given time. On the one hand, the effectiveness (µeff ) of
a normative system Ω can be computed as a whole up to a given time t based on
the average effectiveness of its norms for the last q utility values up to time t. On
the other hand, the necessity (µnec) of a normative system Ω can be computed
as a whole up to a given time t based on the average necessity of its norms for
the last q utility values up to time t.

µeff (Ω, t, q) =

∑
n∈Ω

µeff (n, t, q)

|Ω|
µnec(Ω, t, q) =

∑
n∈Ω

µnec(n, t, q)

|Ω|
(5.21)

5.7 IRON’s synthesis strategy

Next, iron’s synthesis strategy is described in detail. iron is intended to be
iteratively executed by a nsm in order to synthesise effective and compact nor-
mative systems. Based on base, iron iteratively monitors a MAS at runtime,
and performs norm synthesis by carrying out three subsequent synthesis stages:
norm generation, norm evaluation, and norm refinement. During norm genera-
tion, iron detects conflicts, and creates new norms as detailed in Section 4.3.
During norm evaluation, it evaluates norms in terms of their effectiveness and
necessity as described in Section 5.6. Thereafter, during norm refinement, it
tries to generalise norms that perform-well as described in Section 5.4, and spe-
cialises under-performing norms as described in Section 5.5. While performing
norm synthesis, iron changes from one normative system to another by applying
changes to the normative network described in Section 5.3.1 through the collec-
tion of operators introduced in Section 5.3.2. As a result of norm synthesis, iron
publishes a normative system Ω so that the agents within a MAS become aware
of it.

Algorithm 7 illustrates iron’s strategy, which takes as input a tuple with a
description of the previous state of a MAS (ds) and a description of the cur-
rent MAS state (dsc), and outputs a normative system to regulate the agents’
behaviour. To perform norm synthesis, iron considers the following globally
accessible elements:

• A normative network NN , formally defined in Section 5.3.1.

• A set of operators O = 〈add , activate, deactivate, generalise, specialise〉 de-
scribed in Section 5.3.2.

• A set Φ of domain-dependent elements (box c in Figure 3.3 in Sec-
tion 3.4) to perform norm synthesis in a given application domain.
Specifically, Φ = 〈perceive, getConflicts, getContext , getAction,G〉, being
perceive, getConflicts, getContext and getAction the domain-dependent
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functions introduced in Section 3.2, and G a grammar to construct norms,
formally described in Section 3.3.2.

• A set Ψ of domain-independent norm synthesis settings (box d in Figure 3.3
in Section 3.4). Particularly, Ψ = 〈EC, T 〉, being EC the evaluation criteria
introduced in Section 5.6, and T a time interval to determine when a nsm
has converged to a normative system.

• A set Γ of additional synthesis inputs (box e in Figure 3.3 in Section
3.4), which contains base’s additional synthesis parameters (described at
the beginning of Section 4.6), along with the following inputs: (1) a terms
taxonomy (T) capturing taxonomical knowledge between the terms in LAg;
(2) two constants keff , knec to set the initial effectiveness and necessity
values of a norm n; and (3) the two generalisation thresholds introduced
in Section 5.6.1 (αgen

eff , αgen
nec ).

ALGORITHM 7: iron’s synthesis strategy

Input : 〈ds, dsc〉
Output : Ω
Initialisations: NCO ← ∅, P ← ∅, ER ← ∅,NR ← ∅,PT G ← ∅

[1] NN ← normGeneration(〈ds, dsc〉,P,PT G);
[2] (P, ER,NR)← normEvaluation(〈ds, dsc〉,NCO,P, ER,NR);
[3] NN ← normRefinement(NCO,P, ER,NR,PT G);
[4] Ω ← {n ∈ NN | δ(n) = active};
[5] return Ω

Additionally, iron considers the following data structures that it initialises
the first time it is invoked:

1. A structure (NCO) to keep track of the compliance outcomes of each norm
(see Section 3.3.3)

2. A structure (P) to keep track of the effectiveness (µeff i
) and the necessity

(µneci
) of each synthesised norm (ni).

3. A structure (ER) containing the effectiveness lower bound and upper
bound of each norm (see section 5.6).

4. A structure (NR) containing the necessity lower bound and upper bound
of each norm (see section 5.6).

5. A structure (PT G) to keep track of the potential generalisations of each
synthesised norm (see section 5.4.1).

Each time iron is invoked by a nsm, it starts by carrying out norm genera-
tion. With this aim, it invokes function normGeneration (line 1), which detects
conflicts in the current MAS state, and creates norms to avoid conflicts. Next,
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normEvaluation in line 2 evaluates norms in terms of their effectiveness and ne-
cessity to avoid conflicts. Such function updates norms’ utilities (P), along with
norms’ effectiveness and necessity performance ranges (ER,NR). These ranges
are finally employed by function normRefinement to refine the normative system
by (1) discarding norms that under-perform; and (2) trying to generalise norms
that perform well. Finally, iron outputs a normative system as the norms that
are active in the normative network (line 4). Subsequent sections describe in
more detail each synthesis stage.

ALGORITHM 8: iron’s normGeneration function

Input : 〈ds, dsc〉,P,PT G
Output: Ω

[1] conflictssc ← getConflicts (dsc);
[2] for csc ∈ conflictssc do
[3] if not regulated(csc , ds) then
[4] n← create(csc , ds);
[5] if n /∈ getNorms(NN ) then
[6] NN ′ ← add(n,NN );

[7] NN ′ ← activate(n,NN );
[8] potentialn ← createPotentialGeneralisations(n);
[9] PT G ← PT G ∪ potentialn

[10] return NN ;

5.7.1 Norm generation

iron’s normGeneration function is depicted in Algorithm 8. It starts by detect-
ing conflicts within the current MAS state (line 1). Thereafter, for each conflict
it detects, it creates a norm aimed at avoiding the conflict in the future. With
this aim, it invokes function create (line 4), which creates a norm from a conflict
as base does (Algorithm 3 in Section 4.6.1). Thereafter, it adds the norm to
the normative network (line 6), and activates it (line 7). Nevertheless, iron
adds a final step to this process. For each created norm, it creates and records
its potential generalisations by invoking function createPotentialGeneralisations
(lines 8–9), described in Algorithm 6 in Section 5.4.1.

5.7.2 Norm evaluation

Algorithm 9 illustrates iron’s normEvaluation function, which carries out norm
evaluation. First, it invokes function getComplianceOutcomes (line 1), which
gathers the compliance outcomes of each norm that has been fulfilled and in-
fringed in the transition from s to s′ (NCO). Next, function evaluateNorms
(line 2) evaluates each fulfilled and infringed norm as detailed in Section 5.6,
and outputs set P, containing the current performances of each norm in terms
of its effectiveness and its necessity. Thereafter, it updates the effectiveness and
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necessity ranges (ER,NR) of each norm that has been evaluated during the
current time step (lines 3–4). It computes these ranges as detailed in Section
5.6. Finally, in line 5, it updates the utilities of each case solution in the case
base as base does (see Algorithm 4 in Section 4.3.2).

ALGORITHM 9: iron’s normEvaluation function

Input : 〈ds, dsc〉,NCO,P, ER,NR
Output: P

[1] NCO ← getComplianceOutcomes(〈ds, dsc〉,NCO);
[2] P ← evaluateNorms(NCO,P);
[3] ER ← updateEffectivenessRange(P, ER);
[4] NR ← updateNecessityRange(P,NR);
[5] CB ← updateCases(P);
[6] return (P, ER,NR);

5.7.3 Norm refinement

iron refines the normative system via norm generalisations (cf. Section 5.4)
and norm specialisations (cf. Section 5.5). Algorithm 10 illustrates iron’s
normRefinement function, which is in charge of executing norm refinement. It
proceeds as follows. For each norm n fulfilled or infringed during the transition
to the current MAS state (sc), it checks the following conditions:

• If norm n under-performs in terms of its effectiveness or its necessity (cf.
Section 5.6.2), then it deactivates norm n and specialises its ancestors
in the normative network. In other words, it deactivates up norm n by
invoking function deactivateUp.

• If norm n performs well in terms of both its effectiveness and its necessity
(cf. Section 5.4.2), then it tries to generalise norm n by invoking function
generaliseUp, which checks each potential generalisation of n, enacting
them when possible.

ALGORITHM 10: iron’s normRefinement function.

Input : NCO,P, ER,NR,PT G
Output : NN

1 for n ∈ getNormsFulfilledInfringedThisState(NCO) do
2 if ubneff < αgen

eff or ubnnec < αgen
nec then

3 NN ← deactivateUp(n,NN );

4 else if lbneff > αgen
eff and lbnnec > αgen

nec then

5 NN ← generaliseUp(n,NN , ER,NR,PT G);

6 return NN
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Next, we provide the algorithms that iron employs to generalise norms and
to specialise norms.

Norm generalisation algorithm

Algorithm 11 illustrates iron’s generaliseUp function, which is in charge of en-
acting the potential generalisations of a norm n. It works as follows. First, it
retrieves the potential generalisations of norm n (line 1). Then, for each poten-
tial generalisation, it checks if each sibling performs well in regulating conflicts
as described in Section 5.6.1. If the generalisation condition is satisfied, then it
invokes operator generalise (Table 5.1 in Section 5.3.2) to generalise norm n and
its siblings into norm n′ (line 8).

ALGORITHM 11: iron’s generaliseUp function

Input : n,NN , ER,NR,PT G
Output: NN

1 potentialn ← potentialGeneralisations(n,PT G);
2 for 〈n, n′, S〉 ∈ potentialn do
3 enact ← true;
4 for sibling ∈ S do

5 if lbsiblingeff <= αgen
eff or lbsiblingnec <= αgen

nec then

6 enact ← false;

7 if enact = true then
8 NN ← generalise(S ∪ {n}, n′,NN );

9 return NN

Norm specialisation algorithm

To deactivate a norm along with its ancestors, iron employs function
deactivateUp depicted in Algorithm 12. This function proceeds by subsequently
specialising each ancestor of n from top to bottom in the normative network, and
finally deactivating n. First, it retrieves the parents of n (line 1), namely those
norms that directly generalise it. Then, it recursively deactivates up each parent
(lines 2–3). This recursive invocation makes that iron starts by specialising the
highest ancestor of n in the hierarchy, and subsequently specialises its descen-
dants until it gets to n. For each specialisation, it checks if the n has no children
in the normative network, namely it is a leaf (line 4). In that case, it deactivates
the norm (line 5) by invoking operator deactivate (Table 3.1 in Section 3.4.2).
Otherwise, it specialises norm n (line 7) by applying operator specialise(n,NN )
depicted in Table 5.1 in Section 5.3.2. This operator deactivates norm n and
activates its children.
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ALGORITHM 12: iron’s deactivateUp function

Input : n,NN
Output: NN

1 parents ← getParents(n,NN )

2 foreach parent ∈ parents do
3 deactivateUp(parent ,NN )

4 if isLeaf(n,NN ) then
5 deactivate(n,NN )

6 else
7 specialise(n,NN )

8 return NN

5.8 Complexity analysis

We now provide an analysis of the computational complexity of iron. Before
that, let us consider the number of norms that can be generated by a particular
grammar G. If p is the maximum number of predicates of any norm generated by
the grammar, r is the maximum arity of any predicate, and d is the maximum
number of terms at any position of any given predicate, the number of norms
that can be generated by grammar G is dr·p. Given a grammar G we shall note
the number of norms it can generate as ηG . Moreover, given a CBR base CB ,
we shall note as ηCB the number of norms in the case base. Now we are ready
to compute iron’s complexity.

Lemma 2. The norm synthesis performed by the iron algorithm when em-
ploying grammar G and case base CB when detecting κ conflicts takes time
O(κ · ηCB + 3 · |Ag| · |NN |+ ηG(|Ag| · |NN |+ 1)).

Proof. The norm generation stage involves (i) generating norms for all detected
conflicts and (ii) generating all potential generalisations for each new norm. The
cost of the first step is O(κ · ηCB ), whereas the cost of the second step is O(ηG).
The cost of the norm evaluation process is O(3 · |Ag||NN |), since it involves as-
sessing the applicability of norms (O(|Ag||NN |)), assessing the compliance with
norms (O(|Ag||NN |)), and updating norms’ utilities and performance ranges
(O(|Ag||NN |)). Finally, the cost of norm refinement is O(ηG · |Ag||NN |), which
amounts to the worst case cost of generalising norms, since the cost of specialis-
ing norms is O(|Ag||NN |2). Putting all together, the resulting worst-case time
is O(κ · ηCB + 3 · |Ag| · |NN |+ ηG(|Ag| · |NN |+ 1)).

Observe that the computation time of iron is larger than base. Nonetheless,
as it will be demonstrated in the experiments carried out in Sections 5.9 and
5.10, this is the price paid by iron in order to significantly outperform base in
terms of compactness.

As a final remark, notice that given a grammar G, the number of normative
systems is 2ηG . This is precisely the size of the search space that iron must
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explore in search for compact normative systems. However, recall that iron is
an approximate algorithm for norm synthesis, and it does not require exploring
the whole search space, as it will be demonstrated in Sections 5.9 and 5.10.

5.9 Empirical evaluation considering a traffic
scenario

We now analyse iron’s norm synthesis in the road-traffic scenario. In these
experiments, a nsm runs on top of a simulated traffic junction MAS, and itera-
tively executes iron to perform norm synthesis. The remainder of this section is
organised as follows. Section 5.9.1 describes the experimental settings, whereas
Section 5.9.2 provides the results of this empirical evaluation.

5.9.1 Empirical settings

The road traffic scenario consists in a traffic junction modelled as a 21×21 grid.
To compare iron with base, the scenario has been configured as described in
Section 4.8.1. Briefly, cars enter the scenario by randomly chosen entry points,
and travel towards randomly chosen destinations. While travelling, cars can
perform actions Ac = {go, stop}. In particular, cars perform action “go” by
default, unless a norm prohibits it. At each time step, cars decide whether to
fulfil or infringe the norms that apply to them according to a norm infringement
rate (NIR).

Each experiment consists of a set of 100 different simulations for both iron
and base. Both strategies start each simulation with an empty normative sys-
tem, and it finishes whenever it reaches 50,000 ticks, or iron/base converge
to a stable normative system. iron/base are assumed to have converged to a
normative system, hence solving the NSP (see Definition 18 in Section 3.2.2),
if during a 5,000-tick period, the normative system remains unchanged and no
unregulated conflicts arise. Hereafter, we detail how both approaches have been
configured to synthesise traffic norms.

Norm synthesis in the road traffic scenario

To perform norm synthesis in the traffic scenario, iron considers base’s imple-
mentation of the domain-dependent elements, which are described in Section
4.8.1. Nevertheless, iron employs a different grammar G to be able to construct
general norms, which is as follows.

Norm ::= 〈{LHS},RHS 〉
LHS ::= LHS ,LHS | ρ
RHS ::= prh(Ac)
Ac ::= go | stop
ρ ::= left(τ) | front(τ) | right(τ)
τ ::= car-heading-left, car-heading-right, car-opposite-heading,

car-same-heading, wall, nil, anything
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Figure 5.5: Taxonomy of terms of the road traffic scenario

The precondition of each norm contains three unary predicates left , front , right ,
which represent the 3 cells in the context of a reference car. Each predicate
contains one term out of a set of seven terms {car-heading-left, car-heading-
right, car-opposite-heading, car-same-heading, wall, nil, anything}. The first
four terms represent a car along with the direction it is heading to, while term
“wall” represents a wall, “nil” represents no car, and term “anything” represents
whether car, a wall, or nothing. Figure 5.5 depicts a taxonomy capturing gen-
eralisation relationships between these terms. The taxonomy is rooted at term
anything, which represents (generalises) the remaining terms to describe a car
heading to different directions, a wall, or nothing. That is, car-heading-left v
anything , car-heading-right v anything , car-opposite-heading v anything ,
car-same-heading v anything , wall v anything , nil v anything .

With this grammar, iron can create norms of the form:

n : 〈{left(car -heading-right), front(nil), right(nil)}, prh(go)〉
n′ : 〈{left(car -heading-right), front(anything), right(anything)}, prh(go)〉

Norm n prohibits a reference car from moving on (hence giving way) if the cell
to its left contains a car heading towards its right, and the cells in front and right
contain nothing. Norm n′ is a general norm (an ancestor of n) prohibiting a car
to go forward if there is a on its left which is heading right from its perspective,
and no matter what it perceives to its front and right cells. With this grammar,
iron can synthesise 73 = 343 different norms, and the number of normative
systems to consider amounts to 2343 (> 10103).

To reduce agents’ norm reasoning efforts, before providing norms to the
agents iron removes from a norm’s precondition those predicates whose term is
the root of a tree in the taxonomy, namely whose terms are most general. As an
example, consider that iron publishes a normative system containing norm n′

above. In that norm, predicates front and right contain term “anything”, hence
stating that no matter what a car represents to its front and right positions.
Therefore, iron will represent norm n′ as

〈{left(car -heading-right)}, prh(go)〉

which prohibits a car to go if it perceives a car coming from its left which is
heading to the right. Since it does not contain front and right predicates, then
no matters what a car perceives to its front and right positions. Therefore, it
represents the same constraint than n′, even though it has only one predicate.
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Parameter Description Value

q

Number of effectiveness values (µeff ) and
necessity values (µnec) considered to compute a
norm’s effectiveness and necessity ranges (see
Section 5.6).

100

keff , knec
Default norm effectiveness and necessity values
(µeff (n, t0), µnec(n, t0)).

0.5

αeff , αnec

Thresholds below which a norm is considered to
under-perform in terms of its
effectiveness/necessity.

0.2

αgen
eff

Threshold above which a norm is considered to
perform well in terms of its effectiveness.

0.6

αgen
nec

Threshold above which a norm is considered to
perform well in terms of its necessity.

0.4

T
Time period considered when assessing
convergence (cf. Definition 18 in Section 3.2.2).

1,000

Table 5.3: iron’s norm synthesis settings in the road traffic scenario.

Norm synthesis settings

Finally, iron’s and base’s norm synthesis parameters have been configured as
follows. In the case of base, it has been configured as shown in Table 4.1 in Sec-
tion 4.8.1. As to iron, it has been configured as depicted in Table 5.3. In short,
we have taken a conservative approach to configure iron. Firstly, iron consid-
ers a great amount of evidences when computing a norm’s effectiveness/necessity
ranges. Given a norm n, its effectiveness range (ERn) and its necessity range
(NRn) are computed by considering the last 100 undefined effectiveness/neces-
sity values of n (q = 100). Secondly, after creating a norm, iron sets its initial
effectiveness and necessity to 0.5 (keff = 0.5, knec = 0.5). Thirdly, iron de-
activates norms only when they perform very poorly (αeff = 0.2, αnec = 0.2).
Fourthly, iron considers high generalisation thresholds (αgen

eff = 0.6, αgen
nec = 0.4).

Finally, iron considers a convergence interval of 5,000 ticks (T = 5, 000).

5.9.2 Empirical results

Next, we analyse iron’s empirical results. With this aim, we provide:

1. A micro analysis that illustrates how iron reaches convergence, namely
how it manages to converge to a compact normative system that solves
the norm synthesis problem.

2. A macro analysis that demonstrates that iron is able to converge despite
a large proportion of non-compliant behaviours of the agent society.

3. A comparison of iron and base in terms of their stability and the com-
pactness of the normative systems they synthesise.
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Micro analysis: IRON’s convergence process

Let us now analyse a prototype execution of iron to illustrate its convergence
process. Figure 5.6 shows the results of an iron’s execution for a single road
traffic simulation with 0.3 norm infringement rate. That is, on average, 3 of
each 10 agents’ decisions lead to norm infringements. On the x-axis, it shows
the normative changes (i.e., the time steps in which the the normative network
and/or the normative system change). On the y-axis, it shows:

1. The normative network’s cardinality, namely the total number of synthe-
sised norms.

2. The cardinality of the normative system, namely the number of active
norms in the normative network.

3. The number of grounded norms the normative system represents.

4. The compactness of the normative system, namely the number of terms in
the preconditions of its norms (see Definition 26 in Section 5.2).

5. The ratio of unregulated car collisions at a given tick1.

At tick 13 (which corresponds to the first normative change), the first collision
arises and iron synthesises the first norm. From that tick onwards, iron keeps
generating norms when needed, hence increasing the cardinality of both the nor-
mative network and the normative system. As a consequence, the number of
terms in the normative system increases as well. At tick 20 (sixth normative
change), iron performs the first norm generalisation, reducing the cardinality
of the normative system from 7 to 6 norms. As a result of this norm generali-
sation, the number of norms and terms in the normative system decreases, thus
increasing its compactness. Up to tick 2,213 (seventeenth normative change),
iron keeps generating and generalising norms when possible. Norm generalisa-
tions reduce the total number of terms of the normative system. At tick 2,213
iron performs the last norm generalisation, hence synthesising a compact nor-
mative system of 6 norms with 10 terms in total, which represents 16 grounded
norms. From tick 2,213 onwards, the normative system remains stable. By us-
ing the resulting normative system, cars that comply with norms do not cause
collisions. However, those cars may collide with other cars that infringe norms.
Recall that those collisions that have arisen from norm infringements are not
taken into account when assessing convergence. After 5,000 further ticks, iron
reaches the convergence criteria (tick 7,213). Overall, iron explored 35 different
norms (out of 343 possible ones), which were generalised into 6 norms, to find
a 6-norm normative system that represents 18 different grounded norms. By
employing this normative system, iron successfully prevents collisions as long
as cars comply with its norms.

The 6-norm normative system that iron converged to is shown in Table 5.4.
As previously detailed, iron provides the agents with norms that do not contain

1Computed as the moving average of unregulated collisions of the last 10 ticks.
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Figure 5.6: Norm synthesis along a single simulation. The x-axis corresponds to
normative changes (i.e., changes in the normative network and/or the normative
system), and the y-axis corresponds to the different measures in the legend.

Norm Pre-condition (θ) Norm target µ̂neff µ̂nnec

n1 left(car-heading-right) prh(go) 0.93 0.87
n2 left(car-heading-left), front(car-heading-left) prh(go) 0.95 0.64
n3 front(car-same-heading) prh(go) 0.83 0.33
n4 front(car-heading-left), right(car-heading-left) prh(go) 0.81 0.75
n5 front(nil), right(car-heading-left) prh(go) 0.95 0.64
n6 left(nil), right(car-heading-left) prh(go) 0.92 0.26

Table 5.4: A normative system upon convergence
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predicates containing root terms (e.g., term “anything”). Norm n1 is a general
left-hand side priority norm specifying that a car must stop when it observes
a car to its left which is heading to its right, and no matter what it perceives
to its front and right positions. Upon convergence, norm n1 had very high
average values of effectiveness (µ̂neff = 0.93) and necessity (µ̂nnec = 0.97), since
n1 successfully avoids collisions in this situation when it is fulfilled and, when
it is infringed, collisions arise most of the times. Norms n2 and n3 represent
variations of a general “keep your distance” norm. They prohibit a car to go
when it observes a car in front heading different directions. These norms would
avoid a collision if the car in front suddenly stopped. This situation rarely leads
to collisions, since the car in front rarely stops. As a consequence, its has low
average necessity (µ̂nec = 0.33). Finally, norms n4 to n6 are variations of a
general right-hand side priority norm. They prohibit a car to go forward if it
perceives a car to its right, and different variations to its front and left. Note
that iron significantly outperforms base in terms of compactness. As shown in
Table 4.2 in Section 4.8.2, base provided cars with 16 (grounded) norms and 48
terms in total. By contrast, iron provided agents with 6 norms and 10 terms in
total, which is significantly more compact.

Macro analysis

We now explore the limits of iron by testing its synthesis capabilities under dif-
ferent norm infringement rates. Specifically, iron’s convergence ratio is analysed
for different norm infringement rates, ranging from 0.1 to 0.9. With this aim,
iron has been executed in 100 simulations per norm infringement rate. Figure
5.7 shows averaged results of the effectiveness and necessity of the synthesised
normative systems. For the sake of clarity, standard deviations are not plotted.
However, it is worth mentioning that the standard deviations for effectiveness
and necessity for each norm infringement rate range within [0.006, 0.011] and
[0.080, 0.0137] respectively. The different series show:

1. The convergence ratio, namely the number of simulations that converged
to a stable normative system out of the 100 simulations.

2. The effectiveness degree (i.e., the averaged effectiveness) of the normative
system up to convergence.

3. The necessity degree (i.e., the averaged necessity) of the normative system
up to convergence.

4. The dispersion (variability) degree, namely the dispersion of the distribu-
tion of the normative systems that iron converged to.

The analysis is performed for very low (0.1), low (0.2 to 0.3), medium (0.4 to
0.6) and high (beyond 0.6) norm infringement rates. In particular, up to medium
norm infringement rates (up to 0.4), iron’s convergence rate is 1, namely it suc-
cessfully converged 100% of the times. Furthermore, it converged to normative
systems with high averaged effectiveness (0.88) and necessity (0.71). Between
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Figure 5.7: Stability analysis depending on norm infringements. The x-axis
represents the different norm infringement rates, and the y-axis represents the
different degrees that are given in the legend.

medium and high norm infringement rates (0.4 and 0.6), the convergence ra-
tio decreases (due to oscillations in the normative systems), and it is for very
high norm infringement rates (from 0.8 onwards) that iron cannot converge to
a stable normative system. Overall, iron proved to be highly resilient to non-
compliant behaviours during the synthesis process, managing to successfully
synthesise norms despite up to 40% norm infringement rate of agents.

As to dispersion, below medium norm infringement rates (0.4), it remains
near 0.2 (i.e., 100 executions converged to 20 different normative systems).
Thereafter, its dispersion increases as the norm infringement rate increases. This
happens because, as long as the norm infringement increases, most unnecessary
norms (e.g., norm n6 in Table 5.4) become unstable (deactivated and re-activated
back and forth). As a result, iron takes longer to synthesise a stable normative
system, hence exploring new, different normative systems that it did not explore
with lower norm infringement rates.

IRON vs. BASE: Comparison of stability and compactness

Next, iron and base are compared in terms of their stability and compactness.

– Stability analysis. The stability of iron and base is computed as their
convergence ratio. Both iron and base have been executed in 100 simulations
per norm infringement rate. Figure 5.8 illustrates how normative systems change
along a single, sample simulation with 0.4 norm infringement rate. The switch
frequency between different normative systems of base is much higher than
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Figure 5.8: Normative system changes along time.

iron’s, which stabilises normative systems for longer periods of time until it
converges. At the end of the simulation, base explored 251 different normative
systems and was not able to converge, while iron explored 41 different normative
systems out of 10103 possible normative systems, and managed to converge to a
normative system.

Figure 5.9 compares the stability degree (i.e., the convergence ratio) of both
norm synthesis methods over 100 simulations. For very low norm infringe-
ment rates (0.1), both methods successfully converged to a normative system
that effectively avoids unregulated collisions. Nevertheless, beyond low norm
infringement rates (0.2), base dramatically decreases its stability degree (i.e.,
it becomes less efficient in converging to a normative system that avoids colli-
sions). In fact, it never manages to converge to a normative system (i.e., it has
0 stability degree) beyond the 0.3 norm infringement rate, since it continuously
deactivates/re-activates norms, and thus unregulated collisions are never com-
pletely eradicated. As for iron, it converges for low norm infringement rates (up
to 0.3) and totally removes unregulated collisions 100% of the times. Still, for
medium norm infringement rates (0.4 to 0.6), its stability degree ranges between
0.78 and 0.96, namely it converges between 78% and 96% of the simulations.
The stability degree of iron tends to decrease beyond high norm infringement
rates (0.6), and it is for very high norm infringement rates (0.8) that it fails to
converge. Overall, iron is much more stable than base, allowing to converge
for much higher norm infringement rates.

– Compactness savings. Next, both methods are compared in terms of their
compactness. Recall from Definition 26 that the compactness of a normative
system is measured as its overall number of norm terms. Figure 5.10 illustrates
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the compactness savings achieved by iron with respect to base: it saves com-
pactness for all norm infringement rates, achieving its best results for medium
norm infringement rates. For low norm infringement rates, (up to 20% norm
infringement rates) iron manages to converge to normative systems that are
between 30% and 40% more compact (have between 30% and 40% fewer terms)
than those synthesised by base. As for medium norm infringement rates (0.3
to 0.6), iron obtains its best savings in compactness (up to 70%: from 36.2
down to 10.5 terms on average). Here iron benefits from its stability, whereas
base is penalised by its instability. This is due to the fact that, when base
does not converge, it typically outputs normative systems with a low compact-
ness. Specifically, while iron manages to converge between 90% and 100% of
the time, base just converges 72% of the time for a norm infringement rate of
0.3, while it never converges beyond a 0.4 norm infringement rate. As a result,
iron synthesises normative systems that are up to 70% more compact than those
synthesised by base. As for high norm infringement rates (beyond 0.6), iron’s
savings in compactness tend to decrease since its convergence rate decreases as
well. Overall, iron synthesised normative systems that are much more compact
than those synthesised by base.

5.10 Empirical evaluation considering an on-line
community scenario

Next, iron is empirically evaluated in the on-line community scenario introduced
in Section 1.3.2. The aim is to demonstrate the domain-independence of both
the norm synthesis model introduced in Section 3.3 and the iron strategy. First,
Section 5.10.1 describes the empirical settings of iron in this scenario. There-
after, Section 5.10.2 depicts iron’s empirical results. Specifically, it provides
a micro analysis illustrating iron’s convergence process, and a macro analysis
illustrating how often iron converges, and the types of normative systems it
synthesises.

5.10.1 Empirical settings

In our particular notion of an on-line community, a population of users continu-
ously interact by exchanging contents into different sections: forum, the-reporter,
and multimedia. While section forum allows users to chat and exchange opin-
ions, section the-reporter is used for publishing news and section multimedia is
employed to exchange media contents such as videos and photos. The actions
available to the users are Ac = {upload , view , complain}, and thus users are
allowed to:

1. Upload contents to the different sections.

2. View uploaded contents.

3. Complain about those viewed contents that they consider as inappropriate.
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Uploaded contents may have a type out of {correct , spam, porn, violent , insult},
being spam, porn, violent and insult inappropriate contents that can trigger
users’ complaints.

The overall goal in this scenario is to achieve healthy on-line communities
[Hinds and Lee, 2011], namely communities wherein frictions rarely occur, and
contents are exchanged fluidly. In particular, the goal is to avoid situations
in which a user feels discomfort about contents uploaded by other users, thus
reporting complaints. Note therefore that users’ complaints identify situations
in which a user has uploaded inappropriate contents. Therefore, complaints
are regarded as conflicts that drive iron’s norm synthesis. Note that, in this
case, the users guide iron’s norm synthesis through their complaints. iron
synthesises norms to prohibit the type of contents that users complain about. In
this sense, we may say that iron is employed to build a participatory regulatory
mechanism, which synthesises normative systems that are aligned with users’
preferences.

In these experiments, iron starts each simulation with an empty normative
system. Each simulations considers a “warm-up” period of 500 ticks that allows
it to reach normal conditions in on-line communities, where the users enter in
the community and there already exist contents to view and complain about.
Thus, from tick 0 to 500, users only upload contents, and from tick 500 onwards,
users upload, view, and complain about contents. As a simulation progresses,
users upload and view appropriate and inappropriate contents, and complain
about inappropriate contents. When that happens, iron synthesises normative
systems to prohibit to upload the type of contents identified as inappropriate
by the users. A simulation finishes whenever it reaches 5,000 ticks. At the
end of each simulation, iron is considered to have converged, hence solving the
NSP (cf. Definition 18 in Section 3.2.2, when during a 1,000-tick period: (1)
the normative system remains unchanged; and (2) no unregulated conflicts arise
(see Definition ).

Subsequent sections describe the settings of the on-line community scenario;
the implementation of the different domain-dependent elements employed by
iron in this scenario (inputs Φ,Γ in Figure 3.3 in Section 3.4); and the norm
synthesis settings that iron considers during the synthesis process (input Ψ in
Figure 3.3 in Section 3.4).

On-line community settings

These experiments consider a discrete agent-based simulator that we have im-
plemented to simulate the on-line community scenario described above. Par-
ticularly, each section of the community is implemented as a FIFO queue with
capacity for 1000 different contents. Thus, whenever a section is full and a new
content arrives, the oldest content is removed in order to place the newly arriving
content.

The aim is to regulate a simulated on-line community of 10,000 users. How-
ever, as described in [Nielsen, 2006], within an on-line community only the 1%
of its users are heavy contributors, while the remaining 99% are intermittent



5.10. Empirical evaluation considering an on-line community scenario 117

contributors and lurkers (namely, users that barely contribute to the commu-
nity). Thus, for the sake of simplicity, a 10,000-user population is represented
by means of a population of 100 heavy contributors. At each time step (i.e,
tick) each user: (i) views one content with probability 1; and (ii) uploads one
content with probability 0.05. Notice that the probability to upload contents
is much lower than the probability to view contents. With this setting, we aim
at simulating users’ behaviour in real on-line communities, in which users view
contents more often than they upload. Moreover, at each tick a user decides
whether to fulfil or infringe those norms that apply to it according to a norm
infringement rate.

A user behaves within the community according to its profile, which describes
when and how it uploads, views, and complains about contents. Specifically, a
user’s profile is composed of three sub-profiles:

• The upload profile, which defines (i) its upload frequency, namely its prob-
ability to upload contents at a given time; and (ii) different upload proba-
bilities for each content type.

• The view profile, which describes its probability to view contents from a
given section at a given time step.

• The complain profile, which defines its probability to complain about each
type of inappropriate content it views.

As an example, Table 5.5 depicts the profile of what we call a moderate user.
That is, a user that only uploads correct contents, and complains about all
the inappropriate contents it views. More specifically, Table 5.5 describes a
user with probability 1 to upload correct contents, and probability 0 to upload
inappropriate contents (i.e., spam, porn, violent, insult). As described in the
complain profile, it complains about each type of inappropriate content with
probability 1, and complaints about correct contents with probability 0. Finally,
the view profile defines the different probabilities of the user to view contents
from each section.

Upload Profile View Profile Complain Profile
Type Prob Section Prob Type Prob
Correct: 1 Forum: 0.34 Correct: 0
Spam: 0 The Reporter: 0.33 Spam: 1
Porn: 0 Multimedia: 0.33 Porn: 1
Violent: 0 TOTAL 1 Violent: 1
Insult: 0 View Mode Insult: 1
TOTAL: 1 By Order •
Upload Frequency Most Viewed ◦
Frequency: 1 Random ◦

Table 5.5: A user’s profile

The experiments consider three different populations composed of moderates
and spammers in different proportions. On the one hand, moderates behave
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according to the profile depicted in Table 5.5. On the other hand, spammers
upload spam contents with probability 1, and never complain about spam. We
then consider the following populations:

1. A population with a majority of moderate users, composed of 70% mod-
erates and 30% spammers (hereafter 30M-70S).

2. A balanced population of 50% moderates and 50% spammers (50M-50S).

3. A population with a minority of moderate users, composed of 30% mod-
erates and 70% spammers (70M-30S).

Norm synthesis in the on-line community scenario

In this scenario, iron considers the following implementation of each domain-
dependent element required by a nsm (Φ in Figure 3.3 in Section 3.4).

– Function perceive . iron describes a state of the on-line community by
generating an expression of LMAS that describes the contents in each section of
the community. In particular, each content is represented by describing (1) its
identifier ; (2) its proprietary, namely the user who uploaded it; (3) the section
the content has been uploaded to; and (4) its type (e.g., correct, spam, etc.).

– Function getConflicts. Given a state, function getConflicts returns a (pos-
sibly empty) set of conflicts, where each conflict describes a particular content
that has received user’ complaints in state that state.

– Function getContext . Given a state, and a user that uploaded a content in
that state, function context infers the user’s context in the state as an expression
of LAg , which describes: (1) the user’s identifier, (2) the type of the content it
has uploaded; and (3) the section of the community whereto the content has
been uploaded. With this aim, iron aims at inferring the state of mind the user
had when uploading the state.

– Function getAction . Given a transition between two states s, s′, and a user
that is part of states s, s′, function action returns action “upload” if the user has
uploaded a new content during the state transition. With this aim, it compares
the contents in each state to assess if the user has uploaded new contents.

– Grammar G: The grammar considered in this scenario is as follows.

Norm ::= 〈{LHS},RHS 〉
LHS ::= LHS ,LHS | ρ
RHS ::= prh(Ac)
Ac ::= view | upload | complain
ρ ::= user(τu) | section(τs) | cntType(τc)
τu ::= u1, . . . , u100, anyUser
τs ::= forum, the-reporter, multimedia, anySection
τc ::= spam, porn, violent, insult, inappropriate, appropriate

anyContentType
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anyUser

u1 ... un
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anyContentType
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spam porn violent insult

Figure 5.11: Taxonomy of terms in the on-line community scenario.

where: terms u1, . . . , u100 represent each one of the 100 users of the population,
and term “anyUser” represents any possible user; terms “forum”, “the-reporter”,
“multimedia” represent the three different sections of the community, and term
“anySection” generalises terms for each section; terms “spam”, “porn”, “violent”,
“insult” represent different types of inappropriate contents, and “appropriate”
contents are those uploaded by moderate users; and term “anyContentType”
represents both appropriate and inappropriate contents.

Note therefore that a norm’s precondition contains three unary predicates
user, section, cntType that can contain, respectively, 101 different terms (one
for each user, and one general term), 4 terms (one for each section, and one
general term), and 7 terms (one for each content type, and three general terms).
Therefore, the grammar this grammar allows to synthesise 101 × 4 × 7 = 2828
different norms, and the number of normative systems to consider amounts to
22828(> 10851).

Figure 5.11 illustrates a taxonomy between the terms of the grammar, in
which all users can be compactly represented by means of a general term
anyUser, and analogously for sections and content types. With this grammar,
iron can synthesise norms of the following form:

nI : 〈{user(u1), section(forum), cntType(spam)}, prh(upload)〉
nII : 〈{user(u1), section(the-reporter), cntType(spam)}, prh(upload)〉
nIII : 〈{user(u1), section(multimedia), cntType(spam)}, prh(upload)〉
nIV : 〈{user(u1), section(anySection), cntType(spam)}, prh(upload)〉

Norms nI , nII , nIII prohibit user u1 to upload spam contents to sections fo-
rum, the-reporter, and multimedia, respectively. Norm nIV compactly represents
norms nI , nII , nIII , prohibiting user u1 to upload spam to anySection.

We now describe (1) the way iron represents cases in the CBR mechanism
considered by function getConflictSource to retrieve a conflict’s source (see Sec-
tion 4.6.2); and (2) the implementation of each domain-dependent required by
such function to carry out a complete cycle of the unsupervised CBR cycle. That
is, functions getSimilarity and exploitSolution.

– CBR Cases. iron employs function getConflictSource to determine a con-
flict’s source. In particular, such function employs an unsupervised CBR mech-
anism that exploits previous experiences to determine the agent responsible for
a given conflict. In this scenario, a conflict describes a content that has received
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complaints, which contains the identifier of its proprietary, (namely, the user
who uploaded it). Therefore, the conflict description itself contains information
enough to determine the user responsible for the conflict (i.e., the content’s pro-
prietary). In this sense, iron does not require to exploit cases of the case base.
Therefore, a case in this scenario simply describes the conflictive content. Even-
tually, iron will employ this information to blame the content’s proprietary for
the conflict.

– Function getSimilarity . Since iron does not require to exploit CBR cases
to determine a conflicts’ source, this function returns always 0. Therefore, two
cases will be always different.

– Function exploitSolution . Since case solutions are never exploited, this
function carries out no operations.

Norm synthesis settings

iron’s has been configured as depicted in Table 5.6. For each new norm n, iron
sets its initial necessity to 0.5 (µnec(n, t0) = 0.5). Note that, in this case, iron
does not initialise a norm’s effectiveness. The reason is that in this scenario iron
cannot evaluate norms in terms of their effectiveness, since norm fulfilments are
not observable. As an explanation, recall from Section 5.6 that iron computes a
norm’s effectiveness based on its fulfilments. In this scenario, when a user fulfils
a norm, it implies that the she decides not to upload a content she had the
intention to upload. This (absence of) action is not observable by iron, which
cannot detect norm fulfilments in order to compute norms’ effectiveness.

A norm’ necessity range (NR) is computed by considering its last q = 100
defined necessity values (µnnec). iron’s necessity generalisation threshold is set
to 0 (αgen

nec = 0) so that it generalises any norm that is necessary enough to be
active. iron deactivates a norm whenever its necessity range is below a necessity
threshold (αnec). Thus, αnec directly affects to the preservation and discard of
norms, and hence to the convergence to a normative system. Therefore, iron’s
norm synthesis is analysed for different necessity thresholds. More specifically,
αnec ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

5.10.2 Empirical results

Now, iron’s empirical results are analysed. First, a micro analysis of iron’s con-
vergence process is provided. The aim is to shed light on how iron manages to
synthesise norms from scratch based on users’ complaints, yielding a normative
system that avoids conflicting situations. Thereafter, a macro analysis studies
iron’s convergence rate for different populations and necessity thresholds, and
analyse the type of normative networks that iron synthesises.
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Parameter Description Value

q

Number of effectiveness values (µeff ) and
necessity values (µnec) considered to
compute a norm’s effectiveness and
necessity ranges (see Section 5.6).

100

knec
Default norm effectiveness and necessity
values (µeff (n, t0), µnec(n, t0)).

0.5

αnec

Threshold below which a norm is
considered to under-perform in terms of its
necessity.

(0.1, 0.3, 0.5,
0.7, 0.9)

αgen
nec

Threshold above which a norm is
considered to perform well in terms of its
necessity.

0

T
Time period considered when assessing
convergence (cf. Definition 18 in Section
3.2.2).

5,000

Table 5.6: iron’s norm synthesis settings in the on-line community scenario.
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Figure 5.12: iron’s convergence process for a population of 70 moderate users
and 30 spammers.
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Micro analysis: IRON’s convergence process

This first analysis focuses on how iron manages to synthesise norms for an
example population with a majority of moderate users. In particular, we consider
a population of 70 moderate users and 30 spammers with a 0.3 norm infringement
rate. Figure 5.12 shows a prototypical execution of iron with this configuration.
On the x-axis, it shows the different normative changes that iron performed
along time. On the y-axis, it shows:

1. The cardinality of the normative network.

2. The cardinality of the normative system.

3. The ratio of unregulated user complaints (conflicts) at a given tick.

During the warm-up period (up to tick 500) users only upload contents, and
therefore there are no user complaints. At tick 500 (third normative change),
moderate users start complaining about spam contents that they view. These
complaints are considered as conflicts by iron, which, from tick 500 onwards,
creates new norms to prevent spammers from uploading spam contents in the
different sections of the community (examples of these norms are depicted in Fig-
ure 5.13). As a consequence, the cardinality of the normative network increases,
as well as the cardinality of the normative system. As iron starts creating
norms, that is, from tick 500 onwards, it performs norm generalisations when
possible. In this way, iron keeps the cardinality of the normative system oscil-
lating around 30 norms, while the cardinality of the normative network keeps
on increasing as it creates new (specific) norms.

At tick 534 (nineteenth normative change), iron manages to synthesise a
compact normative system of 30 general norms that regulate the on-line com-
munity. Note that, by contrast, the normative network contains 120 norms.
That is: (1) 90 grounded norms to prohibit the thirty spammers to upload
spam into the three sections of the community (30 spammers × 3 sections =
90 norms); and (2) 30 general norms that compactly represent these 90 norms.
These 30 general norms compose the normative system that is finally provided
to the agents. Figure 5.13 shows these norms (n91, . . . , n120), which prohibit
users u71, . . . , u100 (i.e., the spammers) to upload spam contents in any section
of the on-line community. Note that these norms do not contain the “section”
predicate since, before publishing a norm for the agents, iron removes those
predicates containing root terms (i.e., term “anySection”). After the synthesis
of these 30 norms, the simulation converges and no new unregulated conflicts
(complaints) are detected from tick 534 onwards.

Macro analysis: IRON’s convergence outcomes

Next, a macro analysis of iron’s convergence is provided. First, we analyse for
which combinations of population/norm necessity threshold iron manages to
converge, and the type of normative systems it synthesises in each case. Table
5.7 depicts averaged results after 100 simulations. Each cell contains, for each



5.10. Empirical evaluation considering an on-line community scenario 123

n91 : 〈(user(u71), cntType(spam)), prh(upload)〉
. . .

n120 : 〈(user(u100), cntType(spam)), prh(upload)〉

Figure 5.13: Norms that iron synthesises to regulate spammers’ behaviour.

Deactivation threshold (αnec)

Population 0.1 0.3 0.5 0.7 0.9

30M-70S 70 X X X X

50M-50S 50 50 X X X

70M-30S 30 30 30 X X

Table 5.7: iron’s normative systems size upon convergence.

population and necessity threshold: either (i) the size of the normative system
upon convergence; or (ii) symbol “X” if it was not able to converge to a norma-
tive system. Observe that, for a population of 30 moderates and 70 spammers
(30M-70S) iron was able to converge to a stable normative system of 70 norms
whenever the necessity threshold is low (αnec < 0.3). By contrast, it did not
converge for medium and high necessity thresholds (αnec ≥ 0.3). Along the
same lines, for population 50M-50S, it converged to 50 norms only for low and
medium necessity thresholds (αnec < 0.5), and converged to 70 norms for popu-
lation 70M-30S for low, medium and high thresholds (αnec < 0.7). In particular,
iron converged to one norm for each spammer to prevent her from uploading
spam in any section. For instance, for a population of 70 spammers it generated
70 norms similar to the following norm below.

〈{user(u71), section(anySection), cntType(spam)}, prh(upload)〉

which prohibits a spammer user with identifier u71 to upload spam to any sec-
tion. Note that iron is capable of generalising the “section” predicate of norms,
but it is not capable of generalising their “user” predicate. That is, it cannot
synthesise a general norm that prohibits all the spammers to upload spam to
any section. This comes as a consequence of its conservative approach to norm
generalisation, which will never generalise the “user” predicate of norm’s pre-
conditions until it has synthesised a norm to prohibit to upload spam to each
user of the community. However, moderate users (i.e., users with identifiers
u1, . . . , u70) never upload spam, and hence no norms are generated for them.

Note that moderates are the only users that complain about spam contents,
and hence the only users that believe that norms to prohibit spam are necessary.
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Case Convergence

Complain power > consensus degree (CPw > αnec) Yes

Complain power = consensus degree (CPw = αnec) No

Complain power < consensus degree (CPw < αnec) No

Table 5.8: Summary of iron’s macro analysis.

Therefore, the proportion of moderates in a population is directly related to the
necessity of norms that prohibit spam. As an example, in population 30M-70S,
containing 30% moderate users, norms to prohibit spam are around 30% neces-
sary, since three of each ten content views will lead to complaints. Hereafter, we
will refer to the proportion of moderates in a population as its complain power
(CPw), since moderates represent the proportion of users that complain about
spam. As a general rule, iron converges to a stable normative system whenever
the complain power of a population is above the necessity threshold considered
by iron to deactivate norms (cf. Section 5.6.2). Namely, it converges when
CPw > αnec . As an example, with population 30M-70S norms that prohibit
spam have a necessity value around 30%, and they are preserved only whenever
the necessity threshold is αnec < 0.3.

Additionally, if the complain power of a population is equal to the necessity
threshold (that is, CPw = αnec), iron cannot converge, since the norms’ ne-
cessities fluctuate around 0.3, continuously going above and below the necessity
threshold. As a consequence, iron continuously deactivates and re-activates
norms, being unable to converge to a stable normative system.

Finally, let us analyse what happens when the complain power of a popula-
tion is under the necessity threshold (that is, CPw < αnec). Initially, one may
expect that iron should converge to an empty normative system, since norms’
necessities in this case will be below the necessity threshold (αnec). However,
iron is not capable to converge to a stable normative system. This comes at
a consequence of iron’s norm generation mechanism, which is highly reactive
to conflicts. Briefly, when iron creates a new norm, it sets its initial neces-
sity to 0.5, and evaluates it along time. Once the norm’s necessity goes below
the necessity threshold, iron deactivates it. Thereafter, the conflict the norm
regulated is unregulated again. The next time a user complaints, and the con-
flict arises again, iron immediately reacts by creating (re-activating) the norm.
Eventually, iron will evaluate the norm again as unnecessary, thus deactivating
it. This leads iron into a cycle of continuous norm deactivations/re-activations,
making iron incapable to converge. In this scenario, iron should consider larger
amounts of evidences to assess if re-activating a norm is really necessary. Namely,
it should be more deliberative. Table 5.8 shows a summary of iron’s convergence
for different combinations of complaint power/consensus degree.
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Figure 5.14: Example of a prototypical normative network synthesised by iron.
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n46

n1 n26 n41

Figure 5.15: An example generalisation of iron in the on-line community sce-
nario.

Analysis of synthesised normative networks

Finally, the size and the structure of the normative networks synthesised by
iron are analysed. The aim is to understand how iron manages to synthesise
compact normative systems. Figure 5.14 depicts a prototypical normative net-
work synthesised by iron for a population of 70 moderates and 30 spammers.
There, each circle represents a norm, and each edge represents a generalisation
relationship between two norms. In particular, yellow circles represent general
norms, and pink circles represent grounded norms. The depicted network con-
tains thirty general (active) norms that concisely prohibit each one of the thirty
spammers to upload spam in any section. In particular, each general norm gen-
eralises three norms that prohibit a user to upload spam in the three different
sections of the on-line community. Figure 5.15 illustrates an example of the
generalisation of norms n1, n26, n41 as norm n46, marked with a red square in
Figure 5.14. These norms are described below.

n1 : 〈(user(u71), section(forum), cntType(spam)), prh(upload)〉
n26 : 〈(user(u71), section(the-reporter), cntType(spam)), prh(upload)〉
n41 : 〈(user(u71), section(multimedia), cntType(spam)), prh(upload)〉
n46 : 〈(user(u71), section(anySection), cntType(spam)), prh(upload)〉

Note therefore that iron is capable of generalising only the section predicate of
norms, hence performing generalisations of three norms to one. As a result, it
synthesises normative systems with several norms that prohibit each spammer
to upload spam to any section. However, it is not capable to synthesise a general
norm that prohibits all the users to upload spam. This happens because iron
requires full evidence to generalise, namely it requires the previous synthesis of
a norm to prohibit to upload spam to each user in order to generalise the user
predicate.

5.11 Conclusions

This chapter has focused on answering research question R2 introduced in Sec-
tion 1.2. For this purpose, it has introduced iron, a synthesis strategy that ex-
tends base and considers compactness as a synthesis objective. As base, iron
is conflict-driven and is intended to be iteratively executed by a nsm to syn-
thesise normative systems that effectively avoid conflicts within a MAS. iron
incorporates alternative norm evaluation and norm refinement mechanisms to
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overcome base’s stability limitations introduced in Section 3.5. Briefly, iron
computes additional metrics during norm evaluation that allow it to make more
informed decisions when refining the normative system.

iron pursues the synthesis of compact normative systems by performing
norm generalisations. It structures domain knowledge as a tree term taxonomy,
which it employs to synthesise (general) norms representing groups of (more
specific) norms. In this way, iron can reduce the number of norms and norms’
predicates and terms in a normative system, hence increasing its compactness.
In particular, iron takes a conservative approach to generalisation that requires
full evidence to generalise. That is, it never synthesises a general norm until it
has previously synthesised each grounded norm it represents. In this way, iron’s
norm generalisations do not increase the number of constraints a normative
system imposes on agents.

In order to assess both iron’s performance and the generality of the norm
synthesis model introduced in Chapter 3, we have empirically evaluated iron in
two different scenarios. Of these, the first one has been the road traffic scenario
described in Section 1.3.1. In this scenario, we have compared iron’s norm syn-
thesis with base’s in terms of its stability (i.e., their capability to converge to
a stable normative system) and the compactness of the normative systems they
synthesise. The empirical results demonstrate that iron significantly outper-
forms base in terms of:

1. Compactness. iron manages to converge to normative systems that are
between 30% and 70% more compact (i.e., have between 30% and 70% less
norm predicates) than those synthesised by base.

2. Stability. iron is highly stable, capable of synthesising enduring normative
systems that avoid conflicts despite a high number of infringements in the
agent society.

Additionally, we have empirically evaluated iron in the on-line community
scenario described in Section 1.3.2. In this case, we have used iron to build
a participatory regulatory mechanism that considers users’ complaints to syn-
thesise norms based on their preferences. Initial results demonstrate that iron
can synthesise normative systems aimed at prohibiting the users from uploading
those contents that the community considers to be inappropriate. Furthermore,
norm generalisations allow iron to synthesise compact normative systems that
reduce the agents’ computational efforts when reasoning about norms.

iron’s improvements mainly derive from the fact that it takes more informed
and fine-grained decisions than base. With this aim, iron employs: (i) a gener-
alisation function that requires complete evidence prior to perform norm gener-
alisations; and (ii) a specialisation function that allows to perform a fine-grained
backtracking of norm generalisations.

However, from iron’s empirical results, we observe that it has one major
limitation. In short, its approach to norm generalisation jeopardises the com-
pactness of synthesised normative systems. In the on-line community scenario
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(Section 5.10), iron was capable of generalising norms by their “section” pred-
icate. However, it was not capable to generalise their “user” predicate. As
a result, it was not able to synthesise a general norm prohibiting all users to
upload spam. This limitation stems from iron’s conservative approach to gen-
eralisation, which requires full evidence to generalise.

Against this background, we conclude that there is room for developing al-
ternative strategies that can synthesise normative systems more compact than
those synthesised by iron. With this aim, the next chapter introduces an alter-
native strategy aimed at outperforming iron in terms of compactness.



Chapter 6

Synthesising compact
normative systems: an
optimistic approach

6.1 Introduction

The previous chapter tackled the synthesis of compact normative systems to
answer research question R2. With this aim it introduced iron, a strategy to be
executed by a nsm (see Section 3.4) to perform norm synthesis. iron pursues
compactness by performing norm generalisations. In particular, iron takes a
conservative approach to norm generalisation that requires full evidence to gen-
eralise. Briefly, it will never synthesise a general norm until it has previously
synthesised all the norms it represents. In this way, iron’s norm generalisations
do not increase the amount of constraints a normative system imposes on agents.
However, as discussed in Section 5.11, conservative norm generalisation is not
appropriate if it is not possible to gather full evidence of norms. This limitation
was illustrated with the empirical evaluation in the on-line community scenario
(see Section 5.10). There, iron synthesised norms to prohibit the users of an
on-line community to upload spam contents. Even though iron managed to per-
form norm generalisations, it was never capable of synthesising a single, general
norm to prohibit all the users of a community to upload spam.

Against this background, this chapter introduces simon (SI mple M inimal
On-line N orm synthesis), a strategy that extends base and synthesises compact
normative systems via optimistic norm generalisations. simon incorporates a
norm generalisation mechanism that does not require full evidence to generalise
norms. Instead, it generalises norms with partial evidence, making the opti-
mistic assumption that general norms will perform well. simon’s generalisation
is inspired in the anti-unification of terms (in the context of logical reasoning)
[Armengol and Plaza, 2000]. Anti-unification consists of generalising feature

129
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terms to their least common subsumer or most specific generalisation, gener-
alising pairs of terms to the most specific term that represents both of them.
Along these lines, simon generalises norms by (1) detecting pairs of norms that
are generalisable, and (2) generalising them to their most specific generalisation.
In this way, simon is capable of performing further norm generalisations than
iron, hence yielding normative systems more compact than those synthesised by
iron. Moreover, simon employs iron’s norm evaluation mechanism, as well as
its approach to detect norms’ good-performance and under-performance. In this
way, simon is capable of not only outperforming iron in terms of compactness,
but also preserving its stability.

The remainder of this chapter is thus organised as follows. Section 6.2 de-
scribes simon’s information model and introduces some preliminary definitions
that will be essential to understand optimistic norm generalisation. Thereafter,
Section 6.3 details how simon performs optimistic norm generalisations, and
Section 6.4 explains how it backtracks over-generalisations. Next, Section 6.5
introduces the simon strategy, which details how it operates to produce com-
pact normative systems for a MAS via optimistic norm generalisations. Finally,
Sections 6.6 and 6.7 show an empirical evaluation of simon in the two scenarios
introduced in Section 1.3: the road traffic scenario, and the on-line community
scenario.

6.2 Information model and basic definitions

To represent synthesised norms along with their generalisation relationships,
simon employs the normative network described in Section 5.3.1. Moreover,
simon represents a normative system as the set of norms that are active in
the normative network. To apply changes to the normative network, simon
incorporates the normative network operators employed by described in Table
3.1 (Section 5.3.2) and Table 5.1 (Section 5.3.2). These operators allow simon to:
(i) add norms to the normative network; (ii) activate norms so that they become
part of the normative system; (iii) deactivate so that they no longer belong to
the normative system; (iv) generalise several norms to a parent norm, resulting
in a more compact representation of the normative system; and (iv) specialise
norms that do not perform well, as a method to backtrack norm generalisations.

simon considers the formal model described in Section 5.2. Let us recall
some basic concepts to help understand the remainder of this section. simon
considers a MAS with a set of agents Ag that can perform a set of actions Ac.
The representation language used by agents is denoted by LAg . Norms are of the
form 〈ϕ, θ(ac)〉, where ϕ is the precondition of the norm, θ is a deontic operator
(e.g., a prohibition) and ac is an action available to the agents. The precondition
ϕ of a norm is a set of first-order predicates p(τ1, . . . , τk), where p is a predicate
symbol and τ1, . . . , τk are terms of the language LAg . Let us denote by τ̄ a
vector of terms in T . We refer to the i-th component of τ̄ as τi. Moreover, the
set of terms in language LAg is denoted by T , and the taxonomy between the
terms in T as T. Let us consider a subsumption relationship v that establishes
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Figure 6.1: A taxonomy capturing generalisation relationships between terms

generalisation (subsumption) relationships between the terms of a taxonomy. In
particular, a term τ strictly subsumes another term τ ′, denoted as τ ′ < τ , iff
τ ′ v τ and τ ′ 6= τ .

Hereafter, some new, basic definitions are provided. Considering that the
taxonomy of terms has a tree structure, the intersection between two terms
is the most specific term subsumed by these two terms. Let us illustrate an
example with the road traffic example, and the taxonomy of terms introduced in
Section 5.2. Figure 6.1 depicts this taxonomy. According to it, the intersection
between terms “ambulance” and “emergency” is the “ambulance” term. The
general formal definition is:

Definition 27 (Terms intersection). For τ, τ ′ ∈ T , their intersection τ ut τ ′ is:

τ ut τ ′ =

 τ if τ v τ ′
τ ′ if τ ′ v τ
∅ otherwise

Analogously, the intersection between two predicates p(τ̄ ), p(τ̄ ′) ∈ LAg is
another predicate with the intersection of each corresponding pair of terms in
τ̄ , τ̄ ′, whenever such intersection exists for all of them.

Definition 28 (Predicates intersection). For p(τ̄ ), p(τ̄ ′) ∈ LAg, if τi ut τ ′i 6=
∅, 1 ≤ i ≤ n, then their intersection p(τ̄ )uπ p(τ̄ ′) is p(τ̄ ′′) such that τ ′′i = τiut τ ′i
for all 1 ≤ i ≤ n.

As an example, the intersection of left(ambulance) and left(emergency)
is left(ambulance). Formally, left(ambulance) ut left(emergency) =
left(ambulance).

Taking inspiration from the anti-unification of terms proposed in [Armengol
and Plaza, 2000], let us define the most specific generalisation of two terms.
Given terms τ, τ ′ ∈ T , τ 6= τ ′, their most specific generalisation is the most
specific term that strictly subsumes both of them. For instance in Figure 6.1, the
most specific generalisation of terms “ambulance” and “car” is term “vehicle”,
since there is no other term which is more specific and strictly subsumes both of
them. However, the most specific generalisation for “ambulance” and “anything”
does not exist because there is no term strictly subsuming “anything”. Formally:
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Definition 29 (Most specific generalisation of two terms). For τ, τ ′ ∈ T , τ 6= τ ′,
their most specific generalisation, denoted as τ tt τ ′, is a term τs ∈ T such that
τ < τs and τ ′ < τs, and @τ ′′ ∈ T such that τ < τ ′′, τ ′ < τ ′′ and τ ′′ < τs.

Analogously, the most specific generalisation of two predicates is another
predicate containing the most specific generalisation of their terms.

Definition 30 (Most specific generalisation of two predicates). Predicates
p(τ̄ ), p(τ̄ ′) ∈ LAg have a generalisation iff ∃τ ∈ τ̄ , τ ′ ∈ τ̄ ′ such that τ tt τ ′ 6= ∅.
Their most specific generalisation, denoted as p(τ̄ )tπ p(τ̄ ′), is another predicate
p(τ̄ ′′) such that τ ′′ = τ tt τ ′.

In the running example, the most specific generalisation of predicates
left(ambulance) and left(car) is predicate left(vehicle), with the most specific
generalisation of terms “ambulance” and “car”.

6.3 Optimistic norm generalisation

Next, simon’s optimistic approach to norm generalisation is introduced. Briefly,
simon’s generalisation consists of three phases:

1. Monitoring when the norms of the normative system start performing well.
simon considers that a norm starts performing well at a given time as de-
scribed in Section 5.6.1. That is, whenever the lower boundaries of its
effectiveness and necessity ranges overpass certain generalisation thresh-
olds.

2. Checking if the identified norms are generalisable with the rest of the norms
of the normative system.

3. Generalising each pair of norms that are generalisable. It generalises a
pair of norms by retrieving their most specific general (parent) norm that
represents them, and generalising these two norms into such parent.

We say that two norms are generalisable if at least one of their predicates have a
most specific generalisation, and their remaining predicates are equal. Formally:

Definition 31 (Generalisable norms). Two norms n = 〈ϕ, θ(ac)〉 and n′ =
〈ϕ′, θ(ac)〉, n 6= n′, are generalisable iff for each predicate p(τ̄ ) ∈ ϕ either: (i)
p(τ̄ ) ∈ ϕ′; or (ii) there is a predicate p(τ̄ ′) ∈ ϕ′, p(τ̄ ) tπ p(τ̄ ′) 6= ∅.

Note therefore that simon performs pairwise norm generalisations. Let us
illustrate an example with norms n1, . . . , n4 introduced in Section 5.2, which we
recall here:

n1 : 〈{left(ambulance), front(car), right(car)}, prh(go)〉
n2 : 〈{left(police), front(car), right(car)}, prh(go)〉
n3 : 〈{left(fire-brigade), front(car), right(car)}, prh(go)〉
n4 : 〈{left(emergency), front(car), right(car)}, prh(go)〉
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Figure 6.2: Direct generalisation of norms n1, n2 to n4.

Notice that n1, n2 satisfy the conditions of Definition 31: following the relation-
ships between terms in Figure 6.1, we see that predicate left(ambulance) ∈
ϕ1 (being ϕi the precondition of norm ni) has a corresponding predicate
left(police) ∈ ϕ2 such that their most specific generalisation (cf. Definition
30) is left(ambulance) tπ left(police) = left(emergency . Furthermore, predicate
front(car) ∈ ϕ1 is equal to front(car) ∈ ϕ2, and analogously for right(car) ∈ ϕ1

and right(car) ∈ ϕ2 . Hence, n1, n2 are generalisable to a new norm that can be
computed as follows:

Definition 32 (Norm generalisation). The generalisation of two norms n = 〈ϕ,
θ(ac)〉, n′ = 〈ϕ′, θ(ac)〉 is a norm n′′ = 〈ϕ′′, θ(ac)〉 such that, for each predicate
p(τ̄ ) ∈ ϕ and p(τ̄ ′) ∈ ϕ′, there is a predicate p(τ̄ ′′) ∈ ϕ′′ obtained as:

p(τ̄ ′′) =

{
p(τ̄ ) if τi = τ ′i ,∀i ∈ [1..m]
p(τ̄ ) tπ p(τ̄ ′) otherwise

As a result, norms n1, n2 can be generalised as norm n4, which con-
tains (i) predicate left(emergency), as the most specific generalisation of
predicates left(ambulance) ∈ ϕ1 and left(police) ∈ ϕ2; and (ii) predicates
front(car), right(car) of ϕ1 and ϕ2. Figure 6.2 illustrates this generalisation. It
depicts a normative network NN (Figure 6.2a) that contains two active norms
n1, n2 that are generalisable. Thus, simon computes norm n4 as their most
specific generalisation, and generalises n1, n2 to n4 (NN ′ in Figure 6.2b). As
a result, the cardinality of the normative system is reduced from two norms
(Ω = {n1, n2}) to one (Ω′ = {n4}).

Hereafter we will refer to this generalisation as direct, or shallow, generali-
sation. Its procedure is described in function shallowNormGeneralisation (Al-
gorithm 13). It receives as inputs (i) a norm n; (ii) a normative network NN ;
and (iii) a taxonomy of terms T. Additionally, it receives a generalisation step



134 Chapter 6. Synthesising compact normative systems: an optimistic approach

GS (larger than 1) that states the number of terms that can be simultaneously
generalised. Notice that, from definition 32, a generalisation can involve from
1 term up to the total number of term in the precondition of a norm. Thus, a
generalisation can take up to at most GS terms at the same time. In the example
above, norm n4 is a generalisation of 1 term (that is, GS = 1). However, setting
GS to 2 would mean that a generalisation can involve both 1 and 2 terms.

Function shallowGeneralisation proceeds by performing pairwise compar-
isons of n with each norm n′ in the normative system, checking if they are
generalisable (lines 1–3). For each pair of generalisable norms n, n′, it computes
their most specific generalisation (c.f. Definition 32) as norm nπ (line 4). There-
after, it checks that nπ does not represent any norm that under-performs (line
5). In this way, simon ensures that norm generalisations do not introduce in the
normative system specific norms that do not perform well in regulating conflicts.
If that condition is satisfied, then it generalises norms n, n′ as nπ. With this
aim, it first adds the new parent norm nπ to the normative network if it does
not exist (line 6), and then invokes the generalise operator (see Table 5.1) to
activate norm n′′ and to deactivate norms n, n′ (line 7).

ALGORITHM 13: Function shallowNormGeneralisation
Input : n,NN ,T,GS
Output: NN

1 Ω← {n ∈ NN | δ(n) = active};
2 foreach n′ ∈ Ω do
3 if areGeneralisable(n, n′,T,GS) then
4 nπ ← mostSpecificGeneralisation(n, n′,T,GS);
5 if not representsUnderperformingNorms(nπ,NN ) then
6 NN ← add(nπ,NN );
7 NN ← generalise({n, n′}, nπ,NN );

8 return NN

Note that simon generalises norms with partial evidence. As an example,
simon can synthesise n4 by generalising n1, n2, even though n3 has never been
synthesised and no evidence has been gathered about its performance. However,
this generalisation increases the number of grounded norms that a normative
system represents, namely norms with grounded terms (see Definition 21 in Sec-
tion 5.2). After this norm generalisation, n4 implicitly represents n3, and thus
includes it in the normative system, despite it has no guarantees that it is ef-
fective or necessary to avoid conflicts. By contrast, as detailed in Section 5.4,
iron requires full evidence to generalise norms. It would generalise n1, n2 to n4

only if n3 has been previously created, added to the normative network, and is
active. Therefore, we say that simon takes an optimistic approach to generali-
sation that requires less evidences than iron to synthesise compact normative
systems.

Moreover, it is also worth noticing that simon’s norm generalisation only
takes into account those norms in the normative system (that is, those that



6.3. Optimistic norm generalisation 135

Active Inactive 

n' 

n' 

n 

n ^ ^ 

n'' 

n''' 

niv 

Figure 6.3: Indirect generalisation of norms n and n′ and direct generalisation
of norms n′ and n′′.

are active in the normative network), whereas iron generalises norms taking
into account all norms in the normative network. Nevertheless, as Figure 6.3
shows, two norms in the normative system implicitly represent other norms in
the normative network which in turn may be generalisable. Specifically, two
norms n, n′ in the normative system may not be directly generalisable, but they
may include two other norms n̂ ⊆ n, n̂′ ⊆ n′ that will be generalisable to a norm
n′′′ if the conditions of Theorem 1 hold:

Theorem 1. Let n = 〈ϕ, θ(ac)〉, n′ = 〈ϕ′, θ(ac)〉, n 6= n′ be two norms satisfying
the following conditions:

1. for each predicate p(τ̄ ) ∈ ϕ there is a predicate p(τ̄ ′) ∈ ϕ′ such that either
p(τ̄ ) tπ p(τ̄ ′) 6= ∅ or p(τ̄ ) uπ p(τ̄ ′) 6= ∅; and

2. there is at least one pair of predicates p(τ̄ ) ∈ ϕ and p(τ̄ ′) ∈ ϕ′ such that
p(τ̄ ) uπ p(τ̄ ′) = ∅ and p(τ̄ ) tπ p(τ̄ ′) 6= ∅.

Then there exist two norms n̂ ⊆ n, n̂′ ⊆ n′ that are generalisable.

Proof. The proof proceeds by constructing norms n̂, n̂′ from n and n′. We define
n̂, n̂′ as the intersection of each pair of predicates p(τ̄ ) ∈ ϕ and p(τ̄ ′) ∈ ϕ′ as
follows.

n̂ =

{
p(τ̄ ) uπ p(τ̄ ′) if p(τ̄ ) uπ p(τ̄ ′) 6= ∅
p(τ̄ ) otherwise

n̂′ =

{
p(τ̄ ) uπ p(τ̄ ′) if p(τ̄ ) uπ p(τ̄ ′) 6= ∅
p(τ̄ ′) otherwise
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Figure 6.4: Indirect generalisation of norms n3, n5 to n6.

Note that the method used to construct n̂, n̂′ guarantees that they share the
predicates whose intersection is not empty. Therefore, some of the predicates
in both norms will be equal. When the intersection between two predicates is
empty, we know from the assumptions in the theorem that there is a most specific
generalisation for both predicates. In that case, we just copy the predicate of
n into n̂, and the predicate of n′ into n̂′. Therefore, by construction we ensure
that n̂, n̂′ are generalisable. That is, for each pair or predicates in n̂, n̂′ either
they are equal or there is a most specific generalisation for them.

As an example, consider the normative network in Figure 6.4a, norms
n1, . . . , n4 described above, and the following norms:

n5 : 〈{left(fire-brigade), front(car), right(bike)}, prh(go)〉
n6 : 〈{left(fire-brigade), front(car), right(private)}, prh(go)〉

Initially, (Figure 6.4a) the normative network contains two active norms
n4, n5 that have an intersection in predicates their “left” and “front” predicates,
and a generalisation in their “right” predicates. Formally, (i) left(emergency) ∈
ϕ4 uπ left(fire-brigade) ∈ ϕ5 = left(fire-brigade); (ii) front(car) ∈ ϕ4 uπ
front(car) ∈ ϕ5 = front(car); and (iii) right(car) ∈ ϕ4 tπ right(bike) ∈ ϕ5 =
right(private). Then, simon can compute two norms n̂ ⊆ n4, n̂′ ⊆ n5 that
are generalisable along the lines of the proof of Theorem 1. In this particular
example, n̂ = n3 and n̂′ = n5. Norm n3 contains (i) predicate left(fire-brigade),
namely the intersection of left(emergency) ∈ ϕ4 and left(emergency) ∈ ϕ5; (ii)
predicate front(car) ∈ ϕ4; and (ii) predicate right(car) ∈ ϕ4. Then, in Figure
6.4b (normative network NN ′), norms n3, n5 are generalised to a norm n6, which
contains (i) the intersection (left(fire-brigade) of predicates left(emergency) ∈ ϕ4

and left(emergency) ∈ ϕ5; the intersection (front(car) of predicates front(car) ∈
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ϕ4 and front(car) ∈ ϕ5; and (ii) predicate right(private) as the most specific
generalisation of predicates right(car) ∈ ϕ4 and right(bike) ∈ ϕ5.

Hereafter, we will refer to this generalisation as indirect or deep generalisa-
tion, whose procedure is described in function deepNormGeneralisation (Al-
gorithm 14). It receives as inputs: (1) a norm n to generalise; (2) a norma-
tive network NN ; (3) a terms taxonomy T; and (4) a generalisation step GS ,
which sets the number of terms that simon can simultaneously generalise. It
performs pairwise comparisons of norm n with each norm n′ in the normative
system. For each pair of norms n, n′, it checks if they represent two norms
n̂ ⊂ n, n̂′ ⊂ n′ that are generalisable. With this aim, it employs function
getRepresentedGeneralisableNorms (line 3), which retrieves these norms as de-
scribed in Theorem 1. If norms n̂ ⊂ n, n̂′ ⊂ n′ exist, then it then computes the
most specific generalisation of n̂, n̂′ (line 5) and generalises them if the general
norm does not represent any norm of the normative network that under-performs
(lines 6–8).

ALGORITHM 14: Function deepNormGeneralisation

Input : n,NN ,T,GS
Output: NN

1 Ω← {n ∈ NN | δ(n) = active};
2 foreach n′ ∈ Ω do
3 (n̂, n̂′)← getRepresentedGeneralisableNorms(n, n′,T,GS);
4 if n̂ 6= null and n̂′ 6= null then
5 nπ ← mostSpecificGeneralisation(n, n′,T,GS);
6 if not representsUnderperformingNorms(nπ,NN ) then
7 NN ← add({n̂, n̂′, nπ},NN );
8 NN ← generalise({n̂, n̂′}, nπ,NN );

9 return NN

6.4 Revising over-generalisations

At this point, we know that optimistic norm generalisations allow simon to
generalise norms with partial evidence. Nevertheless, optimistic norm gener-
alisations may lead to over-generalisations, since general norms may implicitly
represent (and hence implicitly include in the normative system) norms that
may under-perform. For instance, let us suppose that n4 in Figure 6.2 does
not perform well whenever agents fulfil it in the situation described by norm
n3. In that case, simon has to specialise n4, activating n1, n2 and deactivating
n3. However, norm n3 is not explicitly represented in the normative network,
and hence it cannot be deactivated. Therefore, simon must previously create
norm n3 in order to keep track of it and finally deactivate it. With this aim,
in addition to norm specialisation, simon incorporates a method for refining
norm generalisations. It specifies a general norm n that under-performs in the
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situation described by a specific norm nsp ⊂ n that has not been created yet.
This norm specification process proceeds as follows: (1) it detects when a gen-
eral norm n under-performs in the situation described by a specific norm nsp
it implicitly represents; (2) it specifies norm nsp by creating it, and adding it
to the normative network; (3) it establishes a generalisation relationship from
nsp to n; and (4) it searches for alternative generalisation relationships that nsp
may have with other norms in the normative network. We regard this process
as a revision of generalisations, with the intention to backtrack the search for
normative systems to a less general set of norms.

ALGORITHM 15: Function buildGeneralisations

Input : n, n′,NN ,T
Output: NN

1 linked ← False
2 nChildren ← getChildren(n,NN )

3 n ′Children ← getChildren(n′,NN )

4 if n = n′ then
5 return NN

6 if subsumes(n, n′,T) then /* If n subsumes n′ and n */

7 if not isAncestor(n, n′,NN ) then /* is not an ancestor of n′, */

8 generalise(n′, n,NN ) /* set n as a parent of n′ */

9 removeGeneralisation(n′Children, n,NN )

10 linked← True

11 else if subsumes(n′, n,T) then /* If n is subsumed by n′ and */

12 if not subsumes(n′Children, n,T) then /* no child of n′ subsumes n, */

13 if not isAncestor(n, n′,NN ) then /* then set n as a child of n′ */

14 generalise(n, n′,NN )

15 linked ← True

16 n ′ChildrenSubsumedByN ← subsumed(n ′Children, n) /* If n */

17 foreach n′
ch ∈ n ′ChildrenSubsumedByN do /* subsumes any child */

18 removeGeneralisation(n′
ch, n

′,NN ) /* of n, insert n between */

19 generalise(n′
ch, n,NN ) /* n′ and that particular child */

20 if not linked then /* If n was not linked to n′, then */

21 foreach n′
ch ∈ n ′Children do /* keep on trying with n′ children */

22 link(n, n′
ch,NN ,T)

23 else /* Even if n was linked */

24 n ′ChildrenNotSubsumedByN ← notSubsumed(n ′Children, n) /* keep on */

25 foreach n′
ch ∈ n ′ChildrenNotSubsumedByN do /* searching in those */

26 link(n, n′
ch,NN ,T) /* children of n′ that */

/* n does not subsume */

27 return NN

This last step is an important stage in the refinement of norms, since
it preserves the consistency of the normative network. It concerns search-
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Figure 6.5: Different situations in which simon may link norm n to a norm n′

ing for alternative generalisation relationships a specified norm nsp may have
with other norms in the normative network. Algorithm 15 describes function
buildGeneralisations, which performs this step. It receives as input a normative
network NN , a taxonomy of terms T, and two norms n, n′ to check if they may
have generalisation relationships. Then, it checks the following conditions, and
performs specific operations when they are satisfied:

• Norm n directly generalises n′ (Figure 6.5a). simon checks if n sub-
sumes (represents) n′ with respect to taxonomy T, and n is not already
an ancestor of n′ (lines 6–7). If these conditions are fulfilled, then n is
established as a parent of n′ (line 8). depicts an example of this situation.

• Norm n′ is between n and one of its children in the hierarchy
(Figure 6.5b). Next, simon checks if any of the children n′ch of n′ is also
a child of n. In that case, it removes the generalisation from n′ch to n′, so
that the network remains consistent (line 9).

• Norm n is generalised by norm n′ (Figure 6.5c). In case n cannot
be a parent of n′, it checks if it can be a child of n′. If n′ subsumes n,
no child of n′ subsumes n, and n is not an ancestor of n′, it establishes a
generalisation relationship from n′ to n (lines 11–14).

• Norm n is between n′ and one of its children in the hierarchy
(Figure 6.5d). simon checks if n subsumes any child n′ch of n′. If that is
the case, it inserts n between n′ and its child n′ch (lines 16–19).

Finally, simon keeps on searching generalisation relationships between n and
each child n′ch of n′, if whether (i) n has not been linked yet; or (ii) n has been
linked, but n does not subsume the child n′ch.
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6.5 SIMON’s synthesis strategy

We have so far described how simon manages to perform optimistic norm gener-
alisations, and to revise/backtrack over-generalisations. Now, simon’s synthesis
strategy is introduced. simon is intended to be iteratively executed by a nsm to
perform norm synthesis (see Section 3.4). With this aim, simon operates by per-
ceiving a MAS, and subsequently carrying out norm generation, norm evaluation,
and norm refinement. In particular, simon generates new norms as described
in Section 4.6.1, and it evaluates norms as described in Section 5.7.2. Crucially,
the norm refinement phase is novel. During norm refinement, it specifies under-
performing grounded norms that are implicitly represented by general norms. It
performs this operation as described in Section 6.4. Thereafter, it generalises
norms by performing optimistic norm generalisations as described in Section 6.3,
and backtracks norm generalisations by specialising under-performing norms as
described in Section 6.4.

Algorithm 16 illustrates simon’s strategy, which takes as input a tuple with
a description of the previous state of a MAS (ds) and a description of the cur-
rent MAS state (dsc), and outputs a normative system to regulate the agents’
behaviour. To perform norm synthesis, simon considers the globally accessi-
ble elements described at the beginning of Section 5.7. That is, a normative
network, a collection of operators, a set of domain-dependent elements, a set of
domain-independent settings, and a set of additional synthesis inputs. Moreover,
simon considers the following additional inputs:

1. simon’s generalisation mode (GM ∈ {shallow , deep}).

2. simon’s generalisation step (GS), introduced in Section 6.3.

ALGORITHM 16: simon’s synthesis strategy

Input : 〈ds, dsc〉
Output : Ω
Initialisations: NCO ← ∅, P ← ∅, ER ← ∅,NR ← ∅

[1] NN ← normGeneration(〈ds, dsc〉,P);
[2] (P, ER,NR)← normEvaluation(〈ds, dsc〉,NCO,P, ER,NR);
[3] NN ← normRefinement(NCO,P, ER,NR);
[4] Ω ← {n ∈ NN | δ(n) = active};
[5] return Ω

Additionally, simon considers the data structures described in Section 5.7
to keep track of norms’ compliance outcomes (NCO), norms’ effectiveness and
necessities (P), and norms’ effectiveness and necessity ranges (ER,NR).

Each time simon is invoked, it starts by performing norm generation (line 1).
Briefly, it detects unregulated conflicts within the current MAS state (sc), and
creates norms to avoid detected conflicts. Thereafter, it carries out norm evalua-
tion (line 2), in which it evaluates norms in terms of their effectiveness and neces-
sity, and computes their effectiveness and necessity ranges (ER,NR). Finally,
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simon carries out norm refinement (line 3), in which: (1) it specifies grounded
norms that are implicitly represented by general norms and under-perform; (2)
it specialises norms that under-perform in terms of their effectiveness or their
necessity; and (3) generalises norms when possible.

ALGORITHM 17: simon’s normRefinement function.

Input : NCO,P, ER,NR
Output: NN

1 Ω← {n ∈ NN | δ(n) = active};
2 NRG ← getNegativelyRewardedGeneralNorms(P);
3 foreach ng ∈ NRG do
4 nsp ← retrieveSpecificUnderperformingNorm(ng,NN );
5 NN ← add(nsp,NN );
6 NN ← generalise({nsp}, ng,NN );
7 foreach n′ ∈ Ω do
8 buildGeneralisations(NN , nsp, n

′);

9 for n ∈ getNormsFulfilledInfringedThisState(NCO) do
10 if underPerforms(n, ER,NR, αeff , αnec) then
11 NN ← deactivateUp(n,NN );

12 else if performsWell(n, ER,NR, αgen
eff , αgen

nec) then

13 NN ← generaliseUp(n,NN ,T,GM ,GS);

14 return NN

Algorithm 17 illustrates simon’s normRefinement function, which operates
as follows. First, it retrieves a set NRG of negatively rewarded general norms
(line 2), namely those general norms that have been evaluated as ineffective or
unnecessary during the current state transition. Next, for each general (under-
performing) norm (ng), it retrieves the specific norm (nsp) in whose context ng
has been negatively rewarded (line 4). Thereafter, it adds the specific norm
(nsp) to the normative network, and establishes a generalisation relationship
between nsp and ng (lines 5–6). Then, it searches for alternative generalisation
relationships that may hold between nsp and other norms in the normative
network. With this aim, it invokes function buildGeneralisations to try to link
nsp to other norms in the normative system (lines 7–8).

The next step is the specialisation and generalisation of norms. First, si-
mon checks if any of the norms fulfilled or infringed during the current time
step under-performs as described in Section 5.6.2. In that case, it deactivates
the under-performing norm, propagating up its deactivation to its ancestors
in the normative network (lines 11–12). With this aim, it invokes function
deactivateUp, described in Algorithm 12 from Section 5.7.3. Otherwise, it checks
if each norm performs well enough to be generalised as detailed in Section 5.6.1.
In that case, it tries to generalise up the norm (lines 12–13) by invoking function
generaliseUp, whose procedure is depicted in Algorithm 18. In particular, such
function generalises a norm n as follows. If simon is configured to perform shal-
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low norm generalisations, then it invokes function shallowNormGeneralisation
(line 2), whose procedure is depicted in Algorithm 13. Otherwise, it invokes
function deepNormGeneralisation, whose procedure is described in Algorithm
14.

ALGORITHM 18: Function generaliseUp

Input : n,NN ,T,GM ,GS
Output: NN

1 if isShallow(GM) then
2 NN ← shallowNormGeneralisation(n,NN ,T,GS);

3 else if isDeep(GM) then
4 NN ← deepNormGeneralisation(n,NN ,T,GS);

5 return NN

6.6 Empirical evaluation considering a road traf-
fic scenario

Next, the performance of simon is compared with iron’s along several dimen-
sions. With this aim, both strategies are empirically evaluated in the road traffic
scenario described in Section 1.3.1. First, they are compared in terms of the qual-
ity (of compactness, effectiveness and necessity) of the normative systems they
synthesise, as well as the convergence time required by their synthesis. There-
after, a micro analysis studies the distributions of normative systems synthesised
by iron and simon. The aim is to shed light on how the different generalisation
mechanisms employed by iron and simon affect their norm synthesis processes.
This will help us understand the differences in quality of the normative systems
that they synthesise. Finally, an analysis of the computational costs of both
approaches is provided.

6.6.1 Empirical settings

As detailed in Section 6.3, simon can operate with two alternative generalisation
modes (GM ), either a shallow mode (namely, by performing shallow norm gener-
alisations), or a deep mode (namely, by performing deep generalisations). Here-
after, s-simon will stand for simon operating in shallow generalisation mode,
and d-simon will stand for simon operating in deep generalisation mode.

The experiments use the scenario configuration and experimental settings
described in Section 5.9.1. Thus, they employ a discrete-event simulator of a
traffic junction, wherein agents are autonomous cars, and conflicts their colli-
sions. Each simulation uses either iron, s-simon, or d-simon as a norm syn-
thesis strategy. At each time step, cars decide whether to fulfil or infringe the
norms that apply to them according to a norm infringement rate (NIR), which
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is fixed to 0.3 and is the same for all cars. That is, on average, 3 of each 10
agents’ decisions lead to norm infringements. Norms have at most three unary
predicates with predicate symbols“left”,“front”,“right” that represent the three
positions in front of a reference car. Each predicate contains one term out of a
set of terms {car-heading-right, car-heading-left, car-opposite-heading, car-same-
heading, nil, anything}, whose generalisation relationships are established by the
taxonomy in Figure 6.1 (Section 6.2).

Both simon and iron have been configured as shown in Table 6.1. Briefly,
we have taken a conservative approach to configure both approaches. Firstly, the
effectiveness/necessity ranges of a norm (ER, NR) are computed by considering
the last q = 100 undefined effectiveness/necessity values of that norm. Secondly,
the initial effectiveness and necessity of a norm is set to 0.5 (keff = 0.5, knec =
0.5). Thirdly, both approaches deactivate norms only when they perform very
poorly (αeff = 0.2, αnec = 0.2). Fourthly, they consider high generalisation
thresholds (αgen

eff = 0.6, αgen
nec = 0.4). Finally, they consider a convergence interval

of 5,000 ticks (T = 5, 000). Additionally, simon’s specific settings, namely its
generalisation step (GS), considers values within [1..3]. Observe that, unlike
s-simon and d-simon, iron can only perform generalisations of a single term
(which is equivalent to fixing the generalisation step to GS = 1).

Each experiment consists of a set of 200 different simulations for each synthe-
sis strategy, namely iron, s-simon, and d-simon. Each simulation starts with
an empty normative system, and it finishes whenever it reaches 50,000 ticks,
or it has converged to a stable normative system. A simulation is assumed to
have converged to a normative system, hence solving the NSP (see Definition
18 in Section 3.2.2), if during a 5,000-tick period, the normative system remains
unchanged and no unregulated conflicts arise.

6.6.2 Empirical results

This section analyses the results of this empirical evaluation. First, it illustrates a
convergence analysis of simon to show how it manages to converge to a compact
normative system that solves the norm synthesis problem. Next, it provides a
macro analysis that compares iron and simon in terms of the quality of the
normative systems they synthesise. It shows that simon outperforms iron in
terms of compactness, while obtaining similar results in terms of effectiveness and
necessity. Then, it presents a micro analysis that shows why simon manages to
outperform iron. Finally, it provides a comparison of iron and simon in terms
of their computational costs.

SIMON’s convergence analysis

Let us now analyse how simon reaches convergence in a prototypical simulation.
With this aim, let us focus on the chart depicted in Figure 6.6. On the x-axis, it
illustrates the normative changes (i.e., the time steps in which the the normative
network and/or the normative system change) for a single simulation with 0.3
norm infringement rate. On the y-axis, it shows:
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Parameter Description Value

q

Number of effectiveness values (µeff ) and
necessity values (µnec) considered to compute a
norm’s effectiveness and necessity ranges (see
Section 5.6).

100

keff , knec
Default norm effectiveness and necessity values
(µeff (n, t0), µnec(n, t0)).

0.5

αeff , αnec

Thresholds below which a norm is considered to
under-perform in terms of its
effectiveness/necessity.

0.2

αgen
eff

Threshold above which a norm is considered to
perform well in terms of its effectiveness.

0.6

αgen
nec

Threshold above which a norm is considered to
perform well in terms of its necessity.

0.4

T
Time period considered when assessing
convergence (cf. Definition 18 in Section 3.2.2).

5,000

Table 6.1: simon’s and iron’s norm synthesis settings in the road traffic scenario.

1. The cardinality of the normative system, namely the number of active
norms in the normative network.

2. The number of grounded norms the normative system represents.

3. The number of terms that the normative system contains, namely its com-
pactness.

4. The ratio of new unregulated car collisions per tick along time.

For the sake of visibility, the cardinality of the normative network is not included,
since it reaches a size of 54 norms at tick 8301 (27th normative system).

At tick 13 (which corresponds to the 1st normative change), the first collision
arises and simon synthesises the first norm. From that tick onwards, simon
keeps generating norms when needed, hence increasing the cardinality of both
the normative network and the normative system. As a consequence, the number
of terms in the normative system increases as well. At tick 15 (fourth normative
change), simon performs the first norm generalisation, reducing the cardinality
of the normative system from 5 to 3 norms, and reducing the number of norm
predicates of the normative system from 9 to 8. Up to tick 63 (fifteenth normative
change), simon keeps generating and generalising norms when possible, thus
reducing the number of terms in the normative system. At tick 63 (fifteenth
normative change), simon performs an over-generalisation: it generalises all the
norms of the normative system to one single norm like:

n∗ : 〈{left(anything), front(anything), right(anything)}, prh(go)〉
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Figure 6.6: A prototypical execution of simon.

which concisely prohibits a car to stop in any situation it encounters (even if
there is no approaching car). Note that this norm over-constrains the car’s free-
dom, since it prohibits them to move in situations that imply no collision risk.
Therefore, at tick 72 (sixteenth normative change), simon backtracks this gen-
eralisation by specialising from 1 norm to 6 child norms. From then onwards,
simon keeps on specialising norms when required to remove from the norma-
tive system those specific norms that are unnecessary. At tick 8,301, simon
performs the last norm specialisation, hence synthesising a compact normative
system with 5 norms, which represents 18 grounded norms, and contains 7 terms
in total. From tick 8,301 onwards, the normative system remains stable. By us-
ing the resulting normative system, cars that comply with norms do not cause
collisions. After 5,000 further ticks (i.e., at tick 13,301), simon reaches conver-
gence. Overall, iron explored 54 different norms out of 343 possible norms (see
grammar G in Section 5.9.1). These 54 norms were generalised into 5 norms, to
find a 5-norm normative system that successfully prevents collisions as long as
cars comply with norms.

Norm Pre-condition (θ) Norm target µ̄eff µ̄nec

n1 left(car-heading-right) prh(go) 0.81 0.26
n2 front(car-heading-right), right(car-heading-right) prh(go) 0.82 0.55
n3 left(car-heading-left), front(car-heading-left) prh(go) 0.92 0.55
n4 front(car-same-heading) prh(go) 0.91 0.25
n5 right(car-heading-left) prh(go) 0.89 0.33

Table 6.2: A normative system of simon upon convergence
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The 5-norm normative system that simon converged to is shown in Table
6.2. This normative system contains a norm n1 that represents a left-hand
side priority norm. It specifies that a car must stop when it observes a car
to its left which is heading to its right, and no matter what it perceives to its
front and right positions. Additionally, norms n2, n3, n4 prohibit a car to go
in different situations. Note though that this normative system contains a fifth
norm (n5), which represents a general right-hand side priority norm. It is not
difficult to see that either norm n1 or norm n5 are unnecessary, since they can
replace one another in use. We already discussed this phenomenon in Section
4.8.2, since base had the same problem. Briefly, this comes as a consequence of
simon’s approach to norm evaluation. Likewise base, simon evaluates norms
individually, and it is not able to detect when two norms are unnecessary only
whenever another norm exists in the normative system. In other words, simon
is not capable of detecting the synergies between these norms, and thus keeps
both of the in the normative system.

Macro analysis

The next analysis compares the quality of the normative systems obtained by
s-simon, d-simon, and iron with respect to their effectiveness, necessity, and
compactness. In this analysis, the effectiveness and the necessity of a norma-
tive system is computed by means of Equation 5.21 in Section 5.6.3, and the
compactness of a normative system is computed as described in Definition 26
(Section 5.2). In particular, a normative system’s compactness is computed as
the overall number of terms in its norms’ predicates. Figure 6.7 illustrates s-
simon’s and d-simon’s savings with respect to iron as the generalisation step
GS increases, for GS ∈ {1, 2, 3}. Additionally, Table 6.3 shows numerical data
corresponding to Fig.6.7. The results below show the interquartile mean in the
third quartile of the different measures employed in our comparison.

We initially analyse the quality obtained by the three algorithms being com-
pared. Notice that s-simon with GS = 1 already synthesises normative sys-
tems that are up to 30.14% more compact (have 30.14% less terms) than those
synthesised by iron, while keeping effectiveness and necessity at very similar
values. Moreover, its normative systems contain up to 30.67% less norms. Here
s-simon clearly benefits from its more optimistic norm generalisation, which al-
lows it to generalise further than iron, synthesising more compact normative
systems. When increasing the generalisation step, GS = 2, s-simon obtains
further benefits in terms of compactness (37.2%). Analogously, its normative
systems contain 34.47% less norms. Nonetheless, increasing the generalisation
step, GS = 3, makes s-simon obtain worse results than for GS = 2. Therefore,
s-simon cannot take advantage of the largest generalisation step. Recall that a
large generalisation step enables s-simon to eventually carry out large generalisa-
tions. However, this may lead to over-generalisations. Then, we have observed
that after undoing an over-generalisation, s-simon ends up with a normative
network where it finds difficult to perform generalisations. A norm representing
an over-generalisation causes the synthesis in the normative network of child
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norms that are negatively rewarded. When backtracking an over-generalisation
s-simon ends up with a larger number of norms (than before generalising) that
it finds difficult to generalise.

Figure 6.7 also shows that d-simon clearly outperforms both iron and s-
simon, thus being the best in class. When using a low generalisation step,
GS = 1, d-simon already synthesises normative systems that are up to 59.19%
more compact than those synthesised by iron and contain 41.01% less norms,
while keeping effectiveness and necessity at very similar values. d-simon also
outperforms s-simon, obtaining benefits in terms of compactness (and number
of norms), namely the normative systems synthesised by d-simon have fewer
terms (and norms) than those synthesised by s-simon. Notice also that d-simon
slightly benefits in terms of compactness as the generalisation step increases.
That means that in this particular domain, GS = 1 is enough for d-simon to
obtain very compact normative systems.

When we consider the convergence time required by s-simon, d-simon, and
iron, we observe that, in general, s-simon and d-simon require more time to
converge (in terms of the number of ticks). With the exception of s-simon with
a generalisation step GS = 1 (which converges 14.79% faster), all s-simon and
d-simon configurations require between 16.01% and 30.51% more time than
iron to converge. This may sound contradictory, since simon generates and
evaluates norms along the lines of iron, and can generalise norms faster than
iron. Therefore, it is sensible to think that it should converge faster. However,
as discussed above, simon is more prone than iron to over-generalise norms.
Recall that detecting a norm representing an over-generalisation requires to ex-
plicitly represent its under-performing child norms, and to accumulate evidences
about their performances to be able to deactivate them (and thus, to backtrack
the over-generalisation). As a consequence, simon requires extra time to detect
and deactivate under-performing norms, and hence to converge. Additionally,
as the generalisation step increases, s-simon requires more time to converge,
whereas d-simon requires less time to converge. This indicates that increasing
the generalisation step helps d-simon reach convergence. In other words, the
generalisation steps favours d-simon’s synthesis process. This is not the case
for s-simon. As discussed above, the largest value of the generalisation step is
detrimental to s-simon, leading to extra work to undo over-generalisations.

To summarise d-simon with GS = 3 is the best-in-class algorithm since it
achieves the best (lowest) values of compactness and number of norms at a low
cost of extra convergence time with respect to iron.

Micro analysis

Let us now investigate why d-simon and s-simon both outperform iron in terms
of minimality and simplicity. Figures 6.8, 6.9 and 6.10 show, respectively, three
histograms of the normative systems synthesised by d-simon, s-simon and iron.
These histograms consider d-simon with GS = 3 and s-simon with GS = 2,
namely the best configurations for the d-simon and s-simon algorithms. The
x-axis in each histogram shows the different normative systems synthesised by
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Figure 6.7: Savings of s-simon and d-simon with respect to iron.

iron s-simon d-simon
GS = 1 GS = 2 GS = 3 GS = 1 GS = 2 GS = 3

Effectiveness 0.853 2.6% 2.32% 2.68% 2.66% 2.29% 2.6%
Necessity 0.487 -1% -8.1% -12.9% -1.7% -2.1% -4.1%

Compactness 18.313 30.14% 37.2% 31.19% 59.19% 60.1% 60.68%
Num. norms in Ω 8.76 30.67% 34.47% 29.52% 41.01% 41.85% 41.93%

Synth. norms 23.5 18.55% 14.38% 14.38% -77% -56.82% -50.41%
Convergence 6,323.6 14.79% -16.56% -30.51% -24.68% -16.01% -14.18%

Table 6.3: Numerical data of s-simon’s and d-simon’s savings with respect to
iron.

the three algorithms, while the y-axis shows the number of times each normative
system was synthesised. Overall, the three algorithms together managed to
synthesise 314 different normative systems.

Observe in Figure 6.10 that iron synthesises 173 different normative sys-
tems, ranging from Ω142 to Ω314. Now, focus on Figure 6.9, depicting s-simon’s
histogram. Observe that s-simon synthesises 111 normative systems, mostly
ranging from Ω31 to Ω141. Therefore, s-simon explores an area of the space
of normative systems that is not at all addressed by iron. Finally, consider
Figure 6.8, depicting d-simon’s histogram. Note that d-simon synthesises 30
different normative systems, mostly ranging from Ω1 to Ω30. Although there is
some intersection between the normative systems synthesised by d-simon and
s-simon, we notice that, again, d-simon mostly explores an area of the space of
normative systems that is not reached by s-simon or iron. To summarise, the
three algorithms explore different areas of the search space of normative systems.

Next, let us analyse the dispersion of the three distributions of synthesised
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Figure 6.8: Histogram of normative systems synthesised by d-simon

normative systems. Notice that d-simon’s dispersion is low (it only synthe-
sises 30 different normative systems out of 200 different simulations), whereas
s-simon’s is medium (it synthesises 111 normative systems), and iron’s is high
(it synthesises 173 different normative system). In fact, d-simon synthesises 141
times (70.5%) normative system Ω1, and the first 10 normative systems are syn-
thesised 89% of the times. Against this, s-simon synthesises normative system
Ω31 only 15 times (7.5% of the total), and iron synthesises Ω142 only 4 times
(2% of the total).

To summarise, d-simon consistently focuses on an area of the search space
where more compact normative systems are. This explains why it outperforms
s-simon and iron in terms of compactness.

Computational cost analysis

Finally, d-simon, s-simon, and iron are compared with respect to the number of
norms they synthesised (one should not confuse the number of synthesised norms
with the number of normative systems). The results are shown in the Table 6.3.
While s-simon synthesises fewer norms than iron (between 14.38% and 18.55%,
depending on the generalisation step), d-simon does synthesise more norms than
iron (between 50.41% and 77%, depending on the generalisation step). This
must not be regarded negatively because this is precisely what allows d-simon
to synthesise normative systems that are reached by neither s-simon nor iron.
In fact, d-simon synthesises more norms that its competitors because it manages
to perform more norm generalisations than them, which amounts to synthesising
new (general) norms.
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Figure 6.9: Histogram of normative systems synthesised by d-simon
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6.7 Empirical evaluation considering an on-line
community scenario

The empirical evaluation of simon ends with a comparison of iron’s and si-
mon’s norm synthesis in the on-line community scenario described in Section
1.3.2. Next, Section 6.7.1 details the empirical settings of these experiments.
Thereafter, Section 6.7.2 empirically shows the differences between both ap-
proaches and their results for this scenario. More specifically, it first illustrates
a micro analysis of simon’s norm synthesis in a single simulation, showing how it
manages to synthesise a compact normative system that solves the NSP. Then,
it provides a macro analysis of the convergence of both approaches, illustrating
when they converge, and what types of normative systems they synthesise. Fi-
nally, it analyses the type of normative networks that iron and simon synthesise.
Initial results prove that simon is capable of performing further generalisations
than iron, which allows it to synthesise more compact normative systems.

6.7.1 Empirical settings

These experiments employ the discrete agent-based on-line community simulator
described in Section 5.10.1. Such simulator simulates an on-line community in
which a population of users can upload contents, view contents, and complain
about those contents they feel uncomfortable with. The on-line community is
divided into three different sections on which users can upload different types of
contents. In particular, users can upload either appropriate (correct) contents,
or inappropriate contents (i.e., spam, porn, violent, or insults).

Each simulation finishes when it reaches 5,000 ticks, and it considers an initial
“warm-up” period of 500 ticks to reach normal conditions in on-line communities,
where the users enter in the community and there already exist contents to view
and complain about. Thus, from tick 0 to 500, users only upload contents,
and from tick 500 onwards, users upload, view, and complain about contents.
We consider that a simulation has converged whenever the normative system
remains unchanged during a 1000-tick period.

The experiments consider an on-line community of 10,000 users that are
modelled as a population of 100 heavy contributors. Particularly, three different
populations are considered, which are composed of moderates and spammers in
different proportions:

1. A population with a majority of moderate users, composed of 70% mod-
erates and 30% spammers (hereafter 30M-70S).

2. A balanced population of 50% moderates and 50% spammers (50M-50S).

3. A population with a minority of moderate users, composed of 30% mod-
erates and 70% spammers (70M-30S).

At each time step (i.e, tick) each user: (i) views one content with probability 1;
(ii) uploads one content with probability 0.05; and (iii) complaints about those
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anyContentType
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Figure 6.11: Taxonomy of terms in the on-line community scenario.

inappropriate contents it views according to its preferences (i.e., its profile).

Norms have at most three unary predicates with predicate symbols
{user,section,cntType} that represent a user of the community, a section, and the
type of a content a user aims at uploading. In particular, the “user” predicate
contains one term out of a set {u1, . . . , u100, anyUser}, the “section” predicate
contains one term out of {forum, the-reporter, multimedia, anySection}, and the
“cntType” predicate has one term out of {spam, porn, violent, insult, anyCon-
tentType}. Figure 6.11 captures the generalisation relationships between these
terms.

simon’s and iron’s synthesis parameters have been configured as shown in
Table 6.4. Briefly, for each new norm n, both approaches set its initial necessity
to 0.5 (µnec(n, t0) = 0.5), and compute a norm’s necessity at a given time by
considering its last 100 defined necessity values (q = 100). Recall from Section
5.10.1 that, in this scenario, a norm’s effectiveness cannot be evaluated, since
norm fulfilments are not observable. simon’s and iron’s necessity generalisation
thresholds are set to 0 (αgen

nec = 0) so that they generalise any norm that is
necessary enough to be active. simon’s and iron’s norm synthesis is analysed
for low, medium, and high deactivation thresholds. More specifically, αnec ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. As to simon’s specific settings, it has been configured to
perform deep generalisations (GM = deep) and to generalise three terms at a
time (GS = 3), since with this configuration simon obtained its best results in
the empirical evaluation in the road traffic scenario (Section 5.9.2).

6.7.2 Empirical results

Next, simon’s empirical results are analysed. First, a micro analysis of simon
shows how it manages to converge to a compact normative system by synthesis-
ing norms from scratch. Thereafter a macro analysis analyses when simon con-
verges and what type of normative systems it synthesises for different populations
and norm necessity thresholds. simon and iron are compared to demonstrate
that simon significantly outperforms iron in terms of compactness. Finally,
simon’s synthesised normative networks are analysed and compared with those
synthesised by iron. The aim is to shed light on how simon structures norms
in a normative network to synthesise compact normative systems.
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Parameter Description Value

q

Number of effectiveness values (µeff ) and
necessity values (µnec) considered to
compute a norm’s effectiveness and
necessity ranges (see Section 5.6).

100

knec
Default norm effectiveness and necessity
values (µeff (n, t0), µnec(n, t0)).

0.5

αnec

Thresholds below which a norm is
considered to under-perform in terms of its
effectiveness/necessity.

(0.1, 0.3, 0.5,
0.7, 0.9)

αgen
nec

Threshold above which a norm is
considered to perform well in terms of its
necessity.

0

T
Time period considered when assessing
convergence (cf. Definition 18 in Section
3.2.2).

1,000

GM simon’s generalisation mode. deep

GS simon’s generalisation step. 3

Table 6.4: simon’s norm synthesis settings in the on-line community scenario.
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Figure 6.12: simon’s convergence process for a population of 70 moderate users
and 30 spammers.
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Micro analysis: SIMON’s convergence process

Let us first illustrate how simon manages to synthesise from scratch a normative
system that avoids unregulated conflicts in our on-line community scenario. Fig-
ure 6.12 shows a prototypical execution of simon for population of 70 moderate
users and 30 spammers, and a 0.3 norm infringement rate. The x-axis shows the
different normative changes that simon performed along time, and the y-axis
shows: (1) the cardinality of the normative network, (2) the cardinality of the
normative system, and (3) the ratio of unregulated user complaints (conflicts)
per tick. From tick 0 to 500 (i.e., during the warm-up period), users only upload
and view contents, but never complain. Therefore, no conflicts arise and simon
does not generate norms. At tick 500 (second normative change), moderate users
start complaining about spam contents they view, which triggers simon’s norm
generation. Thus, from tick 500 on, simon subsequently generates and adds
norms to the normative network to prevent spammers from uploading spam. At
tick 501 (third normative change) simon performs the first norm generalisation,
reducing the number of norms in the normative system from 47 to 7. At tick 503
(fourth normative change), simon managed to synthesise the following compact
norm:

n∗ : 〈(user(anyUser), section(anySection), cntType(spam)), prh(upload)〉

which concisely prohibits all the users of the community to upload spam contents
in any section. This comes as a result of simon’s optimistic approach to norm
generalisation, which does not require to synthesise norms to prohibit each user
to upload spam before generalising into n∗. Particularly, simon provides the
agents with a simplified version of this norm that does not contain neither the
user nor the section predicates, since these predicates have root terms.

Notice then that simon generalises norms very rapidly, synthesising a com-
pact normative system of one norm in a few time steps. Thereafter, simon
specifies those specific norms that are implicitly represented by n∗, and that
under-perform at some point. As a result, the cardinality of the normative net-
work keeps on increasing, while the cardinality of the normative system remains
stable. At tick 508 (eighth normative change), simon considers that some spe-
cific norms that n∗ represents under-perform in terms of necessity, and therefore
specialises n∗ into its children. This results in the increment of the normative
system’s cardinality from 1 norm to 31 norms. At tick 569 (twentieth norma-
tive change), simon considers that all the norms that n∗ represents perform well
again (i.e., they are necessary enough), and re-activates them, generalising again
to norm n∗. Thereafter, the normative system remains stable. At the end of the
simulation, simon has synthesised a normative system with one general norm
that prohibits spam contents within the community. By contrast, the normative
network contains 121 norms. It contains: (i) 90 norms to prohibit the three
spammers to upload spam in the three sections of the community (30 spammers
× 30 sections = 90 norms); (ii) 30 general norms to prohibit each spammer to
upload spam in any section; and (iii) one general norm to prohibit to any user
to upload spam in any section.
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Consensus degree (αnec)

Population 0.1 0.3 0.5 0.7 0.9

30M-70S (0.3 complain power) 1 X X X X

50M-50S (0.5 complain power) 1 1 X X X

70M-30S (0.7 complain power) 1 1 1 X X

Table 6.5: Number of norms that simon converged to.

Macro analysis. SIMON versus IRON: convergence outcomes

Next, simon is compared with iron in terms of their convergence and the type
of normative systems they synthesise. First, recall from Section 5.10.2 that the
proportion of moderate users in a population represents the complain power
of that population (CPw), since moderates are the only users who complain
about spam. Thus, the complain power of a population is directly related with
the necessity of the norms to prohibit spam. The more complaints, the more
necessary the norms. Moreover, the necessity threshold (αnec) can be seen as
a consensus degree that establishes the minimum proportion of users that must
consider norms as necessary so that they are included in the normative system.
Therefore, the relationship between the complain power of a population and
the established consensus degree determines the type of normative systems that
simon converges to.

Table 6.7 depicts averaged results after 100 simulations of simon. Each cell
contains, for each population and specialisation threshold: either (i) the size of
the normative system upon convergence; or (ii) symbol “X” if it was not able to
converge to a normative system. Observe that simon converged to a normative
system whenever the complain power of a population (that is, its proportion of
moderates) was above the consensus degree (i.e., the norm necessity threshold),
namely when CPw > αnec. This happens because the proportion of moderates
in a population determines the necessity of the norms to prohibit spam. That is,
the more users complain about spam, the more necessary the norms to prohibit
spam. For instance, for a population of 30 moderates and 70 spammers (30M-
70S), norms to prohibit spam had around 0.3 necessity. Therefore it converged to
a stable normative system when the consensus degree was below 0.3 (αnec < 0.3).
Along the same lines, for population 50M-50S, it converged to 50 norms when
the consensus degree was below 0.5 (αnec < 0.5), and converged to 70 norms
for population 70M-30S and consensus degrees below 0.7 (αnec < 0.7). When
simon converged, it managed to synthesise a normative system with one single
norm like norm n∗ above, which prohibits any user to upload spam in any section.
Here simon benefited from its optimistic approach to norm generalisation, which
allows it to generalise both the “section” and the “user” predicates of norms .
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Case Convergence

Complain power > consensus degree (CPw > αnec) Yes

Complain power = consensus degree (CPw = αnec) No

Complain power < consensus degree (CPw < αnec) No

Table 6.6: Summary of simon’s macro analysis.

By contrast, simon was not able to converge whenever the complain power
was equal the consensus degree (namely, CPw = αnec). In this case, norms’ ne-
cessities fluctuated above and below the consensus degree, and thus norms were
continuously deactivated and re-activated. Therefore, simon could not find a
stable normative system. Finally, when the complain power of a population was
below the consensus degree (namely, CPw ≤ αnec), simon could not converge.
However, one may expect that simon should have converged to an empty nor-
mative system, since norms’ necessities, in this case, should be always below the
necessity threshold. The reason of this was already introduced in Section 5.10.2
(since iron had the same problem). Briefly, when simon creates a new norm,
it sets its initial necessity to 0.5, and iteratively evaluates it. Once the norm’s
necessity goes below the necessity threshold, simon deactivates it. Thereafter,
the conflict the norm regulated becomes unregulated again. The next time a
user complaints, and the conflict arises again, simon immediately reacts by cre-
ating (re-activating) the norm. Eventually, simon will evaluate the norm again
as unnecessary, thus deactivating it. This leads simon into a cycle of continu-
ous norm deactivations/re-activations, making iron incapable to converge. In
this scenario, simon should consider larger amounts of evidences to assess if
re-activating a norm is really necessary. Namely, it should be more deliberative.
Table 6.6 summarises simon’s results for different combinations of complaint
power/consensus degree.

Let us now compare simon’s results with iron’s, which are shown in Table
6.7. Briefly, iron shows similar convergence conditions to simon. It converged
to a stable normative system only whenever the complain power of a given pop-
ulation is over the consensus degree (namely, CPw > αnec). However, iron was
not capable of synthesising the 1-norm normative system that simon managed
to synthesise. Instead, it synthesised normative systems containing norms to
prohibit each spammer to upload spam in any section. These empirical results
demonstrate that simon significantly outperforms iron in terms of compactness.

Analysis of synthesised normative networks

Let us now analyse the size and structure of simon’s synthesised normative
networks and compare them to those synthesised by iron. Figure 6.13 depicts
a normative network that simon synthesised to regulate a population with 70
moderates and 30 spammers. There, each circle represents a norm, and each
edge represents a generalisation relationship between two norms. In particular,
yellow circles represent norms that generalise the term “section” predicate, and
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Consensus degree (αnec)

Population 0.1 0.3 0.5 0.7 0.9

30M-70S (0.3 complain power) 70 X X X X

50M-50S (0.5 complain power) 50 50 X X X

70M-30S (0.7 complain power) 30 30 30 X X

Table 6.7: Number of norms that iron converged to.

a green circle represents a norm that generalises both the “section” and the
“user” predicates. Particularly, such network contains one single active norm
n95, which corresponds to norm n∗ described above. Therefore, it represents a
normative system with one single norm that prohibits any user to upload spam
in any section. In fact, norm n95 generalises (and hence represents) each one of
the norms in the normative network.

Figure 6.14 illustrates an example generalisation of norms
n2, n6, n91, n70, n72, n94 described below, which belong to the normative
network depicted in Figure 6.13, and are generalised as norm n95 described
above. Figure 6.14 illustrates the optimistic generalisation of: (1) norms n2 and
n6 as n91, which prohibits user u71 to upload spam in anySection; (ii) norms
n70 and n72 as n94, which prohibits user u72 to upload spam to anySection; and
finally (iii) norms n91 and n94 as n95, which prohibits any user to upload spam
in any section.

n2 : 〈(user(u71), section(forum), cntType(spam)), prh(upload)〉
n6 : 〈(user(u71), section(the-reporter), cntType(spam)), prh(upload)〉
n91 : 〈(user(u71), section(anySection), cntType(spam)), prh(upload)〉
n70 : 〈(user(u72), section(forum), cntType(spam)), prh(upload)〉
n72 : 〈(user(u72), section(the-reporter), cntType(spam)), prh(upload)〉
n94 : 〈(user(u72), section(anySection), cntType(spam)), prh(upload)〉

We then observe a structure which is different from the normative network syn-
thesised by iron (depicted in Figure 5.14 from Section 5.10.2). simon’s norma-
tive network shows a hierarchical structure of two levels, where the most general
norm generalises two predicates. By contrast, iron’s normative network shows
a hierarchical structure of one level, since it is only capable of generalising the
“section” predicate of norms. Therefore, we conclude that simon manages to
outperform iron in terms of compactness of the normative system since it gener-
ates normative networks with a structure that iron is not capable of generating.
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Figure 6.14: Example of simon’s generalisation.

6.8 Conclusions

This chapter has addressed the synthesis of compact normative systems from
an optimistic point of view. It has introduced simon, a synthesis strategy that
performs optimistic norm generalisations. simon generalises norms with partial
evidence, which allows it to yield very compact normative systems. Its gener-
alisation mechanism is inspired in the anti-unification of terms (in the context
of logical reasoning) [Armengol and Plaza, 2000]. Anti-unification consists of
generalising feature terms to their least common subsumer or most specific gen-
eralisation, generalising pairs of terms to the most specific term that is common
to all of them. Along the same lines, simon generalises norms by detecting pairs
of norms that are generalisable, and generalising them to their most specific
generalisation. simon incorporates a mechanism to handle over-generalisation
whereby it backtracks generalisations of norms that under-perform, leading to
more specific norms and increasing the precision of the normative system.

simon’s performance has been analysed and compared with iron’s by con-
sidering two different scenarios. Of these, the first has been the road traffic
scenario. There, simon has been empirically evaluated with different opera-
tion modes (namely, deep and shallow), as well as for different generalisation
steps (namely, the number of terms that simon can simultaneously generalise).
The empirical results prove that simon significantly outperforms iron in terms
of compactness. It synthesises normative systems that have fewer norms and
terms. Moreover, simon offers a fine-grained control of how to generalise the
pre-condition of norms. Thereafter, simon’s norm synthesis has been compared
with iron’s in the on-line community scenario. There, simon has been again
proven to significantly outperform iron in terms of compactness, synthesising a
compact normative system with 1 norm that concisely prohibits all the users in
a community to upload spam in any section.

From simon’s empirical analysis, we conclude that simon is capable of syn-
thesising compact normative systems in domains wherein gathering full evidence
of norms to generalise is not possible. One should choose simon as a synthesis
strategy if achieving compactness is more important than achieving liberality
(i.e., the agents’ freedom). The reason of this is that simon’s norm generalisa-
tions increase the number of grounded norms a normative system represents, and
thus it is prone to over-generalise. Therefore, even though simon can synthesise
very compact normative systems, over-generalisations may penalise the agents’
freedom.
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Figure 6.15: Evolution of a norm’s necessity ranges along time.

However, from the observed in simon’s empirical results, here we argue that
simon has some limitations:

1. Lack of liberality. simon pursues liberality by individually evaluating
norms in terms of their necessity, and discarding unnecessary norms. However,
evaluating norms individually is not enough to detect when a norm becomes
unnecessary if another norm exists in the normative system. As discussed in
Section 6.6, in the road traffic scenario, simon synthesised normative systems
containing left-hand side priority norms, and right-hand side priority norms,
which together restrict agents’ behaviours to a great extent. This happens be-
cause simon cannot detect the synergies between these two norms to disregard
one of them, thus increasing the liberality of the normative system.

2. Inefficiency in detecting under-performing norms. Put crudely, si-
mon’s mechanism to detect under-performance is highly conservative. simon
decides that a norm under-performs based on its effectiveness and necessity
ranges (see Equations 5.10, 5.15, 5.11, 5.16 in Section 5.6). These ranges ag-
gregate, respectively, the effectiveness and the necessity values of a norm along
time, which in turn are also aggregated values, computed by a reinforcement
learning formula (see Equations 5.3 and 5.6 in Section 5.6). Therefore, simon
makes its decisions based on information that has been aggregated two times,
and thus is over-smoothened. As a result, simon requires greats amounts of
evidences to detect that a norm under-performs, even though it could detect it
with fewer evidences.

Let us illustrate an example with Figure 6.15. It shows the evolution of a
norm’s necessity along time as evaluated by simon. On the x-axis, it depicts
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different norm evaluations. On the y-axis, it shows:

1. A norm’s necessity (µnec).

2. The lower boundary of the norm’s necessity range (lbnec).

3. The higher boundary of the norm’s necessity range (hbnec).

4. A norms’ necessity threshold (αnec).

Observe that the evolution of the norm’s necessity (µnec) hints that it is com-
pletely unnecessary. From the very beginning, it monotonically decreases until
it rapidly goes below the necessity threshold (αnec) in the tenth evaluation.
However, the norm’s necessity range decreases much more slowly, since it is
over-smoothened. In particular, its higher boundary (hbnnec), which simon em-
ploys to detect under-performance, has not gone below the necessity threshold
after forty-five norm evaluations. This delays the detection of the norm’s under-
performance, which may have been detected in the tenth norm evaluation.

3. High reactivity to conflicts. In short, simon decides to activate a norm,
hence including it in the normative system, based on one single conflict evidence.
Moreover, simon is not capable of considering larger amounts of evidences (con-
flicts) when making this decision. This may be counter-productive in domains
wherein being more deliberative may help yield better normative systems. An ex-
ample was illustrated with the empirical evaluation of simon in the on-line com-
munity scenario (see the macro analysis in Section 6.7.2). There, simon could
not converge when the complaint power of a population (i.e., its proportion of
moderates) was below the consensus degree (i.e., the necessity threshold). This
happened because simon reacted to single complaints by re-activating norms
that were unnecessary. Eventually, this led to a cycle of continuous norm de-
activations and re-activations, making simon unable to converge. With that
setting, being more deliberative would have allowed simon to realise that, de-
spite punctual users’ complaints, norms were indeed unnecessary, and thus they
should have never been activated.

Against this background, we conclude that there is room for designing alter-
native synthesis strategies to synthesise more liberal normative systems, and to
perform norm synthesis by considering different degrees of reactivity to conflicts.
Therefore, the next two chapters introduce a strategy to synthesise liberal nor-
mative systems (Chapter 7) and to synthesise normative systems with different
degrees of reactivity to conflicts (Chapter 8).





Chapter 7

Synthesising liberal
normative systems

7.1 Introduction

Chapters 5 and 6 tackled the synthesis of compact normative systems to answer
research question R2 introduced in Section 1.2. They introduced two synthesis
strategies (iron and simon) to synthesise compact normative systems that avoid
conflicts while reducing the amount of norms that agents are provided with. Both
approaches pursue the compactness of a normative system by performing norm
generalisations. On the one hand, iron takes a conservative approach to norm
generalisation that requires full evidence. On the other hand, simon takes an
optimistic approach that generalises norms with partial evidence.

However, as we discussed in Section 6.8, simon synthesises normative systems
that are not enough liberal. Liberality can be seen as an attempt to preserve
agents’ freedom as much as possible when regulating their behaviour. Intuitively,
the smaller the number of constraints in a normative system, the greater freedom
for agents (and thus, the more liberal the normative system). In the road traffic
scenario, simon synthesised normative systems containing left-hand side priority
norms and right-hand side priority norms, which can replace one another in use,
and together constrain agents’ behaviours to a great extent. This came as a
result of their incapability to detect the synergies between norms.

Against this background, this chapter introduces lion (LI beral On-line
N orm synthesis), a strategy to synthesise liberal normative systems. In this
way, this chapter answers research question R3 introduced Section 1.2. lion
builds on simon, since it obtained the best results in terms of compactness in its
empirical evaluation (see Sections 6.6 and 6.7). Thus, lion aims at synthesising
normative systems that (1) avoid conflicts within a MAS; (2) are as compact as
possible; and (3) preserve agents’ freedom to the greatest possible extent.

The key to the success of lion in this multi-objective synthesis process is that
it is able to detect semantic relationships between norms, thus detecting norms
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that can replace one another in use. With this aim, it detects and exploits
norm synergies. More precisely, lion can detect substitutability and comple-
mentarity relationships between norms. Substitutability and complementarity
[Samuelson, 1974, McKenzie, 1977] are well-known concepts in economics that
apply to a wide range of domains [Ahlfeldt and Maennig, 2010, Ward et al.,
2009, van Smoorenburg and van der Velden, 2000]. While two substitute goods
may replace one another in use, complementary goods are better used together.
Along these lines, we say that two norms like “give way to the left” and “give
way to the right” are substitutable, since they can replace one another in avoid-
ing collisions. Analogously, we say that two norms like “give way to the left”
and “keep your distance” are complementary, since both of them are necessary
to avoid collisions. Overall, lion exploits generalisation relationships to pursue
compactness, exploits complementarity relationships to safeguard performance,
and exploits substitutability relationships to pursue liberality.

Additionally, lion incorporates alternative approaches to evaluate and to
refine norms. In this way, it overcomes simon’s drawbacks with respect to
the detection of under-performing norms. lion is endowed with alternative
mechanisms to evaluate norms and to detect norms’ under-performance that
exploit norm compliance evidences more efficiently than simon. All this allows
lion to detect under-performing norms faster than simon, and thus to converge
in a reasonable amount of time, even though it requires extra time to detect and
exploit norm synergies.

The remainder of this chapter is organised as follows. Section 7.2 formalises
the notions of substitutability and complementarity. Thereafter, Section 7.3
details how to detect and exploit substitutability and complementarity relation-
ships to synthesise liberal normative systems, and Section 7.4 details how to
evaluate norms and to detect under-performing norms. Next, Section 7.5 intro-
duces lion, and Section 7.6 provides means to analyse and compare normative
systems in terms of their liberality. Finally, Section 7.7 shows an empirical eval-
uation of lion and a comparison with simon in the road traffic scenario, and
Section 7.8 draws some conclusions.

7.2 Characterising norm synergies

Next, we introduce some definitions to describe when two norms are substi-
tutable, and when two norms are complementary. With this aim, let us consider
the formal model employed in previous chapters, with a set of agents Ag, a set
of actions Ac available to agents; a function context(ag,s) to retrieve an agent’s
context in a given state; and an action(ag,s,s’) function to retrieve the action an
agent performed in a state transition. Additionally, let us consider a function
to retrieve the scope of an agent. Given an agent, such function describes which
other agents she can perceive. Formally, this function is scope : Ag×S → P(Ag),
which returns the set of agents that an agent perceives at a given state. In par-
ticular, when an agent ag′ is in the scope of agent ag in a state s, we say that
ag′ is detected by ag in s, and we denote it by ag′ ∈ scope(ag, s).
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Normative system (Ω) 

Norm nb holds for me 
Car A 

Car B 

State s 

na nb 

Norm na holds for me 

Figure 7.1: Example of two substitutable norms.

Let us now describe when two norms are substitutable or complementary.
In short, two norms are substitutable if they satisfy the same regulatory needs
and, therefore, can substitute one another. By contrast, two norms are com-
plementary if they perform better when used together. Therefore, in order to
assess whether any of these two relationships holds between a pair of norms,
it is necessary to assess the difference in outcome between their simultaneous
and individual fulfilments. Thus, substitutability between two norms will hold
when the concurrent fulfilment of the two norms avoids conflicts, but also does
the individual fulfilment of only one of the two norms. Let us illustrate it with
an example using again the road traffic example employed in previous chapters,
wherein a car describes her local context by means of three predicates with pred-
icate symbols “left”, “front”, “right”, representing the three positions in front of
it, and each predicate contains one term out of a set of terms {car-heading-right,
car-heading-left, car-opposite-heading, car-same-heading, nil, anything}, whose
generalisation relationships are established by the taxonomy in Figure 6.1. Con-
sider now the traffic situation in Figure 7.1, and a normative system containing
norms na, nb described below:

na : 〈{left(nil), front(nil), right(car -heading-left)}, prh(go)〉
nb : 〈{left(car -heading-right), front(nil), right(nil)}, prh(go)〉

Norm na is a right-hand side priority norm, aimed at giving way to cars on the
right. Analogously, norm nb is a left-hand side priority norm aimed at giving
way to cars on the left. Figure 7.1 depicts a situation in which two different
cars (A and B) perceive one another in a state s. In particular, car A perceives
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car B to its right position, and car B perceives car A to its left position. Thus,
norm na applies to car A, and norm nb applies to car B. Notice that, in this
situation, either na or nb are necessary to avoid conflicts (a collision), but not
both. Therefore, employing both norms would over-constrain this situation. We
say then that both norms substitute one another, namely they are substitutable,
since only one of them could satisfactorily regulate the situation. Therefore,
only one of these norms is enough to avoid collisions in this situation. Table 7.1
summarises the different outcomes resulting from two substitutable norms n, n′

that are jointly fulfilled and/or infringed.

n′

Fulfilment Infringement
Fulfilment No conflicts No conflicts

n
Infringement No conflicts Conflicts

Table 7.1: Outcomes of two substitutable norms that are jointly fulfilled/in-
fringed.

By contrast, complementarity between two norms will hold when only the
concurrent fulfilment of both norms avoids conflicts, whereas the individual ful-
filment of only one of them does not. Consider now the road traffic situation in
Figure 7.2, and a normative system with norms nc, nd described below:

nc : 〈{left(nil), front(car -same-heading), right(car -heading-left)}, prh(go)〉
nd : 〈{left(car -heading-right), front(car -heading-right), right(nil)}, prh(go)〉

Norm nc prohibits a car to go if it perceives a car heading left to its right position,
a car heading to its same direction in front, and nothing to its left, and norm nd
prohibits a car to go if it perceives a car heading to its left on its left and front
positions, and nothing to its right. The figure depicts a situation similar to that
of Figure 7.1, with the exception that, in this case, there is an additional car C
on the centre of the junction. Notice that norm nc applies to car A, and norm
nd applies to car B. In this situation, cars A and B should comply with their
applicable norms to avoid collisions, since car C may suddenly stop, and either
car A or car B would collide with it. Therefore, we say that norms nc, nd are
complementary, since they complement one another in avoiding conflicts in this
situation. In other words, both of them are necessary to avoid conflicts. Table
7.2 summarises the different outcomes resulting from two complementary norms
n, n′ that are jointly fulfilled and/or infringed.

Let us formalise substitutability and complementarity. With this aim, it is
necessary to formalise when two norms concurrently apply. First, let us consider
the notion of joint context. We say that two agents share a joint context in a
given state if they can detect (perceive) one another. Formally,

Definition 33 (Joint context). Let s ∈ S be a state, and ag, ag′ ∈ Ag two
agents with contexts ctxt(ag , s), ctxt(ag ′, s) and scopes sctxt(ag , s), sctxt(ag ′, s).



7.2. Characterising norm synergies 167

Normative system (Ω) 

Norm nd holds for me 

Car A 

Car B 

State s 

nc nd 

Norm nc holds for me 

Car C 

Figure 7.2: Example of two complementary norms nc, nd.

n′

Fulfilment Infringement
Fulfilment No conflicts Conflicts

n
Infringement Conflicts Conflicts

Table 7.2: Outcomes of two complementary norms that are jointly fulfilled/in-
fringed.

We say that 〈ctxt(ag , s), ctxt(ag ′, s)〉 is a joint context shared by the agents iff
ag ′ ∈ scope(ag , s) and ag ∈ scope(ag ′, s).

Then, when two agents share a joint context and there are two norms such
that there is one norm that applies to each agent, we say that the norms con-
currently apply. Formally,

Definition 34 (Concurrent applicability). Let s ∈ S be a state, ag, ag′ ∈ Ag two
agents that share a joint context 〈ctxt(ag , s), ctxt(ag ′, s)〉, and n = 〈ϕ, θ(ac)〉,
n′ = 〈ϕ′, θ′(ac′)〉 two different norms. We say that n, n′ concurrently apply in
the joint context iff ctxt(ag , s) |= ϕ and ctxt(ag ′, s) |= ϕ′.

Let us now formalise the notion of substitutability. It is worth noticing,
though, that here it is considered that substitutability only holds between
grounded norms, namely between norms with grounded terms (see Definition
21 in Section 5.2). Thus, for example, norms na, . . . , nd described above are
grounded, since all the terms in their precondition are grounded in the taxonomy
depicted in Figure 6.1. Then, we say that two grounded norms that concurrently
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apply are substitutable in a particular state when only one of them is required to
avoid a transition to an undesirable state (namely, a state containing conflicts).
Formally,

Definition 35 (Substitutability). Let s ∈ S be a state, C ⊆ S a set of undesir-
able states, and ag, ag′ ∈ Ag two agents that share a joint context 〈ctxt(ag , s),
ctxt(ag ′, s)〉. Let n, n′ be two different, specific norms such that n applies to
ag and n′ applies to ag′, and hence concurrently apply in the agents’ joint con-
text. Let 〈s,A, s′〉 be the transition that results after ag and ag′ perform actions
ac ∈ A and ac′ ∈ A respectively. Norms n, n′ are substitutable in s iff the fol-
lowing conditions hold: (i) a conflict occurs (s′ ∈ C) when both agents infringe
their norms; and (ii) no conflict occurs (s′ /∈ C) when at least one of the agents
fulfils its applicable norm.

The substitutability relationship was illustrated above with two norms na, nb
(Figure 7.1). Notice that both norms concurrently apply together in a situation
in which (i) two cars perceive each other; and (ii) each norm applies to only one
of the cars. In that situation, collisions can be avoided by employing only one
of the norms.

From the definition above, we say that two norms are substitutable in a set
of states if they are substitutable at each state. Consider now all the states of
a system where two norms concurrently apply. We say that the two norms are
fully substitutable if they are substitutable in all those states. Particularly, this
chapter focuses on detecting substitutability, but not on detecting fully substi-
tutable norms. We notice that the substitutability relationship is irreflexive, and
symmetric, but non-transitive.

Now, let us formalise the notion of complementarity. Two norms that con-
currently apply are complementary in a particular state when the two of them
are required to avoid a transition to an undesired state. Formally,

Definition 36 (Complementarity). Let s ∈ S be a state, C ⊆ S a set of unde-
sired states, and ag, ag′ ∈ Ag two agents that share a joint context 〈ctxt(ag , s),
ctxt(ag ′, s)〉. Let n, n′ be two different, specific norms such that n applies to ag
and n′ applies to ag′, and hence concurrently apply in the agents’ joint context.
Say that 〈s,A, s′〉 is the transition that results after ag and ag′ perform actions
ac ∈ A and ac′ ∈ A respectively. Then, norms n, n′ are complementary in s iff
the following conditions hold: (i) a conflict occurs (s′ ∈ C) when at least one
of the agents infringes its applicable norm; and (ii) no conflict occurs (s′ /∈ C)
when both agents fulfil their norms.

From the definition above, we say that two norms are complementary in a
set of states if they are complementary at each state. We say that the two norms
are fully complementary if they are complementary in all the states of the sys-
tem where they concurrently apply. Like substitutability, the complementarity
relationship is irreflexive, and symmetric, but non-transitive.

At this point, we know that norms may have generalisation relationships, as
well as substitutability and complementarity relationships. Against this back-
ground, it is natural to ask if there exists any relationship between generalisation,
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substitutability and complementarity. The answer is provided in the observation
below.

Observation 1. Generalisation, substitutability, and complementarity are mu-
tually exclusive relationships.

To see this, first observe that substitutability and complementarity are mu-
tually exclusive relationships: two norms that are substitutable cannot be com-
plementary at the same time, and the other way around. This directly follows
from the conditions in definitions 35 and 36. Furthermore, generalisation and
substitutability are mutually exclusive. This also comes from the definition of
generalisation and substitutability. According to definition 35, substitutability
only holds between specific norms, whereas generalisation always requires at
least a non-specific norm. From this, it follows that generalisation and substi-
tutability cannot hold at the very same time between two norms. Following the
same line of reasoning, since complementarity only holds between specific norms,
generalisation and complementarity are also mutually exclusive. This observa-
tion tells us that iron (Chapter 5) and simon (Chapter 6), which only learned
generalisation relationships, never learned any substitutability relationship nor
any complementarity relationship.

7.3 Synthesising liberal normative systems

This section illustrates how substitutability and complementarity relationships
between norms can be detected, and how these relationships can be exploited
to synthesise liberal normative systems. The remainder of this section is or-
ganised as follows. Section 7.3.1 introduces a normative network to represent
substitutability and complementarity relationships between norms. Thereafter,
Section 7.3.2 details how to detect substitutability and complementarity so that
Section 7.3.3 illustrates how to exploit such relationships to synthesise norma-
tive systems that are as liberal as possible, while preserving compactness to the
greatest possible extent.

7.3.1 Representing norm relationships

lion represents synthesised norms and their relationships as nodes and edges
in a normative network. With this aim, lion considers the normative net-
work formally defined in Definition 19 (Section 3.4.1), with a set of norms N ,
and a set R ⊆ N × N of relationships between norms. Particularly, lion
considers three different relationships between norms: generalisation relation-
ships, substitutability relationships, and complementarity relationships. Thus,
R = {EG, ES , EC}, where EG ⊂ N × N is a set of directed edges standing for
generalisation relationships; ES ⊂ N×N is a set of undirected edges standing for
substitutability relationships; EC ⊂ N ×N is a set of undirected edges standing
for complementarity relationships; and EG, ES , EC are pair-wise disjoint.
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Figure 7.4 shows a normative network built by lion after detecting sub-
stitutability and complementarity relationships between norms. Note that
grounded norms n2 and n3 hold a substitutability relationship; specific norms
n2 and n11 hold a complementarity relationship; and the rest of relationships
(directed edges) stand for generalisations – n10 generalises n3, . . . , n6, and n8, n9

at different generalisation levels, and n7 generalises norms n1, n2. Since norms
n7, n10, n11 are the only active norms (denoted by white circles), the normative
network represents the normative system Ω = {n7, n10, n11}.

7.3.2 Detecting norm relationships

This section describes how lion discovers, at run-time, substitutability and com-
plementarity relationships between grounded norms. Recall from Section 7.2
that two concurrently applicable norms are substitutable if no conflicts arise
whenever at least one of them is fulfilled. Similarly, they are considered as com-
plementary if conflicts arise whenever at least one of them is infringed. lion is
an on-line process that iteratively gathers evidences about norms’ compliance
outcomes to assess whether a pair of norms are either substitutable or comple-
mentary. Thus, lion considers that two norms are substitutable if the substi-
tutability conditions of Definition 35 hold for these two norms for a sufficient
number of times.The same applies to complementarity. When lion detects that
either a substitutability relationship or a complementarity relationship holds
between two norms, it represents such relationship in the normative network.

With this aim, lion proceeds as follows. For each pair of concurrently appli-
cable norms n, n′ that lion detects (see Definition 34 in Section 7.2), it creates
a tuple of finite series

〈FFn,n
′
,FIn,n

′
, IFn,n

′
〉

that accumulate their frequency in avoiding conflicts whenever they are fulfilled
(F) or infringed (I) along time. Formally, these series are:

FFn,n
′

= 〈ff n,n′

1 , . . . ,ff n,n′

m 〉 ∈ [0..1]m (7.1)

FIn,n
′

= 〈fin,n′

1 , . . . ,fin,n′

m 〉 ∈ [0..1]m (7.2)

IFn,n
′

= 〈if n,n′

1 , . . . , if n,n′

m 〉 ∈ [0..1]m (7.3)

where each element ff n,n′

i is a binary value that gathers the evidence related to

the i-th time that n and n′ were both fulfilled (FF). Specifically, ff n,n′

i is set
to 1 when both fulfilments did not lead to a conflict, and set to 0 otherwise.

Analogously, series FIn,n
′

keeps track of the evidence related to the fulfilment

of n and the infringement n′, and series and IFn,n
′

keeps track of this evidence
when n is infringed and n′ is fulfilled.

Gathering pair-wise evidences does not cover dependencies with other norms
in the current normative system, although accounted conflicts may in fact be
caused by third norms. These “noisy” evidences may cause fluctuations in the
binary series. Therefore, as it is usually the case for data streams, lion employs
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the cumulative moving average [Chou, 1969] to smooth out short-term fluctu-
ations and to highlight longer-term trends when detecting substitutability and
complementarity. With this aim, for each pair of concurrently applicable norms
n, n′ that lion detects, it creates a tuple of finite series

〈UFFn,n′ ,UFIn,n′ ,UIFn,n′〉

that accumulate their utility in avoiding conflicts whenever they are fulfilled (F)
or infringed (I) along time. Formally, these series are:

UFFn,n′ = 〈uFF1 , . . . , uFFm 〉 ∈ Nm (7.4)

UFIn,n′ = 〈uFI1 , . . . , uFIm 〉 ∈ Nm (7.5)

UIFn,n′ = 〈uIF1 , . . . , uIFm 〉 ∈ Nm (7.6)

where each element uFFi represents the evolution of the utility in avoiding con-
flicts of a pair of norms n, n′ that are both fulfilled. Specifically, each value uFFi
is computed as follows:

uFFi =

∑
uj∈UFF

n,n′ ,1≤j≤i
uFFj

i
(7.7)

Analogously, the elements in UFI
n,n′ and U IF

n,n′ are computed as follows.

uFIi =

∑
uj∈UFI

n,n′ ,1≤j≤i
uFIj

i
(7.8)

uIFi =

∑
uj∈UIF

n,n′ ,1≤j≤i
uIFj

i
(7.9)

lion considers that two concurrently applicable norms are substitutable if
they perform similarly in avoiding conflicts whenever both of them are fulfilled,
and when one of them is fulfilled, and the other is infringed. Specifically, it
considers that two norms n, n′ are substitutable iff their three utility series
(UFFn,n′ ,UFIn,n′ ,UIFn,n′) are similar. Since the Euclidean distance is one of the most
used and efficient time series (dis)similarity measures [Wang et al., 2013], lion
assesses the similarity between these series by means of the averaged Euclidean
distance as follows:

Distance(UFFn,n′ ,UFIn,n′) =

√
lmin∑
i=1

(uFFi − uFIi )2

lmin
(7.10)

being lmin the minimum length of series UFFn,n′ and UFIn,n′ , namely lmin =

min(|UFFn,n′ |, |UFIn,n′ |).
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Next, lion determines that two concurrently applicable norms n and n′

are substitutable iff: (i) it accumulates a minimum of evidence regarding the
outcomes of the concurrent application of both norms; and (ii) the distance
between series UFF

n,n′ and UFI
n,n′ as well as the distance between series UFF

n,n′ and

U IF
n,n′ are both below a given threshold αUsim , such that αUsim > 0. This amounts

to verifying whether the following conditions hold:

|UFFn,n′ | ≥ emin , |UFIn,n′ | ≥ emin , |UFIn,n′ | ≥ emin (7.11)

Distance(UFFn,n′ ,UFIn,n′) ≤ αUsim (7.12)

Distance(UFFn,n′ ,UIFn,n′) ≤ αUsim (7.13)

where emin is the minimum number of evidences that are required to assess if
two concurrently applicable norms are substitutable of complementary.

Analogously, lion considers that two concurrently applicable norms are com-
plementary if they perform better in avoiding conflicts when they are both ful-
filled than when one of them is fulfilled and the other infringed. Specifically, it
considers that two norms n, n′ are complementary if series UFFn,n′ is above series

UFIn,n′ and UIFn,n′ . This amounts to verifying if condition 7.11 above holds, along
with the following conditions below:

Average(UFFn,n′)−Average(UFIn,n′) > αUsim (7.14)

Average(UFFn,n′)−Average(UIFn,n′) > αUsim (7.15)

where Average(UFFn,n′) is the average of the utility values in series UFFn,n′ , and is
computed as follows:

Average(UFFn,n′) =

m∑
i=1

uFFi

m
(7.16)

being m the number of values in series UFFn,n′ .
Whenever lion detects that two norms are substitutable or complementary,

it establishes the corresponding relationship in the normative network.

7.3.3 Exploiting norm relationships

As previously detailed, lion exploits norm relationships to discard (deactivate)
norms involved in substitutability relationships. During this process, it aims
at preserving the compactness of a normative system to the greatest possible
extent, while safeguarding a normative system’s performance in avoiding con-
flicts. The heuristic employed to achieve these outcomes is simple: given two
substitutable norms, choose to deactivate the norm that causes less compactness
loss, provided that it is not part of any complementarity relationships. The
compactness loss of a norm is related to the decrement in compactness that
the normative system would suffer in case a norm was deactivated – recall from
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Figure 7.3: A normative network containing generalisation and substitutability
relationships: solid arrows stand for (non-symmetric) generalisation relation-
ships; and dashed lines for substitutability (symmetric) relationships.

Section 6.4 that deactivating a norm leads to specialising its ancestors in the hi-
erarchy, and hence to losing compactness. Therefore, lion chooses to deactivate
the norm that minimises such loss. Moreover, it does not deactivate any norm
that is complementary with another norm, since complementary norms are all
necessary to avoid conflicts.

When lion detects two substitutable norms n, n′, it chooses one of them to
be deactivated as follows. First, it considers the ancestors of n and n′ to deter-
mine their corresponding compactness loss. Thereafter, it chooses the norm with
the lowest compactness loss value, provided that it has no complementarity rela-
tionships. As an example, consider normative network in Figure 7.3 representing
the normative system Ω = {n7, n10}. It contains two substitutable norms n2, n3

that are generalised by other norms. In particular, n2 is represented by an active
norm n7 whose generalisation level is 1, and n3 is represented by an active norm
n10 whose generalisation level is 2. In short, the generalisation level of a norm
represents its height in the generalisation hierarchy, namely how general it is.
Therefore, n10 is more general than n7, and thus compactly represents a greater
number of norms. At this point, lion must decide whether to discard either n2

or n3 because they are substitutable. Since deactivating n3 would imply special-
ising n10, lion considers that n3 has a higher specialisation cost than n2, and
thus, lion will deactivate norm n2 instead.

Specifically, lion uses equation 7.17 to compute the compactness loss of a
norm n as the sum of the generalisation degrees of its ancestors in the normative
network.

Closs(n,NN ) =
∑

n′∈ancestors(n)

gdeg(n′,NN ) (7.17)
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Figure 7.4: A normative network containing generalisation, substitutability and
complementarity relationships: solid arrows stand for (non-symmetric) general-
isation relationships; dashed lines for substitutability (symmetric) relationships;
and solid lines for complementarity (symmetric) relationships.

where gdeg(n
′,NN ) is the generalisation degree of a norm n′ in the normative

network, which is computed by means of equation 7.18:

gdeg(n,NN ) = |children(n)| · κlevel(n) (7.18)

where: children(n) is a function that assesses the norms that n directly gener-
alises (those norms n has an incoming generalisation relationship with); level(n)
is the generalisation level of n; and κ is a constant factor, where κ > 1. Note that
Closs is finite, since the generalisation relationship is transitive and asymmetric,
and thus does not allow cycles.

Figure 7.3 helps to illustrate these computations. The compactness loss of
norm n3 is the sum of the generalisation degrees of its ancestors (namely, n8 and
n10). In particular, since n8 has a generalisation level of 1, and it has two children
(n3, n4), its generalisation degree is gdeg(n8,NN ) = 2κ. Analogously, norm n10

has a generalisation degree gdeg(n10,NN ) = 2κ2 because its generalisation level
is 2 and it has 2 children (n8 and n9). As a result, Closs(n3,NN ) = 2κ + 2κ2,
which is greater than Closs(n2,NN ) = 2κ. Therefore, lion chooses to deactivate
n2 (and hence, to specialise n7).

Regarding complementarity relationships, Figure 7.4 depicts an alternative
situation during the synthesis process where the normative network contains, not
only substitutable norms n2, n3, but also a complementarity relationship between
norm n2 and norm n11. In this case, since lion prioritises the preservation of
complementary norms, it will keep n2 active and will choose to deactivate n3.

Algorithm 19 details how lion exploits norm relationships to choose which



7.3. Synthesising liberal normative systems 175

ALGORITHM 19: Function chooseToDeactivate.

Input : n, n′,NN , κ
Output: normToDeactivate

1 normToDeactivate ← null;
2 n Complementary ← hasComplementarityRelationships(n,NN );
3 n ′ Complementary ← hasComplementarityRelationships(n′,NN );
4 if n Complementary and not n ′ Complementary then
5 normToDeactivate ← n′;

6 else if n ′ Complementary and not n Complementary then
7 normToDeactivate ← n;

8 else if not n Complementary and not n ′ Complementary then
9 if Closs(n,NN , κ) > Closs(n′,NN , κ) then

10 normToDeactivate ← n′;

11 else if Closs(n,NN , κ) < Closs(n′,NN , κ) then
12 normToDeactivate ← n;

13 else
14 normToDeactivate ← chooseRandomly(n, n′);

15 return normToDeactivate

norm to deactivate from a pair of substitutable norms. It receives as inputs two
substitutable norms n, n′, a normative network NN , and a constant k to compute
the generalisation degree of a norm in the normative network (cf. Equation
7.18). First, it checks whether n and n′ are complementary to other norms in
the normative network (lines 2–3). Thereafter, it checks the following conditions:

1. Norm n is complementary, and n′ is not. In this case, it chooses norm n′

to be deactivated (lines 4–5).

2. Norm n′ is complementary, and n is not. Therefore, it chooses norm n to
be deactivated (lines 6–7).

3. Neither norm n nor norm n′ are complementary. Then, it chooses to deac-
tivate the norm with the lowest compactness loss (lines 8–12). Particularly,
in case their compactness losses are equal, then lion randomly chooses to
deactivate one of them (line 14).

4. Both norm n and norm n′ are complementary. In this case, lion does not
choose any norm to deactivate (i.e., normToDeactivate=null).

Then, lionreturns the norm that has been chosen to be deactivated (line 15).
Note that lion checks complementarity relationships before analysing compact-
ness loss. In this way, lion prioritizes the preservation of a normative system’s
performance over the preservation of compactness. In fact, lion may choose
to deactivate the norm with the highest compactness loss if it was necessary to
preserve complementary norms.
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7.4 Enhancing norm evaluation

As introduced in Section 7.1, lion incorporates a novel norm evaluation ap-
proach to overcome simon’s norm evaluation drawbacks. As simon, lion eval-
uates a norm’s performance in terms of its effectiveness and its necessity, com-
puted as its ratio of successful fulfilments and harmful infringements along time
(see Definitions 13 and 16 in Section 3.2). However, unlike simon, lion (1) does
not employ reinforcement learning to compute a norm’s punctual effectiveness
and necessity; and (2) does not require the computation of a norm’s effectiveness
and necessity performance ranges. Instead, it computes a norm’s effectiveness
and necessity as its averaged punctual effectiveness and necessity evaluations
along time.

Whenever a norm n is fulfilled by some agent at time t, lion computes its
punctual effectiveness evaluation at time t as its ratio of successful fulfilments
at time t. With this aim, it employs formula eveff below.

eveff (n, t) =


sf nt

sf nt + hf nt
if fulfilled(n, t) = true

⊥ otherwise

(7.19)

where n ∈ N , t ∈ N (being N the set of norms in the normative network), and
sf nt ∈ SF

n and hf nt ∈ HF
n are the number of successful fulfilments and harmful

fulfilments of n at time t, respectively (see Section 3.3.3). Specifically, function
eveff computes a punctual effectiveness as the ratio of successful fulfilments of
n at time t iff n has been fulfilled at time t, namely if fulfilled(n,t) = true,
and returns an undefined reward value ⊥ if n has not been fulfilled at time t.
Function fulfilled was introduced in Definition 5.2 from Section 5.6, but we recall
it here for convenience. It returns true if there are either successful fulfilments
or unsuccessful fulfilments of n at time t. Formally:

fulfilled(n, t) =

{
true if sf (n, t) + hf (n, t) > 0
false otherwise

(7.20)

Then, lion computes the q-period cumulative moving average of the punctual
effectiveness evaluations of n at time t. With this aim, let us define a set Eff n

l

of defined effectiveness values of n from a given time l:

Eff n
l = {eveff (n, j) | l ≤ j ≤ m, eveff (n, j) 6=⊥} (7.21)

Then, we consider an index i(q) such that |Eff n
i(q)| = q and 1 ≤ i(q) ≤ m. Thus,

set Eff n
i(q) contains the latest q defined effectiveness values of n. lion computes

the effectiveness of norm n at time t as the average of the values in Eff n
i(q) at

time t.

µeff (n, t) =

∑
eveff∈Eff n

i(q)

eveff

q
(7.22)

where n ∈ N , q ∈ N, and 1 ≤ q ≤ m.
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Analogously, whenever a norm n is infringed by some agent at time t, lion
computes its punctual necessity evaluation at time t as its ratio of harmful
infringements at time t. With this aim, it employs formula evnec below.

evnec(n, t) =


hint

hint + sint
if infringed(n, t) = true

⊥ otherwise

(7.23)

where n ∈ N , t ∈ N, and hint ∈ HI
n and sint ∈ SI

n are the number of
harmful infringements and successful infringements of n at time t, respectively
(see Section 3.3.3). More specifically, function evnec computes a necessity reward
as the ratio of harmful infringements of n at time t iff n has been infringed at
time t, and returns an undefined reward value ⊥ if n has not been infringed at
time t. Function infringed (introduced in Equation 5.5 from Section 5.6) returns
true if there are either harmful infringements or successful infringements of n at
time t. Formally:

infringed(n, t) =

{
true if hi(n, t) + si(n, t) > 0
false otherwise

(7.24)

Then, lion computes the q-period cumulative moving average of the punctual
necessity evaluations of n at time t. With this aim, let us define a set Necnl of
defined necessity values of n from a given time l:

Necnl = {evnec(n, j) | l ≤ j ≤ m, evnec(n, j) 6=⊥} (7.25)

Then, we consider an index i(q) such that |Necni(q)| = q and 1 ≤ i(q) ≤ m. Thus,
set Necni(q) contains the latest q defined effectiveness values of n. lion computes
the effectiveness of norm n at time t as the average of the values in Necni(q) at
time t.

µnec(n, t) =

∑
evnec∈Necn

i(q)

evnec

q
(7.26)

where n ∈ N , q ∈ N, and 1 ≤ q ≤ m.

7.4.1 Detecting norms’ performances

Let us now see how lion detects that a norm performs well in regulating con-
flicts, and how it detects that a norm under-performs in regulating conflicts.
On the one hand, lion considers that a norm performs well whenever it is suf-
ficiently effective and necessary to be included in the normative system. On
the other hand, it considers that a norm under-performs if it is not effective or
necessary enough to be included in the normative system.

Detecting good performance

lion considers that a norm n performs well at a given time t if both conditions
below are satisfied:
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1. Its effectiveness at time t (µeff (n, t)) is above a certain effectiveness un-
certainty area, which represents a range of values above which a norm
is considered to perform well in terms of effectiveness. lion implements
this area as a value (ε) above and below the effectiveness threshold αeff

included in lion’s evaluation criteria (EC, see Section 5.6). Formally, an
effectiveness uncertainty area is a tuple 〈α+

eff , α
−
eff 〉, being α+

eff the higher

boundary of the uncertainty area, and α−eff the lower boundary of the
uncertainty area, which are computed as follows:

α+
eff = αeff + ε (7.27)

α−eff = αeff − ε (7.28)

2. Its necessity at time t (µeff (n, t)) is above a certain necessity uncertainty
area, which represents a range of values above which a norm is considered to
perform well in terms of necessity. lion implements this area as a value (ε)
above and below the necessity threshold αnec included in lion’s evaluation
criteria (EC, see Section 5.6). Formally, a necessity uncertainty area is a
tuple 〈α+

nec , α
−
nec〉, being α+

nec the higher boundary of the uncertainty area,
and α−eff the lower boundary of the uncertainty area, which are computed
as follows:

α+
nec = αnec + ε (7.29)

α−nec = αnec − ε (7.30)

Thus, lion considers that a norm n performs well at time t if its effectiveness
and its necessity at time t are above the higher boundary of the effectiveness and
necessity uncertainty areas, respectively. Formally, it corresponds to checking if
both conditions below are satisfied:

µeff (n, t) > α+
eff (7.31)

µnec(n, t) > α+
eff (7.32)

Note that, unlike simon, lion no longer decides that a norm performs well
based on some generalisation thresholds (thresholds αgen

eff , αgen
nec described in Sec-

tion 5.6.1). Instead, lion considers that a norm performs well if it is sufficiently
effective and necessary to be active in the normative network (and thus, to be
included in the normative system).

Detecting under performance

lion considers that a norm n under-performs at a given time t it its effectiveness
or its necessity at time t is below the lower boundary of respective uncertainty
areas. Formally, it corresponds to checking if at least one of the two conditions
below are satisfied:

µeff (n, t) < α+
eff (7.33)

µnec(n, t) < α+
eff (7.34)
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Note that this approach to detecting norms’ performances allows lion to be
more stable, since is more resilient to oscillations in the norms’ effectiveness and
necessities. Specifically, these uncertainty areas allow lion not to continuously
make decisions regarding a norm’s performance whenever its effectiveness or its
necessity oscillate above and below thresholds αeff and αnec , respectively.

7.5 LION’s synthesis strategy

Next, lion’s synthesis strategy is described. Based on simon, lion incorporates
the computational capabilities to detect and to exploit norm synergies during
the norm synthesis process. More precisely, lion identifies when norms are
either substitutable or complementary, book-keeping these relationships between
norms in the normative network. Then, it exploits this knowledge (together with
the generalisation relationships) to synthesise liberal normative systems that are
effective to avoid conflicts, while being as compact as possible. This requires
carefully handling the interplay between all norm relationships at synthesis time.

As simon, lion iteratively observes agents’ interactions within a MAS, and
subsequently carries out the three synthesis stages of norm generation, norm
evaluation, and norm refinement. Particularly, lion performs norm genera-
tion as described in Section 4.6.1. Crucially, the norm evaluation and norm
refinement stages are novel. During norm evaluation, lion evaluates norms as
described in Section 7.4, and gathers evidences about concurrently applicable
norms and their utility in avoiding conflicts. Thereafter, during norm refine-
ment, it generalises norms as described in 6.3, and specialises under-performing
norms as described in 6.4. Additionally, it detects substitutability and comple-
mentarity relationships between norms as described in Section 7.3.2, and exploits
these relationships as described in Section 7.3.3.

Algorithm 20 describes lion’s norm synthesis strategy, which receives as in-
put a tuple of a description of the previous state of a MAS (ds) and a description
of the current MAS state (dsc). Eventually, it outputs a normative system (Ω)
aimed at regulating agents’ behaviours. To perform norm synthesis, lion con-
siders the same globally-accessible elements considered in Section 6.5. That is,
a normative network, a collection of operators, a set of domain-dependent ele-
ments, a set of domain-independent settings, and a set of additional synthesis
inputs. Additionally, it considers the following extra synthesis parameters:

• A constant emin (cf. Section 7.3.2) that sets the minimum number of

evidences in series FFn,n
′
,FIn,n

′
, IFn,n

′
to detect substitutability and

complementarity between norms (see Section 7.3.2)

• A threshold (αUsim) to determine if the series in Equations 7.4, 7.5 and 7.6
are similar (see Section 7.3.2).

• A constant κ to compute the generalisation degree of a norm in the nor-
mative network (see Section 7.3.3)
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• A constant ε to compute the effectiveness and necessity uncertainty areas
described in Section 7.4.1.

ALGORITHM 20: lion’s synthesis strategy

Input : 〈ds, dsc〉
Output : Ω
Initialisations: NCO ← ∅, P ← ∅,PCO ← ∅,U ← ∅

[1] NN ← normGeneration(〈ds, dsc〉,P);
[2] (P,U)← normEvaluation(〈ds, dsc〉,NCO,P,PCO,U);
[3] NN ← normRefinement(NCO,P,PCO,U);
[4] Ω ← {n ∈ NN | δ(n) = active};
[5] return Ω

lion considers the data structures described in Section 5.7 to keep track of
norms’ compliance outcomes (NCO), norms’ effectiveness and necessities (P),
and the following additional structures:

1. A structure (PCO) to keep track of the compliance outcomes of each pair

of concurrently applicable norms (namely, series FFn,n
′
,FIn,n

′
, IFn,n

′
,

see Section 7.3.2).

2. A structure (U), to keep track of the utility in avoiding conflicts of each
pair of concurrently applicable norms whenever they are jointly fulfilled,
or whenever one is fulfilled and the other infringed (see Equations 7.4, 7.5,
7.6 in Section 7.3.2).

lion performs norm synthesis by first carrying out norm generation (line
1), in which it detects conflicts and creates norms as described in Algorithm 3
from Section 4.6.1. Next, it carries out norm evaluation (line 2), in which it
evaluates norms’ individual performances, and the utility in avoiding conflicts
of each pair of concurrently applicable norms. Finally, during norm refinement
(line 3), it specialises and generalises norms as simon does. Additionally, lion
detects substitutability and complementarity relationships, and exploits these
relationships to remove substitutable norms. The algorithm ends by returning
the (possibly updated) normative system, which contains the norms that will
be communicated to the agents (lines 4–5). Subsequent sections detail lion’s
normEvaluation and normRefinement functions.

7.5.1 Norm evaluation

Algorithm 21 depicts lion’s normEvaluation function. It receives as input the
compliance outcomes of individual norms (NCO), the individual performances of
each norm (P), the compliance outcomes of each pair of concurrently applicable
norm (PCO), and the utilities in avoiding conflicts of each pair of norms that are
concurrently fulfilled and infringed (U). It starts by retrieving the compliance
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outcomes of each norm that has been fulfilled and infringed in the transition to
the current MAS state (line 1). Thereafter, it retrieves the compliance outcomes
of each pair of norms that have been concurrently fulfilled and infringed during
the state transition (line 2). Then, it evaluates each fulfilled and infringed norm
in terms of its effectiveness and necessity as described in Section 7.4 (line 3).
Next, in line 4, it computes the utility in avoiding conflicts of each pair of norms
that have been concurrently fulfilled and infringed as described in Equations 7.7,
7.8, and 7.9 from Section 7.3.2. Finally, in line 5, it updates the utilities of each
case solution in the case base as base does (see Algorithm 4 in Section 4.3.2).

ALGORITHM 21: lion’s normEvaluation function

Input : 〈ds, dsc〉,NCO,P,PCO,PU
Output: P,PU

[1] NCO ← getComplianceOutcomes(〈ds, dsc〉,NCO);
[2] PCO ← getPairsComplianceOutcomes(〈ds, dsc〉,PCO);
[3] P ← evaluateNorms(NCO,P);
[4] PU ← evaluatePairs(PCO,PU);
[5] CB ← updateCases(P);
[6] return (P,PU);

7.5.2 Norm refinement

lion’s normRefinement function is depicted in Algorithm 22. First, it performs
simon’s norm refinement operations to:

1. Specify under-performing grounded norms. During this step, lion revises
over-generalisations by specifying general norms that under-perform (lines
1-3). More details about this particular process can be found in Section
6.4.

2. Specialise under-performing norms. Next, lion deactivates norms that
under-perform, along with their ancestors (lines 5–6). Particularly, lion
detect norms’ under-performance as described in Section 5.6.2, and to
deactivate a norm it employs function deactivateUp, depicted in Algorithm
12 from Section 5.7.3.

3. Generalise norms. Then, lion generalises norms that do not under-
perform (lines 7–8). With this aim, it invokes function generaliseUp, de-
scribed in Algorithm 18 from Section 6.5.

Thereafter, lion proceeds to detect substitutability and complementarity re-
lationships. With this aim, it invokes functions detectSubstitutability (line 9)
and detectComplementarity (line 10). Such functions detect substitutability and
complementarity relationships between pairs of norms as described in Section
7.3.2, and keep track of such relationships in the normative network.
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Once lion has detected substitutability and complementarity, it proceeds
to exploit these relationships. With this aim, function getSubstitutableNorms
(line 11) retrieves pairs of norms that are substitutable and are both included in
the normative system. That is, substitutable norms that are both either active
in the normative network, or implicitly represented by an active ancestor. For
each pair of norms satisfying these conditions, it first chooses one of them to be
deactivated as detailed in Section 7.3.3 (line 13). Briefly, it chooses the norm
whose deactivation implies the lowest compactness loss, provided that it is not
complementary with other norms. Finally, it deactivates the norm by invoking
function deactivateUp (line 14), which deactivates the norm and specialises its
ancestors in the normative network (see Algorithm 12 in Section 5.7.3).

ALGORITHM 22: lion’s normRefinement function

Input : NCO,P,PCO
Output: NN

/* Norm specification: */

1 Ω← {n ∈ NN | δ(n) = active};
2 NRG ← getNegativelyEvaluatedNorms(P);
3 specifyUnderperformingNorms(NRG,NN ,Ω);

/* Norm specialisation and generalisation: */

4 for n ∈ getNormsFulfilledInfringedThisState(NCO) do
5 if underPerforms(n,P, αeff , αnec , ε) then
6 NN ← deactivateUp(n,NN );

7 else
8 NN ← generaliseUp(n,NN ,T,GM ,GS);

/* Substitutability and complementarity detection: */

9 NN ← detectSubstitutability(PCO);
10 NN ← detectComplementarity(PCO);
11 SN ← getSubstitutableNorms(NN );

/* Substitutability removal: */

12 foreach 〈n, n′〉 ∈ SN do
13 nsubs ← chooseToDeactivate(n, n′,NN , κ);
14 NN ← deactivateUp(nsubs ,NN );

15 return NN

7.6 Analysing normative systems

Next, let us establish how to measure and compare normative systems in terms
of the synthesis objectives pursued by lion, namely in terms of regulative perfor-
mance, compactness, and liberality. On the one hand, the regulative performance
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of a normative system can be measured in terms of its effectiveness and its neces-
sity to avoid conflicts. We resort to the measures of effectiveness and necessity
defined in Section 5.6.3. These allow us to quantify how good a normative system
is at regulating a MAS and how necessary its norms are for regulating. On the
other hand, the compactness of a normative system can be measured in terms
of the number of terms in the preconditions of its norms. A formal definition of
a normative system’s compactness was provided in Definition 26 from Section
5.2.

As to liberality, we have seen along this chapter that it can be pursued by
reducing the amount of constraints a normative system imposes on agents. In
other words, liberality can be understood as attempting to reduce the number
of grounded norms a normative system represents, namely those norms whose
all terms are grounded in a taxonomy (see Definition 21 in Section 5.2). Let us
now formally define the representation of a normative system:

Definition 37 (Representation of a normative system). The representation of a
normative system Ω, denoted as R(Ω), is the set of grounded norms it represents,
namely R(Ω) = ∪n∈Ωgrounded(n), where grounded(n) stands for the grounded
norms represented by norm n.

From this definition follows that the fewer the representation of a norma-
tive system, namely the fewer the number of grounded norms it represents, the
greater a normative system’s liberality.

In order to compare whether a normative system is more liberal than another,
we rely on the “more liberal than” relationship between normative systems intro-
duced by Ågotnes et al. in [Ågotnes et al., 2007]. There, Ågotnes et al. stated
that a normative system is more liberal (less restrictive) than another normative
system if it places fewer constraints on agents. Thus, following a traffic example,
we can state that a normative system with a single “Give way to left” norm is
more liberal than one with a single norm “Give way to any approaching car”,
since it places fewer constraints on the agents. Hence, we say that a norma-
tive system Ω is more liberal than another Ω′ if Ω represents fewer grounded
norms than Ω′, and the grounded norms represented by Ω are included in those
represented by Ω′.

Definition 38 (Liberality relationship). Given two normative systems Ω,Ω′

such that Ω 6= Ω′, we say that Ω is more liberal than Ω′ iff R(Ω) ⊂ R(Ω′).

We will also assess the substitutability of a normative system as the number
of substitutability relationships between the norms it contains. Formally:

Definition 39 (Substitutability of a normative system). Left ES be the set of
substitutability relationships between the norms in a normative network. The
substitutability of a normative system is S(Ω) = |(n, n) ∈ ES |n, n ∈ Ω|.

This provides a measure of the lack of liberality of a normative system: the
larger the substitutability of a normative system, the more unnecessary norms it
will represent, and the bigger the opportunity to synthesise a more liberal one.
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7.7 Empirical evaluation

Next, lion’s norm synthesis is empirically evaluated and compared simon’s
along several dimensions. For these experiments, the chosen scenario has been
the road traffic scenario. The reason of this is because, in this scenario, simon
synthesised normative systems that contained substitutable norms. An example
was depicted in Table 6.2 from the Section 6.6.2, which contained left-hand side
priority norms, and right-hand side priority norms. By contrast, the normative
systems that simon synthesised in the on-line community (see Section 6.7.2)
did not contain any substitutability and complementarity relationships. This
is because, in our particular on-line community scenario, users do not have
joint contexts, and thus synthesised norms do not have synergies between them
(i.e., substitutability or complementarity relationships). Therefore, in the on-
line community scenario it does not pay off to invest lion’s extra computational
cost to detect such relationships.

Thus, the aim now is to analyse whether lion can remove substitutability re-
lationships in the traffic scenario, hence yielding normative systems that contain
either norms left-hand side priority norms, or right-hand side priority norms,
but not both. Hereafter, Section 7.7.1 details the empirical settings of these
experiments, and Section 7.7.2 provides an analysis of lion’s empirical results.

7.7.1 Empirical settings

These experiments use the same scenario and experimental settings described in
Section 6.6.1. Each simulation employs either lion or simonas a norm synthesis
strategy, which monitors the simulation and synthesises norms for the cars. At
each tick, a car decides whether to fulfil or infringe norms according to some
norm infringement probability, which is fixed to 0.3 and is the same for all
cars. This means that, on average, 3 of each 10 agents’ decisions lead to norm
infringements.

lion and simon have been configured as described in from Section 5.9.1.
These settings are shown in Table 7.3. Thus, lion computes a norm’s effec-
tiveness and necessity by considering the 100 last effectiveness and necessity
evaluations (q = 100), and analogously for simon and the computation of its
effectiveness and necessity performance ranges. A norm’s effectiveness and ne-
cessity is initially set to 0.5 (µeff (n.t0) = 0.5, µnec(n, t0) = 0.5). We have set
low effectiveness and necessity thresholds (αeff = 0.2, αnec = 0.2) to deactivate
norms only when they perform very poorly. In particular, both lion and si-
mon have been configured to perform deep generalisations (GM = deep), and
it generalises three terms at a time (GS = 3). The reason of this is because,
with these settings, simon obtained its best results in the road traffic scenario
(Section 6.6.2).

As for lion’s specific parameters, they are shown in Table 7.4. Thus, to
detect substitutability and complementarity, lion requires a minimum of 25

evidences (emin = 25) in series FFn,n
′
,FIn,n

′
, IFn,n

′
(see Section 7.3.2). The
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Parameter Description Value

q

Number of effectiveness values (µeff ) and
necessity values (µnec) considered to compute a
norm’s effectiveness and necessity ranges (see
Section 5.6).

100

keff , knec
Default norm effectiveness and necessity values
(µeff (n, t0), µnec(n, t0)).

0.5

αeff , αnec

Thresholds below which a norm is considered to
under-perform in terms of its
effectiveness/necessity.

0.2

T
Time period considered when assessing
convergence (cf. Definition 18 in Section 3.2.2).

5,000

GM Generalisation mode. deep

GS Generalisation step. 3

Table 7.3: lion’s and simon’s norm synthesis settings in the road traffic scenario.

Parameter Description Value

emin

Number of evidences required to detect
substitutability and complementarity (see
Section 7.3.2).

25

αUsim
Threshold to determine if the series in Equations
7.4, 7.5, and 7.6 are similar.

0.05

κ
Constant to compute the generalisation degree of
a norm in the normative network (see Section
7.3.3).

10

ε
Constant to compute the effectiveness and
necessity uncertainty areas described in Section
7.4.1.

0.05

Table 7.4: lion’s specific settings in the road traffic scenario.

effectiveness and necessity uncertainty areas considered by lion are computed
as a constant value 0.05 above and below thresholds αeff and αnec (ε = 0.05).
Thus, lion considers effectiveness and necessity uncertainty areas to be like
〈0.25, 0.15〉. Moreover, two series are considered as similar if their Euclidean
distance is very low. Therefore, αUsim has been set to 0.05. Finally, the constant
factor κ employed to compute the generalisation degree of a norm is set to 10.

Each experiment consists of a set of 200 different simulations for each syn-
thesis strategy, namely lion, and simon. Each simulation starts with an empty
normative system, and it finishes whenever it reaches 50,000 ticks, or it has con-
verged to a stable normative system. A simulation is assumed to have converged
to a normative system, hence solving the norm synthesis problem, if during a
5,000-tick period, the normative system remains unchanged and no unregulated
conflicts arise.
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7.7.2 Empirical results

Let us now analyse lion’s empirical results. First, a micro analysis is provided to
show lion’s convergence process, which manages to synthesise liberal normative
systems from scratch. Thereafter, a liberality analysis illustrates the liberality
of the normative systems synthesised by both approaches. Finally, a further
analysis quantifies the performance of simon’s multi-objective synthesis.

Micro analysis: LION’s convergence process

We performed a simulation of the road traffic scenario with lion as a norm
synthesis strategy. Figure 7.5 depicts, on the x-axis, the normative changes
along time (i.e., the time steps in which the the normative network and/or the
normative system change) for this single simulation. On the y-axis, the figure
shows:

1. The cardinality of the normative system, namely the number of active
norms in the normative network.

2. The number of grounded norms the normative system represents.

3. The number of terms that the normative system contains, namely its com-
pactness.

4. The compactness of the normative system, namely the number of terms in
the preconditions of its norms (see Definition 26 in Section 5.2).

5. The ratio of unregulated car collisions at a given tick1.

For the sake of visibility, the cardinality of the normative network is not included,
since it reaches a size of 55 norms at tick 3804 (twenty fifth normative change).

At tick 12 (which corresponds to the second normative change), the first col-
lision arises and lion synthesises the first norm. From that tick onwards, lion
keeps generating norms when needed, hence increasing the cardinality of both
the normative network and the normative system. As a consequence, the num-
ber of grounded norms the normative system represents, as well as the number
of terms in their norm preconditions, increases. Also, lion generalises norms
when possible, trying to reduce the number of terms in the normative system
(increasing its compactness). Norm generalisations lead lion to over-generalise
at tick 97 (tenth normative change). Specifically, lion synthesises of one single,
general norm like the one depicted below

n∗ : 〈{left(anything), front(anything), right(anything)}, prh(go)〉

which prohibits a car to go forward in any situation. In particular, lion provides
the agents with a compacted version of this norm that does not contain root
terms (i.e., terms “anything”). This is why, at tick 97 (tenth normative change),

1Computed as the moving average of unregulated collisions of the last 10 ticks.
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Figure 7.5: A prototypical execution of lion.

the number of terms in the normative system is 0. Norm n∗ is clearly a case of
over-generalisation, and thus lion specialises it at tick 141 (twelfth normative
change), leading from a normative system of one norm to another with seven
norms. From that tick onwards, lion subsequently deactivates grounded norms
that are implicitly represented and unnecessary, hence reducing the number of
grounded norms the normative system represents.

At tick 1398 (fifteenth normative change), lion detects and deactivates the
first substitutable norm, reducing in one the number of constraints represented
by the normative system. This deactivation triggers the specialisation of its
ancestors, which leads to a loss of compactness: the number of terms in the
normative system leads from seven to eleven. Thereafter, lion keeps on detect-
ing and deactivating substitutable norms, which results in an increment of terms
(i.e., the loss of compactness). At tick 3804 (nineteenth normative change), lion
removes the last substitutable norm, and performs the last norm generalisation.
In this way, it yields a compact normative system that effectively avoids unregu-
lated car collisions, while preserving cars’ freedom as much as possible. Finally,
at tick 8804, lion converges, and the simulation stops. lion has yield a 5-norm
normative system that does not contain substitutable norms. Table 7.5 depicts
this normative system. It contains:

1. Two norms (n1, n2) to give way to the right in different situations.

2. Three security-distance norms to prevent collisions just in case the car in
front of a reference car suddenly stops.

Let us now compare this normative system with the one synthesised by simon
in Table 6.2 from Section 6.6.2. There, simon’s normative system contained a
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Norm Pre-condition (θ) Norm target µeff µnec

n1 front(nil), right(car-heading-left) prh(go) 0.87 0.73
n2 left(car-heading-right), right(car-heading-right) prh(go) 0.91 0.78
n3 front(car-same-heading) prh(go) 0.96 0.37
n4 front(car-heading-right), right(car-heading-right) prh(go) 0.92 0.37
n5 left(car-heading-left), front(car-heading-left) prh(go) 0.91 0.35

Table 7.5: lion’s most-frequently synthesised normative system upon conver-
gence (Ω7 in Figure 7.6).
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Figure 7.6: Normative systems synthesised by lion and simon.

general norm to give way to the left (norm n1), and a general norm to give way
to the right (norm n5), which are substitutable. By contrast, lion (Table 7.5)
contains norms n1, n2 to give way to the right, but it does not contain norms
to give way to the left. This comes as a result of lion’s capability to detect the
substitutability between norms, which allowed it to disregard the left-hand side
priority norm.

Liberality analysis

Next, lion and simon are compared in terms of the liberality of the norma-
tive systems they synthesised upon convergence. Particularly, both lion and
simon converged the 100% of simulations. Figure 7.6 graphically represents the
relationship “more liberal than” between lion’s and simon’s normative systems.
Each circle represents a different normative system. The squared figure on top
of each circle stands for the number of times (out of 200 simulations) it was syn-
thesised. White circles represent lion’s normative systems, while gray circles
represent simon’s normative systems. For instance, Ω1 is a normative system
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Norm Pre-condition (θ) Norm target µ̄eff µ̄nec

n1 left(car-heading-right) prh(go) 0.81 0.26
n2 front(car-heading-right), right(car-heading-right) prh(go) 0.82 0.55
n3 left(car-heading-left), front(car-heading-left) prh(go) 0.92 0.55
n4 front(car-same-heading) prh(go) 0.91 0.25
n5 right(car-heading-left) prh(go) 0.89 0.33

Table 7.6: simon’s most-frequently synthesised normative system upon conver-
gence (Ω1 in Figure 7.6).

that was synthesised by simon 179 times. The “more liberal than” relationship
is represented by the subset relationship between circles. For instance, since Ω7

is contained in Ω1 then we say that Ω7 is more liberal than Ω1.

Observe that simon converged to 6 different normative systems (Ω1, . . . ,Ω6).
Specifically, 90% of the times (179 out of 200 simulations), it converged to nor-
mative system Ω1, which corresponds to the normative system depicted in Table
7.6. It contains substitutable norms to give way to the left (norm n1) and to give
way to the right (norm n5). As to lion, it synthesised 21 different normative
systems (Ω7, . . . ,Ω27). Nevertheless, those normative systems where not evenly
distributed. Thus, 90% of the simulations (180 out of 200) it synthesised just
6 normative systems (Ω7, . . . ,Ω12), whereas the remaining normative systems
(Ω13, . . . ,Ω27) where only synthesised by 10% of the simulations. As shown in
Figure 7.6, 81% of lion’s normative systems (from Ω7 to Ω23) are more liberal
than (are contained in) Ω1, namely simon’s most frequent normative system2.
81% of lion’s normative systems were synthesised in 96% of simulations, and
thus we can state that lion converged to normative systems more liberal than Ω1

for 96% of simulations. The remaining normative systems have similar (slightly
better) metrics than simon’s Ω1.

Now, let us analyse why 81% of lion’s normative systems are more liberal
than Ω1. We have computed compute the number of substitutability relation-
ships in lion’s and simon’s normative systems by means of simulation. For each
normative system, we have run a simulation that performs pairwise comparison
between its norms to check if they are substitutable. For each pair of norms in the
normative system, the simulation proceeds by having two cars fulfil/infringe the
norms, checking whether conflicts arise or not after fulfilments/infringements,
and hence detecting substitutability according to Definition 35. As depicted in
Figure 7.7, on average, lion’s normative systems managed to get rid of 90%
of the substitutability relationships that simon’s Ω1 contains. Furthermore, it
managed to detect and preserve 100% of complementary norms in simon’s Ω1.

2For clarity, Figure 7.6 only shows 7 out of the 17 lion’s normative systems that are more
liberal than Ω1. Table 7.5 depicts normative system Ω7, which is lion’s most-frequently
synthesised normative system. Normative systems Ω14, . . . ,Ω23 are all more liberal than Ω1

but each one is only synthesised once by lion.
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Figure 7.7: lion savings with respect to simon’s most frequently synthesised
normative system (Ω1 in Figure 7.6).

Multi-objective synthesis analysis

Figure 7.7 summarises the average savings obtained by lion’s multi-objective
synthesis process with respect to simon. First, following the observation above,
the success in detecting and discarding substitutable norms translates into a re-
duction in representation minimality, which is our measure to quantify the gain
in liberality. More precisely, the normative systems synthesised by lion con-
tain 21% less specific norms than those synthesised by simon. Therefore, lion’s
normative systems are less restrictive than simon’s normative systems. Second,
regarding effectiveness and necessity, lion’s normative systems are similarly ef-
fective in avoiding conflicts (in fact, slightly, 2.73%, more effective), while they
are more necessary (11% higher). This comes at no surprise because simon’s nor-
mative systems contain substitutable norms. We recall from Section 7.2 that two
substitutable norms make unnecessary one another. Since they satisfy the same
regulatory needs, only one of them (but at least one of them) is actually nec-
essary. Therefore, a normative system containing substitutability relationships
contains unnecessary norms, which decreases its overall necessity. Removing
substitutability allows to increase the necessity of the normative system, since
all the norms it contains are necessary to avoid conflicts. Third, lion’s norma-
tive systems contain 0.1 more norms than simon’s normative systems. However,
lion’s norms are less compact. In fact, lion’s normative systems are 28% less
compact (have 28% more terms in their norm preconditions) than simon’s nor-
mative systems. In other words, lion’s normative systems have as many norms
as simon’s, but the norms in lion’s normative systems are more specific. This is
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reasonable if we consider that discarding substitutable norms involves specialis-
ing general norms, and hence leads to normative systems whose norms are more
specific (and thus have a larger number of terms). Finally, lion requires 27.81%
extra time to converge, since it performs extra tasks to capture norm synergies,
as well as to deactivate substitutable norms.

7.8 Conclusions

This chapter has addressed the synthesis of liberal normative systems, thus an-
swering research question R3 introduced in Section 1.2. With this aim, the
chapter has introduced lion, a strategy to synthesise liberal normative systems.
lion incorporates the on-line detection and exploitation of norm synergies (sub-
stitutability and complementarity relationships) between norms. On the one
hand, two substitutable norms are characterised by satisfying the same regula-
tory needs, and thus only one of them is necessary to avoid conflicts. On the
other hand, two complementary norms are both necessary to avoid conflicts.
lion is capable of detecting such relationships between the norms in a norma-
tive system, and removing substitutable norms while preserving complementary
norms. As a result, lion synthesises normative systems that are more liberal
than those synthesised by simon. This comes at the cost of employing: (1)
a mechanism to detect substitutability and complementarity between pairs of
norms; and (2) a mechanism to exploit substitutability and complementarity
relationships to remove unnecessary constraints, hence increasing the liberality
of the normative system.

We have provided an empirical evaluation of lion in the road traffic scenario
to assess its quality and relevance. Also, we have compared lion’s performance
with simon’s. We reported on experiments in which 96% of the time lion syn-
thesised normative systems that are more liberal than those produced by simon.
Specifically, lion managed to remove 90% of its substitutability relationships.
This was accomplished without compromising effectiveness, or necessity, but at
the cost of a 28% reduction in compactness.

To conclude, it pays off using lion to perform norm synthesis only in scenar-
ios wherein synergies between norms (substitutability and/or complementarity)
exist, and can be detected. If these conditions are not accomplished (e.g., in the
on-line community scenario), one should choose simon as a strategy to synthe-
sise norms, since it performs the same synthesis of lion, with the difference that
it does not detect and exploit norm synergies.





Chapter 8

Deliberative synthesis of
normative systems

8.1 Introduction

Chapters 5 and 6 introduced iron and simon as two alternative strategies to
synthesise compact normative systems. Both approaches pursue compactness
by performing norm generalisations. Furthermore, Chapter 7 introduced lion,
which synthesises compact and liberal normative systems that preserve agents’
freedom to the greatest possible extent. As introduced in Section 1.1.3, it is
worth to be able to consider different degrees of reactivity during norm synthe-
sis. As stated in [Knight, 1993], being reactive allows to take decisions with
little information, but cannot guarantee efficient solutions (in our case, norms).
By contrast, being more deliberative (i.e., considering larger amounts of infor-
mation) is expected to generate more efficient solutions (norms). In Section 6.8,
we observed that iron and simon are highly reactive to conflicts, and thus they
are not effective in converging to a stable normative system when norms should
be deliberatively synthesised. An example was illustrated with the on-line com-
munity scenario (see Sections 5.10.2 and 6.7.1), where neither iron nor simon
could converge to a normative system with no norms when the majority of the
users considered norms as unnecessary.

Against this background, this chapter aims at answering research question
R4 introduced in Section 1.2, and introduces desmon (DE liberative S imple
M inimal On-line N orm synthesis), a strategy for the deliberative synthesis of
compact normative systems. Based on simon, desmon can synthesise norms by
considering different degrees of reactivity to conflicts. Thus, desmon can syn-
thesise norms by being either reactive or deliberative. With this aim, desmon
is endowed with an alternative norm generation mechanism that adds a norm
to a normative system only when it gathers enough evidence to consider it is
necessary. To demonstrate desmon’s performance, an empirical evaluation is
provided in which desmon’s norm synthesis is compared with iron’s and si-
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mon’s in the on-line community scenario. In short, being more deliberative
allows desmon to converge to a stable normative system in situations in which
neither iron nor simon can converge.

The remainder of this chapter is organised as follows. Section 8.2 analyses
in more detail why being reactive can be detrimental when synthesising norma-
tive systems. Then, Section 8.3 details how to synthesise norms deliberatively.
Thereafter, Section 8.4 details desmon’s norm synthesis, which is empirically
evaluated in Section 8.5. Finally, Section 8.6 draws some conclusions.

8.2 The reactivity problem: causes and effects

This section analyses why the high reactivity of iron and simon can be detri-
mental to their convergence to a stable normative system. Let us illustrate
this problem with the on-line community scenario employed in the empirical
evaluations of iron (Section 5.10) and simon (Section 6.7). There, each user’s
complaint was regarded as a conflict that revealed the need for regulation, and
thus triggered the creation of a norm. In particular, both iron and simon re-
acted to each complaint by creating a new norm, and immediately adding it to
the normative system. (i.e., activating it in the normative network).

Consider we aim at synthesising normative systems that are aligned with the
preferences of the majority of the users of a population. Consider now a popula-
tion composed of a minority of moderate users and a majority of spammers. On
the one hand, moderates consider spam as inappropriate, and thus always com-
plain about it. On the other hand, spammers always upload spam, and never
complain about spam. In this case, it is natural to see that, since the majority
of the users are spammers, no regulation is needed to prohibit spam. Therefore,
iron and simon should converge to a normative system with no norms. Nev-
ertheless, they will never be able to converge. This lack of convergence can be
illustrated with the process below:

1. Consider a moderate user complains about a spam content. iron/simon
rapidly react by creating a norm to prohibit spam, then adding it to the
normative system (i.e., activating the norm in the normative network).

2. Eventually, iron/simon gather enough evidence to consider that the norm
is unnecessary, since only a small proportion of the population (i.e., the
moderates) consider the norm as necessary. In other words, there is no
enough consensus to keep the norm in the normative system.

3. iron/simon deactivate the norm, thus removing it from the normative
system. Thereafter, the conflict the norm regulated becomes again unreg-
ulated.

4. Whenever a user issues a complain about spam, iron/simon rapidly react
by re-activating the norm, thus including it in the normative system.
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Thereafter, steps 2–4 are continuously repeated along time, leading to a cycle
of continuous norm deactivations/re-activations. This makes iron/simon un-
able to converge to a stable normative system. Thus, the problem of iron and
simon is that they decide the activation of a norm based on a single conflict.
In our on-line community scenario, being reactive is counter-productive, since it
makes impossible to gather enough evidences about the need for a norm before
activating it. In this case, being more deliberative may have helped iron and
simon converge to a stable normative system.

8.3 Deliberative norm synthesis

This section introduces desmon, a synthesis strategy aimed at avoiding the re-
activity problem described in Section 8.2. desmon builds on simon, because
it obtained the best compactness results in the empirical evaluation introduced
in Section 6.7. desmon’s operation follows simon’s on-line approach, and thus
iteratively executes its three synthesis stages: norm generation, norm evalua-
tion and norm refinement. However, desmon introduces some changes in each
synthesis stage that allows it to deliberatively synthesise norms.

Subsequent sections detail desmon’s components and norm synthesis. First,
Sections 8.3.1 and 8.3.2 introduce desmon’s normative network and additional
operators. Thereafter, Sections 8.3.3, 8.3.4, and 8.3.5 detail how each desmon’s
synthesis stages proceed to perform deliberative synthesis.

8.3.1 A normative network for deliberative norm synthesis

desmon synthesises normative systems by applying changes to a normative
network, which keeps norms as nodes and their relationships as edges. With
this aim it employs the normative network described in Section 5.3.1. How-
ever, desmon incorporates an alternative set of possible norm states. This al-
lows desmon to develop a new norm life cycle to support deliberative norm
synthesis. Figure 8.1 depicts a diagram of the possible states of a norm
in a desmon’s normative network, along with their transitions. Briefly, a
norm in a desmon’s normative network has a state out of a set of states
∆ = {hibernated , active, inactive, represented}. desmon computes a normative
system (i.e., the norms provided to the agents) as the norms that are currently
active in the normative network.

Note therefore that desmon extends the initial set of states described in
Section 3.4.1 (that is, ∆ = {active, inactive}) by including two new states:
hibernated , and represented . Let us now focus on the semantics of each par-
ticular state, and then detail the state transitions.

– Hibernated norm. A norm whose state is “hibernated” is a norm that
has been created from a conflict, but has not been activated yet. Therefore,
hibernated norms do not belong to the normative system, and thus agents are
not aware of them.
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Figure 8.1: Stage diagram of a norm in a desmon’s normative network.

– Active norm. An active norm is a norm that is considered as effective
and necessary enough to avoid conflicts, and thus is included in the normative
system.

– Inactive norm. A norm is inactive if, at some point, it has been considered
as either ineffective or unnecessary, and thus it has been removed from the
normative system.

– Represented norm. A norm is represented if it is effective and necessary
enough to be included in the normative system, but it is represented by an
active, more general norm (i.e., an ancestor), which implicitly represents it in the
normative system. As an example, an active norm like “Users are prohibited to
upload spam” implicitly represents a represented norm like “User 1 is prohibited
to upload spam”. In this case, we may say that this latter norm is an instance
of the former norm.

Thus, at a given time, a normative system explicitly includes those norms
whose state is “active”, and implicitly represents those whose state is “repre-
sented”. In other words, the agents are aware only of active and represented
norms, while they are not aware of hibernated and inactive norms.

After creating a norm, desmon hibernates its by setting its state to “hiber-
nated”. In this way, it is not included in the normative system. The transition
labelled with “a” in Figure 8.1 (referred as Figure 8.1a as a shorthand), il-
lustrates this operation. Eventually, a hibernated norm may be added to the
normative system by setting its state to “active” (transition b), or deactivated
by setting its state to “inactive” (transition c). Also, at some point, an active
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norm may under-perform, thus being removed from the normative system by
setting its state to “inactive” (transition d). Additionally, an inactive norm
could be re-added to the normative system by re-activating it (transition e).

After an active norm is generalised, its state is set to “represented” (transition
f ). In this way, it is no longer explicitly included in the normative system, since
it is implicitly represented by another active, more general norm. At some
point, a represented norm may under-perform. In this case, the represented
norm is deactivated (transition g) and its ancestors are specialised (see Section
5.5). These norm specialisations lead to re-activations of other norms that the
specialised ancestors represent and do not under-perform (transition h). This
specific process is explained in more detail in Section 8.3.5.

8.3.2 Operators for DESMON’s normative network

To operate over the normative network, desmon employs the operators described
in Table 3.1 from Section 3.4.2, which allow to add, activate, and deactivate
norms. Moreover, it considers the specialise operator described in Table 5.1
(Section5.3.2), which allows to specialise norms in the normative network. Ad-
ditionally, desmon includes novel operators to hibernate a norm (Figure 8.1a),
and to generalise a norm in the normative network (Figure 8.1f). These opera-
tors are:

• A hibernate operator. The implementation of this hibernate operator is
depicted in Table 8.1. It sets the state of a given norm n to “hibernated”
(δ(n) = hibernated), and thus it is not included in the normative system.

• A generalise operator. Essentially, desmon’s generalise operator works
similarly to iron’s (described in Table 5.1 from Section 5.3.2). It gen-
eralises a set of norms (children) into a more general norm (parent) by
performing the following steps. First, if the parent norm does not exist
in the normative network, its adds the parent norm to the network and
establishes new generalisation relationships between each child norm and
its parent. In the next step, desmon introduces a slight change with re-
spect to iron’s generalise operator: it sets the state of each child to
“represented” (instead of setting it to “inactive”. Then it sets the parent’s
state to “active”. As a result, the child norms will no longer belong to the
normative system, while the parent norm will.

8.3.3 Creating new norms

During norm generation, desmon creates new norms as detailed in Section 4.6.1.
Briefly, whenever it detects a new, unregulated conflict, it creates a new norm
aimed at avoiding the conflict in the future. Then, it adds the newly created
norm to the normative network. However, desmon does not immediately acti-
vate it. In this way, the norm is not added to the norm to the normative system,
and thus it is not not provided to the agents yet. Instead, desmon hibernates the
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Operator Specification
hibernate(n,NN ) δ(n)← hibernated

NN ′ ← 〈N , R,∆, δ′〉
generalise(children, parent ,NN ) if parent /∈ N

N ′ ← N ∪ {parent}
for all child ∈ children
E ′G ← EG ∪ (child , parent)

for all child ∈ children
δ′(child)← represented

δ′(parent)← active
NN ′ ← 〈N ′,R′,∆, δ′〉

Table 8.1: desmon’s additional operators.

norm (transition a in Figure 8.1), and considers the conflict as regulated. There-
after, the norm remains hibernated while desmon gathers enough evidence to
decide if it is necessary enough to be activated. In other words, it deliberates
about the norm’s necessity before deciding either to add it to the normative sys-
tem, or to discard it. With this aim, it iteratively evaluates the norm during the
norm evaluation stage (Section 8.3.4). Eventually, when desmon has gathered
enough evidence about the norm’s performance, it decides either to activate it,
or to deactivate it, during the norm refinement stage (Section 8.3.5).

8.3.4 Evaluating norms

During norm evaluation, desmon evaluates norms as described in Section 7.4.
Briefly, it evaluates a norm’s performance in terms of its effectiveness and its
necessity. While it computes a norm’s effectiveness based on the outcomes of
its fulfilments, it computes a norm’s necessity based on the outcomes of its
infringements. However, note that hibernated norms are not available to the
agents (since they do not belong to the normative system), and thus agents
cannot assess their applicability. Consequently, agents cannot fulfil hibernated
norms, which makes desmon incapable of evaluating them in terms of their
effectiveness. Therefore, desmon can evaluate hibernated norms only in terms
of their necessity. More specifically, desmon evaluates norms as follows:

• Active and represented norms: As introduced in Section 8.3.1, agents only
are aware of active and represented norms, and thus can decide whether
to fulfil or infringe them. Therefore, active and represented norms can be
evaluated in terms of both their effectiveness (from their fulfilments) and
their necessity (from their infringements).

• Hibernated norms: As described above, desmon can evaluate hibernated
norms only in terms of their necessity.
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8.3.5 Refining the normative system

During the norm refinement stage, desmon decides the activation, the deactiva-
tion and the generalisation of those norms it has created during norm generation.
To make these decisions, it considers the norms’ performance evidences it has
accumulated during norm evaluation (Section 8.3.4). In particular, desmon
generalises norms as simon does (see Section 6.3). Additionally, desmon incor-
porates novel mechanisms to activate and to deactivate norms. In what follows,
we detail how desmon: (1) activates norms that perform well; and (2) deacti-
vates norms that under-perform.

Activating well-performing norms

desmon activates a norm provided that it performs well in regulating conflicts.
As depicted in Figure 8.1, desmon may activate a hibernated norm (transition
a), or it may re-activate a norm that has been previously deactivated (transition
d). As detailed in Section 8.3.4, desmon can evaluate a hibernated norm only
in terms of its necessity. Therefore, it activates a hibernated norm provided that
it is necessary. By contrast, a norm may be inactive because it was previously
activated (transition b in Figure 8.1), and then deactivated because it was either
ineffective or unnecessary (transition e in Figure 8.1). Therefore, to activate an
inactive norm, desmon checks both its effectiveness and its necessity to make
sure it does not include an ineffective norm in the normative system. At a given
time t desmon activates a norm n as follows:

– Hibernated norm. If a norm is hibernated, activate it iff:

1. There is evidence enough to decide if it is necessary.

2. Its necessity at time t is above a necessity uncertainty area (see Section
7.4).

This amounts to satisfying both conditions below:

|Necn0 | ≥ nvmin (8.1)

µnec(n, t) > α+
nec (8.2)

where Necn0 (defined in Equation 7.25 from Section 7.4) is the set of defined
necessity values of norm n from an initial time (t = 0); nvmin stands for the
minimum number of necessity values that are required to exist in set Necn0 to
decide if a norm is necessary; and condition 8.2 corresponds to condition 7.32
in Section 7.4.1. Specifically, µnec(n, t) (described in Section 7.4) stands for the
necessity of a norm n at time t; and α+

nec is the upper boundary of a necessity
uncertainty area 〈α+

nec , α
−
nec〉 (also introduced in Section 7.4.1).

– Inactive norm. If a norm is inactive, activate it iff both conditions below
are satisfied:

1. There is evidence enough to decide if it is necessary.
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2. Its necessity at time t is above a necessity uncertainty area.

and either both or neither or the two conditions below are satisfied:

1. There is evidence enough to decide if it is effective.

2. Its effectiveness at time t is above an uncertainty area.

This amounts to satisfying conditions 8.1 and 8.2 above, and either both or
neither of the conditions below:

|Eff n
0 | ≥ evmin (8.3)

µeff (n, t) > α+
eff (8.4)

where Eff n
0 (defined in Equation 7.25 from Section 7.4) is the set of defined

effectiveness values of norm n from an initial time (t = 0); evmin stands for the
minimum number of effectiveness values that are required to exist in set Eff n

0

to decide if a norm is effectiveness; and condition 8.4 corresponds to condition
8.4 in Section 7.4.1. Specifically, µeff (n, t) (described in Section 7.4) stands for
the effectiveness of a norm n at time t; and α+

eff is the upper boundary of the

effectiveness threshold band 〈α+
eff , α

−
eff 〉 introduced in Section 7.4.1.

Note that, by considering condition 8.1, desmon implements the activation
of a norm as a deliberative process in which a norm can be activated only when
desmon has cumulated enough evidence to decide that it is necessary. Here, the
difference between being reactive or more deliberative relies on the minimum
amount of necessity evidences (nvmin) that desmon considers to decide if a
norm is necessary. Thus, the higher nvmin , the more evidences desmon will
require to activate a norm, and the more deliberative it will be. Also, setting
nvmin to one, would make desmon to be purely reactive, since it would activate
norms with a single evidence, namely immediately after their creation (likewise
iron and simon).

As depicted in Figure 8.1, desmon can activate hibernated norms for the
first time (transition b), or it can re-activate norms that have been previously
deactivated (transition e). As previously detailed, deactivating a norm requires
the specialisation of its ancestors in the normative network (see Section 5.5).
Thus, norm deactivations lead to the loss of compactness of the normative sys-
tem. Therefore, when desmon activates a norm, it tries to regain the compact-
ness of the normative system by checking if its ancestors can be re-activated
(namely, the norm can be re-generalised). Figure 8.2 illustrates an example.
Initially, a normative network (NN in Figure 8.2a) contains norms n1 to n8,
being {n1, n2, n3, n4, n5} grounded norms that are generalised by n6, n7, and n8

the most general norm. Note that n5’s state is “inactive”, and thus, its ancestors
(n7, n8) are inactive so that n5 is not represented in the normative system. Thus,
the normative network represents normative system Ω = {n2, n4, n6}. At a given
time, desmon activates n5 to include it in the normative system (transition d in
Figure 8.1). Thereafter, it tries to regain the normative system’s compactness
by re-generalising n5 into its ancestors. With this aim, it re-activates n8, and



8.3. Deliberative norm synthesis 201

Active Represented 

NN' 

Ω'={n8} Ω={n3,n4,n6} 

activate up 

NN 

(a) (b) 

n1 n2 n3 

n6 

n4 n5 

n7 

n8 

n1 n2 n3 

n6 

n4 n5 

n7 

n8 

Discarded 

Figure 8.2: Upwards propagation of norm n5’s re-activation.

sets the state of n5, n7 to “represented”. As a result, it yields normative network
NN ′ (Figure 8.2b), which represents Ω′ = {n8}. By propagating up this n5’s
re-activation, desmon managed to synthesise again a compact normative system
of a single norm.

Algorithm 23 depicts desmon’s activateUp function, which recursively acti-
vates a norm and tries to re-activate its ancestors. It receives a norm to activate
(n), and a normative network (NN ). If n is not already represented by an active
parent, it activates it (lines 1–2). Next, it sets the state of all its children to
“represented” so that they are no longer explicitly included in the normative sys-
tem (lines 5–7). Finally, for each parent of n, it checks if it represents any norm
whose state is “inactive”. If a parent does no represent inactive norms, then it
is also activated up (lines 8–10). Eventually, the re-activation of its parent norm
will imply that n will be set to state “represented”.

Deactivating under-performing norms

desmon deactivates a norm provided that it under-performs in regulating con-
flicts. As previously introduced, desmon can evaluate hibernated norms only
in terms of their necessity, while it can evaluate active and represented norms
in terms of their effectiveness and their necessity. Therefore, desmon discards
a norm n at time t as follows:

– Hibernated norm. If a norm is hibernated, discard it if:

1. There is evidence enough to decide if it is unnecessary.
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ALGORITHM 23: Function activateUp

Input : n,NN
Output: NN

1 if not isRepresented(n) then
2 NN ← activate(n,NN )

3 children← getChildren(n,NN )

4 parents← getParents(n,NN )

5 foreach child ∈ children do
6 if isRepresented(child) then
7 NN ← setRepresented (n,NN )

8 foreach parent ∈ parents do
9 if not representsDiscardedNorms(parent) then

10 activateUp(n,NN )

11 return NN

2. Its necessity at time t is below a necessity uncertainty area (see Section
7.4).

This amounts to satisfying condition 8.1 above, and the following condition
(which corresponds to condition 7.34 in Section 7.4.1):

µnec(n, t) < α−nec (8.5)

where µnec(n, t) stands for the necessity of a norm n at time t; and α−nec is the
lower boundary of the necessity uncertainty are 〈α+

nec , α
−
nec〉 described in Section

7.4.1.

– Active/represented norm. If a norm is either active or represented, discard
it if one of the conditions below are satisfied:

1. There is evidence enough to decide if it is effective, and its effectiveness is
below an effectiveness uncertainty area (see Section 7.4).

2. There is evidence enough to decide if it is necessary, and its necessity is
below a necessity uncertainty area (see Section 7.4).

This amounts to satisfying either both conditions 8.3, 8.6, or both conditions
8.1, 8.5.

µeff (n, t) < α−eff (8.6)

where µeff (n, t) stands for the effectiveness of a norm n at time t; and α−eff is

the lower boundary of the effectiveness threshold band 〈α+
eff , α

−
eff 〉 introduced in

Section 7.4.1.
Once desmon considers that a norm under-performs, it proceeds to deac-

tivate it by setting its state and its ancestors’ to “inactive”. In this way, the
norm is completely removed from the normative system, since it is no longer
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represented by itself or an active ancestor. With this aim, it employs function
deactivateUp depicted in Algorithm 12 from Section 5.7.3. Briefly, it recursively
deactivates a norm, along with its ancestors in the normative network.

8.4 DESMON’s synthesis strategy

So far, we have seen how desmon generates, evaluates, and refines norms to
perform deliberative norm synthesis. Next, let us introduce desmon’s overall
strategy, which runs the three synthesis stages of norm generation, norm evalu-
ation, and norm refinement. Algorithm 24 illustrates desmon’s strategy, which
takes as input a tuple with a description of the previous state of a MAS (ds) and
a description of the current MAS state (dsc), and outputs a normative system to
regulate the agents’ behaviour. To perform norm synthesis, desmon considers
the globally accessible elements described in Section 7.5. That is, a normative
network, a collection of operators, a set of domain-dependent elements, a set
of domain-independent settings, and a set of additional synthesis inputs. Addi-
tionally, desmon considers two globally accessible constants evmin ,nvmin (see
Section 8.3.5) that represent the minimum number of effectiveness and necessity
values that desmon requires to decide if a norm is either effective or necessary.

ALGORITHM 24: desmon’s synthesis strategy

Input : 〈ds, dsc〉
Output : Ω
Initialisations: NCO ← ∅, P ← ∅

[1] NN ← normGeneration(〈ds, dsc〉,P);
[2] P ← normEvaluation(〈ds, dsc〉,NCO,P);
[3] NN ← normRefinement(NCO,P);
[4] Ω ← {n ∈ NN | δ(n) = active};
[5] return Ω

During norm generation (line 1), desmon perceives the current state of the
MAS, detects conflicts, and creates norms to avoid each detected conflict. Then,
it carries out norm evaluation (line 2), in which it evaluates norms as detailed
in Section 7.4. Thereafter, it carries out norm refinement (line 3), in which
it activates norms that perform well, deactivates norms that under-perform,
and generalises norms that do not under-perform. Subsequent sections detail
desmon’s norm generation and norm refinement stages.

8.4.1 Norm generation

Algorithm 25 depicts desmon’s normGeneration function. It starts by detecting
conflicts in the current MAS state, and creating a norm for each unregulated
conflict it detects (lines 1–4). Then, it adds the recently created norm to the
normative network if it does not exist yet (lines 5–6). Thereafter, it hibernates
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the norm (line 7) by invoking the hibernate operator described in Table 8.1 from
Section 8.3.2. In this way, the norm is not included in the normative system,
since desmon will deliberate about (i.e., will iteratively evaluate) its necessity.
Eventually, the hibernated norm will be either activated or deactivated during
the norm refinement stage.

ALGORITHM 25: desmon’s normGeneration function

Input : 〈ds, dsc〉,P
Output: Ω

[1] conflictssc ← getConflicts (dsc);
[2] for csc ∈ conflictssc do
[3] if not regulated(csc , ds) then
[4] n← create(csc , ds);
[5] if n /∈ getNorms(NN ) then
[6] NN ′ ← add(n,NN );

[7] NN ′ ← hibernate(n,NN );

[8] return NN ;

ALGORITHM 26: desmon’s normRefinement function

Input : NCO,P,PCO
Output: NN

/* Norm specification: */

1 Ω← {n ∈ NN | δ(n) = active};
2 NRG ← getNegativelyEvaluatedNorms(P);
3 specifyUnderperformingNorms(NRG,NN ,Ω);

/* Norm activation, norm deactivation and generalisation: */

4 for n ∈ getNormsFulfilledInfringedThisState(NCO) do
5 if performsWell(n,NN , αeff , αnec , evmin ,nvmin , ε) then
6 activateUp(n,NN );

7 else if underPerforms(n,P, αeff , αnec , ε) then
8 NN ← deactivateUp(n,NN );

9 else
10 NN ← generaliseUp(n,NN ,T,GM ,GS);

11 return NN

8.4.2 Norm refinement

Algorithm 26 depicts desmon’s normRefinement function. It starts by spec-
ifying general norms that under-perform (lines 1-3). More details about this
particular process can be found in Section 6.4. Then, it activates those norms
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that perform well in regulating conflicts (lines 5–6), and discards those norms
that under-perform (lines 7–8). It performs these steps as described in Section
8.3.5. Thereafter, in lines 9–10, it generalises norms that do not under-perform
as simon does (see Algorithm 18 in Section 6.5). In particular, to generalise
norms, function generaliseUp invokes the generalise operator described in Ta-
ble 8.1 from Section 8.3.2.

8.5 Empirical evaluation

Next, desmon’s norm synthesis is empirically evaluated in the on-line commu-
nity scenario, and compared with iron’s and simon’s. The aim is to show that
desmon is capable of converging to a stable normative system in situations in
which neither iron nor simon are able to converge. These benefits stem from
desmon’s capability to deliberatively synthesise norms, which allows it to make
more informed decisions during norm synthesis.

8.5.1 Empirical settings

The experiments have been performed with the on-line community simulator
employed in the empirical evaluations of iron (Section 5.10) and simon (Sec-
tion 6.7). In particular, we have configured the on-line community scenario as
described in Section 6.7.1.

desmon has been configured with the same settings as simon in Section
6.7.1. These settings are shown in Table 8.2. Briefly, desmon computes a
norm’s necessity at a given time by considering its last 100 defined necessity
values (q = 100), and, for each new norm n that desmon creates, it sets its
initial necessity to 0.5 (µnec(n, t0) = 0.5). Recall from Section 5.10.1 that, in
this scenario, a norm’s effectiveness cannot be evaluated, since norm fulfilments
are not observable. desmon’s norm synthesis is analysed for low, medium,
and high necessity thresholds. More specifically, αnec ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
desmon has been configured to perform deep generalisations (GM = deep) and
to generalise three terms at a time (GS = 3). The effectiveness and necessity
uncertainty areas considered by desmon are computed as a constant value 0.05
above and below threshold αnec (ε = 0.05). Thus, for instance, with threshold
αnec set to 0.2, desmon considers a necessity uncertainty area like 〈0.25, 0.15〉.
Finally, desmon has been configured to be highly deliberative. Particularly,
desmon requires a minimum of 50 effectiveness and necessity values (evmin =
50,nvmin = 50) to decide if a norm is necessary.

Each simulation finishes when it reaches 5,000 ticks, and a simulation is
considered to have converged whenever the normative system remains unchanged
during a 1000-tick period, and hence desmon is considered to have solved the
norm synthesis problem.
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Parameter Description Value

q

Number of effectiveness values and
necessity values (µnec) considered to
compute a norm’s effectiveness and
necessity ranges (see Section 5.6).

100

knec
Default norm effectiveness and necessity
values (µeff (n, t0), µnec(n, t0)).

0.5

αnec

Threshold below which a norm is
considered to under-perform in terms of its
necessity.

(0.1, 0.3, 0.5,
0.7, 0.9)

T
Time period considered when assessing
convergence (cf. Definition 18 in Section
3.2.2).

1,000

GM Generalisation mode. deep

GS Generalisation step. 1

ε
Constant to compute the effectiveness and
necessity uncertainty areas described in
Section 7.4.1.

0.05

evmin

Number of effectiveness values required to
determine a norm’s effectiveness (see
Section 8.3.5)

50

nvmin

Number of necessity values required to
determine a norm’s necessity(see Section
8.3.5)

50

Table 8.2: iron’s norm synthesis settings in the on-line community scenario.
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8.5.2 Empirical results

Let us now analyse desmon’s results. First, recall from Section 5.10.2 that
the proportion of moderate users in a population represents the complain power
of that population (CPw), since moderates are the only users who complain
about spam. Thus, the complain power of a population is directly related with
the necessity of the norms to prohibit spam. The more complaints, the more
necessary the norms. Moreover, the necessity threshold (αnec) can be seen as
a consensus degree that establishes the minimum proportion of users that must
consider norms as necessary so that they are included in the normative system.
Therefore, the relationship between the complain power of a population and
the established consensus degree determines the type of normative systems that
desmon converges to.

Table 8.3 depicts averaged results of 100 different simulations for each pop-
ulation and necessity threshold. Each cell contains, either: (i) the size of the
normative system that desmon converged to; or (ii) symbol “X” if desmon was
not able to converge to a normative system. The results in the table can be
grouped as follows:

– Convergence to a single norm. Whenever the complain power of the
population is above the consensus degree (to the left of the diagonal of the
table), desmon converges 100% of the simulations to a normative system with
one general norm

n∗ : 〈(user(anyUser), section(anySection), cntType(spam)), prh(upload)〉

that concisely prohibits any user to upload spam in any section. Let us illustrate
this situation with population 30M-70S (0.3 complain power), and consensus de-
gree 0.1 (αnec = 0.1). With that population, norms to prohibit spam are around
0.3 necessary, since 30% of the users believe that spam should be prohibited.
Moreover, the consensus degree establishes that norms must be at least 0.1 nec-
essary to be active, namely at least 10% of the users must agree on the need for
norms. Therefore, norms to prohibit spam are included in the normative system,
since they are considered as necessary. Eventually, desmon benefits from norm
generalisations to synthesise a compact normative system with single norm n∗

described above.

– Lack of convergence. When the complain power of the population is equal
to the consensus degree (i.e., the diagonal of the table), desmon cannot converge
to a stable normative system. This happens because norms’ necessities fluctuate
above and below the necessity threshold. As a result, desmon continuously de-
activates and re-activates norms, being unable to converge to a stable normative
system.

– Convergence to no norms. When the complain power of the population is
below the consensus degree, desmon converges to an empty normative system
(to the right of the diagonal). This comes as a result of desmon’s capability to
deliberate about the need for norms before including them in the normative sys-
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Consensus degree (αnec)

Population 0.1 0.3 0.5 0.7 0.9

30M-70S (0.3 complain power) 1 X 0 0 0

50M-50S (0.5 complain power) 1 1 X 0 0

70M-30S (0.7 complain power) 1 1 1 X 0

Table 8.3: Number of norms that desmon converged to.

Case Convergence

Complain power > consensus degree (CPw > αnec) Yes

Complain power = consensus degree (CPw = αnec) No

Complain power < consensus degree (CPw < αnec) Yes

Table 8.4: Summary of desmon’s convergence analysis.

tem. In this case, the complaints of moderate users trigger the creation of norms
to prohibit spam upload. However, instead of activating them, desmon itera-
tively evaluates (i.e., deliberates about) their necessity. Eventually, when it has
gathered enough evidence, desmon considers that created norms are not neces-
sary enough to be activated, and deactivates them (i.e., it performs transition c
in Figure 8.1). As a result, the normative system remains stable with 0 norms
during all the simulation allowing desmon to converge. Table 8.4 summarises
desmon’s results for different combinations of complain power/consensus degree.

Figure 8.3 illustrates how desmon managed to converge to an empty norma-
tive system with population 70M-30S (0.7 complain power) and 0.9 consensus
degree (αnec = 0.9). The x-axis shows different normative changes that desmon
performed along time, and the y-axis shows:

1. The cardinality of the normative network.

2. The cardinality of the normative system.

3. The ratio of unregulated user complaints (conflicts) per tick.

From tick 0 to 500 (i.e., during the warm-up period), desmon does not generate
norms since users do not complain. From tick 500 onwards, moderates start
complaining about those spam contents they view, and desmon creates (and
hibernates) norms to prohibit spam. At tick 511 (sixth normative change),
desmon has created ninety norms to prohibit each of the thirty spammers to
upload spam in the three sections. However, all of them remain hibernated.
Eventually, desmon considers these norms as unnecessary, since their necessity
(which is 0.7) is below the consensus degree (αnec = 0.9). Thus, it deactivates
each synthesised norm, keeping the normative system stable with no norms.
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Figure 8.3: Prototypical execution of desmon with a population of 70 moderates
and 30 spammers, and αnec = 0.9.

Consensus degree (αnec)

Population 0.1 0.3 0.5 0.7 0.9

30M-70S (0.3 complain power) 30 X X X X

50M-50S (0.5 complain power) 50 50 X X X

70M-30S (0.7 complain power) 70 70 70 X X

Table 8.5: Number of norms that iron converged to.

Consensus degree (αnec)

Population 0.1 0.3 0.5 0.7 0.9

30M-70S (0.3 complain power) 1 X X X X

50M-50S (0.5 complain power) 1 1 X X X

70M-30S (0.7 complain power) 1 1 1 X X

Table 8.6: Number of norms that iron converged to.
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Let us now compare desmon’s results with those obtained by iron (Sec-
tion 5.10.2) and simon (Section 6.7.2). Tables 8.5 and 8.6 depict these results.
Observe that neither iron nor simon could converge to a stable normative sys-
tem when the complain power of a population was below the consensus degree
(CmathitPw < αnec). There, iron and simon were penalised by their high reac-
tivity to conflicts. By contrast, desmon could converge to a normative system
with no norms. Here, desmon benefited from its capability to deliberatively
synthesise norms.

8.6 Conclusions

This chapter has tackled the synthesis of normative systems by considering dif-
ferent degrees of reactivity, thus answering research question R4. With this aim,
it has introduced desmon, a synthesis strategy that can perform norm synthesis
with different degrees of reactivity to conflicts. Based on simon (introduced in
Chapter 6), desmon includes norms in the normative system only when it de-
cides that they are necessary. Here, the difference between being more reactive
or more deliberative relies on the amount of evidences about a norm’s necessity
that desmon requires to make this decision. That is, the more evidences it
requires, the more deliberative it is.

To demonstrate desmon’s performance, it has been empirically evaluated in
the on-line community scenario, and it has been compared with iron and simon.
By being more deliberative, desmon has been able to converge to a stable nor-
mative system in situations in which iron and simon were not able to converge.
This was accomplished without compromising effectiveness and compactness. To
the best of our knowledge, desmon is the first computational approach that can
consider different degrees of reactivity during on-line norm synthesis, namely
that can consider different amounts of information to synthesise norms.



Chapter 9

Conclusions and future
work

This chapter draws the conclusions of this dissertation. Firstly, Section 9.1
summarises the contributions made during this thesis. Then, Section 9.2 draws
some conclusions attained from this thesis. Finally, Section 9.3 presents some
lines for future research.

9.1 Contributions

Norms have been widely used as a coordination mechanism in Multi-Agent Sys-
tems (MAS) [Dignum, 1999a, Boella et al., 2006, Shoham and Leyton-Brown,
2009]. In the literature, a wide extent of problems have been studied regarding
the use of norms in MAS. Of these, a key problem is that of how to synthesise
the norms that will successfully coordinate agents’ interactions within a MAS.
Solving this norm synthesis problem is specially challenging in the case of open
MAS, in which agents may be developed by third parties and their behaviours
may be unknown. These conditions make highly difficult to compute the norms
that should govern an open MAS, since assessing what and how to regulate
is not straightforward. The literature has provided means to synthesise norms
for Multi-Agent Systems, yet no computational approach has been introduced
to synthesise norms for a MAS at runtime (on-line), without involving agents
in norm synthesis (namely, exogenously), and by considering multiple synthesis
objectives (multi-objective synthesis).

Against this background, this dissertation has introduced the first computa-
tional framework to perform on-line, exogenous and multi-objective norm syn-
thesis for open MAS. This framework provides: This framework is composed
of:

1. A general, domain-independent computational model to perform on-line
norm synthesis by observing a MAS at runtime, identifying situations that
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are undesirable for coordination, and synthesising norms to avoid these
situations. This model considers that norms are synthesised exogenously,
and thus it does not require previous knowledge of agents’ behaviours and
their potential interactions.

2. An abstract architecture to implement a regulatory entity that observes
a MAS at runtime, and executes a strategy that synthesises normative
systems based on the perceptions collected from the MAS.

3. A family of synthesis strategies that implement the aforementioned norm
synthesis model, and focus on achieving different synthesis objectives.

Overall, this family of synthesis strategies can be employed to synthesise norma-
tive systems that are effective in avoiding situations that are detrimental to the
agents, while being as compact and liberal as possible. On the one hand, com-
pactness is concerned with synthesising normative systems that reduce agents’
efforts when reasoning about norms. On the other hand, liberality is concerned
with preserving the agents’ freedom to the greatest possible extent, without
compromising effectiveness and compactness. Moreover, it can be employed to
synthesise norms by considering different degrees of reactivity. Reactivity is
related to the amount of information that is considered to perform norm synthe-
sis. Briefly, being reactive allows to move in real time and to synthesise norms
with little information, but cannot guarantee efficient norms. By contrast, being
more deliberative is bound to generate more efficient norms, but it also requires
more information and may incur in increasing time and computation costs. A
key point is then to adjust the degree of reactivity of norm synthesis in order
to generate successful normative systems without requiring too much time and
computation costs.

Hereafter, a fine-grained analysis of the contributions of this dissertation is
provided.

9.1.1 On-line norm synthesis for open MAS

The first research question of this thesis addressed the development of compu-
tational means to synthesise norms for open MAS at runtime without involving
domain agents in norm synthesis (research question R1 in Section 1.2). To an-
swer this question, Chapter 3 made the following contributions:

– An abstract and domain-independent computational model for on-
line norm synthesis. Firstly, we characterised the norm synthesis problem at
hand, and provided a formal framework that underpinned the rest of the work
developed during this thesis. Thereafter, we introduced a domain-independent
computational model to perform norm synthesis for open MAS. Within this
model, norms are synthesised at runtime and without requiring domain agents’
participation in the synthesis process. In such model, norm synthesis is driven
by the main goal of yielding normative systems that effectively avoid conflicts,
namely situations that are undesirable for multi-agent coordination. Particu-
larly, this model is not aimed to avoid conflicts before they arise for the first
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time. Instead, it is aimed at learning from arisen conflicts, creating norms that
avoid these conflicts in the future. With this aim, our model makes two main
assumptions:

• Agents’ actions are observable. To create a norm, this model requires
that agents’ actions are observable, namely that they can be inferred by
observing agents’ activities.

• A conflict is caused by one action performed by a single agent in the state
previous to the conflict. Given a conflict, this model considers that a norm
can be created by first blaming a single agent for the conflict, and then
prohibiting the (observable) action the agent performed in the transition
to the conflict.

To assess a norm’s performance, the model proposes its evaluation based on
the conflicts that arise after agents fulfil and infringe it along time. On the
one hand, a norm can be evaluated in terms of its effectiveness based on the
conflicts that arise after agents fulfil it. In short, the more conflicts a norm
avoids, the more effective. On the other hand, a norm can be evaluated in terms
of its necessity by analysing the conflicts that arise after agents infringe it. The
less conflicts arise after a norm is infringed, the less necessary the norm. Based
on norms’ performances, norms are refined to yield normative systems whose
norms effectively avoid conflicts within a MAS as long as agents comply with
their norms.

The introduced computational model is abstract and domain-independent.
This allows to apply it to perform norm synthesis in different application do-
mains by providing little domain-dependent information. Nevertheless, to per-
form norm synthesis in a specific domain, this model considers a set of domain-
dependent elements, such as functions to perceive a particular scenario, detect-
ing conflicts, and yielding agents’ perceptions and actions. To the best of our
knowledge, this is the first domain-independent computational model for on-line,
exogenous norm synthesis that has been introduced in the literature.

– An architecture to perform on-line norm synthesis in open MAS. We
introduced an architecture to implement a regulatory entity – the so-called Norm
Synthesis Machine (nsm), which is in charge of observing a MAS at runtime
and performing norm synthesis as described by the norm synthesis model. Such
architecture considers that a nsm is composed of:

• A normative network to keep track of synthesised norms.

• A collection of operators over to the normative network.

• A synthesis strategy that is executed by a nsm to perform norm synthesis.

9.1.2 Synthesis of effective normative systems

We introduced a synthesis strategy, the so-called base, which can be ran by a
nsm to perform norm synthesis. base’s synthesis is guided by the goal of synthe-
sising normative systems that are effective in avoiding conflicts, while avoiding
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over-regulation. Particularly, base implements the norm synthesis model men-
tioned above. We empirically evaluated base’s norm synthesis in agent-based
simulations of a road traffic scenario, and analysed its performance. base was
proven to be able to synthesise normative systems that effectively avoided cars’
collisions at runtime, without involving them in norm synthesis. In this way, we
also proved the validity of the norm synthesis model introduced above.

9.1.3 Synthesis of compact normative systems

The second research question of this dissertation was referred to the synthesis
of compact normative systems (research question R2 in Section 1.2). Chapters
5 and 6 answered this question by introducing iron and simon, two synthesis
strategies that extend base by considering compactness as a synthesis objec-
tive. Both strategies pursue compactness by performing norm generalisations.
Briefly, a norm generalisation represents a group of norms as a single, gen-
eral norm, hence compacting a normative system. The main difference between
iron and simon relies on their approach to norm generalisation. iron takes
a conservative approach to norm generalisation that requires full evidence to
generalise. Briefly, iron synthesises a general norm only when it verifies that all
the norms it represents have been synthesised. Moreover, it requires that these
norms are effective and necessary to avoid conflicts. This allows iron to achieve
compactness without risking to include ineffective or unnecessary norms in the
normative system. As a dual operation to generalisation, iron is endowed with
the computational capability to specialise norms, namely to backtrack norm
generalisations. This allows iron to undo generalisations that produced norms
that do not perform well in regulating conflicts.

By contrast, simon takes an optimistic approach to norm generalisation: it
generalises norms when there is a minimum amount of evidence to generalise.
simon’s generalisation is inspired in the anti-unification of terms as defined in
[Armengol and Plaza, 2000], which consists in generalising a set of feature terms
to their least common subsumer or most specific generalisation. Analogously,
simon generalises pairs of norms to their most specific generalisation, namely
the most specific norm that generalises both of them. In this way, simon can
synthesise a general norm even though the norms it represents have not been
synthesised yet, and there is no evidence about their performance. This allows
simon to perform further generalisations than iron, though it may lead to over-
generalisations. Thus, simon is also endowed with the computational capability
to revise and to backtrack (specialise) over-generalisations.

iron’s and simon’s performance was empirically evaluated in two scenar-
ios: a road traffic scenario, and an on-line community scenario. In this way,
we not only could analyse the performance of both approaches, but also proved
the domain-independence of the computational model for norm synthesis. In
both scenarios, iron and simon were capable of synthesising compact norma-
tive systems that are effective to avoid conflicts. In particular, simon was shown
to significantly outperform iron in terms of compactness. This became more
evident in the on-line community scenario, in which simon was capable of syn-
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thesising a single norm to regulate the behaviours of all the users in a community.
By contrast, iron synthesised multiple norms.

To the best of our knowledge, iron and simon are the first on-line norm
synthesis strategies that consider compactness as a synthesis objective. By using
these strategies, a nsm can provide the agents within an open MAS with compact
normative systems that, in addition to effectively coordinate their activities,
require low computational efforts when reasoning about norms.

9.1.4 Synthesis of liberal normative systems

The third research question of this thesis addressed the synthesis of liberal nor-
mative systems (research question R3 in Section 1.2). To answer this question,
Chapter 7 introduced lion, a strategy that extends simon by considering lib-
erality as a synthesis objective. lion is capable of detecting and exploiting
synergies between norms, thus detecting when two norms are substitutable or
complementary. By discarding substitutable norms, lion increases a normative
system’s liberality, while it safeguards its effectiveness by preserving complemen-
tary norms. In this way lionyields normative systems that constrain agents’
behaviours just the necessary to avoid conflicts.

lion’s performance was empirically evaluated and compared with simon’s
in the traffic scenario. There, lion proved to outperform simon in terms of lib-
erality. On the one hand, simon synthesised normative systems that contained
substitutable norms (i.e., left-hand side priority norms, and right-hand side pri-
ority norms). This came as a result of simon’s incapability to detect synergies
between norms. By contrast, lion was capable of detecting and exploiting syn-
ergies between norms, thus synthesising normative systems that contained either
left-hand side priority norms, or right-hand side priority norms.

9.1.5 Deliberative synthesis of normative systems

The last research question of this dissertation referred to the synthesis of norma-
tive systems by considering different degrees of reactivity during norm synthesis
(research question R4 in Section 1.2). Chapter 8 answered this question by
introducing desmon, a synthesis strategy that extends simon and allows to
synthesise norms with different degrees of reactivity to conflicts. desmon allows
to adjust the amount of evidences about conflicts that are required to decide to
include a new norm in a normative system. Thus, desmon can synthesise norms
by being reactive (namely, by considering little evidence to synthesise a norm),
or by being more deliberative (that is, by considering more conflict evidences to
decide whether a norm is really necessary).

We empirically studied desmon’s performance in the on-line community sce-
nario. Moreover, we compared desmon’s norm synthesis with iron’s and si-
mon’s. By being more deliberative, desmon was able to converge to a stable
normative system in situations in which iron and simon were not able to con-
verge, without compromising effectiveness and compactness. There, desmon
benefitted from its capability to deliberate about a norm’s necessity, that is, to
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make sure that a norm is really necessary before including it in the normative
system. By contrast, iron and simon were penalised by their high reactivity
to conflicts. Briefly, they reacted to conflicts by immediately including new
norms in the normative system, which were eventually considered as unneces-
sary, and then discarded. Thereafter, further conflicts provoked iron/simon
to immediately re-include these norms in the normative system, even though
they had been considered as unnecessary. This started a cycle of continuous
norm deactivations/re-activations that made both iron and simon unable to
converge.

To the best of our knowledge, desmon is the first on-line norm synthesis
approach that can synthesise norms for open MAS by considering different de-
grees of reactivity to conflicts, that is, by adjusting the amount of information
required to decide either to include new norms in the normative system, or not.

9.2 Lessons learned

Based on the summary above, we draw several main lessons that we learnt in
this thesis, which we detail in what follows.

The key to on-line norm synthesis in open MAS is to observe agents’
interactions

We have seen that norm synthesis can be performed by observing agents’ activ-
ities while they interact within a MAS. The norm synthesis model introduced
here has been proven to be appropriate of synthesising norms without involving
domain agents in norm synthesis. In this way, such model is appropriate to
synthesise norms for open MAS, whose agents cannot be assumed to be capable
(or even willing) to synthesise their own norms.

Norm synthesis demands to consider multiple objectives

We have seen that synthesising normative systems that are effective to avoid
conflicts is not enough. From the work reviewed in the literature, we have
learned that norm synthesis should consider the computational efforts and the
freedom of the agents for whom norms are synthesised. On the one hand, re-
ducing the amount of norms the agents are provided with can help to reduce
their computational efforts when reasoning about norms. This may allow not
to overload agents’ computational capabilities, thus enabling them to interact
more efficiently. On the other hand, reducing the amount of constraints imposed
on the agents may allow to regulate their behaviour while giving them as much
freedom as possible while guaranteeing their successful coordination.

Norm relationships play a key role in norm synthesis

As we have seen, norms may have relationships between them. First, we have
discussed that norms may have syntactic relationships that can be analytically
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discovered. An example of these relationships is generalisation, which can be
exploited to synthesise compact normative systems. Moreover, we have argued
that norms may have semantic relationships that can be empirically detected.
Of these, we have focused on substitutability and complementarity. On the one
hand, substitutability relationships allow to detect norms that are unnecessary
in presence of another norm. On the other hand, complementarity relationships
allow to discover norms that are all necessary to avoid conflicts. Moreover, we
have seen how an on-line norm synthesis strategy (lion) can take benefit of
generalisation, substitutability and complementarity relationships to synthesise
compact normative systems that avoid conflicts within a MAS while preserv-
ing agents’ freedom as much as possible. Therefore, we conclude that norm
relationships play a key role in norm synthesis.

The nature of conflicts drives the degree of reactivity required by
norm synthesis

The synthesis strategies introduced in this dissertation have been empirically
evaluated in two scenarios: the road traffic scenario, and the on-line commu-
nity scenario. From these domains, we have observed that the different types
of conflicts in different domains may require different degrees of reactivity to
conflicts. For instance, in the road traffic scenario, the dramatic consequences
of car collisions (e.g., human casualties) require to be highly reactive to con-
flicts, thus immediately regulating. In this way, once a collision arises, norms
can be immediately synthesised to avoid future conflicts, even though there is
no enough evidence to assess if they are really necessary.

In the on-line community scenario, iron, simon and desmon were employed
to build a participatory regulatory mechanism that synthesised norms aligned
with the users’ preferences. There, users’ complaints were considered as con-
flicts that triggered norm synthesis. In this way, norms were synthesised to
regulate the type of situations the agents felt uncomfortable with. From the
experiments we noted that, in our on-line community scenario, being more de-
liberative becomes a requirement. Briefly, the more evidence gathered about
a norm’s necessity before including it in the normative system, the surer one
can be that the norm is “supported” by the overall community, namely that a
sufficient amount of users believe that the norm is necessary.

9.3 Future work

While this dissertation has pursued to contribute to the synthesis of normative
systems for open MAS, it also opens several paths for future work. In the
following, some problems where further research is due are presented.
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9.3.1 On the synthesis of norms

As detailed in Section 9.1.1, the norm synthesis model introduced in this thesis
is based on the assumption that a conflict is caused by a single action performed
by a single agent in the state previous to the conflict. As an example, in the
road traffic scenario, a collision between two cars is considered to be caused
by the action that one of the two the cars performed before colliding (e.g.,
“go forward”). Nevertheless, it may be the case that a conflict is caused by a
combination of actions. For instance, a collision between two cars may unleash
further collisions. Note that, in this case, these latter collisions:

1. Would not be caused by the last cars that collided. Instead, they would
be caused by one of the two cars that caused the first collision.

2. Would not be caused in the state previous to the collision. Instead, they
would be caused several states before, when the first collision arose.

Therefore, a more general, sophisticated approach would be considering that a
conflict may be caused by a combination of actions along a series of states. This
would enable our norm synthesis model to be appropriate to synthesise norms
in domains with these particular characteristics.

9.3.2 On the relationships between norms

This dissertation has provided means to detect and to exploit three types of
relationships between norms: generalisation, substitutability, and complemen-
tarity. As previously detailed, while generalisation relationships can be employed
to synthesise compact normative systems, substitutability and complementarity
relationships can be employed to synthesise liberal normative systems without
compromising effectiveness. Overall, we have seen that exploiting norm rela-
tionships is a powerful means to yield compact and liberal normative systems.
Therefore, it would pay off to investigate further relationships between norms.
For instance, one may consider exclusivity between norms: two norms would be
exclusive if they performed worse together than separately. By exploiting ex-
clusivity, a norm synthesis strategy may yield normative systems that are more
effective in avoiding conflicts.

Additionally, further improvements may be done. For instance, the lion
synthesis strategy detects substitutability and complementarity between pairs
of norms, but it is not capable of detecting such relationships between groups of
norms. Therefore, it would pay off to endow our norm synthesis mechanism with
the computational capability to detect such kind of non-pairwise relationships.

9.3.3 Configuring a norm synthesis strategy

The norm synthesis strategies provided in this dissertation are highly flexible
and customizable. Overall, they provide means to: (1) adjust the amount of
evidences considered when evaluating norms (from base to desmon); (2) con-
figure norm generalisation (simon, lion and desmon); (3) adjust the amount
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of evidences required to detect norms’ semantic relationships (lion); and to (4)
adjust the degree of reactivity to conflicts (desmon)

Nevertheless, each synthesis strategy requires to be manually configured pre-
viously to be executed by a Norm Synthesis Machine, and its configuration
cannot not automatically change at runtime unless a designer re-configures it.
This may be a disadvantage if the conditions of a MAS are unknown at design
time, or if these conditions change at runtime. Therefore, our synthesis strategies
could be extended with means to automatically learn at runtime the parameters
that would best fit to each particular domain. In this way, they would be able
to re-configure themselves at runtime, thus adapting to changes of a MAS as it
evolves.

9.3.4 Considering additional norm synthesis goals

In this thesis, we have considered three synthesis objectives: effectiveness, com-
pactness, and liberality. Overall, these goals can be employed to synthesise
normative systems that successfully avoid conflicts, while reducing agents’ com-
putational efforts when reasoning about norms, and preserving their freedom as
much as possible. However, we may consider further synthesis objectives, such
as synthesising normative systems that are fair. Fairness is a concept that has
been employed in the field of common-pool resource allocation in open MAS
[Pitt et al., 2012, Pitt and Diaconescu, 2014]. There, fairness is generally under-
stood as allocating resources equitably. To measure fairness, they incorporate
the concepts of distributive justice [Rescher, 1969]. Along these lines, the con-
cepts of fairness and distributive justice could be incorporated in norm synthesis
to synthesise normative systems that achieve coordination, while being compact,
liberal, and “fair” to agents.
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(2006). Adaptation of autonomic electronic institutions through norms and
institutional agents. In Engineering Societies in the Agents World, Lecture
Notes in Computer Science, page In press. Springer.



Bibliography 223
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