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ABSTRACT

Both human and multi-agent societies are prone to best
function with the inclusion of regulations. Human societies
have developed jurisprudence as the theory and philosophy
of law. Within it, utilitarianism has the view that laws
should be crafted so as to produce the best consequences.
Following this same objective, we propose an approach to
enhance a multi-agent system with a regulatory authority
that generates new regulations –norms– based on the out-
come of previous experiences. These regulations are learned
by applying a machine learning technique (CBR) that uses
previous experiences to solve new problems. As a scenario to
evaluate this innovative proposal, we use a simplified version
of a traffic simulation scenario, where agents move within
a road junction. Gathered experiences can then be easily
mapped into regular traffic rules that, if followed, happen to
be effective in avoiding undesired situations —and promot-
ing desired ones. Thus, we can conclude that our approach
can be successfully used to create new regulations for those
multi-agent systems that accomplish two general conditions:
to be able to continuously gather and evaluate experiences
from its regular functioning; and to be characterized in such
a way that similar social situations require similar regula-
tions.

Categories and Subject Descriptors

I.2.11 [Computing Methodologies]: Distributed Artifi-
cial IntelligenceMultiagent systems

General Terms

Algorithms, Experimentation

Keywords

Normative systems, Learning, Agent based simulation, Self-
organisation, Norm generation.

1. INTRODUCTION
Regulations have been proven to be useful in both human

and multi-agent societies. Human societies use regulations
within their legal systems. In fact, they have developed Ju-
risprudence as the theory and philosophy of law, which tries
to obtain a deeper understanding of general issues such as
the nature of law, of legal reasoning, or of legal institutions1.

1Jurisprudence definition extracted from Black’s Law Dic-
tionary: http://www.blackslawdictionary.com

Within it, Normative Jurisprudence is concerned with nor-
mative or evaluative theories of law. It tries to answer ques-
tions such as ”What is the purpose of law? or What sorts
of acts should be subject to punishment?. Normative Ju-
risprudence has different schools. Among them, Deontology
[7] can be described as an ethical theory concerned with du-
ties and rights. On the other hand, Utilitarianism [12] takes
the view that the laws should be crafted so as to produce
the best consequences. When translating these approaches
from human societies to MAS societies, it is obvious that a
large number of simplifications have to be taken. Neverthe-
less, we think that it is still possible to keep and combine
their fundamental objectives: to define specific prohibitions,
permissions and obligations that promote desired overall sys-
tem’s behaviour for a given MAS society. Thus, the aim of
this paper is to define a computational mechanism able to
synthesize norms that succeed in the proper regulation of
multi-agent societies2.

We approach this regulation generation problem by learn-
ing from the experience of on-going activities within the
MAS society. We have chosen Case-Based Reasoning (CBR)
as the learning technique to apply. Briefly, CBR solves new
problems –i.e., cases– by adapting the solution of similar
problems from the knowledge base (which is a compound of
solved problems). The selection of this learning technique is
somehow inspired in the Anglo-American common law tra-
dition, where judges use legal precedents to make decisions.
Hence, using our terminology, we can interpret that judges
resolve legal cases based on the way similar cases were pre-
viously resolved. More specifically, our approach defines a
case as a compound of a problem –i.e., a social situation or
context– and its associated solution, which in our case corre-
sponds to the regulations that are applied in those contexts.
In this manner, the overall learning objective becomes to
define cases whose application leads to desired social situa-
tions. In CBR, problem description is key, and therefore, we
have tested different problem representations that consider
global and partial scopes. On the other hand, CBR is a su-
pervised learning method that requires an expert to provide
the system with correct problem solutions. Nevertheless, we
want to generate best regulations without external knowl-
edge, and thus, CBR cannot be directly applied. Instead, we
propose to include an exploratory pseudo-random approach
so that CBR becomes unsupervised.

Rather than by individual agents in the society, we assume
learning to be performed by an independent regulatory au-
thority within the MAS, able to observe and establish its

2We assume goals act as a reference that does not evolve.



norms. Therefore, we are taking an organizational centered
perspective over the MAS as opposed to an agent-centered
perspective. The underlying rationale is to restrict the fo-
cus of our research. An organizational point of view allows
to have learning devoted to finding the best regulations for
a whole society and to do it while interactions are taking
place. On the contrary, taking an individual centered ap-
proach –where learning is performed by individual selfish
agents– would also require considering additional aspects
such as agreement, trust, uncertainty or communication.

The paper is structured as follows: next section introduces
related work. Section 3 describes the tested scenario, sec-
tion 4 details the learning process, and subsequent section 5
presents its empirical evaluation. Finally, some conclusions
and future work are drawn in last Section 6.

2. RELATED WORK
Although Artificial Intelligence and Law have been related

since a first article from McCarty [11], related research is
not usually concerned with machine learning. This is less
the case within the MAS area, where some learning tech-
niques have been successfully applied. In fact, Multi-Agent
Reinforcement Leaning [4] is quite widely used for individual
agent learning. Nevertheless its usage is much more scarce
for organizational centered approaches, where an exception
is the work by Zhang et al.[19] devoted to improve system’s
organization. Our work uses CBR as an alternative learn-
ing technique, which is also based on system experience, but
results in clearer knowledge representations —i.e., cases.

On the other hand, research on norms in multi-agent sys-
tems is a quite active area. Just to mention a few works:
Boella and van der Torre have done relevant contributions
[3] in norm characterization; Campos et al. [5] have pro-
posed norm adaptation methods to specific network scenar-
ios; Artikis et al.[2] have studied the definition of dynamic
social conventions (protocols); and Savarimuthu et al. [16]
as well as Kota et al. [10] work on norm emergence. Within
this area, norm generation has been studied less frequently.
Shoham and Tennenholtz [17] focus on norm synthesis by
considering a state transition system: they explore the state-
space enumeration and state it is NP-complete through a
reduction from 3-SAT. Similarly, Hoek et al. [18] synthe-
size social laws as a model checking problem –again NP-
Complete– that requires a complete action-based alternative
transition system representation. In our case, CBR has the
advantage that, although cases represent the search space,
they do not need to be exhaustive, since they can be repre-
sentatives of a set of similar problems requiring similar so-
lutions. Furthermore, our approach is applied at run-time,
being able to generate new norms during the execution of
the system (this has the additional advantage of adapting to
new situations). An intermediate approach is this of Chris-
telis and Rovatsos [6], that synthesize generalized norms over
general state specifications in planning domains. These do-
mains allow for a local search around declarative specifica-
tions of states using planning AI methods. From our point
of view, CBR allows the application to a wider range of do-
mains, in particular to those where (i) experiences can be
continuously gathered and evaluated, and where (ii) similar
social situations require similar regulations (i.e., the conti-
nuity solution assumption).

Regarding implementation issues, it might be worth men-
tioning a related work on system monitoring by Modgil et

Figure 1: Orthogonal road junction: a) feeder and
exit lines, b)traveling cars.

al.[13] which is able to recognize norm compliance; and an-
other one on traffic domain by Dunkel et al. [8] devoted to
managing traffic systems. We have also used a simplified
traffic scenario to test our innovative approach empirically.

3. TRAFFIC SCENARIO
In order to test our learning approach, we have chosen a

simplification of a traffic scenario. It has been developed as
a multi-agent based simulation model in Repast [14]. This
traffic scenario is an orthogonal two-road junction, where
car agents travel along roads towards different destinations.
As figure 1 shows, the environment has been discretized by
means of a square grid whose cells have the size of a car.
Gray (central) cells represent roads and green (corner) cells
correspond to their surrounding non-transitable fields. Each
road lane has a direction of traffic. Agents can join the road
from four different entrance points –i.e., four incoming or
feeder lanes (see left side of Figure 1)– and choose the exit
point, so they decide the route to follow. Time, measured
in ticks, is also discrete. Moreover, cars do have constant
speed, so they can only move to adjacent cells in a single tick.
Agent possible actions are stop, move forward, turn right,
or turn left. Nevertheless, cars just turn in the intersection
area and always obey the rules of right side traffic (i.e. they
turn right in the first cell of the intersection whereas left
turnings require to further traverse the junction and turn
on the second cell). Furthermore, car agents also follow the
social norms described in section 4 by stopping or moving
whenever required.

4. NORM GENERATION THROUGH CASE-

BASED REASONING
Multi-agent systems have been enriched with different reg-

ulations –norms, constraints, protocols, etc– with the aim
of better organizing the society by restricting both individ-
ual behaviours and the way interactions are performed. In
general, regulated societies build their norms as an implicit
common agreement, assuming most of their individuals will
respect them. Regulations can come from a norm emer-
gence process or by having a regulatory authority dictating
them. Furthermore, they can be created based on previous
experiences or by anticipating situations that may appear.
Nevertheless, since the number of possible outcomes of com-
plex systems is so large, most societies regulate just those
situations that have already occurred so far. This paper fo-
cuses on those regulations that can be established based on
the experience of the regular functioning of MAS societies.
We assume these societies have regulatory authorities that
gather experiences in an on-going basis. Inspired in jurispru-
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dence used in the Anglo-American common law tradition, we
have enriched our MAS with a case based regulatory system.
It is is charge of analyzing previous experiences and decid-
ing what (if any) regulations should be applied for specific
situation contexts in order to avoid undesired outcomes.

In order to do it, a regulatory authority must be able to
first define the goals whose accomplishment guarantees sys-
tem’s performance or its overall desired behaviour. In our
traffic scenario, the main goal is to minimize the number of
collisions whilst keeping a fluid traffic. This is so because,
obviously, if all cars stop, then there will be no collisions
at all but cars will not accomplish their individual goals
—which most probably will include reaching their destina-
tions. Therefore, we are making an underlying assumption
that is that social regulations should guarantee individuals
to have enough autonomy so to accomplish their individ-
ual goals. Otherwise, punishments should be included to
promote norm compliance. In summary, we can somehow
interpret that the regulatory authority tries to guarantee
basic common agreement about the norms it establishes.

Second, the regulatory authority must have the ability
to observe the society in a way that it is able to identify
undesired situations —that is, situations where goals are
not being accomplished. In our traffic case, both collisions
and blockages are main undesired situations.

Afterwards, the regulatory authority should be able to
propose regulations that try to prevent undesired situations
from being repeated in the future. Prohibitions should be
done over those agents’ actions that lead to undesired sit-
uations. Analogously, obligations can be used to promote
desired actions. For example, if we consider our traffic junc-
tion, if there is a collision because two cars run on each other,
then it is possible to propose a new regulation that prohibits
cars to move when they happen to be in the same situation.
On the other hand, if no collisions happen when cars tra-
verse the junction it may be useful to create the obligation
of keeping moving to prevent blockages. Obviously, decid-
ing which actions should be prohibited or obliged is not a
straightforward decision, and that is the reason we introduce
automatic learning into the process.

Finally, whenever a new regulation is created and applied
on the multi-agent system, the learning process requires the
analysis of the consequences of its application. Thus, we
need the regulatory authority to observe the society’s evo-
lution and to label the experience of applying this new reg-
ulation with its subsequent outcome. In this manner, regu-
latory knowledge is refined in an on-going basis.

The remaining of this section provides further details of
our proposed approach. First subsection specifies the ar-
chitecture of the MAS applied to the traffic scenario, and
subsequent subsections detail the learning process.

4.1 Architecture
Following an organizational centered approach, we assume

that the multi-agent system in our traffic scenario consists
of a set of external agents that interact within a road en-
vironment together with a regulatory authority (see Figure
2). External agents play a car role; they are able to ob-
serve other car agents and to perform certain actions such
as join, traverse, and leave the environment. Regarding the
regulatory authority, its aim is to promote fluid car traffic
flow with as few as possible collisions amongst traffic par-
ticipants. This authority is constituted by staff permanent

Figure 2: Traffic scenario architecture.

agents that perform regulation tasks. From those agents, we
highlight the one in charge of defining current norms –we call
it norm agent– and the one conducting the learning process
—the CBR agent. Nevertheless, there are other staff agents
that provide infrastructure services, such as the ones in the
tracking system, in charge of obtaining information from
the environment; the scene manager, in charge of runtime
details; or the monitoring agents, which provide statistical
analysis of the overall system operation.

The norm agent uses the regulatory knowledge from the
CBR agent to specify the traffic rules that will be applied in
the road environment. As a result, it updates a norm layer
that is publicly available for the car agents so they become
aware of the norms and can thus follow them. Agents con-
duct this norm updating process continuously, creating new
norms when required or applying previously existing ones.
The CBR agent will be the one in charge of taking this last
decision. Next subsection details how it is performed.

4.2 Unsupervised CBR cycle
Case-based reasoning is a technique that solves new prob-

lems based on past experiences [1]. Experiences are stored
in the form of cases, where a case is a description of a prob-
lem and its possible solution Case = 〈probl, sol〉. Cases are
stored and maintained in a knowledge base (or case base) for
further usage. Briefly, when a new problem is encountered
(and thus, it lacks a solution), the CBR process searches for
the most similar problem in the case base and adapts its
associated solution to solve the current problem. The de-
scription of the target problem, together with the provided
solution and related information about its performance, con-
stitute a new case that can be in turn stored in the case base.
Case performance –i.e., how well the derived solution solved
the problem– depends on the continuity of the domain or, in
other words, if for the domain it holds that similar problems
require similar solutions. This overall process is usually ex-
plained in terms of what it is known to be the CBR cycle.
It is characterized by four different steps: retrieve, reuse,
revise and retain. Before describing them, it is worth men-
tioning that a case for us is composed of a traffic situation
–car distribution–, the regulations –move /not move– that
should be applied in such traffic context, and a case perfor-
mance measure (see subsection 4.3 for further details).

Retrieve: Given a traffic situation description, we first
retrieve from our knowledge base the case that is most rele-
vant to solve it. Relevance here is interpreted as similarity,
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and thus, we search for a case that describes the most simi-
lar traffic situation. More specifically, as we will see in next
subsection 4.3 a case is considered to be similar to another
if it represents the same number of cars and if these cars are
located at rotationally equivalent cells. The retrieved case
will include the regulations that were applied for its traffic
situation and a score of its application.

Standard CBR systems are considered as supervised learn-
ing methods because they assume there is a pre-existing
knowledge base, or that at least, a supervisor can provide so-
lutions for new cases to be learned. Nevertheless, we face an
unsupervised learning scenario, since we lack the necessary
knowledge to determine the proper traffic rules that should
be applied for specific situations. Therefore, it can well be
the case that the retrieve phase does not provide any case.
In fact, we encounter this situation right at the beginning,
since we still lack experience. Hence, if no case has been
retrieved, we need to somehow generate a new solution by
exploring the space of possible solutions, which in our case
means to try different combinations of traffic restrictions
(norms). In our current implementation, exploration is per-
formed by randomly assigning stopping/moving restrictions
to those cells having cars (avoiding empty cells is an heuris-
tic that prunes the search space). Furthermore, since this
pseudo-random solution may not be optimal, we extend the
cases to include several alternate solutions (generated in the
same way) with a performance measure associated to each
of them. The number of possible solutions is bounded in
order to differentiate a learning phase –when alternate so-
lutions are built– from a subsequent testing phase —when
the case is considered to be learned (i.e., closed) and is ap-
plied without adding new solutions. Obviously, this limit
in the number of explored solutions prevents us from guar-
anteeing optimal solutions, but they can still be useful to
accomplish the goals of our regulatory authority. Powell et
al.[15] have a similar approach to unsupervised CBR that
uses reinforcement learning.

In the reuse phase, the solution of the retrieved case is
mapped to the target problem. This may involve adapting
the solution as needed to fit the new situation. In our case,
since a case may have more than one associated solution, the
one having the best performance results is the one chosen.
Reuse is done afterwards by translating the traffic rules of
the chosen solution to locations in the new solution that may
be rotated if the target problem is a rotated version of the
retrieved case.

Afterwards, having mapped the previous solution to the
target situation, test the new solution and, if necessary, re-
vise. In our traffic scenario this means to dictate the traffic
norms to car agents (see previous subsection 4.1), and to ob-
serve the outcome of their application in the simulation. In
current implementation, the regulatory authority checks if
goals are fulfilled by observing next3 simulation step (tick).
Then, it updates the performance measure based on the
number of resulting collisions and the number of applied
prohibition rules: in order to promote fluid traffic, it penal-
izes over-regulated solutions —i.e., those abusing from pre-
venting the cars from moving. Although system’s goals are
two-folded –collision avoidance and fluid traffic– they may
have different relevance and, therefore, we use a weighted
performance updating formula.

3Different time intervals could be used depending on the
delay of norm application effects.

Finally, the cycle ends with the retain phase, that con-
sists on the storage the resulting experience in the knowledge
base. In our unsupervised CBR scenario this may lead to
three different possibilities: i) If a new case was generated,
then it will be stored in the case base; ii) If an existing case
was retrieved and a new solution for it was generated, then
retain becomes an update of the current case; and iii) if
the retrieved case was closed –and thus, no solutions were
added– the only required update is the performance mea-
sure4. This will allow the CBR agent to choose among differ-
ent traffic rules depending on their application outcome. It
is worth noticing that for non-deterministic environments, a
desirable regulation may become undesirable further in time
and become desirable again under changing circumstances.
As we can see, this last step enriches the set of stored ex-
periences, and thus it better prepares the system for future
encountered problems as far as they satisfy the underlying
premise that similar problems have similar solutions.

4.3 Cases and Norms
As we have already mentioned, a case in CBR is generally

understood as the description of a problem and its associ-
ated solution: Case = 〈probl, sol〉 where prob ∈ StateSpace
and sol ∈ Norms. Taking into account our traffic domain,
a problem description represents one particular traffic situa-
tion whereas the solution corresponds to the traffic rules that
should be applied for this particular context. The regulatory
authority describes traffic situations in terms of the infor-
mation it gathers from the system (see section 3) : empty
and occupied cells, and the headings of those cars located at
occupied cells. Traffic situations can be described by consid-
ering a global point of view or a local perspective. A global
scope in the representation will imply a large area of the
environment and will contain all cars in the environment,
no matter their location. On the other hand, a local per-
spective is focused in a narrower environment area and thus,
only those cars near the reference point will be considered.
A global scope has the advantage that it represents a com-
plete knowledge but the disadvantage of implying a large
search space. Regarding the partial scope, although being
smaller in its representation size –and thus, search space–,
it may fail in representing some important pieces of knowl-
edge. Therefore, as both approaches present pros and cons,
we have modeled them both in our particular traffic scenario
(see next evaluation section 5 for a comparison). The re-
maining of this subsection presents them and the associated
solutions (norms) they have within our case representation.
In fact, depending on the considered scope, norms will be
applied to all involved agents –if global scope– or just to
the single agent that is acting as reference in the partial
representation.

4.3.1 Global scope

When representing a complete traffic situation, the num-
ber of possible distributions of cars in the environment be-
comes high even if just considering the 7×7 example grid in
Figure 1. Nevertheless, some simplifications can be taken.
First, by assuming that car agents do have basic driving
skills it is possible to reduce the size of the environment
grid down to the intersection zone (see left side in Figure 3).
These skills correspond to basic capacities such as planning

4Additionally, for all three possibilities we also store/update
how many times the case has been applied.
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Figure 3: Global scope junction representation: a)
initially discarded cells; b) orthogonal shape repre-
senting the problem; and c) applied traffic rules.

a path towards a chosen destination, following this route
without leaving the proper road lanes or stopping if a car
in front of them in the lane brakes suddenly5. Thus, traffic
in the feeder and exit lanes (see Figure 1) can be discarded
without losing any relevant information. Figure 3 shows
how, focusing further on the intersection zone, there are still
some cells that can be obviated. These cells correspond to
both the field area and the exit lanes, which do not interfere
in our simplified traffic. In this manner, the final problem
representation can be reduced to 8 cells in the junction area.

The state space (StateSpace) we are representing consists
thus in 8 cells that can be either empty or occupied by one
or several cars. Having more than one car in a cell means
a collision. Cars in our simulation are removed when collid-
ing, so there is no need to represent this situation (further
details can be found in [9]). Furthermore, a car in an occu-
pied cell can have different headings, but due to the traffic
flow restrictions, it will only be one for the cells at the junc-
tion entrance (the ones of the feeder lanes) or two for the
intersection, since two different traffic directions are allowed
there. Overall, we have 4 cells with two possible states –
i.e., empty or occupied with a fixed heading– and 4 with
3 possible states –empty and occupied with two alternative
headings– so that we have 24 ∗ 34 = 1296 different possible
traffic situations. Finally, we can have situations that repre-
sent the same if we apply the appropriated rotation in their
representations. Thus, we can further reduce the state space
to 1296/4 = 324 combinations.

Regarding the associated solution (sol ∈ Norms), it rep-
resents the same grid area than the problem (see Figure
3 right down) and for each cell, it has a norm that spec-
ifies if the car in this location should stop or should keep
moving. From a deontic perspective, these traffic rules are
represented, respectively, as the obligation of stopping and
the prohibition to stop. Thus, the norm agent first consid-
ers the solution provided by the CBR agent (see section 4.1)
and, afterwards, it applies traffic signs that can be either the
stop sign or a direction sign —whose specific direction will
correspond to the one of the road cell.

Finally, as we have mentioned, we lack the optimal solu-
tion (sol ∈ Norms) for each problem (prob ∈ StateSpace)
and thus, the learning algorithm explores different candidate
solutions. Thus, a case in our global scope representation

5These basic skills may also be modeled as a set of basic
norms, but from our point of view regulations should leave
some decisions to the agents, whose autonomy can be regu-
lated but should not be overconstrained.

Figure 4: Case global and partial scopes.

corresponds in fact to Case = 〈probl, {(sol, score)}〉, where
for each problem we have a set of solution-score pairs, and
where a solution is a combination of traffic rules and it is
associated to information about their application outcome.

4.3.2 Partial scope

As an alternative to use global information, it is also pos-
sible to represent situations centered in the point of view
of a single agent. Common agent individual perspectives
also imply having a limited observation range. Thus, the
partial scope reduces the observation area to a subgrid in
front of the reference car. Figure 4 illustrates an example
that compares the conceptualization of both scopes: for a
given global situation at a certain time step we will have as
many partial descriptions as involved agents are. Thus fol-
lowing the example in the figure, two different situations –i.e.
prob1, prob2 ∈ PartialStateSpace– will be derived. This, in
terms of the CBR learning process, means that they will
result in two target cases to solve, and therefore, the CBR
process will be invoked twice.

As before, problems (prob ∈ PartialStateSpace) are rep-
resented by considering empty and occupied cells. The only
differences are that their orientation is relative to the refer-
ence car and its shape and dimensions, which do not include
the cell containing the reference car, are smaller than the
global problem representation. Following previous example,
we have a rotated 3 × 1 sub-grid. There, cell states can
be 4 (empty, car forward movement, car left turning, and
car right turning) for those two cells corresponding to the
inner junction area and 2 possible states (empty cell or oc-
cupied with a car moving forward) for the single cell in the
junction entrance. Obviously, having a sub-grid implies a
smaller state space (|PartialStateSpace| < |StateSpace|)
and thus, the number of possible cases to handle is much
smaller (42 ∗ 2 = 32 in the example). Our implementation
allows the definition of different sight range or subgrids –
they are treated as masks over the agent’s visibility area– so
that they can be empirically studied.

Once we have defined a problem (prob ∈ PartialStateSpace),
its solution corresponds to the norms that will be applied to
the reference agent. In this manner, cases in our traffic sce-
nario will have a predefined set of two possible traffic rules:
the obligation to stop (obl(stop)) and the obligation to keep
moving following the road traffic direction (proh(stop), so
that we have a reduced set of norms: Norms={obl(stop),
proh(stop)}). Cases in this approach will have a predefined
set of two possible solutions and their associated outcome
measure Case = 〈probl, {(obl(stop), scoreStop), (proh(stop), scoreMove)}〉
and the main learning task will be to change the score as-
sociated to the performance of the application of both rules
(scoreStop and scoreMove).
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4.3.3 Related metrics

Case retrieve and case update phases in our CBR cycle
require the specification of two measures: the distance be-
tween two cases and the score of associated solutions.

Both global and local approaches compute case distance
by comparing every cell in the area (both compared grids
have the same size and shape). Differences between two
cells ci, cj ∈ grid are considered to be 1 if their occupancy
state is different:

dist(ci, cj) = 1 if state(ci) 6= state(cj), where
state(ck) = {empty, occupied forward, occupied right−

turn, occupied left turn} and ci, cj , ck ∈ grid
distance(grid1, grid2) =

∑
ci∈grid1,cj∈grid2,i=j

dist(ci, cj)

Thus, for example, if state(ci) = occupied forward and
state(cj) = empty, then dist(ci, cj) = 1 and the same dis-
tance results if they are occupied with cars with different
headings: state(ci) = occupied forward and state(ck) =
occupied right turn (then dist(ci, ck) = 1).

The retrieval phase looks for the most similar case in
the knowledge base. In our case, the chosen case will be
the one for which, if we apply a proper rotation to the re-
trieved grid, we get a zero distance result when comparing
with the grid representing the target problem. Formally:
retrieved case = arg distance(rotation(grid, α), target grid) =
0 where α ∈ {0, 90, 180, 279} degrees in our orthogonal envi-
ronment and grid is the representation of the problem com-
ponent in the case.

Regarding the scoring computation, we have already said
that given a retrieved case with different solutions, the norm
agent in the regulatory authority will choose the solution
with best application performance. In the global scope, this
score update is computed by punishing both the number of
collisions (n col) occurred during the next time step in the
simulation; and the number of stop traffic rules (obl(stop))
that were applied (n stop). Both measures are accordingly
weighted so that we have:

global score = previous global score−(wcol·n col+wstop·n stop)

Weight values depend on the priority over goals that the
regulatory authority has. Our current implementation con-
siders wcol = 5 and wstop = 1 (i.e., a 1 to 5 ratio in the
importance of collisions and traffic jams).

Finally, the computation of the partial scope score has to
take into account that partial information may lead to dif-
ferent outcomes when applying the same norms to the same
partial problem description. In order to deal with this non-
deterministic phenomena, we average current with previous
outcomes so to smooth the updating effect. Our testing sim-
ulation environment allows the definition of several methods,
such as, for example, implementing a sliding window over the
experience history.

5. EMPIRICAL EVALUATION
As we have previously mentioned, we have performed an

empirical evaluation of our proposal about regulation gen-
eration by developing a multi-agent based simulation of a
traffic road junction scenario. The simulator has been im-
plemented over Repast simphony [14] so that its runtime
environment interface can be used to enhance the user in-
terface of our simulator. Figure 5 shows the user interface:
top toolbar includes the standard simulation buttons such as
start, step or stop buttons as well as the time (tick) count;

Figure 5: Traffic simulator in Repast.

left-side area allows the definition of the setup parameters;
middle area shows the actual car simulation; and right-side
area is devoted to monitor the evolution of this simulation.
Thanks to the setup parameters it is possible to customize
current simulation characteristics such as the environment
grid dimensions; the maximum number of cars to be simul-
taneously interacting in the environment; or the learning
modality (whose values are 0 if no learning is applied, 1 if
a global scope is used in the learning process, and 2 if par-
tial scope). With regards to the actual simulation, cars are
represented as circles traversing the two intersecting roads.
When cars collide they change their colour to red and disap-
pear. Additionally, a square surrounding a car means that
a stop traffic rule has been applied in this specific car posi-
tion —in the figure example, this specific rule prevents the
corresponding car from colliding with the car in front of it.
Finally, simulation monitoring shows statistical data about
those data that can be useful to follow the evolution of the
specified simulation mode. Thus, since the screenshot in fig-
ure 5 corresponds to the global scope simulation mode, then
the statistical data corresponds to: the number of collisions
accumulated during a specific time (tick) window (2000 in
the figure); how many stopping rules have been applied for
this same period; the total number of cases in the knowledge
base; and how many solutions have been explored for this
amount of cases.

5.1 Test design
In addition to the development of the simulator it was

necessary to conduct a series of experiments in order to eval-
uate the learning approach. In fact, these experiments were
designed sequentially, guided by the results and intuitions
gained from previous tests. Our main objective was not to
perform an exhaustive search of all possible parameters in
the setup process, but a preliminary exploration that gave
us some insights about our learning approach. The specific
process that we followed can be described in different steps
(that are summarized here and detailed in next subsection).

Obviously, we started with the basic simulation mode, in
order to asses that cars behave as expected: they drive prop-
erly but, since they lack intersection traffic regulations, colli-
sions in the junction area occur with a significant frequency.

Afterwards, we tested the global scope simulation mode.
In this case, as next subsection details, we were not able
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to avoid collisions completely even after running tests for
long periods of time (ticks). This was in part due to the
limited exploration capacity but also due to the fact that,
given the size of the state space, some rare cases actually
happen very scarcely, and so, the system did not have the
opportunity to explore enough different solutions. This may
not invalidate the global approach for all possible scenarios,
but it will certainly limit its performance for those domains
with large search spaces.

This led us to try the partial approach with the aim of
reducing the search space despite its non-determinism prob-
lem. Results there were much more promising, since the
system was able to find traffic regulations that generated
almost no collisions. In addition, it was able to learn them
in much shorter periods of time.

Then, by analyzing the resulting regulations, we got the
intuition that they could still be described in a shorter way,
and thus, we set up a final experiment with cases described
by using the minimum amount of information possible.

5.2 Results
Tests with the global scope were performed along a time

interval of three million ticks. During this time, the system
had the opportunity to visit the whole state space —or, in
other words, all possible situations were reached. Neverthe-
less, after this long period, some collisions –about 10 colli-
sions in a 20000-tick period– still occurred, so the learning
process failed to find the proper set of traffic rules that pre-
vented cars from colliding. The reason is two-fold. Firstly,
because, despite having encountered all possible cases, more
than 20% of the cases remained open (here, cases were closed
after exploring five different possible solutions). In fact, from
those open cases, almost 80% just had one or two explored
solutions. This means that their traffic situations might oc-
cur every 1.5 million or more steps on average, and thus,
they correspond to what we refer to as rare cases. There-
fore, since they happen very scarcely, the system did not
had the opportunity to explore enough different solutions so
to learn the best ones. The remaining 80% cases did prop-
erly close, and therefore, they were finally assigned a single
solution —which corresponds to the one with higher per-
formance score6. This leads to the second reason, which is
the limited exploration capacity over the set of possible so-
lutions. By analyzing the performance of solutions in closed
cases, we could observe that, those cases with two or three
involved cars were properly regulated, whereas having four
cars in the junction lead to some cases –about 10%– whose
chosen solution still generated some problems in the traffic
flow. Obviously, having a limited number of chances to ex-
plore all possible combinations of traffic rules that can be
assigned does not guarantee that the best solution will be
found. One may argue that this limit should thus be in-
creased, but it would extend the learning time, where colli-
sions can be generated when applying pseudo-random traffic
rules.

Having encountered some limitations with the global ap-
proach, a second set of experiments with a partial scope
were set-up. The main rationale behind this decision was to
reduce the size of the search space despite its intrinsic non-
determinism problem. The scope was initially defined to be

6From the closed cases, just around 20% were in fact prob-
lematic in the sense that required the addition of some stop-
ping rules, the rest corresponded to fluid traffic situations.

Figure 6: Runtime comparison of global and partial
scope learning approaches in terms of the number of:
solutions (♯sol.), cases (♯cases), and collisions (♯col.).

a 3 × 1 grid (as in Figure 4), so each car was able to see a
range of 3 cells wide in front of him. Figure 6 plots a com-
parison between global and partial scopes along first 35100
simulation steps. This comparison is performed in terms
of three different measures: the number of generated cases
(♯cases); the total number of solutions associated to them
(♯sol.); and the number of collisions that occurred during
a time window of last 2000 ticks (♯col.). As we can see,
learning in partial scope is much faster, since the number
of cases stabilizes around 30 much before than the global
scope, which tends to the 250 cases along the whole time
period that is plotted. Having this small number of cases
does not affect the number of collisions. On the contrary,
they become zero during initial time steps, which is never
the case for the global scope approach (see Figure 6).7. Ob-
viously, the whole state space was explored 8 and no case
could be considered to be rare. Furthermore, since all cases
can just have two possible solutions, we do not consider them
to be open or closed —although all of them could somehow
be considered to be closed. In addition to avoiding colli-
sions, we were interested in analyzing the kind of solutions
that were found. This is so because a formal translation
of an automatically learned case solution into a standard
norm specification may be of great interest for many MAS.
Thus we analyzed those traffic situations that had an stop-
ping regulation and observed that most grids had in common
that the cell located in the front left side of the car position
was occupied by another car heading (relatively) eastwards
—that is, in the direction of the cell the reference car is
steering towards. Thus, we can conclude that the system
had established a ”left handside priority” traffic rule. And
it was so despite the fact that cars were circulating on their
right: in real world traffic systems, driving on one side of
the road usually comes along with a priority to other par-
ticipants approaching from the very same side. Tests were
repeated in order to find out if the ”right handside priority”
was generated. Nevertheless, it was not the case, because
the regulations that do not block those cars coming from

7CBR learning depends on the order cases are learned. In
our case this changes for each new simulation, since the ran-
dom component on car entrance and route selection may
generate traffic situations in different order.
8The proportion of problematic cases was very close to the
global scope approach.
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the left, are in fact promoting a fluid traffic flow within the
junction area –similar to roundabout priorities– and thus
they got better performances than right handside priorities.

Finally, we wanted to further test if the left handside pri-
ority rule was enough to avoid collisions in our traffic simula-
tions. Thus, the last test we did was to repeat partial scope
experiments with the minimum range of sight for the refer-
ence car: a single cell, the one on its left. Obtained results
were really satisfactory, since both the convergence time and
the number of collisions was further reduced. From these re-
sults, it is possible to argue that the case description in this
setting induces the generation of the norm in a straightfor-
ward manner, so defining the proper case description may
be the underlying problem. Therefore, we do not interpret
the positive results obtained with this configuration as the
final take-away message. On the contrary, we want to use
them as a way that illustrates that learning methods can
be used to generate new regulations and that, going a step
further, these resulting regulations can be simple enough to
be translated into standard traffic rules that can be easily
interpreted and followed by external car agents.

6. CONCLUSIONS AND FUTURE WORK
This paper proposes a method to generate new regula-

tions –norms– for multi-agent systems. Specifically, a reg-
ulatory authority learns by considering (and exploring) the
ones with best application outcome. Learning is based on
previous experiences, and corresponds to an unsupervised
variation of Case Based Reasoning (CBR). Cases, as defined
here, can then be translated to norms, in terms of prohibi-
tions and obligations. We thus claim that this innovative
approach can be highly relevant for normative MASs, since,
to the best of our knowledge, no general norm generation
methods have been established yet.

The paper successfully tests this approach in a simpli-
fied traffic scenario. Nevertheless, other scenarios requir-
ing agent coordination –e.g. P2P networks, Robosoccer,
etc.– may well benefit from our approach by avoiding (pro-
hibiting) undesired situations –such as network saturation
or teammate blocking in previous examples– and promoting
(obliging) desired ones. The only requirements9 are to have
monitoring (and evaluating) capabilities as well as continuity
in the solution space —i.e., similar social situations require
similar regulations. Nevertheless, some undesired situations
may appear (e.g, car collisions) as a combination of allowed
individual agent actions (e.g., forward driving), thus, norms
are required to be more complex than just prohibiting those
actions. Context thus becomes necessary. Context, together
with its analogy in real Jurisprudence, are the basic rationale
of choosing a case representation approach. Nevertheless, we
may consider as as future work the application of other learn-
ing techniques that cover domains with alternative charac-
terizations. Additionally, we plan to work on norm violation
and norm translation issues.
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