
2-LAMA Architecture vs. BitTorrent
Protocol in a Peer-to-Peer Scenario

Jordi CAMPOS a&1, Maite LOPEZ-SANCHEZ a, Marc ESTEVA b, Alba NOVO a and
Javier MORALES b

a WAI, MAiA Dept., Universitat de Barcelona, Spain
b Artificial Intelligence Research Institute (IIIA) CSIC, Spain

Abstract. In this paper, we review our Multi-Agent System (MAS) architecture (2-
LAMA) proposed to assist existing MAS. This architecture consists of two levels:
the conventional MAS system and an additional meta-level in charge of assistance.
We illustrate our approach in a Peer-to-Peer sharing network scenario and compare
it with the commonly used BitTorrent protocol. Experiments show that the cost of
adding the meta-layer is lower than the obtained benefit. We conclude by claiming
that our approach provides the system with the required flexibility to deal with
dynamic environments.
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Introduction

Briefly, we can describe a Multi-Agent System (MAS) as a set of agents that inter-
act within an environment to achieve their common and/or individual goals. Originally,
Multi-agent Systems were designed ad hoc without any special methodology, developing
their own infrastructure from scratch [4]. However, as MAS area evolved, certain tasks
were abstracted and gradually provided by MAS infrastructure as domain independent
services. Regarding agent interaction, it is structured through the coordination model
(e.g. interaction protocols) and some of these services aid agents to enact it. Thus, we
have proposed [1] the term Coordination Support to designate those infrastructure ser-
vices that help to structure agent interactions. We group Coordination Support services
in a generic set of layers that encompasses previous layering approaches [5,6,3]. First
layers (Connectivity, Agent Communication and Organisational layers) are devoted to
enable agents coordination at different levels, whereas the top layer (Assistance Layer)
provides an added value by assisting coordination further than enabling it. This layer
may even have pro-active capabilities that let the MAS infrastructure take the initiative
and act intelligently —e.g. adapting previous layers depending on system’s evolution.
We propose two main focus for this purpose: assisting individual agents to follow the
current coordination model and adapting this model to varying circumstances. In fact,
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Figure 1. Two Level Assisted MAS Architecture (2-LAMA).

we identify assisting agents coordination –further than enabling it– as a potential area to
enhance MAS and we expect that new research lines can arise.

This paper proposes a specific architecture to provide the Assistance Layer func-
tionalities. We call it Two Level Assisted MAS Architecture (2-LAMA). Furthermore, we
illustrate its deployment in a Peer-to-Peer sharing network scenario (P2P). This is a sim-
plified scenario where peers (agents) share single pieces of data. The relationships they
establish change over time depending on network status. Our vision is that these relation-
ships define the system’s organisation (i.e. how computers organise themselves to inter-
act), whereas changes in network status constitute its dynamic environment. The perfor-
mance of a system is computed in terms of time and network consumptions. This paper
presents a comparison of the performance of this (2-LAMA) architecture with respect to
a simplified version of the commonly used BitTorrent protocol[2].

This paper is structured as follows. First section is devoted to describe our proposed
architecture from a general point of view. Afterwards, section two introduces our P2P
context scenario and the BitTorrent protocol that we take as reference. Then, third section
details how our 2-LAMA architecture can be applied to this P2P scenario and the changes
in the protocol it entails. Fourth section illustrates this application with some experiments
and their results. Finally, last section presents some conclusions and future work.

1. General Model: 2-LAMA

We propose a Two Level Assisted MAS Architecture (2-LAMA) that consists on adding
a meta-level (ML) on top of a previously existing system we call domain-level (DL)
plus an interface (Int) that communicates both levels (see Figure 1). Thus, our model
can be expressed as: M = 〈ML, DL, Int〉. Each level has a set of agents (AgxL where
xL is a generalisation of ML and DL) that are organised. We note its Organisation as
OrgxL. Hence, each level can be defined as: xL = 〈AgxL, OrgxL〉. Organisational main
components are a social structure (SocStr), its social conventions (SocConv) and some
organisational goals (Goals), thus, Org = 〈SocStr, SocConv, Goals〉.



The social structure consists of a set of roles (Rol) and the relationships (Rel)
among agents playing them: SocStr = 〈Rol, Rel〉. In fact, role’s possible actions are
defined by social conventions. They may define valid sequences of actions and/or their
consequences. The former is usually defined using protocols (Prot), and the latter is
generally expressed by means of norms (Norms). Specifically, protocols define legit-
imate sequences of actions performed by agents playing certain roles. Whereas norms
limit agent’s actions and/or determine their consequences. In summary, SocConv =
〈Prot, Norms〉. Finally, organisational goals describe the proposal that guided the or-
ganisation design —which may differ from participant individual goals.

Furthermore, communication among levels covers bottom-up (Up) and top-down
(Dn) information exchanges: Int = 〈Up, Dn〉. The meta-level perceives domain-level
observable properties, evaluates them, and adapts domain-level organisation (Org′

DL).
Perceived properties are those that can be observed in the environment (EnvP , e.g. date,
temperature...) and those that can be observed in agents (AgP , e.g. colour, position...).
Hence, Up = 〈EnvP, AgP 〉 and Dn = 〈Org′

DL〉. On the other hand, we assume each
meta-level agent (aML ∈ AgML) has partial information about such properties, so it
only perceives a subset of EnvP and AgP (in many scenarios global information is not
available). More concretely, each aML assists a given subset (i.e. a cluster) of domain-
level agents. In this manner, each meta-level agent has partial information about its clus-
ter and shares this information with other meta-level agents in order to better adapt the
domain-level organisation.

In addition, in a specific domain, we can define a metric to evaluate a MAS perfor-
mance —if the MAS has an organisation as described, its goals may be related to this
metric. We use this domain-dependent performance metric to empirically evaluate our
MAS proposal versus other approaches.

2. P2P Scenario

As a general illustration of the Assistance Layer and, in particular, the 2-LAMA Archi-
tecture, we present a P2P sharing network scenario. In such scenarios, a set of computers
connected to the Internet (peers) share some data. Initially, not all of them have such
data, but they exchange pieces of it in order to collect the whole information. In this
work, for the sake of simplicity, we assume information is composed of a single piece of
data. Furthermore, performance in this scenario is evaluated in terms of minimal time and
network consumptions during the sharing process —in particular, we prioritise shorter
times. Thus we can define as system’s goal the minimisation of such measures, so that
the faster the data is obtained and the less network bandwidth2 is consumed, the better
for the users. Notice, though, that there is a trade-off between time and network usage.
Therefore, although a peer can potentially contact any other peer, it usually contacts just
a subset in order to consume less network.

Nowadays BitTorrent is one of the most widely used protocols in P2P sharing net-
work scenarios. Here we use it as a reference but simplify some features such as the

2This bandwidth is the capacity to transfer data over user’s network connection. The less is used by the peer,
the more is left for other purposes.
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Figure 2. Initial stages of BitTorrent simplified protocol. p stands for peer.

multi-piece3 data, which is taken to be a single-piece datum in our case. Figure 2 illus-
trates this simplified version. A peer gets involved in a sharing network by sending a
“join <hasDatum>” message to a tracker —a software that tracks all peers that are
currently sharing a certain data. “<hasDatum>=[1/0]” indicates if it has (1) or has not (0)
the data —i.e. it is a complete or uncompleted peer. The tracker replies with a “contact
<peers>” message, that contains a list of all current peers. Then, the peer exchanges
“handshake” messages with all peers in that list. After that, it exchanges “bitfield
<hasDatum>”4 messages with the same peers to share their status.

After this handshake phase, peers lacking the data request it to the ones that have
it by means of “interested” messages. As a response, all get “choke” messages,
which mean that any further message will be ignored. Nevertheless, at certain time in-
tervals (unchoke_interval), each peer having the data will send “unchoke” mes-
sages to some of the peers that were interested (candidates). The BitTorrent specifica-
tion defines that four peers (num_unchokes) are selected among the candidates. No-
tice, though, that, due to the lack of space, p1 in Figure 2 is just unchoking one peer
(p3). The selected candidates are those that were choked most recently. In case two
of them were choked at the same time, the one having a larger network bandwidth
(upload_bw5) is selected. In fact, if a peer interest is older than a defined interval
(aging_period = unchoke_interval/1.5), its age is ignored and only its peer’s
upload_bw is compared. In addition, in two out of three unchoke_interval selection
processes, the fourth peer is randomly selected.

When a peer receives an “unchoke” message, if it does not have the data yet, it
replies with a “request” message. In such case, the complete peer sends the data. Later,
when the requester peer receives the data, it informs the tracker with a “completed”
message. Next, it sends a “have” message to the other uncompleted peers to let

3Generally, P2P sharing networks split large data into small pieces. Then, peers collect these pieces from
different sources to compose the whole data again.

4In the multi-piece BitTorrent, the “bitfield” message contains one bit for each piece to indicate if the
peer has it or not.

5In a multi-piece scenario, this measure is estimated from previous piece interchanges. However, since in a
single-piece implementation no estimation can be performed, its value is taken from the network definition.
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Figure 3. 2-LAMA in the P2P scenario.

them know that its status has changed. Then, some of them may probably send an
“interested” message as described before.

3. The 2-LAMA Architecture Applied to P2P

This section is devoted to detail how the general model explained in previous section 1
can be applied to the specific Peer-to-Peer sharing network scenario. In order to do so, it
first describes how agents are distributed in the general MAS architecture and afterwards
details the protocol they follow to interact.

We model the P2P scenario as a MAS where peers sharing data are participant agents
in the domain-level (AgDL). They play a single role RolDL = {peer} within a certain
organisation (OrgDL) (see Figure 3). We assume the organisational goal (Goals) is that
all peers have the data consuming the minimal time and network.

As peers usually contact a subset of neighbours, we define it as the relationships
among agents. These relationships, which belong to the social structure (SocStrDL),
will be updated by the meta-level taking into account the system status.

Regarding social conventions, peers use the protocol (ProtDL) specified later
on and two norms NormDL = {normBWDL, normFriendsDL}. First norm
(normBWDL) limits agents’ network usage in percentage of its nominal bandwidth.
This norm can be expressed as: normBWDL =“a peer cannot use more than maxBW%
bandwidth percentage to share data”. Second norm (normFriendsDL) limits the num-
ber of peers a peer can simultaneously send the data. Analogously to previous norm, we
define normFriendsDL =“a peer cannot simultaneously send the data to more than
maxFriends peers”.

In order to provide assistance to the domain-level, we add the meta-level on top of it.
This meta-level also has a single role RolML = {assistant}. Each agent in AgML assist
a disjoint subset of peers (cluster⊂ AgDL) It does it so by collecting information about
them and adapting their local organisation. Its decisions are based on local information
about its associated cluster, aggregated information about other clusters and the norms



at their level (NormML). Some examples of local information are latencies (EnvP )
or which peers have the data (AgP ). Information about other clusters come from their
neighbours in the meta-level social structure (SocStrML). Regarding meta-level norms,
we consider one that limits the number of peers –in the cluster– to inform about a new
peer –in another cluster– having the data. Thus, when an assistant receives the informa-
tion that one peer in another cluster has became completed, the number of peers it can
decide to transmit this information to is limited. Therefore, the norm can be expressed as
normHasML =“Upon reception of a completed(peer /∈ cluster) message, inform no
more than maxHas peers ∈ cluster ”. Finally, we assume assistants are located at Internet
Service Providers (ISP) and thus related communications are fast6.

We extend the BitTorrent simplified protocol in section 2 to include meta-level com-
munications. Furthermore, we add an initial phase to estimate network latencies and vary
the candidate selection criteria in order to exploit meta-level assistance.

In the new protocol, the tracker functionality is provided by meta-level assistants.
Thus, a new peer sends its “join” message to the closest assistant —closest cluster in
terms of network latencies. Then, the assistant asks the peer to measure its latencies with
all other peers in its cluster by sending a “get_latency <peers>” message. The peer
measures latencies by exchanging “lat_req”/“lat_rpl” messages, and informs back
the assistant with a “latency <amount>” message. Once an assistant has all laten-
cies among its peers (EnvP ) and knows which ones have the datum, it estimates which
would be the best organisation. Then it suggests the agent relationships (Rel′DL) by send-
ing “contact <peers>” messages to all the peers in its cluster. Accordingly, in case
a new agent enters the system, its assistant asks this single peer to measure its latencies
against the rest of the cluster, and computes the best organisation again. On the contrary,
if an agent leaves the system, its assistant can compute the new organisation without
collecting new latencies. Notice that in current implementation there are no agents en-
tering or leaving the system. In contrast to BitTorrent, in any case, the supplied list of
peers does not include all peers, but only a subset of peers in its cluster. Afterwards, the
previously introduced P2P protocol is followed by sending “bitfield” messages —i.e.
“handshake” messages are omitted.

In contrast to BitTorrent protocol, there are no “interested” messages nor auto-
matic “choke” replies. Instead, “request” messages are used and the data can be just
sent. Choke replies only occur if the source peer is already serving more than maxFriends
peers. If this is the case, “unchoke” messages are sent as data transmissions end. On the
other hand, a requester peer is allowed to get data from two sources simultaneously. This
is done –for a short time– in order to compare their effective bandwidth so to choose the
fastest source (the other one is discarded with a “cancel” message).

Finally, when a peer informs its assistant that it is completed, then this assistant
informs its neighbour assistants with a “completed_peer <peer>” message. These
assistants spread this information towards some of their peers –limited by maxHas– by
means of a “has_datum <peer>” message. In that moment, those peers may request
the datum to the new source. In addition, an assistant sends an “all_completed” mes-
sage to its neighbour assistants when all its peers are completed.

6This approach is not unrealistic since, nowadays, there exist ISP initiatives [7] to improve –and be involved
in– P2P distribution systems.
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4. Experiments and Results

We have tested our approach on the P2P scenario described in section 2. In our ex-
periments, we consider the network topology depicted in Figure 4. It consists of 12
peers7 (p1..p12) connected through individual links to their corresponding Internet Ser-
vice Provider ISP1..ISP3 (r1..r3 stand for routers). ISPs are in turn connected to the
Internet (r0) through aggregated links, which are shared among the messages from their
peers. As Figure 4 shows, links have different communication capacities. Overall, this
topology provides us with a highly dynamic environment where communication laten-
cies change depending on message traffic and channel sharing.

We have implemented a simulator in Repast Simphony that models agents and their
message transport through the network. We used this simulator to test both BitTorrent
and 2-LAMA approaches. In the BitTorrent configuration, a single Tracker is linked to
r0. Whereas our 2-LAMA approach considers there is an assistant connected to each
ISP (r1..r3). Each assistant is in charge of the set of peers (cluster) in an ISP —e.g. as-
sistant a1 is linked to r1 and it is in charge of p1..p4. In both approaches, these elements
(tracker/assistants) have an infinite bandwidth (as if they were located at the router).

We define bandwidth as the number of data units that can traverse a channel in a time
unit. Hence, the time required to transmit a message from one agent to another depends
on: its length, the bandwidths of the traversed links, and the number of simultaneous
messages traversing the same links —a link’s bandwidth is divided among the messages
that traverse it. In our simulations, we have used the following message lengths: piece
messages require 5000 data units, lat_req/lat_rpl require 150 data units and all the
other messages require a single data unit.

Regarding the configuration of our experiments, BitTorrent uses an unchoke_interval
of 250 time units (ticks), which is approximately the time required to send four (i.e.
= num_unchokes) data messages along an average individual link. Accordingly, they
use an aging_period of 130 ticks to keep the same ratio among these two constants
than the one that is defined by the BitTorrent protocol. On the other hand, the 2-
LAMA experiments have been performed with the following initial norm: maxHas =∞,

7In this paper we are not dealing with entering/leaving peers.



time cNet nHops nData cLat cML

BT 933.3 206182 3.4 11 0 0
2-LAMA 811.1 316190 3.0 30.7 21600 6596.03

BT-P4 827 208650 3.5 11 0 0
2-LAMA-P4 667 285660 2.9 38 21600 6380

Table 1. Results from 2-LAMA and BitTorrent (averaged and a single configuration).

maxBW = 100%, maxFriends = 3 —notice that last two norms are adapted at run-time
by meta-level. These norms lead 2-LAMA approach to a similar initial behaviour than
BitTorrent because: maxHas =∞ does not restrict communications among clusters,
maxBW = 100% does not limit peer communication and maxFriends = 3 is equivalent
to the three non-random unchoked peers. In our current implementation, domain-level
agents always fulfil norms8.

Table 1 shows different evaluation metrics in BitTorrent (BT) and 2-LAMA ap-
proaches. We have tested both approaches by varying the peer that initially has the da-
tum. Thus, tests include the average results for twelve different settings (so that they
cover all possible initial data positions in a single peer ). Furthermore, in order to ex-
emplify a single execution, we have included the last two rows, which correspond to the
execution with the data initially at peer P4, which is an intermediate case.

The main evaluation metric is the time required to spread the data among all peers
(time). We also evaluate the network cost (cNet) consumed by all messages. The cost of
a single message is the product of its length by the number of links it traverses. Thus,
the table also shows the average number of links traversed by each message (nHops).
In addition, the results include the number of data messages (nData), the cost of all
lat_req/lat_rpl messages (cLat), and the cost of all messages related with the meta-
level’s presence (cML) —i.e. all messages related with assistants.

If we compare the performance of both approaches (BT and 2-LAMA), we see that
our proposal requires less time to share the data. This means that the time peers invest
in communicating with our proposed meta-level and collecting the required information,
is less than the benefits of having such an additional level. Even more, we expect larger
differences in performance when repeating the data sharing process among the same
peers since the information collected by our meta-level –e.g. measured latencies– will be
used more than once. Thus, for example, In current 2-LAMA experiments, from 33 up
to 56 ticks –depending on the cluster of peers – are invested in measuring latencies.

In contrast, the network cost (cNet) is larger in 2-LAMA. Our proposal requires
more communication because it initially measures latencies (cLat), it has extra com-
munications due to the meta-level (cML), and it sends more data messages (nData).
Specifically, latency measurements (cLat) represent approximately a 20% of the network
cost increment. This represents an initialisation phase that could be omitted in subse-
quent executions. On the other hand, in current scenario, 2-LAMA peers compare data
sources by retrieving some data from them. This increases the number of data messages
(nData) although most of them are cancelled. We expect to minimise this network con-
sumption when dealing with more than one piece of data, since peers could compare
sources depending on previous retrieved pieces. Regarding the number of links traversed

8Otherwise, we could count on an infrastructure mechanism at ISPs that detects and filters out messages that
exceed the bandwidth limit (maxBW), or the simultaneous data messages limit (maxFriends = 3).



Figure 5. Norm adaptation during the a data sharing process.

by messages (nHops), our 2-LAMA approach has more local communications –i.e. intra-
cluster– than BT. It is convenient because local messages have lower latencies and cost.

Finally, the empirical comparison conclusion depends on the importance of execu-
tion time versus network consumption. In particular, we assume time weights more than
network. Thus, having a decrement of 10% in execution time is worth since the network
increment does not saturate the communication channels yet. Under this criterion, we
consider 2-LAMA is better than BT.

4.1. A norm adaptation case

Last two rows in table 1 compare two executions with the data initially at peer P4. In this
case, the meta-level adapts domain-level norms as depicted in Figure 5. The maxFriends
limit starts with a value of 3 but decreases to 1 at the beginning, since there is only a sin-
gle data source with a small individual link bandwidth. Next, it is increased to 2 to take
more profit of the new data sources —i.e. the peers that obtained the data from the origi-
nal source. However, this generates more network traffic on aggregated links, which sat-
urates them and increases network latencies. Thus, the meta-level decreases maxFriends
again to 1 to reduce network traffic. Even maxBW is decreased to 50% to reduce traffic.
Once the data has been spread among clusters, it can be distributed without collapsing
the aggregated links. Thus, both limits are increased again. Finally, when there are much
more data sources than peers retrieving data, maxFriends can decrease again, forcing a
parallel distribution. From this we can see how 2-LAMA is able to re-organise itself
depending on environment changes, with more flexibility than BT.

5. Conclusions

This paper presents our Two Layer Assisted MAS Architecture (2-LAMA), that adds a
meta-level in charge of adapting the system to dynamic changes. The proposed adapta-
tion is distributed requiring no global information. We illustrate our proposal by means
of a P2P sharing network scenario. We also use it as a testbed for comparing our ap-



proach with the commonly used BitTorrent protocol. Experiments show interesting re-
sults, notably the fact that the cost of adding the meta-layer is lower than the obtained
benefit. Hence, we conclude it is feasible and worth to add our proposed meta-layer.

As future work, we plan to further explore the adaptation mechanism by applying
automated learning techniques. Moreover, we would like to deal with open MAS, where
agents can join and leave and transgress social conventions. This would mean to deal
with dynamical changes further than the dynamism due to sharing channels.
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