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Preface

The classical Hilbert transform is given, at least for "nice" functions, by the following expression:

Hf@) = 2im [ fa—n2

T e—0 |t‘>€ t

Its natural generalization® to functions defined on R? is

H f(x1,22) = lim f(xl—t,$2—t)%7 (1)

e—0 |t‘>5
but one can consider a whole family of operators { Hr}r by replacing the function

f((xhx?) - (t=t>) by f((xlamQ) - F(t))v

where I'(¢) is a flat curve in the plane. The resulting operator Hr is called the "Hilbert transform

along I'". The motivation for these generalizations comes from the field of partial differential
equations. For instance, let L be the parabolic operator
ou  0%u

Lu=—— .

Oxy  Oxf

It is easily checked that Lu can be written as

Lu =T\ (Lu) — Ty(Lu),

where
_ 270 ~
Tif(&,&) = ﬁ%ﬂfb&)
Tof (&1, &) = ngf(&y&)-

2mify + 4m28

Notice that 77 and 75 are two operators with multipliers m; and ms satisfying

mi()\gh >\2§2) = mi(€17€2)7 )\ > 07 1= 1727

!The factor % in the classical Hilbert transform is usually included so that H is an isometry on L?(R).
However, it makes no difference in terms of boundedness and that’s why we no longer include it when generalizing
H.



and whose Fourier transforms K; = m; have the following homogeneity property:
KZ’(/\CUl, )\21[‘2) = )\_SKZ'(ZL‘hZL'Q), A > 0, 2=1,2. (2)

In this setting, and after some computations involving the method of rotations, we observe
that studying the solutions of boundary problems associated with parabolic operators such as
L boils down to the study of operators like

Tf(wy,29) = / Q(6) Hy f (21, 22)(1 + sin?(6))do,
0
where (0) = K(cos(0),sin(#)), K satisfies the condition in (2) and

Hyf(x1,22) = lim f(z1 —rcos(f), vy — r¥sgn(r) sin(é’))ﬁ

e=0 [r|>e r
Notice that, for a fixed 0 € [0, 7|, Hy is the Hilbert transform along the curve
['(t) = (tcos(f),t*sgn(t) sin(h)).

Summing up, the Hilbert transform along flat curves is not just a pointless generalization
of (1). In this case, when I'(t) = (t,t), pretty much everything that we know for the one-
dimensional Hilbert transform can be extended to Hr. However, if we consider more general
curves, things are not that easy. This is why the study of the Hilbert transform along flat
curves has become a question of high interest in Harmonic Analysis. See, for instance, [6], [8],
[11] and [12].

The aim of this project is to study the boundedness of the Hilbert transform along the
most elementary curve: the parabola (¢,¢?). However, it is not until the third chapter that this
operator appears. The thorough study of several techniques in Harmonic Analysis is needed
before one is ready to start examining the Hilbert transform along the parabola.

L(t) = (12 I'(t) = (t,t)

—~
~—
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In the first chapter, we introduce notions and tools that will be subsequently used. For
instance, we state the two main theorems in interpolation theory. If we have an operator that
is bounded on two different spaces, this theory allows us to deduce its boundedness on an
"intermediate" space, so it goes without saying how important this theory is when dealing with
a boundedness problem like ours. Another tool that is discussed in this chapter is the Calderén-
Zygmund decomposition. This decomposition is generally used to deduce that an operator is of
weak-type (1,1) from its L?>-boundedness. In order to so, one needs that the operator satisfies
a "well-localization" property as well. This is the main difference between the classical Hilbert
transform and the one along the parabola: the first one is well-localized, and hence it will be
of weak-type (1, 1), whereas the latter fails to fulfill this condition, and in fact, the question of
whether or not it is of weak-type (1,1) remains open nowadays. Finally, we will explain the
most basic result concerning the control of oscillatory integrals, Van der Corput’s lemma, and
we will make a short introduction to Littlewood-Paley theory, which in some sense, tries to find
extensions of Plancherel’s theorem for functions in LP.

In the second chapter?, we define the classical Hilbert transform and prove that it is of weak-
type (1,1) and strong-type (p,p) for 1 < p < oo. The case p = 2 is obvious from the definition.
The shortest way to show the rest of the estimates is to start proving the weak-type (1,1)
by means of the Calderon-Zygmund decompostion and then use interpolation and duality to
obtain the strong-type for 1 < p < oo. Nevertheless, we present a curious result which implies
the strong-type (2p, 2p) of the Hilbert transform assuming strong-type (p,p). Therefore, since
we have the hypothesis for p = 2, we can use a recursive argument to obtain strong-type for
all powers of 2. Then, using interpolation and duality we conclude that H is of strong-type
(p,p) for 1 < p < co. We prove the weak (1,1) estimate as before, by the Calderén-Zygmund
decomposition. Finally, since the Hilbert transform is initially defined on a dense set, we must
make sure that its extensions to the LP-spaces are pairwise consistent. In the last section of
this chapter we give the proof of a result presented in Chapter 1 for which the classical Hilbert
transform is needed.

In the last chapter, we introduce the Hilbert transform along the parabola. We start proving
its L2-boundedness, which is no longer direct. For this section, we follow some notes by A.
Carbery [1], where he uses Van der Corput’s lemma and Benedeck-Calderon-Panzone’s theorem
to obtain the result. A similar approach is given in J. Duoandikoetxea’s book [9], where he
tackles the problem of the LP-boundedness of Hr. In this case, Littlewood-Paley theory is also
required to obtain LP-estimates for p # 2. Finally, we introduce Yano’s extrapolation theorem
and we see how it can be used in order to obtain boundedness results near L'(R?).

To conclude this preface, I would like to thank J. Soria, with whom I shared many enlight-
ening meetings at the beginning of this journey of mine called "Analysis", and M. J. Carro,
who gladly picked up the baton, for their great support and dedication.

Barcelona, June 2012
Carlos Domingo

2The definition of the classical Hilbert transform and its strong estimates for 1 < p < oo are based on a final
assignment carried out in the masters course "Functional Analysis", under the supervision of J. Cerda.






Chapter 1

Preliminaries And Tools

1.1 Convolution With Tempered Distributions
First of all, let us recall some definitions and fix some notation:
Definition 1.1. We define the Schwartz class by

S(R) ={p € C*R) : gn(p) < o0 for all N > 0},

where
g (p) = max [|(1 + )N (2)]| o

The sequence {qn}n>o is an increasing sequence of norms defining the topology of S(R).
Definition 1.2. We now define the space of tempered distributions by
S'(R) = {u: S(R) — C linear and continuous},
endowed with the weak*-topology. Hence,
up, = u in 8'(R) <= u,(p) = u(p) in C for all p € S(R).

If u € S'(R) is a tempered distribution, we write its action on a Schwartz function ¢ € S(R)
by
u(p) = {p,u).

Definition 1.3. If f € LY(R), we define its Fourier transform by

F(E) = Fle) = / f(x)eiotar,

and if u € S'(R),
(p,u) = (@B, u), forallp € S(R).
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The two definitions are compatible, in the sense that if we think of an integrable function
f as a tempered distribution in the following way,

(o1 f) = / f(@)p(@)dr, for all p € S(R),

then both definitions of fcoincide. It is also easy to show that
F:S(R) — S(R) and F:S'(R) — S'(R)

are linear bijections. Having settled this, let us now see how we can define a convolution in
the setting of tempered distributions. Assume for a moment that f € L'(R) C §'(R) and let
¢ € S(R). Then,
(F+0)a) = [ ola =) f0)dy = (5. 5).
R

where we use the notation (7,¢)(x) = ¢(z — a) and ¢(x) = p(—=z). Motivated by this, we give
the following definition:

Definition 1.4. Given u € §'(R) and ¢ € S(R), we define their convolution by
(ux @) (x) = (Tap, ).
Proposition 1.5. Given u € §'(R) and ¢ € S(R), we have that:
(i) The function (ux* ¢): R — C is continuous on R and it defines a tempered distribution.
(ii) For every fized x € R, (u* ¢)(x) is continuous with respect to u and ¢.
(iii) For all p € S(R), we have that (P, u * @) = (P x Y, u).
(iv) The correspondence

S'(R) x S(R) — S'(R)
(u, ) — ukp

s continuous with respect to u and .
(v) It holds that u* ¢ =1 - P.
Proof. (i) u# ¢ € C(R) since it is the composition of two continuous maps:
u*gp:RgS(R) - C.
Now, let us check that u x ¢ € S'(R). Consider the family of norms in S(R)

gn(p) := max||(1 + xZ)Ngo(o‘)(m)Hoo, forall N >0, ¢ € S(R),

a<N
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which define the topology in S(R). If we fix x € R, we have that for all N > 0,

an(72p) =max[|(1 +y?) 70 (y) ]

_ 2\N (),

=max||(1+y7)7 ¢ (y — o)l

<2V(1+ %)Y max | (1+ (y — 2)*)" 0" (y — 2)l

=2V(1 4 2)Vqn ().

In the last step, we use that (1 + y?) < 2(1+ 2?)(1 + (y — z)?) for all z,y € R. Indeed,
2014+ 23 (1 + (y — 2)*) =2+ 2(y — 2)* + 22* + 2(zy — 2°)*

=14+ 9y* + [1 +9° — dyx + 22% + 22% + 2(zy — 2°)?]
=1+ 92 +[1+ 2z —y)* + 2(xy — 2%
>1+ 12

Now, since u € §’(R), we have that there exist an integer N > 0 and a positive constant
C > 0 such that

|(wx @) (2)] = [{rep, w)] < Can(rep) < C(1+2%)qn (@) = C(1+2%)",

using also the relationship between gy (7,¢) and gn(p) that we have found. Finally, given

Y € S(R),

(W, )] sA|w<x>\\<u*w><x>\dx
gc/}R [W(2)|(1 + 2)V (1 4 2 e

<Can () / (1+2%) Lz = Can (1),

R

and therefore, u * ¢ € S'(R).

Fix z € R. Assume that ¢ € S(R) and take a sequence {u,}, C S'(R) converging to
u € §'(R). Then, 7, is another Schwartz function and by the weak*-topology of S’(R)
we have that

(un * @) () = (726, up) — (To@,u) = (u*p)(x).
Now, fix u € §'(R) and take a sequence {¢,}, € S(R) converging to ¢ € S(R). Therefore,

ToPn — T, in S(R),
and by the continuity of w,

(u* @) () = (TP, u) — (T:0,u) = (u* ) ().
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(i)

Suppose for a moment that we have proved the identity for functions ¢» € D(R), that
is, for C*°-functions with compact support. We know that D(R) is a dense subspace of
S(R). Now, take ) € S(R) and consider a sequence {1, },, € D(R) such that

U, =1 in S(R).
Then, by our assumption,

so taking limits when n tends to infinity and using that v and u * ¢ are tempered distri-
butions, we obtain the sought-after formula. Therefore, we can assume that ¢ € D(R).
Now,

(6 ) = /R (e)u(rap)da
- / w(p(@)7,P)dz

=lim Y hu((kh)Tin@)

—u ( lim > h@b(l{:h)mh@)

_u< /R z/;k(ej)médx) = (@ * o),

using that the Riemann sums are finite (since 1) is compactly supported) and u is linear
and continuous.

Fix ¢ € S(R) and take a sequence {u,}, C S'(R) converging to v € §'(R). We want to
check that
U, ¥ 0 —> u*xgp inS'(R).

Indeed, take ¢ € S(R) and by (iii),
(W, un # 0y = (G # P un) = (G5 Y, u) = (¥, u % ).

Similarly, for a fixed u € §'(R) and a sequence {¢,}, € S(R) converging to ¢y € S(R),
we have

(W, wk n) = {(Gn*P,u) = (Pxp,u) = (Y, uxg),

so we are done.

Let ¢ € S(R). Using (iii) and the fact that the Fourier transform is a linear bijection
from S(R) to itself,

(W, %) =(U,ux @) = (@ P,u) = (50, u)
=(pp, 1) = (P, u) = (¢, Pu).
Since this happens for every ¢» € S(R), we conclude the proof.
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1.2 Weak LP-Spaces

Definition 1.6. Given a measurable function f on a measure spacet (X,u), we define the
distribution function of f as the function ds defined on [0,00) by

dy(a) = p({z € X - |f(2)] > a}).

Definition 1.7. For 0 < p < oo, the space weak-LP (X, 1) is defined as the set of all measurable
functions f such that

P
| fllp.co = inf {C >0:de(a) < - for all o > O} = Slilg{Wdf(W)l/p}
Y

is finite. The weak-L>(X, p) is by definition L>°(X, u).

These spaces are denoted by LP*°(X,u) and the functions in LP*°(X, u) are considered
equal if they coincide almost everywhere. It can be shown that

 [IMfllpoo = IAIflp.co;
o [IF + gllpoe < co([lfllpoo + lgllpoo),  with ¢, = max{2, 2'/7},
* [flpee =0 f=0

Therefore, LP*° is a quasinormed linear space for 0 < p < co. These spaces are complete with
respect to || - ||p,00, SO they are quasi-Banach spaces. Moreover, if p > 1, the LP*>-spaces can
be normed to become Banach spaces. Finally, we will prove an easy result that connects weak
LP-spaces to the classical ones:

Proposition 1.8. For any 0 < p < oo and any f € LP(X, ), we have ||f|poo < ||fll,. Hence,
LP(X, ) C LP>(X, ).

Proof. This is a trivial consequence of Chebyshev’s inequality:
o) < [ |f@Pdu(o) < 1
{If1>a}

Taking the supremum over all a > 0, we obtain || f||P . < || f[]5. O

b, —

The important fact about the LP*°-spaces is that they are larger than the LP-spaces. The
inclusion, moreover, is strict. For instance, we have that 1/t ¢ L'(0, 00) and

1 1
dije(y) = Hte (0,00) = 5 >7H = for all > 0.

Therefore,

= sup{ydi;:(7)} = 1,

1,00 v>0

’ 1

so the function 1/t belongs to L*°(0,00). For more information concerning LP**°-spaces, see
[10].

!Throughout this project, all measure spaces will be assumed to be o-finite.

9
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1.3 Convergence In Measure

Definition 1.9. Let f and f, be measurable functions in a measure space (X, ), for n > 1.
It is said that f, — f in measure if, for all € > 0,

limp({e € X 2 [,() = (@) > <h) =0,

Proposition 1.10. Let 0 < p < oo and f,, f be in LP>®°(X,pn). If f, = f in LP>®, then f,
converges to [ in measure.

Proof. Take € > 0, we have that

1p _ ei{z € X ¢ |ful2) — f(2)] > })'/? < o = Fllpoo
€ - £ ’

p{z € X - [fule) — f(2)] > })

which tends to zero by hypothesis of L”*°-convergence. O
Corollary 1.11. If f,, f are in LP and f, — f in L?, we have convergence in measure.
Proof. This is trivial since f, — f in L? implies LP*-convergence. m

Therefore, we conclude that convergence in measure is weaker than convergence in LP**°.
However, it still conserves the following good properties:

Proposition 1.12. Let f,, and f be complex-valued measurable functions on a measure space
(X, 1), n > 1, and assume that f, converges to f and g in measure. Then, f = g p-almost
everywhere.

Proof. Fix £ > 0. We have, by hypothesis, that
limju({e € X ¢ (@) = S@)] > /2D =0 and limpu({a € X ¢ (@) = g(@)] > 2/2}) = 0
Now,

plfe = [f(2) = g(@)] > e}) = p({z : |f(2) = ful2) + fule) — g(z)] > €})
p{a = |f (@) = falo)] + [fulz) — g(x)] > €})
p{a : |f (@) = fale)] > e/2}) + p({z : [fulz) — g(2)] > €/2})

and taking limits when n tends to infinity, we deduce that

pfz e X |f(z) —g(z)] > e}) = 0.

Since this happens for every € > 0, we conclude that

pfr € X2 fx) # g(x)}) =0

and we complete the proof. O

<
<

Proposition 1.13. If f, converges to f in measure, then there erists a subsequence of {fn}n
which converges to f p-almost everywhere.

Proof. See |10, Th. 1.1.11] ]

10
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1.4 Interpolation Theorems

Theorem 1.14 (Riesz-Thorin). Let (X, 1) and (Y,v) be two measure spaces. Let T be a linear
operator defined on the set of all simple functions on X and taking values in the set of all
measurable functions on'Y. Let 1 < po,p1,qo, 1 < o0 and assume that

17| oo vy < Mol || ro(x 005
17| Lar vy < MallsllLor x5
for all simple functions s on X. Then, for every 0 < 6 < 1, we have
ITs]| Lacyy) < Mo~ MY || 1o (x5
for all simple functions s on X, where

1 1-6 0 1 1—-6 6
= +— and - = + — (1.1)
p Do h q do q1

By density, T has a unique extension as a bounded operator from LP(X, u) to LYY, v) for all p
and q as in (1.1).

Proof. The proof of this theorem can be found, for instance, in [10]. O

Definition 1.15. Let T be an operator defined on the linear space of complex-valued, measurable
functions on a measure space (X, ) and taking values in the set of all complez-valued, finite
almost everywhere measurable functions on a measure space (Y,v). T is called sublinear if, for

all f, g and all X € C, we have
T(f +9)l <ITfl+1Tgl and [T(Af)] = [M[Tf].
Notice that if T is linear, in particular it is sublinear.

Theorem 1.16 (Marcinkiewicz). Let (X, pn) and (Y, v) be two measure spaces and let 0 < py <
p1 < 00. Let T be a sublinear operator defined on the space LP°(X)+ LP*(X) and taking values
in the space of measurable functions on Y. Assume that there exist two positive constants Ag
and Ay such that

T fllroee vy < Aol fllrox)  for all f € LP(X)
HTfHLm,oo(y) < AleHLpl(X) for all f € L (X)

Then, for all py < p < py and for all f € LP(X), we have the estimate

1T fllzrevy < Allfll o),

where
D D Up  /m-a/p)  /pg)=(1/p)
A= 2( 4 ) Aél/po)—(l/m) Al(l/po)—(l/pl)‘
P—PpPo P1—P
Proof. The proof of this theorem can also be found in [10]. O

11
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1.5 A Basic Characterization Concerning Multipliers

Definition 1.17. We denote by M?**(R") the set of all bounded, linear operators from L?(R")
to L?(R™) that commute with translations.

It can be checked (see [10]) that every operator T € M?*?(R") is given by convolution
with a tempered distribution. The following theorem characterizes this space and allows us to
check that a convolution operator from L?(R™) to itself is bounded just by studying the Fourier
transform of the convolution kernel.

Theorem 1.18. An operator T is in M*2(R") if and only if it is given by convolution with
some u € S'(R™) whose Fourier transform u is in L>°(R™). In this case, the norm of T is equal
to ||t]|co-

Proof. First assume that @ € L>°(R™). Using Plancherel’s theorem, for all f € L?(R"),

ITfllz = 1wl = 1If - ullz < ullool[ fll2 = [llooll £1l2;

so |T]| < ||t]|lee and T € M>*?(R"). Conversely, suppose that T € M??(R") is given by
convolution with v € §'(R"). We will show that @ is a bounded function. Indeed, consider for

every R > 0, a C*-function pg with compact support on the ball B(0,2R) and equal to 1 on
B(0, R). Since pr € S(R™), we have that ¢}, € S(R") C L*(R") and

—_—

pr U= (of *u) = T(pp) € L*(R").

Moreover, since the product of the function ¢p and the distribution u coincides with u on
B(0, R), we have that © € L?(B(0,R)) for all R > 0, and thus, u € L? _(R"). Take now a

loc

function f € L°°(R™) with compact support. We have that the product function fu € L*(R"),
and Plancherel’s theorem together with the boundedness? of T' gives

Lfallz = 1Y+ ully = 1T < ITIN 1.
Therefore, for every bounded function f with compact support,
/R (IT|* = [a() )| f (z)[*dz > 0.
For every r > 0 and y € R", define
fla) = (@)
)= ——"—= (),
By e

which is bounded and has compact support. Now, if we substitute this f in the previous
estimate, we obtain
1 / 2 a2
TN = fu(z)[")dz = 0,
’B<y77')’ B(y,r)

ZNotice that f € L°(R") C L?(R") and hence, f¥ € L*(R™).

12
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and using the Lebesgue Differentiation Theorem together with the fact that |a|* is locally
integrable, we deduce, taking limits when r tends to zero, that

1T = G 2 0, ae. y K™
Hence, u € L*(R") and
[d]le < I17-

Combining this fact with the estimate ||T'|| < |||/, that holds whenever u € L>*(R"), we get
the equality and finish the proof. O

1.6 Dyadic Cubes

Definition 1.19. Define a dyadic cube in R™ as the set
Qk,ml,--‘,mn = [27km17 Qik(ml + 1)) X X [27kmn7 27k<mn + 1))7
where k,mq,...,m, € Z.

For a fixed k € Z, all the cubes Q. m, ... m, have side-length equal to 27" and their Lebesgue
measure is 27%". Moreover, their vertices are adjacent points of the lattice (27*Z)". Therefore,
the set of all dyadic cubes of the same side-length form a covering of the whole space R", and
two different cubes in this set are always disjoint. We will write

Dy ={Qkmy...my : M1, ..., my, € Z}, for every k € Z.

We will also denote the set of all dyadic cubes by

D:UDk

kEZ

Given two dyadic cubes in D, they are either disjoint or one is fully contained in the other.
Moreover, a dyadic cube in Dy, is contained in a unique cube of each family D, for j < k, and
contains exactly 2" dyadic cubes of D ;. The following picture represents some dyadic cubes
in R?:

QfZ,0,0

Q0,01 | Qo1

Q*l,l,O
Q0,00 | Qo,1,0

0 1 2 4

Notice that they are all either disjoint or related by inclusion, and that each dyadic cube in
Dy, contains exactly 4 dyadic cubes of Dy ;.

13
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1.7 The Calderén-Zygmund Decomposition

Theorem 1.20 (Calderén-Zygmund). Let f € L'(R™) and o > 0. Then, there exist functions
g and b on R™ such that

(i) f=g+0.
(it) b = >, b;, where each b; = (f - |Qj\_1fQj f)xo, is supported on a dyadic cube Q;.
Furthermore, the cubes Q. and Q); are disjoint when j # k.
(iir) l|glly < [ flle lgllee < 2% and [g(2)] < a a.e. on R"\ J; Q-
(iv) fQj bj(x)dz = 0.
(v) 116l < 2" e|Qy].
(vi) 32;1Q;1 < a M| fl1.
Proof. Take the set of dyadic cubes D, of side-length 2% such that

1
Q| =27"" > EHle’ V@ € Dy.

More precisely, take k € Z with
Ina —1In||f

nln2 '
We will call the set Dy, which decomposes the space R™ into a mesh of disjoint dyadic cubes of
the same size, the cubes of zero generation. Now, if we subdivide each cube of zero generation
into 2" dyadic cubes, we obtain Dy, which we call of generation one. We will select a cube
Q@ of generation one if and only if

k<

ﬁ/Q\f(xﬂdx > a (1.2)

Let SV C Dy,1 be the set of all selected cubes of generation one. Now, subdivide each non-
selected cube into 2" subcubes, obtaining a subset of Dy, o, which we will call of generation two.
Select all cubes @ of generation two such that (1.2) holds, and call this set S®). By repeating
this procedure indefinitely, we obtain a countable collection of dyadic cubes

{Qj}iz0 = | J s™.
m=1

By construction, these cubes are disjoint. If we have not selected any cube, the sequence is
empty and b =0, g = f. Define for every 5 > 0,

1
bj = (f 1G] o, f(y)dy> XQ;

and let

b:ij> g=[f—b

320
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With this, we have (i) and (i7). Moreover,

j(r)dr = [ f(z )df@—— f(y)dy - 1Q;] =0,

/QJ Qj |QJ| Q]

so we also prove (iv). Now, for each cube @;, there exists a unique non-selected cube @’ of
twice its side-length that contains ();. We will call this cube the father of @);. Since @)’ was

not selected, we know that
; /
|f(@)|dz < o,
Q' Jo

so, using that Q; C Q" with |Q'| = QRIQJL

1
f(z)|de < f / f(z)|ldr < 2"« 1.3
1Qil Jo H)‘ \QJI Ml — Q] 7 3
Therefore, going back to the definition of b;,
1
@it = [ 1@ =g [ e <2 [ 1@l <)
Q]‘ j |QJ| Q]

which proves (v). To prove (vi), recall that every cube @); satisfies (1.2) and they are disjoint,

SO
1
<= )|dz = = dz < =||f|1.
Sl > [ W= o [ i<

>0 >0 i Qi
Finally, we need to obtain the estimates in (ii7) concerning the function g. We have that

ng—bzf—ij=f—foQj+Z@/Qf<y>dymj

j>0 j=>0 Jj=0

1
=fXzuU, @, + Z|Q]| S Wy xa,.

7>0
Therefore, we deduce that

g(z) = { f(m) on Rn\Uj Qj

o Jo, fW)dy  on Q. -4

On Qj, ¢ is constant equal to |Q;|™* fQj f, and this is bounded by 2"« (see (1.3)). Now, take

x € R\ Uj Q. For each m > 0, there exists a unique non-selected dyadic cube Q;’") of
generation m that contains x. For each m > 0,

1 1
p fydy| < —— |f(y)|dy < a,
|Q§C )| oLm |Qa(e )| Qi

and the intersection of the closures of the cubes Q\™ is the singleton {z},

N Q™ = {a}.
m=0
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since their side-length is halved at each step and Q™ D Q'Y for every m > 0. Using

Lebesgue’s differentiation theorem, we deduce that, for almost every x € R™ \ Uj Q;, we have

1
f@ )_nlb_)oo@(—ml /Q;m) f(y)dy.

Since the modulus of these averages is at most a, we conclude that |g(z)| = |f(z)| < «a a.e. on
R™\ UJ; @;. We had that [g(x)| < 2"a on (J; Q;, so we prove that ||g||loc < 2"a. Going back to
(1.4), we have that

o< [ 1o g [ a1 = [ 1@ide =151

; @
so we conclude the proof of (ii7) and the theorem. O

This decomposition of f as the sum of g and b is called the Calderén-Zygmund decomposition
at height o. The function g is called the good function, since it is both integrable and bounded.
The function b stands for bad function. However, it follows from (i) and (i7) that the bad
function is integrable with

1l < [[£1lx + llgll < 2[1 1,

and it is carefully chosen to have mean value zero. Indeed, since the support of b is the disjoint
union of cubes Uj Q.

/nb(:c)d:c:/UjQy dx—Z/ dx—Z/ )dz = 0.

Also, due to the fact that g is integrable and bounded, it lies in all the LP-spaces for 1 < p < oco.
More precisely, for 1 < p < oo,

g1l :/R lgllgl”~" < llglles gl < ")~ [ f]]1- (1.5)

Definition 1.21. We will say that an operator T : L*(R") — L*(R"™) is well-localized if, for
every function b € L*(R™) supported on a cube Q and such that fR" b =20, we have

x)|de < C x)|dx.
L e <0 [

Now we will present the first consequence of the Calderén-Zygmund decomposition:
Theorem 1.22. If T : L*(R") — L*(R") is bounded and well-localized, then
T : LY(R™) — LY®(R")
s bounded.

16
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Proof. By density, it is enough to prove that for all f € L'(R") N L*(R") and every \ > 0,
" C
[{z € R": [Tf(2)| > 22} = L[| fll-

If we consider the Calderén-Zygmund decomposition of f at height A, we obtain a sequence
of disjoint, dyadic cubes {Q;},; and a couple of functions ¢ and b such that f = g + b and
the conditions (i) — (vi) of Theorem 1.20 are satisfied with constant a = A. Now, since®
Tf=Tg+Tbh, we have that

[z € R™: [Tf(z)| > 2\}| < [{z € R" : |Tg(z)| > A} + [{z € R™ : [Tb(z)] > A}|.

Using Chebyshev’s inequality, the L?—boundedness of 7" and the estimate (1.5) for the LP-norm
of g, we get

{z € R [To(s M}\_v/ To(@)de < Sillol < S

so we are done with the “good part” g. Let us see what happens with the bad one:
Let 2@); be the dilation of the cube @);, that is, the cube with the same center and twice its
side-length. Write

Q::UQj and Q* ::Usz.
J J

Clearly, |2*| < C|Q| and
H{x € R" : |Tb(z)| > A} < ||+ |[{z & Q" : |Tb(z)| > \}| (1.6)
C 1
<SWfl+y [ e,
R\ Q*

where we use Chebyshev’s inequality and the fact that the measures |Q);| satisfy
« C
) <ol <oyl < Sl
J

Now, by definition, we have pointwise convergence of the series b(z) = >_,b;(x). Moreover,
since the cubes (); are disjoint,

= [b(@) Xy, o, (7) < b(x)] € L*(R),

so we deduce that the series Zj b; converges to b in L*(R"). Using the continuity of T, we
obtain that*
> Tb;=Tb in L*(R").

J

3We know that g € L?(R") and, since f € L*(R"), we get b = f — g € L?(R"). Therefore, T'g and Th make
perfect sense.
*Again, since b; = (f + C)xq, and f € L*(R™), we have that b; € L*(R™) and Tb; is well defined.

17
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As a consequence, there exists a subsequence which converges almost everywhere, say
N

Tb(x) = lim Thi(x) ae. z,

k—o00
7=1

and therefore,
|Tb(x)

lgrolo Z Th,(

Using this fact in (1.6), we deduce that

Ny
< lim Zl T (z)| = Z\Tbj(x)y a.e. .
J= J

n C 1
{z €R": |Th(x)| > A} < Clfh+ 5 /M* EJ: |Tb; ()| da
We need to study this last integral, which by the monotone convergence theorem, satisfies

/ Z\Tb ]dw-Z/ | Th;(x ]dx<2/ |Tb; () |dx
RP\Q* n n

\2Q;

<Y | it <Y <0y 2 e
J J J J

< ClIflss

\

where we use that T is well-localized together with some properties of the Calderén-Zygmund
decomposition. Summing up, we have proved that

oz € R": |Tf(2)| > 22} < {z € R™ : [Tg(z)| > A} + [{z € R" : [Tb(z)| > A}
C 1 C
<Shs [ S Il < Sl

so we complete the proof. O

Definition 1.23. If K is a locally integrable function defined on R™\ {0}, we say that it satisfies
the Hormander condition if

/ |K(x —y) — K(z)|de < C, forally € R".
|z[>2]y]

Proposition 1.24. If K € CY(R"\ {0}) and, for every x # 0,

then the Hormander condition holds with constant 2"C'. We call this stronger condition the
gradient condition.

18
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Proof. Let y € R™. We can assume that y # 0, otherwise there is nothing to prove. Now, using
the mean value theorem,

Clyl|
T e —y+ Ayt

|K(z—y) = K(2)] < [VE((z —y) + M)yl <

for some 0 < A\ < 1 depending on z. Now, if we assume |z| > 2|y|, we have

1- ]
[z —y+ Xyl =z — (1 =Nyl = || - (1 - )|y|>|x|——\ B
and hence
1
/ K(z —y) — K()|dz < 21C]y] L
|z[>2[y]| jal>2ly| |Z]
Using polar coordinates,
21Oy ———dx = 2" Cy| / dr = 2"11Cy|— = 2"C,
fe1>2l \5’3| m 2| |

so we conclude that
/ |K(x —y) — K(z)|dx < 2"C.
|z[>2]y]

Finally, we will show yet another consequence of the Calderén-Zygmund decomposition:

Theorem 1.25. Let K be a tempered distribution in R™ which coincides with a locally integrable
function on R™\ {0} and such that

IK(¢)] < A. (1.7)

Assume that it also satisfies the Hormander condition with constant B > 0. Then, for every
1 <p< oo,
1K * fll, < Cpllfllp, [ € LR,

and
IK * fllieo < Clflli, f e L'(RM).

Proof. We will show that these inequalities hold for every ¢ € S(R™), and by density we can
extend them to an arbitrary f € LP(R™). So let ¢ € S(R") and

Ty :=Kx .
Since by hypothesis K e L>*(R"), using Theorem 1.18, we deduce that
ITell2 < Allell.
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Assume for a moment that we have proved the weak (1,1) inequality. Using Marcinkiewicz’s
interpolation theorem, we deduce the strong (p,p) inequality for 1 < p < 2. Now, let us
compute the adjoint operator T™:

/ Tp()v(a)ds = / L Kete — yydyia)s

— [ [ KCwete+ puiyds
= [ | Kot - vz
- [ T (a)ds,

where

T = K* %, with K*(z) = K(—x),

which satisfies the same conditions as 7" and thus, it is of strong type (p,p) for 1 < p < 2.
Therefore we can use duality to prove the strong (p,p) estimate for p > 2:

ITell, = sup
veS®),[1v], <1

| re@u@is

= sup

/ (@) T*()dz
PeSR), |, <1 n

< sup o lelB[[T 0y < Cyllellp,
GESR),|lvl, <1

using the fact that 1 < p’ < 2. Now, we have left to show that T is of weak-type (1,1). By
Theorem 1.22, since we already have the L?-boundedness, we only have to check that T is
well-localized. Take b € L*(R) supported on a cube @ and with zero integral. We have to prove

that
/ |Th(z)|dx < C/ |b(x)|dx.
R™\2Q Q
Let ¢ € R™ be the center of @) and take x ¢ 2@Q). Using that b has zero integral,
0= [ K@y = [ (KG9 = K= iy

and hence, by Fubini,
/ To(x)|dz < | |b(y)| [K(z —y) — K(z — ¢)|dedy < B/ b(y)|dy,
R™\2Q Q R™\2Q Q

since
R*"\2Q C{x e R": |z — | > 2|y — c|}

and we can use the Héormander condition.
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2Q

ce

O

For later purposes, we will also include two vector-valued versions of this result. The proofs
will be omitted, since they fall beyond the scope of this project.

Theorem 1.26. Let .
T:L*(R) — L2(¢?%)
fo—= {Tif}; = {K; = f};

be a bounded operator. Assume that the kernel {K;}; satisfies the gradient condition

LK (@)} |e < |:c£| z € R\ {0},

Then, it holds that for 1 < p < oo,

. 1/2
1T f | Leqezy = || (Z \ij\Q)

jET

< ol Flls

p

and for p =1,

Lecr: (Smswr) A < S

JEZ.

Theorem 1.27. Let T be a convolution operator which is bounded from L*(R") to itself and
whose associated kernel K satisfies the Hormander condition as in Theorem 1.25. Then, for

l<r<ooandl <p< oo,
1/r
(Tinr)

1/r
H (Z !Tfj|’">
JEZ

S Cp,r

p

jEz

p

and for p =1,

(X m»r)m

JET

{rem (Zlem)v)l/r <G

JEZ

1

Finally, we will also need the following corollary which can be deduced from this last theo-
rem:
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Corollary 1.28. Let {I } bea Sequence of intervals on the real line and let {S;}; be the sequence
of operators defined by Sif 5 f(€) = xu, (§)f(§) Then, for 1 <r,p < o0,

H SIS ' p (Tinr)

1/r

S Op,?”

JEZ JEZ

Proof. In order to show this result, we need to combine Theorem 1.27 with the classical Hilbert
transform. For this reason, this proof will be put off until the end of Chapter 2 (see Section
2.7). O

1.8 The Van der Corput Lemma

An oscillatory integral is an expression of the form

/ M@ y(z)dx

Van der Corput’s lemma is the most basic estimate for oscillatory integrals and deals with the
case when 1 = 1 and € R. The result is the following:

Lemma 1.29 (Van der Corput). Let

b
](a,b):/ e,

where h is a real-valued function.
(1) If h € C'la,b], I’ is monotonic and |h'(t)] > X > 0, then

Cy
<_
T(a,) < 5

(i3) If h € C*[a,b] with k > 2 and |[h™ (t)] > X\ > 0, then

Cr

7(a,)] < 11

The constant Cy, = 3 - 28 — 2 only depends on k.

Proof. (i) Integrating by parts,

b ) dt 6z'h(b) ez’h(a) b 1
I b) — W (t ih(t) _ . / zh(t)d -
(a,0) / WO w T ww " wma T ovk

where the last (Riemann-Stieltjes) integral makes sense since the integrator 1/h/(t) is
monotonic. Using precisely this fact, we know that d(1/h/(t)) has constant sign on [a, b]
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(ii)

and therefore,

IN

PN RSN RS I )

+

—_
—_

+

so we get the desired estimate with C; = 4.

We will proceed by induction over k£ > 1. The case k = 1 is (). Now, assume that our
estimate holds for k, that is,

Ch

{|h(k ()] > X >0 (and A*) monotonic if k = 1 )} = |I(a,b)| < — R

Our hypothesis is that [R®*D ()] > X\ > 0. This means that h**1) is either strictly
positive or negative on [a,b], so we can assume, replacing h by —h if necessary, that

AU > XN >0, tela, bl

Hence, h®) is increasing and it vanishes at, at most, one point ¢, € [a, b]. If such ¢, exists,
take 6 > 0 (to be defined later) and let

Ji=A{t € (a,b):t<ty—o},
J2:<t0_67t0+6)m(a’7b)7
Jy={te (ab):t>ty+0},

which are allowed to be empty.

to—0 to to+9

1
1
1
1
1
1
1

a J 1 E

On J; and J3, using the mean value theorem, we obtain that
R (@)] = [h®(#) = B9 (k)| = [P ()] - [t — to| = A5,
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where £ is an intermediate point between ¢t and ty. Therefore, by our induction hypothesis,

we deduce that
/ eih(t)dt‘ < ‘/ eih(t)dt’+ / eih(t)dt‘ <9 C .
J1UJ3 - J1 J3 - (>\5> 1/]€

Notice that the fact that h(*) is monotonic is essential when & = 1. On the other hand,
for the set J, we have that 0 controls the value of the integral:

) to+0
‘ / e”’(t)dt’ < / dt = 26.
Jo to—9

So fixing § := A"V/*+D we get that

[(a, )] < QW +20 = UG

and Cyi1 = 2C% + 2. Since €} = 4, we can solve the recurrence equation and we obtain
that
Cp=3-2F-2.

Finally, if A*) never vanishes (to does not exist), then the same argument holds defining
the sets J; with ty = a if R*) > 0 and ¢, = b if R*) < 0.

a b—9d b
h(F) T : T
Sl
a a+0 b
J1:® le{te(a,b):t<b—5}
Jo = (a,a+0) N (a,b) Jo = (b—0,b) N (a,b)
Js={t € (a,b):t>a+d} Jy =10

1.9 Littlewood-Paley Theory

Littlewood-Paley theory is devoted to extending, in some sense, Plancherel’s theorem to func-
tions in LP for values of p # 2. For example, we know that if we multiply by +1 the terms
of the Fourier series of an L2-function, we obtain another function in L?, or if we multiply
the Fourier transform of a function in L? by a function of modulus 1, the result is another
L?-function. Nevertheless, it can be shown that these properties do not hold for functions in
L? for p # 2, so we conclude that whether a function lies in L” does not depend only on the
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size of its Fourier transform or its Fourier coefficients. Littlewood-Paley, however, states that
the Fourier transform (or the Fourier series) of an LP-function corresponds to that of another
LP-function if it is modified by +1 in dyadic blocks. For instance, if we multiply by the same
factor +1 or —1 the coefficients whose indices range between 2% and 2**!, then the resulting
series corresponds to the Fourier series of another function in LP. In this section, we will prove
this result for the Fourier transform of functions defined on R.

Define, for every j € Z,

I = (=27t =27y 27, 27%h).

Define also the corresponding operator S; as a Fourier multiplier with symbol x;,, that is,

—_

Sif(€) = x1,(€) f(£)-

If f € L*(R), by Plancherel’s theorem and the fact that the supports of §]7 are pairwise
disjoint, we have that

2 2
I8 =178 = | S P | = [ (Z )
ez 2 R\ jez
_ P2 2 )2
- Z / Far) Z / (S,1) / jGZZ(ij) |

where in the last step we use the monotone convergence theorem. Hence, we have shown that

17l = H (X rsjfv)m

jez

. VfeL*R). (1.8)

The next theorem states that, even though these quantities are no longer equal if we consider
the p-norm for p # 2, they are still comparable:

Theorem 1.30 (Littlewood-Paley). Let f € LP(R), 1 < p < oco. Then there ezist positive
constants c, and C, such that

Cp”f”p < < Cp”f”l"

(Z |5jf|2)1/2

JEZ

p

We will prove this theorem as a consequence of the next result, which deals with smooth
functions instead of characteristic functions. First, take a non-negative Schwartz function
¢ € S(R), supported in the annulus 1/2 < [¢] < 4 and equal to 1 on 1 < |¢| < 2 (which

corresponds to Ip).
1 1 1 1 (p
m ! \/;—;\l
—4 -2 -1 0 4

1 2
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Now, define the symbols ¢; and the operators S’j:

-~

6i(6) = p(277€) and (€)= &;(E) ().

It is clear that 3
Eb o E%':: 5%,

since xp, - @; = x1;- Having settled this, we are ready to state our second result:

Theorem 1.31. Let f € LP(R), 1 < p < co. Then there exists a constant C, such that

H > 1S f|2

JEZ

< Gyl flly

p

Proof. Write ® = ¢ and D;( Jx). Then

—

<T>j = D9(277) = B(27) = p(27) = g,
and thus, .
ij:gp}/*f:@j*f.
Now, consider the vector-valued operator
P —  LP(1?)
f — {Syf}j'

We want to prove that this operator is bounded. If p = 2, using Plancherel’s theorem and
monotone convergence,

H(Z|ij|2)

JET

- [ sr =3 150

JEZ JEZL

—Z/m TP = [ S lese)FIFRd

JEZ JEZ

But by the definition of the ¢,’s, at any value of { € R, at most three of them are non-zero,
and always less than 1, so

D lei©F <3, ¢eR.

JEZ
Therefore, using again Plancherel’s theorem,

2

< 3JI£113-

2

Z E f|2

JEZ

H 1/2

In order to extend this to every 1 < p < 0o, we will make use of Theorem 1.26. Since we already
have the boundedness for p = 2, we only have left to show that the kernel {®,},; satisfies the
gradient condition

C
9% (2) ]l < T2 for every x € R\ {0}.
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First notice that ®; = ¢ € S(R), since ¢; € S(R). Now,
1R} (@) e < (@) ]la = Y |®(x)] = Y 2%|@'(Px)).
jez jez
Moreover, since we are dealing with Schwartz functions, we have that
|®'(2)| < Cmin{1, |z|~*}. (1.9)
Now, take i € Z so that 27" < |z| < 271, Then, using (1.9),

> 0¥ (2)| = > 2¥[0 (V)| + Y 2%|P (2a)]

JEZ i<t J>i

<C {Z 2% 4+ 22j2_3j|x|_3}

1<t J>1

= Clz|™? [Z 2% |z|? + Z 2_j|:r|_1}

1<t j>t

< CM_Q [Z 22j2—2i+2 + Z 2—]'21} :

1<t 7>

where in the last step we use that 27¢ < |z| < 271, In order to complete the proof, we only
need to check that the expression in brackets is a constant:

Z4j z+1+221]_4+24 _'_ZQIC -7

1<t >t

Now we are ready to tackle the proof of Littlewood-Paley’s theorem:

Proof of Theorem 1.30. Using Corollary 1.28 with r = 2 and the identity S; o 5’]- = S}, we have

that 1/2 1/2 1/2
(Z|5jf|2> (Z|Sj§jf|2> 2 (Z|§jf|2)

JEZL H JEZ JEZ

p
and applying now Theorem 1.31, we deduce the first inequality

H > IS; f\2

JEZL

< Goll f1lp- (1.10)

p

Now, if we write
T:L* — L2
fo— {8
then, the equation (1.8) can be interpreted as

ITfll 22y = 1f]l2s Vf € LA(R),
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and thus, from the polarization identity, we obtain that

(Tf,Tg) 2y = (f,9)r2,

where (-, -)g denotes the inner product in the corresponding Hilbert space H. In particular, we

have this identity for functions in S(R), and it can be written as

/R%ij'@:/ﬂgfﬁ-

With this expression, Holder’s inequality® and the estimate in (1.10),

o || [ 1]}
gl <tges® Ul Jr

= sup { /Z%f@

gl <1.9es®) Ul Jr 4

(Z |5jf’2)1/2

< sup
g,y <1,9€S(R) =

(Z |ijr2)l/2

JET

1Al =

}
8

JEZ

<,

p

Therefore, taking ¢, = C,!, we complete the proof.

p

SWe need to use Holder’s inequality twice:

2

/RDsjf-w34<Z|sjf2)1/2(z|sjg|2)l/ <

JEL JEZ JEZ

(lejf|2>l/2

JEZ

28
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Chapter 2

The Classical Hilbert Transtform

2.1 The Poisson And The Conjugate Poisson Kernels

Given ¢t € R*, consider the function g,(¢) = e~2™¢ ¢ LY(R). Since it is integrable, we can
compute its inverse! Fourier transform by means of an integral. Define

E(I) — (6727rt\§|)V(x) — / 6727rt\§|627rix§d£. (2.1)
R
Let us compute it:
B(I) = ]_ + ]+,
where,?
‘ 2mE (t+ix) 1 2 (t+ix) " 1
]’_ — T (24 d — T 1T —
/_ © $= it in)© e 2m(t+iz)
and 00 [e%S)
I_|_ _ / 627r§(iz—t)d§ _ 1 627r£(i:c—t) _ 1
0 27 (ix —t) £=0 27 (ix —t)
Therefore,
1 1 1t
Py(z) =

- or(t +ix) 2m(iz —t) 7w+ a2
Definition 2.1. We define the Poisson kernel on R by

1 t
T2 4 22’

Taking images by the Fourier transform in (2.1) and using that it is a bijection from S’'(R)
to itself extending the definition on L'(R), we have that P;(¢) = e~?7¢l. Moreover,

e P,(x) is harmonic on the upper half-plane R?,

o {P,}; defines a summability kernel as t — 0,

!Notice that g;(£) is an even function, so its Fourier transform and its inverse Fourier transform are equal.

2We have that €27€%e27¢i% *270° 0 gince 27ét “25° 0 and 28] = 1.
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which can be checked by easy computations.
Analogously, for t € R*, consider the function hy(£) = —isgn(£)e~ 2 € LY(R) and define

Qt(I) = (—i Sgn(f)e—%rtm)V(x) _ / i sgn(f)e_%t'ﬂe%“gdé’.

R

Following the same notation as in the computation of P, we can write Qi(x) = i(I_ — I.).
Substituting the values of /_ and [, we obtain the following:

Definition 2.2. We define the conjugate Poisson kernel on R by

1 =z

L )
w2 + x2

Qi(z) =

Again, we have that @t(f) = —isgn(€£)e 2™l Moreover, if we put z = x + it, then

Px) +iQu(x) = - LT _ L

T2 +22 7z
which is analytic on the upper half-plane. Therefore, we deduce that Q;(z) is harmonic on REL
and the conjugate of the Poisson kernel P,(z). However, unlike {P;};, the family {Q;}; is not
a summability kernel, since @); is not integrable for any ¢ > 0. Indeed,

N 1 9 o

o0
= OQ.
=0

Remark 2.3. Notice that, for every fived t > 0, Q; belongs to L*(R) (since Q? behaves like
1/2? at infinity and thus is integrable). Therefore, we know that Q; is a tempered distribution
for all t > 0.

2.2 The Principal Value Of 1/z

Definition 2.4. We define a tempered distribution called the principal value of 1/x by

p.v.l(w) = lim @dx, v € S(R).

€T e—=0 |z|>¢ xT

First of all, we have to make sure that the previous expression is well defined, that is, that
the limit exists and it is finite. We can rewrite it as

: p@) pla) —9(0) pl@)
hm/|I>6 —dr =1 ———=d —i—/w|>1 dx, (2.2)

e—0 €T e—0 €<‘CE|<1 €T T
since the integral of 1/z on € < |z| < 1 is zero. Then, using the mean value theorem,

‘90(90) —»(0)

- < 1€ lloo - X(laj<1y (x) € LY(R),

: X{s<|z|<1}(flf)

30



CARLOS DOMINGO

s0, by the dominated convergence theorem, the limit exists and the first term on the right-hand
side of (2.2) is finite:

[ A0 [ A0,
|z|<1

e=0 e<|z|<1 T z

To prove that the second integral in (2.2) is also finite, we use that ¢ € S(R), and thus

[ ]| [ e
|z)>1 35 |z|>1

Secondly, in order to check that the principal value defines a tempered distribution, we need to
prove that

1
< gl / L dr = 2ljrg]o < 0.
lz|>1 L

p.Vé :S(R) — C

is linear and continuous. Linearity is obvious. Now, suppose that ¢, — 0 in S(R), that is, for
all o, 8 € N,

lim |2} [l = 0.

k—o00

Using the previous bounds, we have that

L n)
p.V.x SOk n T

. X
iny | wk—”das\s [ e + 2loul
|z|>e |z|<1
k
I I

The next step will be to establish the connection between the principal value and the
conjugate Poisson kernel.

Proposition 2.5. In the class of tempered distributions S’'(R), we have that

1
lim@Q; = —p.v.—.
t—0 v X

Proof. Consider, for every ¢t > 0, the function ¢;(z) = %X{\x|>t}a which is bounded and locally
integrable. Therefore, it defines a tempered distribution

(,) : S(R) — C.
Moreover, it holds that for all ¢ € S(R),

1
lim(p, ) = hm/ —X{|$‘>t}dx = p.v. —(ap)

t—0 t—0

so it follows® that in S'(R),

) 1
lgréwt = p.v;.

3Remember that S'(R) is endowed with the weak*-topology.
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Consequently, it is enough to prove that in S'(R),
15%(7"@1‘/ — 1) = 0.

Again, we only need to check that it tends to zero when applied to any function ¢ € S(R).

Indeed,
TRy — ) = zp(2) d Md
(o, m ) /R x /x . x

w22 T

[ s [ (e,
o<t T2+ 2 o>t \ 22 + 12 x

:/ vet) . _/ o) 4,
i<t ¥? +1 w1 y(L+y2)

which tends to zero as t — 0, using the dominated convergence theorem and the fact that odd
functions integrate zero on symmetric domains®. With this, we finish the proof. O

Corollary 2.6. We have that
1 1
]:(—p.v.—) = —isgn(+).
T
Proof. Using the previous proposition and the fact that the Fourier transform is continuous on
S'(R),
1 1 o . IR TSR T . —2mt|-| __ .
]-"(;p.v.;) = ]:(}1:1—I>%Qt) = %%Qt = ll_I)% —isgn(-)e = —isgn(-),

since e~ 2™ tends to 1 in S’(R) as t — 0 (one can easily check it using the dominated conver-
gence theorem). N

2.3 Definition Of The Hilbert Transform
Definition 2.7. The Hilbert transform is the linear map
H: L*(R) — L*R)

defined by - R
Hf(€) = —isgn(§)f(€), Vfe L*R).

Recall that Plancherel’s theorem says that the Fourier transform is a bijective isometry from
L?(R) onto itself. The Hilbert transform is the Fourier multiplier operator

H : L*(R) — L*(R)

with symbol m(§) = —isgn(&).

“In the domination, we use that ¢ is bounded, and for the second integral, we also need to make sure that
floo mdy < 00, which is immediate by comparing to 1/y* € L'(1, 00).
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L2 m L2
F 7 F
L? o L?

Theorem 2.8. The Hilbert transform is a bijective linear isometry such that
H?=—Id and H* = —H.

Moreover, for every ¢ € S(R),

1 1 ) o
Hyp = Uk = 151(1)(Qt x ) inS'(R).

Proof. Put m(§) = —isgn(§). It is clear that multiplying by m, f +— mf, is a bijective,
linear isometry from L?(R) onto itself. By Plancherel’s theorem, the same holds for F, so the
composition

H=F" o(m)oF

is also a bijective linear isometry of L*(R). Moreover, since m*> = —1, we deduce that H? = —Id.
Now, let us compute the adjoint operator H*. Since H is a linear isometry, we have that
(f,9)2 = (Hf,Hg), for all f,g € L*(R) (using the polarization identity). Therefore,

(Hfag)Q = (H2f7 Hg)2 = (_f7Hg)2 = (f7 _Hg)Qa

and we conclude that H* = —H.
Finally, take ¢ € S(R). On the one hand, using that the convolution is continuous with
respect to the first variable® and recalling Proposition 2.5, we have that

. . 11 _
lm(Qr + ) = (ImQy) x o = —p.v.—x ¢ in S'(R).

On the other hand, by Corollary 2.6,
. . 1 1 1 1
F(Hp) = —isgn(§)@() = F| —pv.— | F(p) =F| =pv.—*x¢ |,

so applying F~!, we obtain
1 1
Ho=—-pv.—x¢p inS'(R)
Tz

and we finish the proof. The properties for the convolution that we have used are listed in
Proposition 1.5. O

SRemember that, in Proposition 1.5, we showed that if u, — v in S’ then u, * o — u* ¢ in S’

33



CHAPTER 2. THE CLASSICAL HILBERT TRANSFORM

With this result, we have that the Hilbert transform applied to a Schwartz function is a
continuous function defined by

Ho(z) = (%p-V-é * w) (x) = (%p-Vé) (T)

:llim —@(JJ — y>dy = llim/ _<p(y) dy.
|z—y|>e

Te—0 ly|>e Yy mTe—0 r—y

So far, the Hilbert transform is a bounded, linear operator defined on L?(R). Moreover, we
have an explicit expression for Hp whenever ¢ € S(R). In the next section, we will prove that
H is, in fact, of strong-type (p,p) for every 1 < p < oo and of weak-type (1,1).

2.4 [P-Boundedness Of The Hilbert Transform

Lemma 2.9. Let ¢ € S(R) be a Schwartz function. Then,
(Hp)? = o> +2H(pHp) in L*(R).

Proof. First of all, notice that the hypothesis ¢ € S(R) is important. If we take ¢ € L*(R)
instead, then pHp € L'(R) and H(pHp) would not be defined®. However, if ¢ € S(R), then
it is bounded and ¢ Hp € L*(R).

Now, write m(§) := —isgn(§), which is the symbol of the Hilbert transform. Equivalently,
we will prove the identity by taking Fourier transforms. That is,

Ec\p*@:@*@—i—Zm(@*E;).

Indeed,

7+ P)E) + 2m(©) @+ HR)E) = |

R

P(n)p(€ —n)dn + 2m(§) / oM —n)ym(§ —n)dn

= [ (e~ ndn+2m(©) [ ot¢ = mptmmmn

Moreover, if we average the last two expressions, we obtain yet another equality

(&% @)(€) +2m(&)(@  Hp) (&) = / @€ —n)[L +m(&)(m(n) +m(& —n))ldn.

R

Finally, using that m(§) = —isgn(€), we can check” that for every fixed ¢ € R,
L+m(&)(m(n) + m(§ —n)) = m(nm(§ —n), forae neR,

and therefore, replacing this expression in the last integral, we conclude that

(% 3)(E) +2m(E) (@ * Hp)(€) = / B)m(n)B(E — nym(E —n)dy = (Hp « TR)(€),

as we wanted to show. ]

6 Actually, the Hilbert transform can be extended to L!(R) and it defines an operator of weak-type (1, 1), as
we will see in the next section.

If we consider all possible cases for the sign of &, n and ¢ — 7, (there are 13 of them), we conclude that the
equality only fails when £ = n = 0. Therefore, if £ # 0 the identity holds for every nn € R and, if £ = 0, it is true
for all n € R\ {0}. At any rate, we have the identity for almost every n € R.
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A straightforward consequence of this result is the following lemma, which combined with
the L2-boundedness of the Hilbert transform, will allow us to prove that H is, in fact, of
strong-type (p,p) for all 1 < p < 0.

Lemma 2.10. Given 1 < p < oo, if we assume that
H: [P(R) — LP(R)
is of strong-type (p,p) with ||H||tp—rr < Cp, then H is also of strong-type (2p,2p) with
|H || L2p— 2 < 2C, + 1.
Proof. Take ¢ € S(R). If [|[Hp||2p < ||¢]|2p, then trivially
[Hell2p < (2C, + D @ll2p-

On the other hand, if ||¢|l2p < [[H¢||2p, using the previous lemma, our hypothesis of LP-

boundedness and Holder’s inequality, we get that

I1Holl3, =I(He)?l, < 1%, + 211 H (0Ho)lp < llell3, + 2ClleHell,
<[lell3, + 2Cpllellapl Holl2p < llpllapll Holl2p + 2C [l @ll2pll Hepll2p
:(2Cp+ 1)||90||2PHH§0”2P'

Simplifying ||H ||z, (which we can suppose to be non-zero), we obtain that
[Hepllop < (2C, + Dl@llzp  for all ¢ € S(R).

Finally, using that S(R) C L?*’(R) is dense, we deduce that the Hilbert transform is of strong-

type (2p,2p) and
HH||L2p4)L2p S 2Cp + ].

Finally, let us state and prove the main theorem of this section:
Theorem 2.11 (M. Riesz). Given 1 < p < oo, the Hilbert transform
H: [P(R) — LP(R)
s linear and bounded.

Proof. We know that the Hilbert transform is linear and bounded from L?(R) onto itself and
|H flla = || f]]2 for all f € L*(R). Therefore, starting at p = 2 with Cy = 1, we can apply the
previous lemma repeatedly and we obtain that

H:L* — L*

is linear and bounded with® || H||s» < 2" — 1 for every n > 1.

8From Cy = 1 and Can < 2C5m-1 + 1 we prove, by a trivial induction, that Con = 27 — 1.
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Now, given p > 2, we have that p € [2",2""!] for some n > 1. Therefore, we can apply the
Riesz-Thorin interpolation theorem with py = ¢y = 2" and p; = ¢ = 2" to prove that H is
also bounded from LP(R) to itself and

ITfllp < Collfllp, VF € LP(R),
where C), = (2" — 1)}79(2""1 — 1) with 0 < 6 < 1 satisfying

1 1-0 0

P - on + on+1 :

So far, we have proved that the Hilbert transform, originally defined on L?(R), can be
extended to functions in LP(R) with 2 < p < oo. Finally, we prove the boundedness for
1 < p < 2. Since the conjugate exponent is p’ > 2, we have that H is a bounded linear operator
from L¥ (R) to itself. We also know” that

[ He@i@ids = - [ s@ s .0 e S@).
R R
Now, using duality and the fact that S(R) C L”'(R) is dense, we can write

IHelp, = sup
GESER),lvl, <1

/R Ho(x)(x)dx

— w / (o) (@) dz
PYESR),[I9]l <1 | JR

< sup lelpllHYlly < Cyllellp,
YeSR), I, <1

for all ¢ € S(R). Finally, we use again that S(R) C LP(R) is dense to conclude that

IH flly < Collfllps VF € LP(R),

and thus, finish the proof. O

2.5 The Weak (1,1) Inequality For The Hilbert Transform

Theorem 2.12 (Kolmogorov). The Hilbert transform can be extended to L*(R) and it is an
operator of weak-type (1,1).

Proof. Since we know that H : L?*(R) — L?(R), by Theorem 1.22 it is enough to check that
H is well-localized. Take b € L*(R) supported on an interval I and with zero integral. We have

to prove that
/ |Hb(z)|dz < C / 1b(z)|de.
R\27 I

9Remember that for H : L*(R) — L?(R), we had H* = —H.
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Now, even though b ¢ S(R), we state that, for almost every = ¢ 21, the following formula

holds:
Hb(z) = l/IMdy.

T)ir—vy
Indeed, by density, we can take a sequence {¢,}, of C>*-functions with compact support in I
such that
¢On — b in L%
Consequently, Hy, — Hb in L*(R). We can assume, passing to a subsequence if necessary,
that there is a.e. convergence. Now, take x ¢ 2I such that Hy,(z) — Hb(z) (this happens for

almost every = ¢ 2I). Since ¢,, € S(R) are supported on I and |z — y| > |I|/2 > 0 whenever
y € I, we have that for every n > 0,

1. son(y)dy 1. wn(y)dy_ l/son(y)dy_

Hepp(x) = =lim
me—0 lz—yl>e £ — Y me—0 lz—y|>e, yeI T — Y @ r—=y

Therefore, using Holder’s inequality,

o)L [ Mg/ /w@
< -7 7r][| /’@n — b(y)|dy

< ——|l¢n — b 50,
< —len = Hhalhul

and we conclude that

Hb(x) = lim Hy,(x) = l/f by) dy, ae. x¢2l.

n—oo T fL‘—y

With this expression, denoting by c¢ the center of I, using Fubini’s theorem and the fact that b

has zero integral, we get
b
/ (v) dy’ I
Ir—y

/R MECCEE % /R .
/Ib(y)(xiy - xic)dy

_ 1/
T JR\2I
1 y—c
Lol [ i )ay
TJr R\21 |z —yllr — |
1/ /]
e (/ d:c)dy,
T 1| )l R\2/ |z —¢c|?

since |y — ¢| < |I|/2 and |x — y| > |x — ¢|/2. Moreover, the inner intregral can be computed,

I
/ ] _2\11/ L
R\21 PEr 2
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so we obtain the estimate

2
[ i< [y

and we finish the proof. O

In this chapter, we have seen that the Hilbert transform, originally defined for functions in
L*(R), can be extended to functions in LP(R) for 1 < p < oo. In our case, we have checked
that H is of strong-type (p,p) first and then, we have seen that it is also of weak-type (1,1).
However, had we started proving the weak (1,1) inequality, by Marcinkiewicz interpolation
theorem, we would have had the strong-type (p,p) for 1 < p < 2, and with a duality argument
as in the proof of Riesz’s theorem, we would have been able to extend the boundedness to
2 < p < oo. Even though this is a shorter way to solve the problem, we decided to include the
proof of Riesz’s theorem independently of the weak (1, 1) inequality since it involves an original
idea which is worth to mention.

2.6 Consistency Of Definitions

Finally, we want to check that the extensions of the Hilbert transform that we have made in
the preceding sections are coherent.

o If f € L*(R), we have the original definition of Hf. In particular, we have an explicit
formula for functions in S(R) C L*(R).

o If f € LP(R) for some 1 < p < 0o, we have that

H®P f .= lim Hyp, in LP,

n—oo
where {©,}, € S(R) and ¢, > f in LP.

o If f € L'(R)
HWDf .= lim Hy,  in b,

where {¢,}, € S(R) and ¢, — f in L'
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First of all, we need to prove the following lemma:

Lemma 2.13. Let 1 < p,q < oco. If f € L’(R) N LY(R), then there is a sequence of functions
{on}n € S(R) such that @, ~> f in LP and in L.

Proof. Let {K,}, be a C*-class approximate identity. We know that
f* K, f in L? and L.
Define, for every m > 1, a C*°-function 1, with compact support such that
e ¢, =1on B(0,m),
e ¢, =0o0n R\ B(0,2m),
o 0 <p(x) <1forall zeR.

We have that
Onm = (f * K, € C°(R) C S(R), Vn,m > 1.

Now, if g € LP(R) N L4(R), then g1, converges to g in LP and L? as m tends to infinity, since
there is pointwise convergence and

l9¢m| < gl € LP(R) N LYR),  Vm > 1.

Therefore, for every n > 1, we can take an m,, > 1 such that

I = B, = o Kally < - and (5 K)o, = f 5 Kol < 5

Define ¢,, := ¢y m, and

lon = fllp < MICf * Kn)tbm, — f 5 Knllp + [1f % Kn = fllp < % H 1 K = fllp,

which tends to zero as n tends to infinity. Analogously, ||¢, — f]|, tends to zero and we complete
the proof. O

With this fact, it is easy to see that the different definitions of the Hilbert transform of a
function f coincide when f is in the intersection of different LP-spaces. Indeed, assume that
f e LP(R) N LY(R) for some 1 < p < 00, 1 < ¢ < oco. By the last lemma, take a sequence
{¢n}n € S(R) converging to f in both L? and L9. We have that

H® f .= lim Hyp, in LP

n—oo

and
H9f .= lim Hyp, in L? (or LY if ¢ = 1))
n—oo

In particular, as we have seen in Section 1.3, we have that H, converges in measure to H® f
and H9 f, so we conclude that

HP f(z) = HOf(z) ae x€R.
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2.7 A Proof Still To Be Dealt With

At the end of Section 1.7 there is a corollary with no proof. However, we promised to include
it once the classical Hilbert transform had been introduced.

Proof of Corollary 1.28. Recall that we want to prove that, for 1 < r,p < oo,

/T 1/r
H > 1S; f] (Zw)

JEZL JEZ

S C}J

Y

where {S;}, is the sequence of operators defined by @7(5) = Xy (€)f(€) and {I;} is a sequence
of intervals on the real line. First, we will check that H is under the hypotheses of Theorem
1.27. Indeed, it is a convolution operator, bounded from L?(R) to itself, and whose associated
kernel satisfies the gradient condition: K = Ip.v. € C'(R\ {0}) and

C

11-1
— ‘x’27

| 2

x#0

with C' = 7!, In particular, by Proposition 1.24, it satisfies the Hormander condition. There-

fore,
1/r
(Z \fj\r)

JET

S C%m

H > )

JEL

Now, if I = (a,b) C R and S, is the operator defined by

—_— ~

Sanf (&) = X(a) (§) £ (£),

then it holds that '
Sup = %(MGHM,G — MyHM._y), (2.3)

where M, is the modulation operator

M, f(z) = "™ f(x).

Now, using that the multiplier of H is —isgn({) and the properties of the Fourier transform
with respect to the modulation, we have that

~

iM,HM-_, = sgn(€ — a) (€.

Hence,
LMV, — NG = [sen(€ — ) — san( — D)) = v 7o)
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and we deduce (2.3). Finally, write I; = (a;, b;). Using the triangle inequality and our estimate
for H,

l

1/7' 1 1/T 1/7‘
(Z |ijj|7“) =3 (Z |HM_“jfj|r) " <Z |HM_bjfj|r)
JEZ P JEZL p JEL p
o ) 1/r 1/r
<G (S nranr) |+ (S nensr)
JEZ P ez P
1/r

= pr (Z |f]|r) )
Jez p

and we complete the proof.
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Chapter 3

The Hilbert Transform Along The
Parabola

3.1 A Not-So-New Kernel

Consider the following map:

K: SR*) — C
2
Y — lim._q f|t|> )dt.

We have that K is well-defined, linear and continuous, and therefore, K is a tempered
distribution. Indeed, K can be written as the composition of the maps

S(R?) — SR) — C
© — &, +— p.v.%(q)@),

where @, (t) = p(t,t?). Observe that
O (t) = DMOp(t, %) + 2tDOVoo(t, 8%),
®7(t) = DPVp(t, ) + 2tDMVip(t, 1) + 2D V(¢ 1) + 2t DV Voo(t, 1) + 42 DO (¢, #2),
(I)”/( ) .
(p )
so all the derivatives of ®, are linear combinations of the form

OUM(t) = Y cat"™ D(t,1%),

la|<m
where m € N,a € N2, ¢, € N and n, € N. But

"tnq)fom)"oo < Z Co SUP ’tn+naDag0(t,t2)|

alom (<R

< Z Co sup |z D%p(x,y)|

2
la|<m (z.y)ER

= Z CallZ" T D0l 0 < 00,

laj<m
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for any n,m € N, so we conclude that &, € S(R) for all ¢ € S(R?). Moreover, using this
estimate, we prove that ®, - 0 in S(R) if ¢, -+ 0 in S(R?), so we deduce that K € S'(R?).

Definition 3.1. Given a function p € S(R?), we define its Hilbert transform along the parabola
L(t) = (t,1%) by

—t oy —t2
ol —ty )d

lt|>e 4

Hro(z,y) = (K * ¢)(z,y) = lim t.

e—0

As we discussed! in Section 1.1, this defines a continuous function which is also a tempered
distribution.

3.2 The Benedeck-Calder6n-Panzone Theorem

Our first goal is to prove that Hr is bounded on L?(R?). In order to do so, we will introduce
the Benedeck-Calderon-Panzone theorem, which ensures the L?-boundedness of a convolution
operator provided that the kernel satisfies certain properties.

Definition 3.2. We say that a collection of matrices {A(t) }+=0 satisfies the Riviere Condition
if, for each t >0, A(t) € GL(n,R) and there exist some constants C > 1 and € > 0 such that

|A(st)TA1)| < S—C;, for all s > 1,t > 0.

The norm || - || can be assumed to be the (2—operator norm.

Theorem 3.3 (Benedeck-Calderon-Panzone). Let T' be a convolution operator with kernel K.
Assume that there exists a collection of matrices { A(t)}+=o satisfying the Riviere condition and
so that

(i) K =3y K in S'(R") with K; supported on the dilation A(27*1)B(0,1) of the unit ball.
(i) If K;(x) := det A(2)K;(A(2))x) for all x € R", then
| K (2)|dz < C,
Rn

and for every & € R,

= C
R <
) ! (1+1¢])
for some constants C,e > 0.
Then, if K satisfies the cancellation property
‘ / > Kj(x)dz| < C, Va,BeL, (3.1)
B a<j<p

the operator T : L*(R") — L*(R™) is bounded.

'In Section 1.1, we only dealt with Schwartz functions on the line, but the same proofs hold for functions on
R™.
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Remark 3.4. The {f(j}j are called the normalized pieces of K. Notice that by the change of
variable formula on R™, we have that

By(@)lde = | |K;(A@)a)|| det A@)dw = | |K;()|de,
Rn Rn R™

Proof. In this proof, we will use the characterization in Theorem 1.18. Suppose that K satisfies
the cancellation property (3.1). We want to show that K is in L*(R"™). Equivalently, using
that the Fourier transform is continuous on §'(R") and K = >, K; in S'(R"), we will prove

that
> K€

JEZ

<(C ae £eR"

Fix £ € R™ and assume that there exists a jy € Z being the largest integer such that |A(270)*¢| <
1, where -* denotes the transpose matrix. Consider the identity

Y. K©= ) (@(&)—&(O)H/ S Kj(a)de,

a<j<jo—1 a<j<jo—1 R™ a<ij<jo—1

where we use that by hypothesis (ii), the pieces {K,}; are integrable functions and thus its
Fourier transform is computed as an integral. Using (3.1) with 8 = j, — 1 and the fact that K
is supported on A(2/71)B(0,1), we get

> K

a<j<jo—1

< ) / K;(z)(e ™€ —1)|dx + C. (3.2)

a<j<jo—17A@THB(,1)

Now, for all x € A(2/71)B(0,1) there exists a u, € B(0,1) such that z = A(27")u,, so
v €= (A2 Nug) - € = uy - (A(27H)7€).

With this, and using that on the unit circle the lenght of a chord between two points is less
than the arc-lenght distance between them, we conclude by Cauchy-Schwarz that

|72 — 1] < 27|z - €] = 2mfu, - (A(ZF)"E)| < 2mfug ||A27)*E] < 2m|A(27)¢).
Going back with this estimate to (3.2), we obtain

2. K

a<j<jo—1

<on Z / K (2)|da] A7) e + C.

A(29+1)B(0,1)

By hypothesis (ii), we have that?

r&mm:/ummwsa
Rn n

2We will assume, without loss of generality, that all the constants C' appearing in this proof are the same.
Otherwise, take the maximum.
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SO we can write

> K

asj<jo—1

gc< > |A<2f“>*£\+1>-

J<jo—1
Finally, recalling the properties of the transpose matrix, making use of the Riviére condition
and the fact that |A(270)*¢| < 1, we obtain for every j < jo — 1

[A@27)7e] = [A27H)"(A(27)") A7)
<A@ (A@R°))HIA@RP) ]
< [lA@2") AR
C

_ jo—(j+1) | 9j+1y—1 j+1
= ||A(270~UFD) L 91y~ g(97 )HS—?UO_(J.H))E,

where t = 2711 > 0 and s = 290-U+1) > 1 are the parameters in the Riviére condition and £ > 0
is a constant. With this estimate,

+1\* —
> lA@tyE <o Yy 2Go—GD)e o2 (?) =00

J<jo—1 J<jo—1 k=

[en]

and therefore,

Y K| <c
a<j<jo—1
Since this is independent of «, we actually have
> K9 <c

J<jo—1
Ko (§)] < : | Ko (2)|d = : | Ky (2)|dz < C.

Let us now study what happens for j > jo. Recall the following property of the Fourier
transform: if A € GL(n,R), then

F(det(A) f(AT)(E) = (FF(A™).

Therefore, with this formula

~

K(n) = F(det(A(27) IG(AR))(n) = K;((A2) ) n),

so if we write & = (A(27)71)*n and use hypothesis (i), we obtain

~ = i 1 1
L IR@I= S|k <03 mpgrgy <X e

J>jo J>jo J>Jjo
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Now, for every j > jg, we can use the properties of the transpose matrix and the Riviére
condition as before to conclude that

[ AT < AR (A@2)) M IIAQR) €] = A7) AR A2) ¢
ClA®@)¢]

_ Jj—(jo+1)9jo+1)—1 Jo+1 J ) *

Therefore, since |A(27071)*¢] > 1 by the definition of jo,

Q(j—(j0+1))€|A(2jo+1)*§’ 9(j=(jo+1))e

A(2)*¢| > >
so, going back to the series we were studying, we obtain the following estimate:
7 1 e+1 1
2 KOO ) iy < O 2 s
J>J0 J>J0 J>J0

which is a convergent geometric series. Summing up, we have that

SE©[<| Y K9

JEZ J<jo—1

KO+ DK€ < ¢,

J>jo

<

which is the sought-after inequality. In order to finish the proof, we have left to study what
happens if j, does not exist. Fix 7 € Z and assume that there exists a sequence of integers

{Jk}x € Z such that jj 5 50, jix > j and |A(27%)*¢] < 1 for all k > 1. As in (3.3), we have that

ClA@a)el ¢k,

j+1yx
AT < 5557 < 3GGre

Therefore, we conclude that A(2771)*¢ = 0. Since A(27T!)* is invertible, this can only happen
when £ = 0 and we obtain that for every £ € R™ \ {0}, we are in the case where j, € Z exists
and thus R

IK(§)|<C ae R

This implies that || K. < C and completes the proof. O

Remark 3.5. Notice that if a collection of matrices {A(t) }1=0 satisfy the Riviére condition,
then, for every j € Z, there exists kg € Z, ko > j, such that

A(2)B(0,1) € A2K)B(0,1), Yk > k.
Moreover, if the constant C' in the Riviere condition is 1, then ko = j + 1.

Indeed, take = € A(27)B(0,1), that is, x = A(27)u for some u € B(0,1). If k > j, we have
that z = A(2%)A(2F) 71 A(2/)u and using the Riviére condition,

A A@)] < AR AR < s < 1
provided that k& > kg for some kg € Z, or k> 7+ 1it C = 1.
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Remark 3.6. Notice that the Benedeck-Calderon-Panzone theorem is still true if the pieces
K; = p; are finite measures. Indeed, recall that by definition, the Fourier transform of a finite
measure |1 18 computed as

A6 = [ e iau), ger

The fact that this expression is very similar to the Fourier transform of an integrable function
allows us to extend the theorem to finite measures with no need to change the proof. The
hypotheses in this case would be:

(i) K = > ety in S'(R™) as before, with ji; supported on the dilation A(27+1)B(0,1), that

18,

/ duj(z) =0 for every measurable set E C R™\ A(27T1)B(0,1).
E

(ii) The normalized pieces would be [i;(-) = det(A(27))(p; o A(27))(-). Now recall that the
composition of a distribution u with an invertible matrixz A is the distribution

(uo A, @) = |det A" {u,po A7),
Therefore, for every ¢ € S(R™),
i () = sgn(det(A(27))) (9 (A(2) ).
Moreover, they would have to satisfy that

| iz <c

and, for every & € R",

for some constants C,e > 0.

The cancellation property can be written as

‘ [

a<j<p

<O, VYa,B€7.

In the next section, we will see that the Hilbert transform Hr along the parabola I'(t) =
(t,t?) has a convolution kernel that can be written as a series of finite measures. Hence, in order
to apply Benedeck-Calderén-Panzone’s theorem and prove the L?-boundedness of Hp, we will
have to show that these finite measures satisty all the conditions gathered in this last remark.
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3.3 L?>-Boundedness Of The Hilbert Transform Along The
Parabola

At the beginning of this chapter, we defined the following kernel K € &'(R?):

K: SR*) — C

. 2
©» —  limg_y f|t|>5 @dt.

We also defined the Hilbert transform along the parabola I'(t) = (t,¢?) applied to a Schwartz
function ¢ € S(R?) as its convolution with K,

—ty—t?
ol —ty )d

It|>¢ t

t.

Hro(z,y) = (K * ¢)(z,y) = lim

e—0

In this section, we will use Benedeck-Calderén-Panzone’s theorem to prove that Hr is actually
a convolution operator of strong-type (2,2). Consider the following parabolic dilations:

A(t):(é t%) £>0.

For every j € Z, let K; be the distribution defined by

Kji S(R2) — C

t.t)
% — fzfg\t|§2]'+1 . ——dt.

These {K}; will be the pieces into which we will decompose K. Let us now check that, with
these ingredients, we are under the hypotheses of Benedeck-Calder6n-Panzone’s theorem.

e The parabolic dilations { A(t) };~ satisfy the Riviére condition with constants C' =& = 1,
since A(t) € GL(2,R) for all ¢t > 0 and, if we take s > 1 and consider the Euclidean norm,

| (4 )6 D1 )2

e The pieces K; = pi; are finite measures, which is enough to apply the Benedeck-Calderén-
Panzone theorem (see Remark 3.6). If E C R? is a Lebesgue-measurable set,

dt
wi(B) = [ et ).
I
where [; := [—2/1 —27] U [27,277]. Notice that
dt
:uj(Rg) = ? =0,
I

since I; is symmetric. Now, if ¢ € S(R?), these measures act on ¢ as follows:

)= [ o@inia) = [ pttt)5

I t
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To prove the second equality, recall that if s = Zle

u dt dt
/ o)dpy(r) = Y aspiy(E; ZZ%/XE (t, )~ /s(tﬁ);,
i=1 I;

= =1

a;X g, is a simple function, then

so by the monotone convergence theorem, we get (3.4). Moreover, it is easy to see that
the measures 1; are supported on the dilation A(2/71)B(0, 1), since

{(t,t*) e R* 1 t € I;} C A(27"1)B(0,1).

We also have that
K = Zuj in S'(R?).

t

JEL
Indeed, take ¢ € S(R?),
i dt
lim wi(p) = lim o(t, t*) =
n—oo J:Zn ]( n—oo 27nS|t|S2n+1 ( t
dt dt
= lim {/ o(t, 1) — +/ o(t, t*)—
n=oo | Jo-ng|t<1 t 1<|t|<2n+1 t
dt dt
= lim gp(t,tQ)—+/ o(t, t*) =
e20 Je<p<a t Jiy t
dt
= lim o(t,t*)—
e—0 |t|>6 t
= K(p),
where, in the third equality, we use the dominated converge theorem together with
p(t, %) ||9090||oo
’ X{1<|t\§2n+1}(t) < X{lt|>1} € L' (R).

The normalized pieces ji; act on a function ¢ € S(R?) as we described in Remark 3.6:

i) = senldet (AR (oA ) = [ oot 2T
. dt o
B /1§t|s2 i t

Moreover, if E' denotes a measurable set,

N 2 dt . ! dt
i) = [ ) and i) = [ o)
1 _

9 t
and therefore,

dt

3 (3.5)

1| (E) = / (et ) + xo(—t,2) 2
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With this expression, we can check that

[ diisl@) = 1l (B2) = 2102,
and thus, the hypothesis
[ i@ <c
R2
is satisfied.

e The cancellation hypothesis is trivially fulfilled:

L3 )

a<j<p

since we checked that pu;(R?) =0 for all j € Z.

e The last condition that we need in order to apply Benedeck-Calderon-Panzone’s theorem
is the following:

i =| [ e

/ eQnig.(t,ﬁ)@‘ < C .
1<t|<2 t (1 +1€))=

We claim that it is enough to prove that

)] < 1

€

Indeed, assume that we have this last bound. Since fi; is a finite measure, we know that
fi; is a bounded function, say by C. Then, if we define C" := (27, let us check that we

have o
M](f)’ < EEE

If0<|¢ <1,

~ C2° '

5 O —

@] <0 =5 < e
and if |{] > 1, then

O PR AP
LTSl (20l T (gD

So our goal will be to show that

/ 62”5'(“2@' < & : (3.6)
1<|t]<2 t| T [

where ¢ is taken to be 1/2. First, we will have to go back to Van der Corput’s lemma
(Lemma 1.29) to prove the following result:
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Lemma 3.7. Let .
1

Then, for 1 <t <2 and |&| > 1, we have that

8
It < —.
LOTE
Proof. Define h(s) := —2m(s&; + s%&,) for 1 < s <t. We have that
[W(s)] = | = 218y — Amso| = 2m|&1 + 2585| > 2m||&1| — 2s(&| |-

(i) If |&] > 8|&,], then
W (s)] > 2n(|&1] — 4|&]) > 7|&,

since 1 < s <t < 2. Using that A’ is monotonic, we can apply Van der Corput’s
lemma and we get that

Ch Ch
I(t)] < < 7
1O e = marm
recalling our condition |&;| > 1.
(ii) If |&1] < 8|&2|, we use that |h(s)| = | —4mw&s| = 47|&2| and again by Van der Corput’s
lemma,
10 < 5t < g

< .
2¢/m|&o| 12 T 2¢/m|& |12

Therefore, since®

Ch V80, V8C,  10V2
max ¢ —, = = ~ 7.98,
we obtain the desired estimate. O

Finally, we will show that (3.6) holds. Consider the R*norm || = max{|¢ |, |&|}. If we

integrate by parts, we get that
’/ ezm'g-(t,t?)@‘ < 72m t£1+t2£2)dt‘ ‘/ —2mi(té1+t2€2) dt
1<)e|<2 t] - t

— / 67271'1 t§1+t2£2 dt‘ ‘/ —2mi(t&1+ thQ dt
1
(2 dt
= 1
2y [rod /
(

B LC) I !f+( . ()| (3.7)

-2 te(r2) 2 2 te(12) 2

where

t
I (t) :/ ¢ 2miEst1+57E) g
1

as in the previous lemma with & and —¢&; respectively.

3Recall that the constant in Van der Corput’s lemma is Cj, = 3 - 2F — 2.
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(i) If |¢| = |&), defining h(s) := —2m(£sE; + s%&,), we have that [W/(s)| = 47|&| and
by Van der Corput’s lemma, we obtain that

1L (t)] < 1<t<2.

<
T 2vmleltr T T
Inserting this in (3.7),

‘/ —27rz§ ttQ)dt < C ]
1<[<2 N

(ii) If |¢] = |&| and [&1] > 1, by Lemma 3.7 we also have that

/ o 2mi: (tt2)dt' < 1(15 -
1<]1]<2 STk

(iii) If |£] = |&1| and |&] < 1, we can estimate roughly

‘/ 727rl£ (t,t?) dt‘ </ ]' —2In2< 21?22
1<]t]<2 t 1<)t <2 |t| 314

Hence, since Cy = 10, if we take

C = max{%,

/ e—?ﬂ'zf (t,22) @Y dt ' < — ¢ -
1<t <2 €12

Summing up, in this section we have checked that the operator Hr satisfies all the hypotheses
of Benedeck-Calderon-Panzone’s theorem. Therefore, we have proved that

16,21112} — 16,

we obtain our last condition

Hy : LA(R?) — L*(R?)

is bounded.

3.4 LP-Boundedness Of The Hilbert Transform Along The
Parabola

In the next pages, we will prove that the Hilbert transform along I'(t) = (¢,1?),

Hef(oy)=lim | fla—t.y— )%

e—0 |t|>€ t

and the maximal function

Mrf(z,y) sup—‘/ flz —t,y —t*)dt|,
>0 2h
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are bounded operators from LP(R?) to itself for 1 < p < oo and 1 < p < oo respectively. In
order to do so, we will follow a similar approach as when proving that Hp is of strong-type
(2,2). For every j € Z, recall the finite measures p; which acted on functions by

1i(p) = /1 o(t, t2)£ (3.8)

! t
where, following our notation, I; = [—27%1 —27]U[27,277!]. We had that, for every f € S(R?),

Hrf=> pi*f inS (R,

JEL

Define also finite measures o; such that, for every ¢ € S(R?),

1
%) = o551 |, (t, 1%)dt. (3.9)
Let us check that
Mrf <2supo; * |f]. (3.10)
J

Indeed,

1
Ul = g [ 18—ty = )l

Fix 2/ < h < 277!, Using the monotone convergence theorem, it holds that

27+1

1
’/ fx—ty—tQ)dt‘ W |f(x =ty —*)|dt

—27+1

(x —t,y —t?)|dt
QJH Z /2Z<|t|<2l+1
2i+1

1 7
= 2j+122+10¢*|f| Sig?(%ﬂﬂ)z%,

i<j = 1<j

therefore, since the last series equals 2, we deduce that

Mpf—sup—‘/ flx—t y—t2)dt‘
>0 2h

=sup sup ‘/ fﬂi—ty—tz)dt‘
JEZ 2i<h<2i+1 2h
< sup sup 20; * | f| = 2sup a; * | f],
jez

JEL i<y

as we claimed. The next step will be to prove a couple of general results from which we will
deduce the boundedness of Hr and Mp. Given a measure u, we will denote by |u| its total
variation measure and by ||u|, its total variation.
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Theorem 3.8. Let {u;}; be a sequence of finite Borel measures on R?* with ||p;|| < C and such
that for some a > 0,

;)] < Cmin{|276,], [27& 7"}
If the operator
1 (f) = sup ||p;] * f|
j

is a bounded operator on L1(R?) for some q > 1, then the operators

1/2
Tf=Y uj*f and g(f)Z(Zluj*fIQ)

= JEL.

are bounded on LP(R?) for values of p satisfying

Proof. Define the operator S; by

SiF(€) = x,(€)F(9), €=(&,6) R,
where [; = (=271 =27 U [27,27%1). With this notation, we can write
Tf=> T,
k€EZ

where

Tf = Zuj * Sk

JEL
Indeed, using that the Fourier transform is continuous on &’(R?),
DD xS =) ) B f=) if =) i f=TF
keZ jez keZ jeZ JEZ JEL

Now, let us prove that

I Tefll2 < C27M £l (3.11)
or equivalently, that the multiplier satisfies
> i (©x, (&) < C27H
JEZ -

Indeed, take £ € R? and let jo € Z such that & € I,_j, (that is |&;] &~ 2579). Then, using that
I;NI; =0 if i # j and our hypothesis on |;(&)], we get that

> 1 (©xa, (€)] =175 (9)] < Cminf[270 ], 2706}

jEz

~C min{(2702k~0) (2d02k—i0y=ay = Comalkl,

%)
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Since this holds for every & € R?, we deduce our claim. Now, define py such that

1 1

or in other words, such that ¢ = (pg/2)’. Given a function g, we have that

< (oo - vl
Hm%/mw—mmwo

| 1451
<WW/W$“%AN>
Vi

= llill (sl g*) < C (sl * |gl?),

;i * g* = 9( y)dp;(y

making use of Jensen’s inequality and our hypothesis ||y;|| < C. Using duality and the previous
estimate, we obtain

1/2]|?
(z mj*g]-f) _
Po

JEZ

> s gl

JEZ

/ > luy # gilPu

po/2 Jjezr

SCZ/UMHM%,
jez VR?

for some function u € L?(R?) with ||u|, = 1. Now, an easy computation and Fubini’s theorem
yield

Ll slgsoP e = [ (ol at=oP g < [ loPw@. 612

where u(z) = u(—z) and p*(f) = sup, ||u;| * f|. Finally, if we go back to our previous
computations with this estimate, Holder’s inequality and the fact that p* is bounded from
L(R?) to itself, we conclude that

Y RIRPEIES Sy NLEC RN I ST

JEZ JEL JEZL

> gl

jez

1/2||2
¥ (@)l < C (ZL%’\Z)
po/2 jez Po

Hence, we have proved that

1/2 1/2
<Z | * ng2> <C (Z |ng2> : (3.13)

| EL jEL
J Po J Po
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Using the lower bound of Theorem 1.30, we have that

1/2
T3 flp, < € (Z |Sz'ka|2> ;

1€EZ
Po

but since S;S;f = 0if i # j,

SiTyf = Zﬂj * Si(sk—jf) = pg—i * Sif.

JEZ

Therefore, using now (3.13) and the upper bound of Theorem 1.30,

1/2 1/2
T3 fllpo < C (Z | ki * Sz'f\2> =C <Z i * 5kif|2>

1EL 1€EZL
Po Po

1E€EZL

1/2
<c (Zwk_ifﬁ) < .

Po

Finally, interpolating between this estimate and (3.11), we get that for 2 < p < py,
T fllp < Cp2ME=OCR 1 £,

with # =0 if p =2 and 0 = 1 if p = py. Therefore, if we take 2 < p < po,

ITfllp < N Tefllp < CCoNFIl Y 27 MO = || £1],

kEZ keZ

since p < po implies 1 — # > 0. Recall that we wanted to prove that T is bounded for every p
satisfying
1 1 1
\5 2 \ S
If we compute these values, we observe that we want to have boundedness for every pj < p < po.
If 2 < p < po, we are done. If p, < p < 2, we know that 7" is bounded on L? (R?), so we will
proceed by duality and the same argument as in (3.12):

177~ s | [ Tf-g‘z sup
]RQ

gl =1 gl =1

S < s@lgta)is

jET

= s | [ Sl = sw | [ 157
lgllr=1/R? 7 gl =11/R2

< sup |73l 17l < €U, = CIfl,
9lly=
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In order to finish the proof, we have left to show that for pj < p < py, the operator

— (St s2)

JEZ.

1/2

is also bounded. First note that given a sequence € = {¢;}, such that ¢; = =1 for each j € Z,
if we define the operator

T.f = Zé‘jﬂj * f,
jez
then 7. is bounded on LP(R?) for p; < p < po, since the measures {c;u;}; satisfy the same
conditions as {y;}; and the first part of the theorem applies. The bound for 7, will be the
same as for T, and thus independent of the sequence &:

ITefllp < Coll fllpy Po <P < po- (3.14)

Now, recall that the Rademacher functions are defined by

-1 ifo<t<1/2,
TO(t>_{1 if1/2<t<1,

and for j > 1, r;(t) = ro(27t), where rq is extended to the whole real line periodically. We also
know that these functions {r;},;>¢ form an orthonormal system in L?(0,1) and that given

Zaﬂ"] € L*(0,1),

we have that F' € LP(0,1) for 1 < p < oo and there exist positive constants A, and B, such

that
~ 1/2
AllF|l, < (Z Iaj|2) < By[|Fl,-
=0

This inequality is the so-called Khintchine’s inequality and can be found in [13, p. 104]. Now,
if we index the integers from 0 to infinity (Z = {k;};>0), then for every pj < p < po,

o p/2 1
oy = (gmkj*f(xﬂ) < [

Integrating with respect to  and using Fubini’s theorem, we conclude

1
r * dtdq::Bp//
latf /R2/ Z] by » (@ P Jo R? |=0

[e'e) P
er(t)ukj * f(x)
— B / I fllndt < Bree| 7|2,

p

z)r;(t)

dxdt

where the operator 7., satisfies (3.14) with

ee = {(e0),; }i=0 = {r;(D) };>0.

With this, we prove that g is of strong-type (p,p) for pj < p < py and we finish the proof of
the theorem:. O]
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Remark 3.9. If we go over the proof of this last theorem, we notice that just from the hypotheses
that {u;}; is a sequence of finite Borel measures on R* with ||p;]| < C and

72;(6)] < Cmin{|27¢,]%,|27&|7°},  for some a > 0,
we deduce that both T and g are bounded on L*(R?).

Before turning to the second theorem, we will need to state the following majorization
lemma:

Lemma 3.10. Let ¢ be a function defined on R™ which is positive, radial, decreasing as a
function of |x| and integrable. Then,

sup e+ f(2)] < |l M f(),

where @i(z) =t "p(t"'x) and M is the Hardy-Littlewood mazimal operator.

Proof. The proof of this lemma is straightforward: we first assume that ¢ is also a simple
function and then we approximate an arbitrary ¢ by a sequence of simple functions which
increase to it monotonically. The details can be found in |9, Prop 2.7]|. O]

In our case, we will need this lemma with n = 1 and t = 2/ for j € Z.

Theorem 3.11. Let {0;}; be a sequence of positive Borel measures on R? with ||o;|| < C' and
such that for some 0 < a <1,
75(&)] < CI2’& [,

and
[0(€) — ;(0,&)| < Cl27& "
Let
Mo f =suplo? + f
JEZ

be the maximal operator in the variable x5, where the measures 012. have Fourier transforms
0;(0,&). If My is bounded on LP(R), 1 < p < oo, then the mazimal operator

Mf(x) = sup|o; * f(x)|

jEz
is also bounded on LP(R?), for 1 < p < co.

Proof. Take a Schwartz function ¢ € S(R) being positive, radial, decreasing on (0, c0) and such
that ||p[[s = 1 (notice that this implies ¢(0) = 1). For each j € Z define the measure fi; by

13(€) = 5;(8) — 7(0,&)P(2°6).
Let us check that the sequence {/i;}; satisfies the assumptions in Theorem 3.8.
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e {fi;}, is a sequence of finite Borel measures with ||;|| < C.

First of all, let us compute [|o7]|. The measure o7 is defined so that

0]2(52) _ / e—zwiy&da]?(y) — 3]-(0,{2) — /2 6_2”iy§2d0j(:rj,y),
R R
and therefore, 07(E) = 0;(R x E). Since g; is a positive measure, so is o7 and
o3|l = o3 (R) = 03 (R*) = ||o I (3.15)
Now, inverting the Fourier transform in the definition of fi;, we have that
fij = 0j—0;277p(277),
and hence, using (3.15) and the assumption ||o;|| < C,

11 < Nloll + llog 277 o277 )l = llogll + llosllllel: < C.

o |1;(6)| < Cmin{|27€,]*, |27 |}

(i) Case |27&| > 1. Then, we want to show that |fi;(€)| < C|2/¢ | Indeed, using our
hypotheses on |7;(£)| and ||o;]],

15(9)] < 155(8)] + [65(0, &£)B(2761)| < Cl127& ™ + [lo; || B(27€1)|
S 0‘2]'51’—(17
since @ € S(R) and thus |p(t)| < Ct~°.

(i) Case |27¢;] < 1. Then, we want to show that |ﬁj(£)| < C|27&]*. We will use our
assumptions on |0;(§) — 7;(0,&)| and ||o;|| together with the mean value theorem:

()] < [35(6) = 3;(0,&)] +13,(0, &) — 7;(0,£)P(2°61)|

< ClR&GI + [lojllI1 = §(276)] < C1276|" + C|| @[l [27&1 ]
< O27¢,]".

Recall that ¢(0) = 1 and, for the last inequality, that [27¢;| < 1 and 0 < a < 1.

Therefore, our sequence {/i;}; is under the hypotheses of Theorem 3.8. Let ¢ and fi* be the
operators associated with the sequence {fi;}; as in Theorem 3.8. Now, recall that o; = fi; —i—ajz.goj,
where p;(z) = 279¢(277x) follows the notation of Lemma 3.10. With this,

M f(z) = sup |o; = f(z)| < sup|fi; * f(2)] +sup |op; = f(z)]
JEL JEL JEL

1/2
< (Z |1 * f(rc)|2> +su§|a?soj * f ()]
jez J€
= 9(f)(x) + sup |oFp; % f(z)].
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Let us see what happens with the second summand:

sup \032'%‘ * f(z)| = sup flxy =y, 00 — yz)%(yl)dyldo'?(yz)
JEL JEL

R2
< sup / oy % f(an, 72 — ya)|do? (32)
JEZ R

< sup / My f (w1, 23 — y2)do (o)
R

JEZ

= sup |07 * My f(x1,22)| = MM, f(z),

JET

where in the second inequality we use Lemma 3.10 with ||¢|; = 1 and M; denotes the Hardy-
Littlewood maximal operator in the first variable. Therefore, we have proved that

Mf(z) < g(f)(x) + Ma M f (). (3.16)
Using now that o3, 0]2- and ; are positive, we have that
|15 < 0+ ;.
By exactly the same argument as before, we show that

f(f)(x) = sup ||fz;| * f(2)| < sup |o; * f ()] + sup |oFp; * f(z)]
JEL JEZ JEZ

< Mf(z) + MM f(z). (3.17)

Finally, from the fact that the measures {fi;}; satisfy the hypotheses of Theorem 3.8, it
follows that g is bounded on L?(R?) (see Remark 3.9). Therefore, using majorization in (3.16)
together with our hypothesis on My and the fact that M; is bounded on LP(R) for 1 < p < oo,
we deduce that M is also bounded on L*(R?). By (3.17), we have then that i* is bounded on
L?*(R?) and by Theorem 3.8, g will be bounded on L?(R?) for values of p satisfying

1
47
that is, for 4/3 < p < 4. Starting from this, we now have that M and f* are bounded on this
range as well, and again, Theorem 3.8 states that g is bounded on LP(R?) for 8/7 < p < 8.

We can apply this process repeatedly in order to conclude that i*, g and M are bounded on
LP(R?) for every 1 < p < co. A direct computation shows the boundedness of M on L>(R?):

Mf(x) = sup

JEZ

(@ —y)daxy)] < 1fllwsup ;] < Cl1F 11
R2 JEZ

]

With these two theorems, we are ready to prove the following one, which is the goal of this
section:
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Theorem 3.12. The operators Hr and Mr are bounded on LP(R?) for 1 < p < oo and 1 <
p < 0o respectively.

Proof. Let p; and o; defined as in (3.8) and (3.9). We will want to apply Theorem 3.8 to the
sequence {/;}; and Theorem 3.11 to {o;};. Let us check the hypotheses: In both cases, they
are finite Borel measures on R2. It is easily seen that

2i+1 dt

mlE) = [ (el + xe(-1. ) 7. (318)

27

exactly as we did in (3.5), and therefore, for all j € Z
il = s (R?) = 22 < €.
Analogously,
27+1

1
o;j(E) = 2j+1/2 xe(t, t?)dt,

J

and thus, {o,}; are positive measures satisfying
1
loll = o;(R*) = 5 < C.

Now, we want to check the estimates concerning the Fourier transforms of these measures.
First, a direct application of Lemma 3.7 gives us that, for ;] > 1,

~ 1 4 2 C
0‘0(5)| —_ — / 6_2W1(51t+§2t )dt‘ S _—
| 2| icp<2 [SIRE
Also, if we apply Lemma 3.7 to the identity in (3.7), we have that for [£;] > 1,
, 2y dt C
o)l = | [ emenenlc S
1<|t|<2 13 [SIRE

Then, from the relations
1;(6) = 1i0(2°61,2%&5),  5;(6) = 50(2761,276),
we get that, for |27&| > 1, ‘
151, [3;(€)] < Cl27en| 2. (3.19)
Now, the estimates that we need are:

(1) [7;(6)] < Cmin{|27& /2,276 |71/2}.
Indeed, if [27¢;] > 1, by (3.19) we have |f;(€)| < C|27&|7Y/2, which is the minimum of
the two quantities. If [27&;| < 1, using cancellation and the mean value theorem,

/ e—2m‘(§1t+§2t2)ﬂ‘ _ / (6—27ri(§1t+£2t2) . 6—2m‘§2t2>ﬂ
1<t <2 t 1<[t|<2

dt

— <

t
< / et |e2mige 9 / ol ldt < Clé].
1<t <2 1]~ Jici<o

7;(€)] < C127&,| < €276, |2,

recalling that we are in the case where [27¢;| < 1.

20(&)| =

Therefore,
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(ii) [3;(6)] < C1Z&|12
By (3.19), we have the estimate when [27&;| > 1. If [27¢;] < 1,

5,6 < llogll < C < Ol |72

(i) 15;(€) = 3;(0,&)] < Cl27& ">

We proceed as in (i), making use of the mean value theorem:

55(6) — 5,(0,6)] = —

9441

1
< — 2T tldt
<y o 2

<dnl& (27 - 2) = Cl27¢).

o 2 o e 42
/ e 2mi(§1t+E€at?) e 2milat dt
27 <Jt|<29+1

Now, if |27¢;] < 1,
5,(€) — 5,(0,8)| < C|27&| < C|127&, V2,

whereas if 27| > 1,
[5(6) =70, &)| < 2|05l < C < Cl27e "2,

Next, notice that the operator My in Theorem 3.11 is given by

/ g(xe — t2)dt‘ :
29 <|t|<2it

Using that the expression inside the integral is even and making the change of variables s = ¢
when 27 <t < 27t we get

1
927+1

M29($2) = sup
JEL

9 +1 22(j+1) ds
M xzsu—./ x—tht:su.—/ Ty — §)—
1 .
—sup ;| [ g(o2 = 5)25(s)ds].
JEZ R
where
_ 1 1 1 Y
@j(s) - 2]—\/5 : X[22j722(j+1)](s> = 27] ' \/m ' X[1,4](2 ]8)
1 1 Y 1 Y
< ﬁ (\/ﬁ : X[—47—1](2 ]S) + \/m : X[1,4](2 33))
= 2_2jg0(2_2js) =: ;(s),
with

o(s) = \/%—SXMH(S) + %X[M](S)
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being a positive, radial, decreasing on (0, 00), integrable function defined on R. Therefore, by
Lemma 3.10 with ||¢||; = 4,

1
Mag(ry) < 5 Sup lpj * g(a2)] < 2Mg(x2),
jez

where M is the Hardy-Littlewood maximal operator. From this, we deduce that M is bounded
on LP(R) for 1 < p < oo, so we can apply Theorem 3.11 to conclude that

Mf =sup|o;* f]|
JEZ

is bounded for all 1 < p < co. Using now (3.10), we obtain that

My f < 2supo |f| = 2M(|f])
JEZ

and consequently, Mp : LP(R?) — LP(R?) is also bounded for all 1 < p < oo.

Finally, using the identity in (3.18), we have that maximal operator x* in Theorem 3.8 can
be written as

2J+1

w(f) = sup||p;| = f(z,y)| = sup / [f(m—t,y—tQ)+f(w+t,y—t2)]%-
Z Z 27

je je

Now, assume f to be a positive function and let j € Z, it holds that

27 +1 1 27 +1

[ vty farny-e0F < 5 [0 ey 24 sty -

- 2i2/0 [fla =ty =)+ flz +t,y —t*)]dt

4 h

< sup — [f(:v—t,y—tQ)+f(:v—|—t,y—t2)]dt
n>0 2h Jq
4 (h )
=sup— [ flz—t,y—1t°)dt =4Mp(f).
n>0 2h J_,

Therefore, for every positive function

w(f) < 4Mr(f)

and from the boundedness of Mr, we conclude that x* is bounded on L?(R?) for all 1 < ¢ < oo.
With this, we can apply Theorem 3.8 to get that

Hyp : LP(R?*) — LP(R?)
is bounded for all 1 < p < oo and thus finish the proof. O

64



CARLOS DOMINGO

3.5 Extrapolation And Further Results

In 1951, S. Yano [15] proved the following result:

Theorem 3.13 (Yano). Let (X, pu), (Y,v) be two finite measure spaces. Assume that
T:LP(u) — LP(v)

15 a bounded operator with constant

C
(p—1)*
for some k > 0 and every 1 < p < pg, where 1 < py < 0o. Then,

(3.20)

T : L(log L)*(p) — L'(v)
18 also bounded.

Even though Yano’s theorem assumes the measures to be finite, if they are o-finite, the
proof can be modified so that

T: L(log L)* (1) — Lige(v).
In fact, in 2000, M. J. Carro [2] [3] proved that
T: L(log L)"(u) — B(v),
where B(v) is a rearrangement invariant space such that
B(v) € L'(v) + L™ (v).

In this last section, we will see that the constant that we have obtained in this project acts up
near L' and does not allow us to apply Yano’s theorem. However, we will present some recent
progress made in this direction yielding boundedness results for Hp near L.

After carefully analyzing the steps in the proof of Theorem 3.12; one realizes that the
problem with the constant originates in the bootstrapping argument of Theorem 3.11. Without
going into details, the idea is the following: We start from an L?-estimate. After the k-th step,
we have boundedness for values of p satisfying

2k+1 1
m <p< 2 .
However, every step in the process adds an "asymptotic" }ﬁ factor* to the constant. This
factor comes from the interpolation theory behind Theorem 3.8. Finally, since we need an
infinite number of steps to cover the whole range 1 < p < oo, we cannot obtain a constant of
the type (3.20) as p — 17 and thus we cannot make use of Yano’s theorem. Therefore, even
though we have managed to show that Hr is of strong-type (p,p) for 1 < p < oo, the bounds
that we have obtained are not sharp enough to extrapolate.

In 1987, M. Christ and E. M. Stein [7] proved the following result:

4By asymptotic ﬁ factor we mean that it behaves like it as p — 17.
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Theorem 3.14. Let a1 < --- < a, with a; € Z for alli = 1,....n. Let B C R" be a bounded
set. Then, if we define

dt
pr(ﬂ?) = lim f(:l:l—t‘“,xQ—t“Q,--~ ,l’n—tan>—,

e—0 |t|>6 t

we have that
Hr : L(log L)(B) — LI’OO(B).

The usual technique for this kind of operators is applying Calderén-Zygmund theory after
proving an L2-estimate. In order to do so, however, we need the operator to satisfy the Hor-
mander condition (see Theorem 1.25), which fails to be true in this case. In [7], the authors
introduce a variant of the Calderon-Zygmund decomposition which allows them to prove that
Hr satisfies a generalization of the Hérmander condition that yields the sought-after estimate.
The statement is the following:

Lemma 3.15 (Variant of CZ decomposition, Christ and Stein). For every f € LP(R") and
every « > 0, there exist functions g and {b;}; such that

(i) f=9+>" b

(i) {19l < a,
(111) The supports of b; are contained in balls B; = B(x;, 2ji), which are pairwise disjoint.
(i) S, 1Bl < Cat £, o fi Il < Car,

(v) Every point of R" is contained, at most, in C' double balls 2B;.

This decomposition of a function into a "good part" and a "bad part", together with some
technical lemmas, enables the authors to show that Hp maps L(log L)(B) into L»*°(B). For
the "good part", they use the estimates in the decomposition to prove that the image of this
part lies in L°°(B). For the "bad part", they prove an LP-estimate with a sharp enough bound
so that it behaves like p%l as p — 17. Thanks to this fact, they can apply Yano’s extrapolation

theorem to deduce that the image of this other part is in L'(B). However, since for the "good
part" they only manage to get weak-type estimates, their conclusion is that

Hr : L(log L)(B) — LY*°(B).

In fact, they pose the question of whether Hr maps L(log L)(B) to L'(B), rather than merely
to L1°°(B), as an open conjecture.

More recently, in 2004, A. Seeger, T. Tao and J. Wright [12] proved that
Hr : L(loglog L)(R?) — LY (R?)

is bounded, where

Hr f(z) = lim f(xr =tz — t2)%-

e—0 ‘t|>€
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Again, they show this fact by means of a new modification of the Calderén-Zygmund decom-
position. As far as we know, this is the best result concerning the boundedness of the Hilbert
transform along the parabola near L! that has been published so far. Nevertheless, it seems nat-
ural to think that if we improve Yano’s theorem, we might achieve L(logloglog L)-boundedness.
The study of the different variations of the Calderéon-Zygmund decomposition seems also ad-
visable, since the last two main results in this direction use this approach. The question of
whether Hr is of weak-type (1,1) remains open.
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