Master: Functional Analysis and PDE

September 2015. List 1

Comment: You have to present at least 7 exercises of the list. These exercises have to be presented before the mid-night of Thursday October 1 in my mailbox. Do not send the exercises by mail.

- 1) If E and F are Banach spaces, prove that $(\mathcal{L}(E,F),||\cdot||)$ is also a Banach space.
- 2) a) Prove that the space c_0 of scalar sequences that converge to zero is a Banach space endowed with the topology given by

$$||c|| = \sup_{n} |c_n|.$$

b) Prove that the space

$$C_o(\mathbb{R}^n) = \{F : \mathbb{R}^n \to \mathbb{K} : \lim_{\|x\| \to \infty} F(x) = 0\}$$

is a Banach space endowed with the topology given by

$$||F|| = \sup_{x \in \mathbb{R}^n} |F(x)|.$$

- 3) a) Is the space ℓ^p endowed with the norm in ℓ^{∞} a Banach space?.
- b) Is the space $(C([0,1]), \|\cdot\|_1)$ with $\|f\|_1 = \int_0^1 |f(x)| dx$ a Banach space? Is it true that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are equivalent norms on C([0,1]), where $\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$?
- 4) (a) Let $a,b \in \mathbb{R}$ and let $1 \le p_1 \le p_2$. Prove that the identity operator $id : L^{p_2}(a,b) \to L^{p_1}(a,b)$ is continuous.
- (b) Prove that in the case of sequences spaces $id: \ell^{p_1} \to \ell^{p_2}$ is continuous.
- (c) Prove that $id: L^{p_1}(\mathbb{R}) \cap L^{p_2}(\mathbb{R}) \to L^p(\mathbb{R})$, for every $p_1 \leq p \leq p_2$.
- 5) a) Prove that if $(f_n)_n \subset L^p$ for some $1 \le p < \infty$ and $f = L^p \lim f_n$, then there exists a subsequence $(n_k)_k$ such that f_{n_k} converges to f at almost every point.
- b) Is it true that if (f_n) converges to f at almost every point, then $f = L^p \lim f_n$?
- 6) If $\tau_{\nu}(f)(x) = f(x+y)$ is the translation operator, then prove that

$$\lim_{y\to 0} \tau_y(f) = f$$

with convergence in $L^p(G)$ and deduce that, if K is an approximation of the identity in \mathbb{R}^n , then $K_{\lambda} * f$ converges to f in $L^p(\mathbb{R}^n)$.

- 7) a) Prove that the space $C_0(\mathbb{R})$ is dense in $L^p(\mathbb{R})$.
- b) Prove that the space of continuous functions in [0,1] vanishing at 0 and 1 are dense in $L^2([0,1])$.
- 8) Given the Fejer's kernel

$$F_N(x) = \frac{1}{N+1} \left(\frac{\sin((N+1)\pi x)}{\sin \pi x} \right)^2 = \frac{1}{N+1} \sum_{k=0}^{N} \left(\sum_{m=-k}^{k} e^{2\pi i m x} \right),$$

prove that:

a)
$$\int_{-1/2}^{1/2} F_N(x) dx = 1$$
,

- b) Given $0 < \delta < 1/2$, prove that $\lim_{N \to \infty} \int_{\delta}^{1/2} F_N(x) dx = 0$.
- c) Prove that, for every $f \in C(\mathbb{T})$, $f * F_N$ converges uniformly to f.
- d) Deduce that the subspace generated by the trigonometric polynomial is dense in $C(\mathbb{T})$.
- 9) Using exercise 8), prove that the trigonometric system $\{e^{2\pi i mx}: m\mathbb{Z}\}$ is a basis in $L^2(\mathbb{T})$.
- 10) Find the Volterra integral equation that solve the following Cauchy problem and give an expression of the solution:

$$u'' - \frac{t}{2}u' - u + t^2 = 0$$
, $u(0) = 0$, $u'(0) = 1$.

$$u'' - tu - 2t = 0$$
, $u(0) = 0$, $u'(0) = 0$.

- 11) Prove whether the following operators are continuous and, if this is the case, compute its norm and study if it is attained:
- (a) $T: (C[0,1], \|\cdot\|_{\infty}) \to \mathbb{C}$ defined by Tf = f(a), with $a \in [0,1]$.
- (b) $T: (C[0,1], \|\cdot\|_{\infty}) \to (C^1[0,1], \|\cdot\|_{C^1})$ defined by $Tf(x) = \int_0^x f$, where $\|f\|_{C^1} = \|f\|_{\infty} + \|f\|_{C^1}$
- (c) $T: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ defined by Tf(x) = f'.
- (d) $T: (C^1[0,1], \|\cdot\|_{C^1}) \to (C[0,1], \|\cdot\|_{\infty})$ defined by Tf(x) = f'. (e) $T: (\ell^2, \|\cdot\|_2) \to (\ell^1, \|\cdot\|_1)$ defined by $Tx = (x_n/n)_n$.
- (f) $T: (C([-1,1]), \|\cdot\|_{\infty}) \to \mathbb{R}$ defined by $Tf = \int_0^1 f(x) dx \int_{-1}^0 f(x) dx$.
- 12) Let K be a compact set and let us consider the Banach space C(K) with the usual norm.
- a) Prove that if T is a linear functional such that it is positive (that is, $T \neq 0$ for every $f \geq 0$), then T is continuous.
- b) Prove that if T is a positive linear functional such that T1 = 1, then $||T||_{C(K)'} = 1$.
- 13) Given a compact set K and an open set G such that $K \subseteq G$, construct an Urysohn function $\rho \in C^{\infty}$.
- 14) Let $B = \overline{B}(0,1)$ be the closed ball of C([0,1]) with the standard norm $\|\cdot\|_{\infty}$ and let $||f||_1 = \int_0^1 |f(x)| dx$.
- a) Prove that B is closed in $(C([0,1]), \|\cdot\|_1)$.
- b) Prove that $C([0,1]) = \bigcup_{n=1}^{\infty} nB$, where $nB = \{nf; f \in B\}$.
- c) Is the interior of B in $(C([0,1]), \|\cdot\|_1)$ the empty set?
- d) Can we apply Baire's theorem to deduce c)? Explain.
- 15) a) Prove that ℓ^{∞} and ℓ^{1} are not isomorphic.
- b) Let $(a_n)_n$ be a sequence of positive numbers $(a_n > 0)$ such that $\sum_n a_n < \infty$. Prove that there exists (z_n) such that $\overline{\lim}_n z_n = +\infty$ such that $\sum_n z_n a_n < \infty$.

Hint: Consider the operator

$$T: \ell^{\infty} \to \ell^1$$

defined by $T((y_n)_n) = (a_n y_n)_n$ and use the open mapping theorem and a).