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Abstract

Solar sails are extremely interesting for long interplanetary transfers, but also offer many advantages in Libration Point Orbits (LPO)
missions. The extra effect of the SRP allows us, by changing the sail orientation, to artificially displace the classical Lagrangian equilibrium
points, L1, . . . , L5, as well as the Lyapunov, Halo and Lissajous orbits that appear around them. Most of these points are linearly unstable
and have stable and unstable invariant manifolds associated to them. In this paper we want to explore the possibilities that these invariant
manifolds offer for navigating in a natural way around the system. We will use the Earth-Sun Restricted Three Body Problem (RTBP) as a
model and, for different fixed sail orientations, we will compute the stable and unstable manifolds associated to the equilibrium points of the
system. We want to find natural trajectories that allow us to move around the family of equilibria in a controlled way, going from a region
close to L1 to a region close to L2 or even L4 and L5.

I. INTRODUCTION

Solar sailing is a spacecraft propulsion system, that uses large re-
flecting surfaces to take advantage of the solar radiation pressure
(SRP) enabling a constant acceleration, and therefore a poten-
tially unlimited thrust. This offers the opportunity to combine
low-cost operations with long-term missions.

The successful deployment of a solar sail by IKAROS (Decem-
ber 2010) by JAXAa NanoSail-D2 (January 2011) by NASAb

and recently Light Sail (June 2015) by the Planetary Societyc

have finally validated the concept of solar sailing. Unfortunately
there has not been yet any operational mission using solar sails.

Nevertheless many studies on this new propulsion system are
being conducted by the scientific community. From the point of
view of astrodynamics and mission applications, solar sails are
being considered for:

- the Sunjammer mission, an enhanced warning missions to
detect the solar magnetic storms, the solar sail allows to
displaced the Lagrangian equilibrium points.8

- as drag-sails to accelerate the de-orbiting rate of LEO satel-
lites15 and as an end-of-life strategy in LPOs.13

- a low-cost multi NEO rendezvous mission, the mission

ahttp://www.isas.jaxa.jp/e/enterp/missions/ikaros/index.shtml
bhttp://www.nasa.gov/mission pages/smallsats/nanosaild.html
chttp://sail.planetary.org

could visit many asteroids and be flexible in the selected
destinations.2

In this paper we want to explore the structure of invariant man-
ifolds that exist in the Restricted Three Body Problem (RTBP)
and use it to derive transfer orbits between different regions in
the phase space. The stable and unstable invariant manifolds in
the RTBP have already been used to provide cheap transfer or-
bit between the Earth and a Halo orbits, and their potential for
chemical propulsion systems has been widely studied.9

To model the dynamics of a solar sail in the Earth-Sun system we
will consider the RTBP adding the effect of the solar radiation
pressure due to the solar sail. The acceleration given by the solar
sail depends on three parameters: β, known as the sail lightness
number, that measures the sail efficiency, and α, δ two angles
measuring the orientation of the sail. It is well know that the ex-
tra effect of the solar sail in the RTBPS allows us to “artificially”
displace the Lagrangian equilibrium points (L1,...,5) having for
a given β a 2D family of equilibrium points.

We have computed these families of equilibrium points for dif-
ferent sail configurations (β = 0.01, 0.02, 0.03, 0.04 and 0.05).
In section V. we will describe these families of equilibrium
points and classify them regarding their stability. These equi-
librium points offer privileged positions in the phase space for
observational missions and have been proposed missions such
as Sunjammer8 or the Polar Observer.1 We will see that many of
them are unstable and have stable and unstable manifolds associ-
ated to them. This invariant manifolds can be used to find natural
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transfer trajectories from one point to another in the phase space.

In section VI. we will describe the invariant manifolds that ap-
pear around some of the artificial equilibrium points. We will fo-
cus on three different mission applications. The first application
(section VI.I) will be to use the linear approximation of these
manifolds to find a strategy to drift along the family of equilibria
in a controlled way. The second application (section VI.II) will
be to study the be feasibility of transferring a solar sail from the
L1 region to the L2 region. Finally, the third application (sec-
tion VI.III) will be to use the solar sail to gain enough energy to
transfer from L1 or L2 to a neighbourhood of L4.

II. EQUATIONS OF MOTION

To describe the motion of a solar sail in the Earth - Sun sys-
tem we consider as a model the Circular Restricted Three Body
Problem (RTBP) adding the Solar Radiation Pressure (SRP) due
to the solar sail (RTBPS). We assume that the Earth and Sun are
point masses moving around their common centre of mass in a
circular way due to their mutual gravitational attraction. The so-
lar sail on the other hand is a mass-less particle that does not
affect the motion of the two primaries but is affected by their
gravitational attraction as well as the SRP.

We normalise the units of mass, distance and time, so that the
total mass of the system is 1, the Earth - Sun distance is 1 and the
period of its orbit is 2π. In this units the universal gravitational
constantG = 1, the mass of the Earth is µ = 3.0034806×10−6,
and 1− µ corresponds to the mass of the Sun. We use a synodic
reference system with the origin at the centre of mass of the Earth
- Sun system and such that the Earth and Sun are fixed on the x-
axis (with its positive side pointing towards the Sun), the z-axis
is perpendicular to the ecliptic plane and the y-axis completes an
orthogonal positive oriented reference system.14

Within these assumptions, the equations of motion in the synodic
reference system are:

ẍ− 2ẏ = x+ (1− µ)
x− µ
r3ps

+ µ
x− µ+ 1

r3pe
+ ax,

ÿ + 2ẋ = y +

(
1− µ
r3ps

+
µ

r3pe

)
y + ay,

z̈ =

(
1− µ
r3ps

+
µ

r3pe

)
z + az,

(1)

where a = (ax, ay, az) is the acceleration given by the solar sail,
and rps =

√
(x− µ)2 + y2 + z2, rpe =

√
(x− µ+ 1)2 + y2 + z2

are the Sun-sail and Earth-sail distances respectively.

III. THE SOLAR SAIL ACCELERATION

The acceleration given by the solar sail depends on its efficiency
defined by the sail lightness number β, and its orientation
parametrised by two angles α, δ. In this paper we will consider
the simplest model for a solar sail, we assume it to be flat and
perfectly reflecting. Hence, the acceleration due to the SRP is in
the normal direction to the surface of the solar sail. For a more

realistic model one should also take into account the absorption
of the photons by the surface of the sail. In this case, an extra
component in the transverse direction to the sail must be added
which will slightly changing the efficiency of the sail and the
direction of the acceleration vector.3

The force produced by the reflected photons is given by Fr =
2PA〈n, rs〉2n, where P = P0(R0/R)2 is the SRP magnitude
at a distance R from the Sun (being P0 = 4.563N/m2 is the SRP
magnitude at R0 = 1AU), A is the area of the solar sail, rs is
the Sun-sail direction and n is the normal direction to the surface
of the sail (both unit vector). As the SRP is proportional to the
inverse square of the distance to the Sun it is common to write
its effect as a correction of the Sun’s gravitational attraction:

a = β
(1− µ)

r2ps
〈rs,n〉2n, (2)

where β corresponds to the sail lightness number, which ac-
counts for the sail’s effectiveness. One can also interpret β as
the ratio between the gravitational attraction and the solar sail
acceleration.

It can be seen that,

β = σ∗/σ, σ∗ =
2P0R

2
0

Gms
= 1.53g/m2,

where σ = m/A is the area-to-mass ratio of the solar sail.11 This
means that, for instance, a sail lightness number β = 0.03 corre-
sponds to a characteristic acceleration of a0 = 0.179804mm/s2.
Moreover, if we have a payload mass of 10kg we need a solar
sail area of almost 14 × 14m2 to have a sail lightness number
β = 0.03. In Table 1 we can see for different sail lightness
numbers β, the corresponding area-to-mass ration (σ), the char-
acteristic acceleration and the size of the solar sail if we have a
10kg payload.

β σ (g/m2) a0(mm/s2) Area (m2)
0.01 153.0 0.059935 ≈ 8× 8
0.02 76.5 0.119869 ≈ 12× 12
0.03 51.0 0.179804 ≈ 14× 14
0.04 38.25 0.239739 ≈ 16× 16
0.05 30.6 0.359608 ≈ 20× 20

Table 1: Relation between the sail lightness number β and: the area-
to-mass ration of the satellite (σ), the characteristic acceleration (a0),
and the area requirements for the solar sail if the have a 10kg payload
satellite.

The sail orientation is given by the normal direction to the sur-
face of the sail, n = (nx, ny, nz), and is parametrised by two
angles α and δ that measure the displacement of n with respect
to the Sun-sail direction rs = (x− µ, y, z)/rps. Following10 we
can define the normal direction to the surface of the sail as:

nx =
x− µ
rps

cosα− (x− µ)z

r2rps
sinα cos δ +

y

r2
sinα sin δ,

ny =
y

rps
cosα− yz

r2rps
sinα cos δ − x− µ

r2
sinα sin δ,

nz =
z

rps
cosα+

r2
rps

sinα cos δ,

(3)
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where r2 =
√

(x− µ)2 + z2, α corresponds to the pitch angle
(angle between n and rs) and δ the clock angle (angle given by
the projection of n in an orthogonal plane to rs).

Notice that the the normal vector to the surface of the sail, n,
cannot point towards the Sun, hence 〈n, rs〉 > 0 implying that
α, δ ∈ [−π/2 : π/2].

IV. THE JACOBI CONSTANT

From a mathematical point of view the Earth-Sun-Sail RTBPS
can be seen as a perturbation of the Earth-Sun RTBP, where
the perturbation destroys the Hamiltonian structure of the sys-
tem. From previous works4, 6 we know that for α = δ = 0 (i.e.
the solar sail perpendicular to the Sun-sail line) the system is
Hamiltonian and for α 6= 0, δ = 0 (i.e. the orientation of the
solar sail varies vertically w.r.t. the Sun-sail line) the system is
Time-Reversible. In this two particular cases we can ensure that
around an equilibrium point (for a fixed sail orientation) we have
periodic and quasi-periodic motion.

One of the interesting properties of Hamiltonian systems is that
they have at least one first integral, i.e. a function which is con-
served through time. In the case of the RTBP we have the well
known Jacobi constant, that can also be seen as the energy level
of the system. This function is usually used to classify possible
regions of motion.

In the case of the RTBPS, for a fixed sail orientation, we do
not have the concept a Jacobi constant or energy level. But we
would like to define a function that allowed us to classify the
type of motions. Notice that taking Eq. 1 and Eq. 3 we can write
the equations of motion for the solar sail as:

ẍ− 2ẏ =
∂Ω̃

∂x
+ β

1− µ
r2ps

cos2 α

(
−(x− µ)z

r2rps
sinα cos δ

+
y

r2
sinα sin δ

)
,

ÿ + 2ẋ =
∂Ω̃

∂y
+ β

1− µ
r2ps

cos2 α

(
−yz
r2rps

sinα cos δ

− x− µ
r2

sinα sin δ

)
,

z̈ =
∂Ω̃

∂z
+ β

1− µ
r2ps

cos2 α

(
r2
rps

sinα cos δ

)
,

(4)
where Ω̃(x, y, z) =

1

2
(x2 + y2) + (1− β cos3 α)

1− µ
rps

+
µ

rpe
, and

we can define and approximate energy level,

J̃c = ẋ2 + ẏ2 + ż2 − 2Ω̃(x, y, z). (5)

Notice that for β = 0 (i.e. no sail) or if α = 0, δ = 0 (a sail
perpendicular to the Sun-sail line), this function corresponds to
the Jacobi constant of the RTBP or RTBPS (Hamiltonian case).

If we look at the variation of this function over time, we have:

dJ̃c
dt

= β
(1− µ)

r2ps
cos2 α sinα

(
ẋy − ẏ(x− µ)

r2
sin δ

+
r22 ż − ((x− µ)ẋ+ yẏ)z

rpsr2
cos δ

)
.

This expression can give us an idea on how the energy of the
system varies. Notice that, as expected, J̃c is constant for α = 0
or β = 0, and for α ≈ 0 this variation will be small. We will
also use this “constant” to decide if a transfer trajectory between
two equilibrium points is feasible or not.

In the Hamiltonian case, α = 0, the constant J̃c helps us find the
region of possible motion. Notice that J̃c = ||v||2−2Ω̃(x, y, z),
hence the region of possible motion is defined by (x, y, z) ∈
R3 such that J̃c + 2Ω̃(x, y, z) ≥ 0. The zero velocity curves
ZV(Jc) = {(x, y, z) ∈ R3 | Jc + 2Ω̃(x, y, z) = 0} define the
frontier between allowed and not allowed motion.

In Fig. 1 we plot the zero velocity curves for β = 0 (top) and
β = 0.01 (bottom) in the region close to L1, L2 points. We
can see how the structure varies drastically as we increase the
value of β. For β = 0 the required energy level to have motion
around L1 and L2 is almost the same, while for β = 0.01 we
have motion around L2 for a lower energy level than for L1.
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Fig. 1: Projection of the zero velocity curves in the x, y plane,
ZV(Jc) = {(x, y, 0) ∈ R3 | Jc + 2Ω̃(x, y, 0) = 0} for β = 0.00
(top) and β = 0.01 (bottom).

V. FAMILY OF EQUILIBRIUM POINT

It is well known14 that when the SRP is discarded (β = 0)
the Earth-Sun RTBP has five equilibrium points: three of them
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(L1,2,3) are on the line joining the two primaries and are linearly
unstable (saddle×centre×centre), while the other two (L4,5) are
on the ecliptic plane forming an equilateral triangle with the two
primaries and are linearly stable (centre×centre×centre).

When the sail is perpendicular to the Sun-sail line (α, δ = 0)
we have a similar portrait as for β = 0 we have five equilibrium
points SL1,...,5 slightly displaced towards the Sun w.r.t the clas-
sical Lagrangian points L1,...,5. Three of them in the Earth-Sun
line (SL1,2,3) and unstable, and two forming a triangle with the
two primaries (SL4,5) and stable.10 Note that in this case we are
essentially changing the magnitude of the Sun’s attracting force.

When we change the sail orientation (α 6= 0 or/and δ 6= 0) we
can artificially displace the equilibrium point. Variations in α
will displace the points to one side or the other from the Sun-sail
line, while variations in δ will displace the equilibrium points
above or below the ecliptic plane.4, 6, 12

In Fig. 2 we can see the family of equilibria on the xy-plane
(i.e. for α ∈ [−π/2 : π/2] and δ = −π/2) and β = 0.01,
0.02, 0.03, 0.04 and 0.05, and in Fig. 3 we have a zoom of these
families close to the Lagrangian points L1,...,5. All these points
have been computed using a continuation method w.r.t. one of
the angles defining the sail orientation.
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Fig. 2: Family of equilibrium points on the xy-plane (z = 0 and δ =
−π/2) for β = 0.01, 0.02, 0.03, 0.04 and 0.05.

For small β (� 10−5) we have five disconnected families of
equilibrium points, each family parametrised by the two angles
defining the sail orientation. As β grows (≈ 10−5) the equilibria
surfaces related to L3, L4 and L5 merge into each other, hav-
ing three disconnected families of equilibria (this is the case of
β = 0.01, 0.02 in Figs. 2 and 3). Between β = 0.02 and 0.03
the surface related to L1 merges with the large surface contain-
ing L3,4,5, having only two disconnected surfaces of equilibria
(as can be seen in Figs. 2 and 3 for β = 0.03, 0.04 and 0.05).
The two remaining surfaces will never merge into each other as
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Fig. 3: Zoom around L1,2 (top-left), L3 (top-right), L4 (bottom-left)
and L5 (bottom-right) for the family of equilibrium points on the xy-
plane (z = 0 and δ = −π/2) for β = 0.01, 0.02, 0.03, 0.04 and 0.05.

there are some frontiers for the possible equilibria, given the sail
orientation restrictions 〈n, rs〉 > 0, that separates them.10, 11

We can classify the equilibrium points according to their sta-
bility, which is given by the eigenvalues of the linearised flow
around the equilibrium point. As the system is only Hamil-
tonian for a small set of sail parameters, there is no a priory
bound between the pair of eigenvalues. We can distinguish three
class of equilibrium points, T1 which are unstable and have as
eigenvalues λ1 > 0, λ2 < 0, ν1 ± iω1 and ν2 ± iω2. Where
|ν1,2| � |λ1,2| hence the main instability is given by the sad-
dle. The class T2 are equilibria that have all their eigenval-
ues complex ν1,2,3 ± iω1,2,3, and at least one of the real parts
|νi| > 0.001. This means that they present some instability
given by a complex saddle. Finally the third class of equilibrium
points T3 are almost stable, as all the eigenvalues are complex
ν1,2,3 ± iω1,2,3 and all the real parts |ν1,2,3| < 0.001. We call
them almost stable as the required time to leave the vicinity of
the equilibrium point is large. In Fig. 4 we show the relation be-
tween the position of the equilibrium point and the class where
they belong. As we can see the equilibria close to L1 and L2 are
unstable, as well as those close to L3.

We can also classify the equilibrium points by the required an-
gle with respect to the Sun-sail direction to have equilibria. Al-
though the angle between the sail normal vector and the Sun-sail
line can vary between [−π/2 : π/2], it is not feasible to con-
sider |α| > π/4 due to technical limitations. In Fig. 5 we plot
the relation between the equilibrium position and the angle α, in
green we have the points with |α| ≤ π/4 and purple those with
|α| ≥ π/4. This gives us an idea of the points we can actually
consider for mission applications. As we can see the points close
to the classical Lagrange points L1,...,5 are not useful as they re-
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Fig. 4: Stability indicator for the family of equilibrium points on the
xy-plane (z = 0 and δ = −π/2) for β = 0.01, 0.02, 0.03, 0.04 and
0.05. The class T1, T2, T3 are represented in colour green, blue and
purple respectively.

quire |α| ≈ π/2, while their displaced ‘brothers’ SL1,...,5 and
the equilibria close to them can be useful.

These equilibrium points have been proposed as target positions
for several mission applications,12 the most relevant one is the
Sunjammer mission. The missions proposed usually require to
remain close to an equilibrium point, in this paper we want to see
if the invariant manifolds associated to the unstable equilibrium
points (class T1) can help us to drift along the family of equilibria
in a controlled way or even provide natural transfer trajectories
to go from one region to another.
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Fig. 5: Sail orientation relation between the family of equilibrium points
on the xy-plane (z = 0 and δ = −π/2) for β = 0.01, 0.02, 0.03, 0.04
and 0.05. Green points present |α| ≤ π/4 and Purple points |α| ≥ π/4.

VI. SURFING WITH INVARIANT MANIFOLDS

The stable and unstable manifolds associated to family of peri-
odic and quasi-periodic orbits have already been used to provide
cheap transfer trajectories in the RTBP.9 When we consider the
RTBPS we have a family of equilibrium points and their asso-
ciated stable and unstable manifolds can also be used to have
natural transfer trajectories.

We have focused on the equilibrium points of class T1 described
in the previous section. As already mentioned, these points are
unstable and have a saddle associated to them. We have com-
puted for different equilibrium points (i.e. different sail orienta-
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tion) their stable and unstable invariant manifolds and tried to see
in a graphical way if there are connections between them. This
will allow us to find transfer trajectories from one equilibrium
point to the other.

In this section we will describe three mission options that the
invariant manifolds structure provides us. The first mission fo-
cuses on performing small changes on the sail orientation mov-
ing along the stable and unstable manifolds of different equi-
librium points drifting in a controlled way along the family of
equilibria. The second mission is to find transfer trajectories
from the vicinity of L1 to the vicinity of L2. The third mis-
sion is to find transfer trajectories connection L1 or L2 with the
stable Lagrangian points L4,5.

VI.I Drift along the Family of Equilibria

Here we want to address the problem of finding a transfer strat-
egy that allows us to go from the vicinity of one equilibrium
point to another. For this purpose we will not use control theory
algorithms but rather the information on the natural dynamics of
the system. We will consider the two target equilibrium points to
belong to the same connected component of the surface of equi-
libria and of class T1. And derive a sequence of changes in the
sail orientation that take the sail from one point (p0) to the other
(p1).

As we know all the equilibrium points of class T1 are unsta-
ble and their linear dynamics can be well approximated by a
saddle×centre×centre.5, 7 Hence, a sail close to the equilibrium
point will escape along the unstable direction, if we change the
sail orientation the trajectory will escape along the new unstable
direction. The main idea behind these strategies relies on un-
derstanding the position of the saddle on the phase space, and
how this one varies when we vary the sail orientation. With this
information we can be able to derive a sequence of changes on
the sail orientation that will drive the satellite along the different
saddles.

One can check that for the values of β that we have considered
in this paper (β = 0.01, . . . , 0.05), and the equilibrium points
that lie in the orbital plane (z = 0), the saddle projections does
not vary much and the family of equilibrium points moves in
between the stable and unstable directions. In Fig. 6 we can
appreciate this phenomena for β = 0.03. There we have plotted
the family of equilibrium points and the projection of the stable
and unstable directions in the xy-plane.

Now that we know how the stable and unstable directions vary
along the family we can use this to derive a ‘surfing strategy’.
First we need to track the trajectory of the sail in the saddle plane,
and when we are far from the equilibrium point, change the sail
orientation so that the trajectory of the sail will move along the
stable manifold of the new fixed point and then escape along its
unstable manifold. We will repeat this process until we reach
a vicinity of the final target point. During all these process we
must also take into account the projection of the trajectory in
the other centre directions. There we will have a sequence of
rotations along different equilibrium points and this might result
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Fig. 6: xy-projection of the family of equilibrium points for β = 0.03
and the stable and unstable vectors for the equilibrium points in the SL1

family (right) and the SL2 family (left).

unbounded. In Fig. 7 we have a schematic representation of the
strategy that we have just explained.

q1

q2

pini

pend

Emax

v1

v2

pend

q2

q1

pini

Fig. 7: Schematic representation of the surfing strategy.

In previous works5, 7 we have tested these strategies for different
missions scenarios, being able to move along the family of equi-
libria in a controlled way. There you can also find more details
and information on the practical implementation of the strate-
gies. We must mention that the trajectories that we find using
these ideas might not be optimal in terms of transfer time, but
they will tell us if a transfer between two points is possible and
can also be used as initial guesses for an optical control scheme.

As an example mission we have selected two equilibrium
points in the ecliptic plane slightly displaced from the
Earth-Sun line: p0 =(-9.8558558e-01, -3.2243367e-03,

0.000000e-00) for α0 = 9.9947e-02rad ≈ 5.73◦ and
δ = −π/2, and p1 = (-9.8558558e-01, 3.2243367e-03,

0.000000e-00) for α = -9.9947e-02rad ≈ 5.73◦ and δ =
−π/2. We have used surfing scheme discussed above to find a
sequence of changes on the sail orientation that lead the trajec-
tory of the sail from p0 to p1.

In Fig. 8 we can see the projection in the xy-plane of this trajec-
tory that the sail follows to go from p0 to p1. As we can see the
trajectory remains close to the family of equilibrium points.

In Fig 9 we can see a part of the trajectory that the sail fol-
lows projected in the saddle and centre planes of p0. Looking
at the saddle projection (left) we can clearly see how the trajec-
tory moves along the different saddles that appear each time we
change the sail orientation. The trajectory on the centre projec-
tions (right) rotates around the different equilibrium points.
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Finally in Fig. 10 we can see the variation of the sail orientation
α over time. Where we can clearly see how the sail orientation
varies in a discrete way, and goes from 5.73◦ to −5.73◦, the
sail orientation corresponding to the equilibrium points. As the
two points p0 and p1 the trajectory will always line in the plane,
z = 0, and δ ≈ −π/2 throughout the entire transfer trajectory.
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Fig. 8: xy projection of the solar sail trajectory during the surfing strat-
egy.
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VI.II Surfing from SL1 to SL2

The transfer strategies that we have described in the previous
section use the information on the local dynamics of an equi-
librium point, and allow us only to move inside one of the con-
nected components of the surfaces of equilibria. For instance,

if we want to move from a vicinity of SL1 to a vicinity of SL2

we need to compute the whole stable and unstable manifolds and
see if they can lead us there.

We have considered β = 0.01 and β = 0.03, two values of β
where the structure of the family of equilibrium points close to
SL1 and SL2 are different (see section V.). For each β we have
taken a set of 100 points in the family and for each point and
its corresponding sail orientation (α, δ fixed) we have computed
their stable and unstable invariant manifolds. We have integrated
each of them up to 20UT≈ 3.2 years.

In Fig. 11 we show the projection in positions of the stable and
unstable manifolds related to SL1 and SL2 (the displaced La-
grangian points for α = 0) for β = 0.01 (top) and β = 0.03
(bottom). In the first case (β = 0.01) we see that we can find
intersections between the stable and unstable manifolds of SL1

and SL2, while this is not true for β = 0.03. Nevertheless, we
need to be careful to avoid the a possible collision with the Earth.
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Fig. 11: xy-projection of the stable and unstable manifolds from SL1

and SL2 for β = 0.01 (top) and β = 0.03 (bottom).

Moreover, if we want to find a transfer trajectory between the
two points, we need that the stable and unstable manifolds match
not only in positions, but also in energy level (or the J̃c value).
As we discussed in section IV. for α = 0 or α small J̃c varies
very little and defines the frontiers of possible motion. We need
the intersections to happen also at the same Jc value to be sure
that the trajectory will follow the new stable manifold.

In Fig. 12 we plot for β = 0.01 the trajectories of the stable and
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unstable manifolds. Here the x−y coordinates correspond to the
position and the z coordinate to the energy value of each point
(Eq. 5). We can see that for α = 0 the trajectories from SL1

to SL2 do not match in energy (top). But if we move along the
family of equilibria in the SL1 family (by varying the sail orien-
tation) we can lower the energy and find different intersections.
In Fig. 13 we show a similar structure but for β = 0.03, although
in this case it is harder to find intersections in positions.
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Fig. 12: Projection in the x, y, Jc space of the stable and unstable mani-
folds from the equilibrium points in the L1 and L2 family for β = 0.01.
Top: case where there is no intersection in energy (Jc), Bottom: case
where we have an intersection in energy.

A more extensive exploration should be done to find all possi-
ble intersections between the different families for different re-
alistic sail configurations. But these results show that a transfer
between SL1 and SL2 is possible and that it is more feasible
for low performance solar sails. We also need to study in more
detail how to perform the transfer strategy in order to, with the
solar sail, transfer from one manifold to the other. This last part
is work in progress.

VI.III Surfing from SL1/SL2 to SL4,5

It is well know that the equilateral Lagrangian pointsL4,5 are lin-
early stable and have around them a large stability region, where
a spacecraft placed in this region will remain there, without the
need of control, for more that 1000 years. Their positions is also
very inserting as we could monitor the Sun’s activity free of in-
terference. If we could have three probes, one atL1 and the other
two at L4 and L5 respectively we can have a 3D monitoring of
the Sun. Accessing to this regions with a regular spacecraft is
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Fig. 13: Projection in the x, y, Jc space of the stable and unstable mani-
folds from the equilibrium points in the L1 and L2 family for β = 0.03.
Top: case where there is no intersection in energy (Jc), Bottom: case
where we have an intersection in energy.

very expensive as they require a large ∆v. Here we want to see
if by moving the sail orientation we are able to gain energy in a
continuous way to reach the region of L4 or SL4 in a reasonable
time.

As before we have taken a set of 100 equilibrium points close to
SL1 and SL2 of class T1 for β = 0.01 and 0.03. For each point
and its associated sail orientation we have computed their stable
and unstable manifolds up to 20UT≈ 3.2 years. Then we look if
there are intersections in position and Jc with the SL4,5 vicinity.

In Fig. 14 we show the projection on the xy-plane of the invari-
ant manifolds associated to SL1 and SL2 for β = 0.01 (top)
and β = 0.03 (bottom). As we can see in both cases these tra-
jectories come close to L4. The main difference between them
is the time required to reach the vicinity of L4. For β = 0.01 the
time of flight between SL1 and SL2 is quite similar, while for
β = 0.03 departing from SL2 is faster. This is mainly because
as β increases SL2 becomes more unstable while SL1 looses in-
stability, in other words the real eigenvalue related to SL2 grows
with β while the real eigenvalue related to SL1 decreases.

On the other hand, as we have already mentioned, we must have
a match in energy (Jc) in order to have feasible transfers trajec-
tories to the L4 vicinity and remain there. If we use the invariant
manifolds associated to SL1 and SL2 (equilibrium points for
α = 0), we have no energy drift, as the system is Hamiltonian.
We can see this in Fig. 15 for the transfers from SL1 and Fig. 16
for the transfers from SL2. In both plots β = 0.01 (top) and
β = 0.03 (bottom).
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Fig. 14: xy-projection of the stable and unstable manifolds from SL1

and SL2 for β = 0.01 (top) and β = 0.03 (bottom)

If we consider a sail orientation, α 6= 0 we will have an energy
drift as discussed in section IV.. We can find stable and unstable
manifolds, given by certain sail orientations, where Jc increases
until it reaches Jc(L4). But we need to be careful in selecting
the angles as in some cases the stable and unstable manifolds get
trapped in the vicinity of other equilibria far from L4.

In Fig. 17 we show the 3D projections of the invariant manifolds
(x, y, Jc) for β = 0.01 associated equilibrium points in the SL1

family (top) and the SL2 family (bottom) that reach the energy
of SL4. In Fig. 18 we have selected equilibrium points related to
both families where the trajectories get trapped close to another
equilibrium point and do not reach the vicinity of L4.

Here we have studied the possibility of finding transfer trajecto-
ries that reach the region close to L4/L5 with the desired energy
level, having a constant drift due to the sail. We have found tra-
jectories that reach there, showing that a transfer is possible. We
still need to do a more detailed study on the range of sail orien-
tations that take us there, and how to get captured in the L4/L5
region once we get there.

VII. CONCLUSIONS

In this paper we have done a preliminary study on the possibili-
ties that the stable and unstable manifolds associated to the arti-
ficially equilibria have to derive transfer orbits between regions
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Fig. 15: Projection in the x, y, Jc space of the stable and unstable man-
ifolds from the equilibrium points in the SL1 for β = 0.01 (top) and
β = 0.03 (bottom). The points correspond to the family of equilibrium
point and their associated energy. In both cases there is no intersection
in energy (Jc) with the L4 region.
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Fig. 17: Projection in the x, y, Jc space of the stable and unstable man-
ifolds from the equilibrium points in the SL1 (top) and L2 (bottom) for
β = 0.01. The points correspond to the family of equilibrium point and
their associated energy. In both cases we see that there is an intersection
with the energy (Jc) of the L4 region.
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Fig. 18: Projection in the x, y, Jc space of the stable and unstable man-
ifolds from the equilibrium points in the SL1 (top) and L2 (bottom) for
β = 0.01. The points correspond to the family of equilibrium point and
their associated energy. In both cases we see how the unstable invariant
manifold gets trapped before reaching the L4 region.

in the phase space.

First of all in section V. we have reviewed the family of artificial
equilibria that appear in the RTBP for different sail orientations
and performances β = 0.01, 0.02, 0.03, 0.04 and 0.05. We have
discussed their position in the phase space as well as some of
their characteristics.

In section VI.I we have studied the possibilities that the linear
dynamics of the unstable equilibrium points give us to derive
strategies to drift along the family of equilibria.

In sections VI.II and VI.III we have selected different equilib-
rium points and for each of them we have computed their stable
and unstable manifolds and see if we can find connections be-
tween the SL1, SL2 and SL4 regions. We have seen that there
exist connections between SL1 to SL2 for low performance so-
lar sails (β = 0.01, 0.02). For any value of β we have con-
nections between SL1,2 and SL4,5, although here the larger the
solar sail is the faster we will arrive there.

We must mention that this is a preliminary study but shows
promising results. Further explorations should be made to mea-
sure for each β the range of sail orientations that allow us to per-
form the different transfers, as well as the manoeuvres required
to change from one invariant manifold to the other.
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