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Dynamical System Tools to Navigate
in the Earth-Sun System

A. Farrés∗ and À. Jorba∗

Abstract— In this paper we focus on the motion of a solar sail in the Earth-Sun system, where we will show how to use the
information on the natural dynamics of the system to navigate around it in a controlled way. We use the Restricted Three Body
Problem (RTBP) including the Solar Radiation Pressure (SRP) as a model for the motion of the solar sail. This model has a
family of “artificial” equilibrium points parametrised by the orientation of the sail. Most of theme are unstable, we will use their
stable and unstable manifolds to drive the trajectory along this family of points.

1 Introduction

Solar Sails are a form of spacecraft propulsion that takes ad-
vantage of the Solar Radiation Pressure (SRP) to propel a satel-
lite. By providing a satellite with a large and highly reflecting
ultra-thin mirrors, the impact and further reflection of the pho-
tos emitted by the Sun on the mirrors will accelerate the probe.
This acceleration will be small but unlimited, allowing new and
challenging mission concepts [1, 2] as we will see in this paper.

In this paper we focus on the motion of a Solar sail in the vicin-
ity of the Earth. As a model for its motion we use the classi-
cal circular Restricted Three Body Problem (RTBP) taking the
Earth and the Sun as primaries and adding the effect of the So-
lar Radiation Pressure (SRP) due to the sail. Where the accel-
eration given by the solar sail will depend on three parameters:
β the sail lightness number which measures the effectiveness
of the sail; and two angles α, δ which define the orientation of
the sail.

It is well know that the RTBP (when the SRP is not included)
has five equilibrium points, L1,...,5, all of them laying on the
ecliptic plane. When we add the SRP these equilibrium points
come closer to the Sun, and by changing the sail orientation we
can artificially displace their position. These new equilibrium
locations result into possible docks for new and challenging
mission applications [1, 2]. Most of these equilibrium points
are unstable and station keeping strategies are needed to remain
close to them [3]. On the other hand we can use their associ-
ated stable and unstable manifolds to go from one equilibria to

another in a controlled way [4].

In section 2.1 we will describe the family of equilibrium points
and their linear dynamics. In section 3 we will show how
changes on the sail orientation affect the motion of a solar sail
close to a given equilibrium point, and how to use this infor-
mation to derive simple strategies for the station keeping (sec-
tion 3.2) or navigating around the family of artificial equilibria
(section 3.1) in a controlled way. Finally in section 4 we will
apply these strategies to an example mission scenario.

2 Solar Sails in the Earth-Sun system

To model the motion of a solar sail close to the Earth we use the
RTBP taking the Earth and Sun as primaries and including the
SRP due to sail. Hence, we assume that the two primaries to
be point masses that orbit around their mutual centre of mass
in a circular due to their mutual gravitational attraction. The
solar sail sail is also a point mass that does not affect the mo-
tion of the two primaries but is affected by their gravitational
attraction as well as the SRP.

Moreover, we take a rotating reference frame where the ori-
gin is at the Earth-Sun centre of mass and such that the x-
axis is along the line joining the two primaries, the z-axis is
perpendicular to the orbital plane and the y-axis completes
an orthogonal positive oriented reference system. We also
take normalised units of mass, distance and time such that
the total mass of the system is 1, the Earth-Sun distance is
1, and their orbital period is 2π. In this units the univer-
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sal gravitational constant is G = 1, the mass of the Earth is
µ = 3.00348060100486 × 106 and 1 − µ corresponds to the
mass of the Sun.

Hence, the equations of motion are given by:

ẍ− 2ẏ = x− (1− µ)
x− µ
r3ps

− µx− µ+ 1

r3pe
+ ax,

ÿ + 2ẏ = y −
(

1− µ
r3ps

+
µ

r3pe

)
y + ay,

z̈ = −
(

1− µ
r3ps

+
µ

r3pe

)
z + az,

(1)

where ~a = (ax, ay, az) is the acceleration given by
the solar sail and rps =

√
(x− µ)2 + y2 + z2, rpe =√

(x− µ+ 1)2 + y2 + z2 are the Sun-sail and Earth-sail dis-
tances respectively.

As a first approach we consider the solar sail to be flat and per-
fectly reflecting. Then the acceleration due to the Solar Sail
will depend its performance and orientation and is given by:

~asail = β
ms

rps
〈~rs, ~n〉2~n.(2)

We call sail lightness number to the constant β defined as
the SRP ratio in terms of the Sun’s gravitational attraction, and
gives an idea on the performance of the Solar Sail: β = 1.53/σ
where σ = mass/area (kg/m2) of the spacecraft.

The sail orientation is given by the normal direction to the
surface of sail, ~n, which is parametrised by two angles α and
δ that measure the vertical and horizontal displacement with
respect to the Sun-Sail direction ~rs = (x− µ, y, z)/rps.

2.1 Artificial Equilibrium Points

It is well known that the RTBP has 5 equilibrium points,
L1, . . . , L5, when we include the SRP and vary the sail ori-
entation we displace their position. In other words, for small
values of β the five equilibrium points are replaced by five fam-
ilies of artificial equilibria parametrised by the angles defining
the sail orientation [5, 6].

In particular, if we consider the solar sail to be perpendicular to
the Sun-sail line, the points L1, . . . , L5 are displaced towards
the Sun. If we move the sail orientation right or left w.r.t. rs
(i.e. changing α) we will displace the equilibria right/left w.r.t.
the Sun-Li line, and moving up or down the orientation w.r.t.
rs (i.e. changing δ) we displace them up/down w.r.t. the eclip-
tic plane.

In Figure 1 (top) we have the family of equilibrium points for
β = 0.05 (a sail lightness number similar to the one for the
Sunjammer mission http://www.sunjammermission.
com/). Each point on the surface corresponds to an equilib-
rium point for a certain fixed sail orientation. At the bottom

of Figure 1 we have a zoom of the region close to the Earth.
Notice that we have two disconnected regions, the small one
corresponds to the equilibria related to L2, and the other to the
equilibria close to L1.
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Figure 1: Family of equilibria for β = 0.05

If we look at the stability of the different equilibrium points,
those that are close to L1,2,3 are unstable (blue points) and their
linear dynamics is of the type saddle×sink×source, and the
main instability is given by the saddle as the real component of
the complex eigenvalues is very small compared to the positive
real eigenvalue. On the other hand, the equilibria close to L4,5

are practically stable (purple points) as their linear dynamics is
cross products of sinks and source where the real part of the
real eigenvalues is small [3].

3 Moving around the Family of Equilibria

Our goal is to derive simple strategies to: (a) remain close to the
unstable equilibria and (b) navigate along the family of equilib-
ria in a controlled way. We will use the information on the nat-
ural dynamics of the system to derive these strategies. We will
focus only on the unstable equilibria (blue points in Figure 1),
whose linear dynamics is close to saddle×centre×centre, and
take advantage of the unstable manifolds to move along the
system.

Hence, if a solar sail is close to one of these equilibrium points,
p0, with a fixed sail orientation α0, δ0, the trajectory will es-
cape along the unstable manifold while rotating in the other
two centre directions. If we change the sail orientation, the po-
sition of the equilibrium point is displaced as well as its stable
and unstable directions. Now the trajectory will escape along
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the new unstable manifold. If we choose an appropriate new
sail orientation we can make the sail come back to the original
equilibrium point, p0, or to surf towards a new equilibria p1.

We do not have an explicit expression, p(α, δ), for the position
of the equilibrium points as a function of the sail orientation.
But for a given point p0 = p(α0, δ0), if |α − α0| and |δ − δ0|
are small, the position of the equilibrium points is well approx-
imated by:

p(α, δ) = p(α0, δ0) +
∂p

∂α
(α− α0) +

∂p

∂δ
(δ − δ0),(3)

where
∂p

∂α
and

∂p

∂δ
can be easily computed numerically.

In order to decide which new sail orientation, (α1, δ1), places
the equilibrium point, p1 = p(α1, δ1), such that its unstable
manifold drives the trajectory where we want to go, we need an
appropriate reference system. This reference system must con-
tain information on the relative position of the trajectory with
respect to the stable and unstable manifolds. For this purpose
we use a reference frame centered at the equilibrium point p0
and defined by its eigenvectors {~v1, ~v2, ~v3, ~v4, ~v5, ~v6}. Hence,
the position of the sail at time t, φ(t), is written as:

φ(t) = p0 +

6∑
i=0

s1(t)~vi,(4)

where ~v1, ~v2 are the unstable and stable directions, ~v3, ~v4 define
the first centre projection and ~v5, ~v6 the second centre projec-
tion.

We use equation (3) in the reference frame defined by equa-
tion (4) to find the appropriate sail orientation for our pur-
pose. Where p(α, δ) is where we want to have the equilibrium
point in coordinates (s̄1, s̄2, s̄3, s̄4, s̄5, s̄6). Notice that there
are more equations than unknowns, which corresponds to the
fact that we do not have equilibrium points in arbitrary places.
We will use the least-squares method to solve the system and
have a fixed point close to the desired positions. We might have
to add some restrictions when we solve the system in order to
guarantee that the trajectory behaves as expected.

In Figure 2 we try to sketch the effect on the sail trajectory of
two new equilibrium point (p1, p2), that can appear when we
change the sail orientation, in the saddle×centre×centre refer-
ence frame defined in equation (4). In blue we have the trajec-
tory of the sail close to p0 for α = α0, δ = δ0, and the dashed
line represents the variation of the equilibria with respect to
one of the sail angles. The lines in red and green represent the
effect on the sail trajectory for two given changes on the sail
orientation. The red curve corresponds to the effect of having
p1 as the new equilibria, notice how here the trajectory in the
saddle component comes back to the stable manifold of p0 and
how the trajectory in the centre components tries to come close
to p0. On the other hand, the green curve corresponds to the

effects of p2, here the trajectory on the saddle direction contin-
ues to escape from p0 as well as in the two centre projections.
Situations like the one generated by p1 are interesting for sta-
tion keeping strategies while situations like the one given by p2
are interesting for surfing strategies.
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Figure 2: Sketch for possible effects on the sail trajectory for
changes on the sail orientation.

3.1 Surfing strategies

Let us briefly describe the main ideas behind the surfing
scheme, where the goal is to go from one point pini to another
pend.

Before we start we need to know the position of the final point
pend in the reference frame centred at pini and draw an imagi-
nary line that goes from one point to the other. As it might be
not feasible to get from pini to pend with one change of the sail
orientation, we will need to get a sequence of points, qi (i.e. a
sequence of changes in the sail orientation (αi, δi)) to arrive to
pend. In order not to loose information each time we change
the sail orientation we will recompute the reference frame to be
centre around qi and draw the imaginary line between qi and
pend

q1

q2

pini

pend

Emax

v1

v2

pend

q2

q1

pini

Figure 3: Sketch of the surfing strategy on the saddle and centre
projections of the trajectory.

Hence, imagine we are close to a certain equilibrium point qi.
Then the trajectory will escape along the unstable direction,
and rotate around the centre projections. When the trajectory
is far away from the qi, that is to say that |s1(t∗)| > εmax we
will change the sail orientation. We will choose a new orien-
tation such that the new point qi+1 satisfies |s̄1| < d · εmax

with d < 1, and ||(s̄3, s̄4)||2 > ||(s3(t∗), s4(t∗))||2 and
||(s̄5, s̄6)||2 > ||(s5(t∗), s6(t∗))||2. In other words, the new
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unstable manifold takes the trajectory towards pend, and the
trajectory in the centre projection must also moves towards
pend. In Figure 3 we can see a sketch of these phenomena.

We will repeat this until we get close to the final point. We can
play with the parameters εmax and d in order to remain close
to the surface of equilibria or to control the surfing speed.

3.2 Station Keeping strategies

Let us briefly describe the ideas behind the station keeping
scheme, where the goal is to remain close to the equilibrium
point pini for a long time.

We will always start with a reference frame centred around the
equilibrium point we want to remain close (pini). As before
the trajectory will escape along the unstable direction and ro-
tate in the centre projections. When the trajectory is far from
pini (i.e |s1(t∗)| > εmax) we will change the sail orienta-
tion. Now we will chose a new orientation such that the new
equilibrium point, qi, satisfies |s̄1| > d · εmax with d > 1,
and ||(s̄3, s̄4)||2 < ||(s3(t∗), s4(t∗))||2 and ||(s̄5, s̄6)||2 <
||(s5(t∗), s6(t∗))||2. In other words, the new unstable manifold
must take the trajectory towards the stable manifold of pini and
the centre projections must remain bounded. Once the trajec-
tory comes close to pini (i.e. |s1(t∗)| < εmin) we will restore
the original sail orientation. In Figure 4 we have a sketch of
this phenomena.

We will repeat this as long as we want to remain close to pini.
By playing with the parameters εmax and dwe can modify how
far away we can get from the orbit and the time it takes the sail
to come back.

Emax

v1

v2

q1

q1

pini pini

Figure 4: Sketch of the station keeping strategy on the saddle
and centre projections of the trajectory.

4 Test Mission

As a test mission we propose a round tour visiting 4 equilib-
rium points on the surface of equilibria combining the two
strategies proposed in the previous section. The 4 points we
want to visit are displaced 5◦ from the Earth-Sun line, two of
them above and below the ecliptic plane (p1, p3) and the other
two left and right from the Earth-Sun (p0, p2), forming a rhom-
bus with the Sun in the middle if you look at them from the
Earth.

We have considered a solar sail performance β = 0.051689,
which corresponds to the sail lightness number for the Sun-
jammer mission (a sail with ≈ 32kg of payload mass and an
area of 38 × 38m2). In Table 1 we have the position of the 4
equilibrium points we want to visit and their corresponding sail
orientation.

x y z
p1 -9.79998e-01 1.81889e-03 0.00000e+00

p2 -9.80036e-01 0.00000e+00 1.73948e-03

p3 -9.79998e-01 -1.81889e-03 0.00000e+00

p4 -9.80036e-01 0.00000e+00 -1.73948e-03

α (deg) δ (deg)
p1 -0.74 0.00

p2 0.00 2.61

p3 0.74 0.00

p4 0.00 -2.61

Table 1: Coordinates of the equilibrium points to visit in the
example mission and their corresponding sail orientation for
equilibria.

We have divided the mission into four stages, where each of
them has two different parts. In stage 1 we start close to p0 and
first we surf from p0 to p1, once we are close enough to p1 we
use the station keeping algorithm to remain there for two years.
Stages 2, 3 and 4 follow the same objective, going from p1 to
p2 (stage 2), from p2 to p3 (stage 3) and from p3 to p0 (stage 4).
The idea of the mission is to orbit around the solar disc while
surfing along the equilibrium points.

When we surf from one point to the other we use the surfing
strategy described in section 3.1 and when we control the tra-
jectory to remain close to one of the equilibria for 2 years we
use the station keeping strategy described in section 3.2

In Figure 5 we have the trajectory the solar sail follows through
the mission, where each colour corresponds to the different
stages of the mission.
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Figure 5: XYZ projection of the solar sail trajectory. Stage 1
in red; Stage 2 in green; Stage 3 in blue; Stage 4 in purple.
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Figure 6: Stage 1, surfing from p0 to p1: α, δ variation.
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Figure 7: Stage 2, surfing from p1 to p2: α, δ variation.
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Figure 8: Stage 3, surfing from p2 to p3: α, δ variation.
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Figure 9: Stage 4, surfing from p3 to p0: α, δ variation.

In Figures 6, 7, 8 and 9 we show the variation of the two angles
defining the sail orientation during the mission. As we can see

the average time to get from one point to the other is around 4
years, except in stage 4 where the sail takes a longer tour as it
can be seen in Figure 5. Moreover, notice how at each ‘step’
the sail orientation gets closer to the orientation required for
the target point.

Let us now describe in a little more detail the trajectory for
each strategy. For simplicity and due to space limitations we
only present results for the two parts of stage 1, as the rest of
the stages behave in a very similar way.

4.1 Stage 1A: surfing form p0 to p1

On the top-left hand-side of Figure 10 we can see the Y Z pro-
jection of the first stage of the mission, where we can clearly
see how the trajectory gains altitude while moving towards the
left until it reaches a vicinity of p1.

The other three plots in Figure 10 are the different projections
of the trajectory in the saddle and centre planes related to p0,
and the black crosses represent the projection of the equilibria,
qi, that play a role in the surfing scheme, these are the equi-
librium positions for the different sail orientations that we use.
Notice how the trajectory in the saddle projection (top-right)
is a succession of saddle arcs, each of them centered around
the equilibria qi. The trajectory on the other two centre direc-
tions (bottom) also moves along the family of equilibria qi and
rotates around them. A similar behaviour is observed for the
other three stages.
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Figure 10: Different projections of the trajectory of the 1st
stage surfing form p0 to p1.

4.2 Stage 1B: 2 year station keeping

As we have mentioned before, once we are close to the target
equilibrium points pi we apply the station keeping strategy to
remain close to them for 2 years. The main idea is to check
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how well we are surfing along the surface of equilibria, as well
as to know if we are able to stay around any of the points if
requiered.
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Figure 11: Different projections of the trajectory of the 1st
stage control around p1.
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Figure 12: Stage 1, control around p1: α, δ variation

On the top-left hand side of Figure 11 we have the Y Z projec-
tion of the trajectory of the solar sail during the control period.
As we can see, despite the instability of the region, the trajec-
tory remains close of the equilibrium point for two years.

The other three plots are the projection of the sail trajectory on
the saddle and two centre projections around the target point
p1. As we can see, in the saddle projection (top-right) the tra-
jectory is a connection of saddle arcs, where each time the tra-
jectory is escaping along the unstable direction, the sail ori-
entation is changed and the trajectory comes back along the
saddle arc of the new equilibria and comes close to the stable
direction of p1. The trajectory in the two centre projections is a
connection of rotations around different points, which remains
bounded along time.

Finally in Figure 12 we see the variation of sail orientation dur-
ing the two years.

5 Conclusions

In this paper we have shown how to use the information on the
dynamics of a system to navigate around it in a controlled way.
The ideas are general enough to be applied to different kind
of dynamical systems. We have applied them to the particu-
lar case of a satellite propelled by a solar sail in the Earth-Sun
system.

We have seen that in the Sun-Earth RTBP with a solar sail we
have a surface of equilibrium points, each point corresponding
to a certain sail orientation. Some of these equilibrium points
are linearly unstable and have a stable and unstable manifolds
associated to them. Hence, for a fixed sail orientation, if we are
close to equilibria, the trajectory will escape along the unstable
manifolds. We also know that when we change the sail orien-
tation the position of equilibria shifts, then the trajectory will
escape along the new unstable manifold. If we can compute
how these invariant manifolds vary with the sail orientation,
we can derive schemes to make the solar sail surf around the
system in a controlled way.

We have shown how to derive some of these strategies and ap-
plied them to an example mission to surf around the equilib-
rium points close to L1. The results show that the strategy is
robust and that we are able to surf around the surface of equi-
libria. Nevertheless, we still need to do a more extensive study
in order to minimise the surfing time to go from one point to
the other and see how it depends on the parameters in our al-
gorithms.
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