
Introduction Basic Tools Homogeneous Polynomials

Semi-analytical computation of Normal Forms,
Centre Manifolds and First Integrals

of Hamiltonian systems (I)

Àngel Jorba
angel@maia.ub.es

University of Barcelona

Advanced School on Specific Algebraic Manipulators

1 / 45

Introduction Basic Tools Homogeneous Polynomials

Outline

1 Introduction
Center manifolds
Normal forms
Methodology

2 Basic Tools
Storing and retrieving monomials
The (most) basic functions
Symmetries
Different number of variables

3 Homogeneous Polynomials
Sums
Products
Poisson bracket
Input and output

2 / 45

Introduction Basic Tools Homogeneous Polynomials

Introduction

In these talks we will focus on the approximation of invariant
structures of the phase space of a Hamiltonian system.

We will show how to effectively manipulate the Hamiltonian
function to derive semilocal information around fixed points of the
system.

In the next slides we will discuss practical techniques to implement
these calculations, in an efficient language such as C/C++ (or
Fortran).

3 / 45

Introduction Basic Tools Homogeneous Polynomials

One of the main problems faced when considering these kind of
computations is how “to store” the object in the computer.

The easiest case is the computation of a single trajectory, that can
be stored as a sequence of points in the phase space.

Note that, when the invariant object has bigger dimension, it can
be very difficult (usually, it is impossible) to store it by simply
storing a net of points. The approach taken here is to use some
kind of series expansion to represent the object.

The advantage is that in many cases only “a few” terms of
these series are needed to get a good accuracy and that they
can be handled very easily.

As disadvantages we note that sometimes they have
convergence problems making impossible to represent the
object in this way.

4 / 45

Introduction Basic Tools Homogeneous Polynomials

Sometimes, when only a qualitative description of the dynamics is
needed, it is enough to use a low order computation (this is the
typical situation encountered, for instance, in the analysis of a
bifurcation).

This is not the case considered here. The methodology presented
in this paper is directed to produce high order computations, with
a high degree of accuracy.

Hence, the first point addressed is how to build an efficient
algebraic manipulator (in an efficient language such as C or C++)
to manipulate these expansions fast, and using as little memory as
possible.

5 / 45

Introduction Basic Tools Homogeneous Polynomials

As an example, we will show how to use these techniques to
describe the (nonlinear) dynamics near the collinear points of the
RTBP.

We will also address related topics such as error analysis (including
the use of interval arithmetic), efficiency (both from the memory
and speed points of view) and some possible extensions (more
variables, time dependence, etc.).

The source code for several of the algorithms explained here can
be retrieved from my web page,

http://www.maia.ub.es/~angel/soft.html

6 / 45

Introduction Basic Tools Homogeneous Polynomials

Center manifolds

Let us consider a 3DOF Hamiltonian system with an equilibrium
point at the origin, of the type centre×centre×saddle.

We are interested in finding a description of the dynamics in a
neighbourhood (as big as possible) of the origin.

One possibility is to perform the so-called reduction to the centre
manifold. That is, to perform changes of variables in order to
uncouple (up to some finite order) the hyperbolic behaviour from
the centre one (one can look at this as a partial normal form).

Hence, the restriction of the Hamiltonian to this (approximate)
centre manifold will be a 2DOF Hamiltonian system. So, selecting
an energy level H = h and doing a suitable Poincaré section we
can produce a collection of 2-D plots that can give a good
description of the dynamics.

7 / 45

Introduction Basic Tools Homogeneous Polynomials

Normal forms

Let us assume that we are interested in the dynamics near an
elliptic equilibrium point (that, for simplicity, we will locate at the
origin) of a three degrees of freedom Hamiltonian system.

Assume we are able to rewrite the initial Hamiltonian H as

H = H0 + H1,

where H0 is integrable and H1 is non integrable.

Then, if H1 is small enough near the point, the trajectories
corresponding to H0 are close to the trajectories of H (at least for
moderate time spans).

Hence, from the integrable character of H0 it is not difficult to
obtain approximations for the invariant tori of H.

8 / 45

Introduction Basic Tools Homogeneous Polynomials

Normal forms

Let us assume that we are also interested in estimates of the
diffusion time near the origin.

Note that the computational effort needed to do this by single
numerical integration is too big that it can not be considered a
feasible option.

An alternative procedure can be the following: lassume that we are
able to rewrite the initial Hamiltonian as H = H0 + H1.

As H0 is integrable, the diffusion present in H must come from H1.
Hence, one can easily derive bounds for the diffusion time in terms
of the size of H1. Of course, in order to produce realistic diffusion
times one needs to have H1 as small as it can be.

A standard way of producing the splitting H = H0 + H1 is by
means of a normal form calculation: H0 is the normal form and H1

the corresponding remainder.
9 / 45

Introduction Basic Tools Homogeneous Polynomials

Normal forms

There are alternative ways of estimating the diffusion time near
elliptic equilibrium points.

For instance, one can construct approximate first integrals near the
point and estimate the “drift” of these integrals. Of course,
although one can use as many first integrals as degrees of freedom,
it is enough to use a single positive-definite integral (near the
point, its level surfaces split the phase space in two connected
components so they act as a barrier to the diffusion).

We want to note that although from the theoretical point of view
both approaches are equivalent (the first integrals we compute are
in fact the action variables of the normal form), from the
computational point of view they behave differently.

10 / 45

Introduction Basic Tools Homogeneous Polynomials

Methodology

In this course we will present several methodologies to deal with
those computations, based on the use of algebraic manipulators.

There are several possible schemes, depending on the kind of
calculation we are interested in. For instance, if the procedure only
needs to substitute trigonometric series in the nonlinear terms of
the equations (like in the Lindstedt-Poincaré method), one of the
best choices is to look for a recurrent expression of those nonlinear
terms (the substitution is simply done by inserting the series into
the recurrence).

In this paper, we will apply schemes that work with the power
expansion of the Hamiltonian (when the system is not
Hamiltonian, one must work with the differential equations –or
with the equations of the map if the system is discrete– but, of
course, this increases the computational effort).

11 / 45

Introduction Basic Tools Homogeneous Polynomials

Methodology

A general scheme for the problems considered here is:

1 Power expansion of the Hamiltonian around the origin.

2 Complexification of the Hamiltonian. This is not a necessary
step but, as we will see, it allows to simplify further
computations.

3 Changes of variables (usually by means of Poisson brackets),
up to some finite order.

4 Realification of the final Hamiltonian. Again, this is not a
necessary step. It is done only to reduce the size of the
resulting series.

5 Computation of the change of variables that goes from the
initial Hamiltonian to the final one.

So, one needs computer routines for all these steps.

12 / 45

Introduction Basic Tools Homogeneous Polynomials

Methodology

A natural way of handling the power expansions is as a sequence of
homogeneous polynomials:

H =
∑
k≥2

Hk ,

where Hk is an homogeneous polynomial of degree k.

As we will see, the bottleneck (with respect to speed) of the
methods exposed here is the handling of homogeneous polynomials.

13 / 45

Introduction Basic Tools Homogeneous Polynomials

Basic Tools

Here we will discuss the basic algorithms to handle homogeneous
polynomials.

For the moment, we will not specify the kind of coefficients of the
polynomials.

14 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

Let us assume that we want to store an homogeneous polynomial
Pn of degree n, with 6 variables (x0, . . . , x5),

Pn =
∑
k∈N6

|k|=n

pkxk ,

where we use the notation xk ≡ xk0
0 . . . xk5

5 and |k| = k0 + · · ·+ k5.

For the moment we assume that all the coefficients pk are different
from zero. Let us define

ψ6(n) = #{k ∈ N6 such that |k| = n}

(that is, ψ6(n) denotes the number of monomials of Pn).

15 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

To store the polynomial,

we use an array of ψ6(n) components (the kind of array
depends on the kind of coefficients of the polynomial),

we use the position (index) of a coefficient inside the vector to
know the monomial it corresponds to.

To this end we construct two functions:

llex6: Given a place inside the array (that is, an integer
between 0 and ψ6(n)− 1) it returns the multiindex that
corresponds to this coefficient.

exll6: Given a mulltiindex, it returns its position inside the
array.

16 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

To store the polynomial,

we use an array of ψ6(n) components (the kind of array
depends on the kind of coefficients of the polynomial),

we use the position (index) of a coefficient inside the vector to
know the monomial it corresponds to.

To this end we construct two functions:

llex6: Given a place inside the array (that is, an integer
between 0 and ψ6(n)− 1) it returns the multiindex that
corresponds to this coefficient.

exll6: Given a mulltiindex, it returns its position inside the
array.

16 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

Before going into the details of these functions, we want to stress
that, from the point of view of efficiency, they are the most
important ones: if they are efficient, the package will be efficient.

Let us see a first example of the use of these functions, to compute
the product of two (homogeneous) polynomials.

17 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

/* code for p3 = p3 + p1*p2 */
nt1=ntph6(g1); /* function psi */
nt2=ntph6(g2);
for (i=0; i<nt1; i++)
{
llex6(i,k1,g1);
for (j=0; j<nt2; j++)
{
llex6(j,k2,g2);
for (l=0; l<6; l++) k3[l]=k1[l]+k2[l];
lloc=exll6(k3,g3);
p3[lloc] += p1[i]*p2[j];

}
}

18 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

To have a fast implementation, we use an integer array (we assume
here that every integer is four bytes long) to store some
information to be used by function llex6.

This array has ψ6(n) components and each one contains (encoded)
the multiindex of the corresponding coefficient.

We use this array in the obvious way: each time we need to know
the exponent of the monomial whose coefficient is stored in the
place j of the homogeneous polynomial, we get it from the
component j of this array.

19 / 45

Introduction Basic Tools Homogeneous Polynomials

Storing and retrieving monomials

The way of encoding the multiindex k is the following: as we know
the degree we are working with, one of the exponents (say k0) is
redundant, so we only need to store k1, . . . , k5.

This has to be stored inside a 32 bits number, so we can use 6 bits
for each index, leaving 2 unused.

This introduces the restriction kj < 64. As we want to handle
homogeneous polynomials the maximum degree allowed is 63,
enough for the applications considered here.

20 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

The (most) basic functions

Their source code is stored in the file mp6.c. As these routines are
the most important ones, we will discuss them more carefully.

For portability reasons, in the heading of several files we redefine
the standard type int as integer.

21 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Before continuing, let us define the function ψi (n) as

ψi (n) = #{k ∈ Ni such that |k| = n},

Exercise

Prove that ψi (n) can be evaluated by means of

ψi (n) =
n∑

j=0

ψi−1(j) =

(
n + i − 1

i − 1

)
.

22 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Before continuing, let us define the function ψi (n) as

ψi (n) = #{k ∈ Ni such that |k| = n},

Exercise

Prove that ψi (n) can be evaluated by means of

ψi (n) =
n∑

j=0

ψi−1(j) =

(
n + i − 1

i − 1

)
.

22 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

The first step is to allocate space to store the values ψi (j).

At this moment we only need to know ψ6 but we will also compute
ψ2, . . . , ψ5 (they will be needed later on).

To this end we allocate a rectangular matrix psi with the first
index ranging from 2 to 6 and the second one from 0 to nor.

The values ψi (j) are computed (using the previous recurrence) and
stored in the position (i , j) of the matrix psi.

23 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Next step is to allocate space for the table clmo.

The first dimension of this table ranges from 0 to nor, and it refers
to the degree of the homogeneous polynomials.

If the first index is i , the second index ranges from 0 to
ψ6(i)− 1 ≡ psi[6][i]− 1.

The position (i , j) of this array is the encoded version of the
multiindex of the monomial number j of a polynomial of degree i .

Once this table has been allocated, we have to fill it with the
information about the multiindices.

24 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Next, We need an order inside the set of multiindices of a given
degree: Let k be a multiindex of degree n and let us define k as
the integer number (in base n + 1) k5k4k3k2k1k0 (for instance, if
k = (1, 2, 3, 4, 5, 6) then k = 654321).

Then, the order is given by

k(1) < k(2) ⇐⇒ k(1) < k(2).

This is usually called reverse lexicographic order.

Now, for a given degree i, we compute all the multiindices
according to this order and we store them in the table clmo: the
first one for degree i is (i,0,0,0,0,0), and all the others are
generated by routine prxk6 (see next slide).

25 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

void prxk6(natural k[])
/*

given a multiindex k, this routine computes the next one
according to the lexicographic order.

parameters:
k: array of 6 components containing the multiindex. it is

overwritten on exit (input and output).
*/
{

if (k[0] != 0) {k[0]--; k[1]++; return;}
if (k[1] != 0) {k[0]=k[1]-1; k[1]=0; k[2]++; return;}
if (k[2] != 0) {k[0]=k[2]-1; k[2]=0; k[3]++; return;}
if (k[3] != 0) {k[0]=k[3]-1; k[3]=0; k[4]++; return;}
if (k[4] != 0) {k[0]=k[4]-1; k[4]=0; k[5]++; return;}
puts("prxk6 error 1."); exit(1);

}

26 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

We store the components of each multiindex in the corresponding
place of clmo, using 6 bits for each component: this means that
the coded version of the multiindex is (note that we do not code
k0 because, as we know the degree, it is redundant)

k1 + k2 × 26 + k3 × 212 + k4 × 218 + k5 × 224.

This is the value we will store in clmo[i][j], where we have
assumed that j stands for the place of the multiindex (and the
monomial) inside this order.

27 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Routine llex6

Given a location in the array of coefficients, lloc, and a degree,
no, it computes the multiindex corresponding to them.

The way it works is very straightforward because the multiindex is
contained (encoded) in clmo[no][lloc], and to decode it we
only need to invert the formula used to compute it using the
modulus function.

28 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

void llex6(integer lloc, integer k[], integer no)

{

natural n;

integer m;

if (lloc >= psi[6][no]) {puts("llex6 error."); exit(1);}

n=clmo[no][lloc];

k[1]=n%64; m=k[1]; n/=64;

k[2]=n%64; m+=k[2]; n/=64;

k[3]=n%64; m+=k[3]; n/=64;

k[4]=n%64; m+=k[4];

k[5]=n/64; m+=k[5];

k[0]=no-m;

return;

}

29 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Routine exll6

Given a multiindex k of degree no (this is redundant information
but it is very useful to avoid calling these routines in a wrong way),
it returns the corresponding place.

The implementation of this routine can be done in many ways. Let
us see one.

30 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Let us denote by k = (k0, . . . , k5) the multiindex and let n be
k0 + · · ·+ k5. Define k(5) as (k0, . . . , k4) and let n5 = n − k5 be
the degree of k(5). Then, if we are able to compute

1 the number of multiindices (`0, . . . , `5) of 6 variables with
degree n such that 0 ≤ `5 < k5,

2 the place it corresponds to k(5) among the multiindices of 5
variables of degree n5,

then, the sum of these two numbers is the place we are looking for.

1 The first of these numbers is ψ5(n5 + 1) + · · ·+ ψ5(n).

2 The second one is the same problem we want to solve, but
with one dimension less, so we can apply again the same
procedure until we reach dimension 2 (polynomials of two
variables), where the solution of the problem is trivial.

31 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Let us denote by k = (k0, . . . , k5) the multiindex and let n be
k0 + · · ·+ k5. Define k(5) as (k0, . . . , k4) and let n5 = n − k5 be
the degree of k(5). Then, if we are able to compute

1 the number of multiindices (`0, . . . , `5) of 6 variables with
degree n such that 0 ≤ `5 < k5,

2 the place it corresponds to k(5) among the multiindices of 5
variables of degree n5,

then, the sum of these two numbers is the place we are looking for.

1 The first of these numbers is ψ5(n5 + 1) + · · ·+ ψ5(n).

2 The second one is the same problem we want to solve, but
with one dimension less, so we can apply again the same
procedure until we reach dimension 2 (polynomials of two
variables), where the solution of the problem is trivial.

31 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

There are some more functions in the file mp6.c

Routine ntph6: This routine returns the number of monomials of a
given degree (this information is contained in the array psi).

Routine prxk6: It is used to produce all the multiindices of a given
order, according to the order we are using. For more details, we
refer to the source code.

32 / 45

Introduction Basic Tools Homogeneous Polynomials

The (most) basic functions

Routine imp6: This routine allocates and initializes some internal
arrays to store the encoded multiindices. The only parameter of
this routine is an integer (nr) that contains the maximum degree
we want to use. This value is stored in the variable nor.

Routine amp6: It frees the memory allocated by imp6. Of course,
once it has been called the manipulator can not be used until a
new call to imp6 has been done.

33 / 45

Introduction Basic Tools Homogeneous Polynomials

Symmetries

It is quite common in physical examples to have some kind of
symmetry in the Hamiltonian. For instance, in the examples used
in this paper we have a symmetry with respect to the variable z .

This implies that not all the possible monomials of the power
expansion of the Hamiltonian are really present.

In the examples used here we have that, if i is the exponent of z
and j the exponent of pz , the only monomials that appear in the
expansion are the ones in which i + j is even.

Hence, taking this into account it is possible to reduce the amount
of memory used and the computing time by a factor of
approximately two.

34 / 45

Introduction Basic Tools Homogeneous Polynomials

Symmetries

In order to exploit the symmetry we have developped special
versions of the routines in file mp6.c

File mp6s.c contains the same routines as mp6.c (but with an “s”
at the end of the name, to be able to use them in the same
program if necessary), but assuming that the only monomials
present are the ones that satisfy that k4 + k5 is even.

As they work in a very similar way, we only mention the main
differences.

35 / 45

Introduction Basic Tools Homogeneous Polynomials

Symmetries

imp6s Function ψ6(n) is not longer valid to compute the number of
monomials. The number of monomials for a given degree n is

[n
2
]∑

j=0

(2j + 1)ψ4(n − 2j),

where [n2] denotes the integer part of n/2.

exll6s To have a simple formula for the position for a given index,
we have changed the order used for the monomials: we use
the reverse lexicografic order for the exponents (k4, k5) and
the reverse lexicographic order for the exponents
(k0, k1, k2, k3) (this is usally called product reverse
lexicographic order). It allows to derive a closed formula for
the position (see the source code).

prxk6s It is changed in order to produce the exponents in the product
reverse lexicographic order defined above.

36 / 45

Introduction Basic Tools Homogeneous Polynomials

Symmetries

File mp6p.c contains the same routines as mp6s.c, but with a
different symmetry: here it is assumed that all the monomials that
are present satisfy that k4 + k5 is odd (this kind of symmetry will
appear in some computations).

The implementation is almost identical to mp6s.c, so we do not
add further remarks.

In fact, as the examples considered in this paper have the above
mentioned simmetry, we do not make use of the routines in mp6.c.
I have included them for the sake of completeness, and because
they are the most natural ones to start describing how these kind
of routines work.

37 / 45

Introduction Basic Tools Homogeneous Polynomials

Symmetries

File mp6p.c contains the same routines as mp6s.c, but with a
different symmetry: here it is assumed that all the monomials that
are present satisfy that k4 + k5 is odd (this kind of symmetry will
appear in some computations).

The implementation is almost identical to mp6s.c, so we do not
add further remarks.

In fact, as the examples considered in this paper have the above
mentioned simmetry, we do not make use of the routines in mp6.c.
I have included them for the sake of completeness, and because
they are the most natural ones to start describing how these kind
of routines work.

37 / 45

Introduction Basic Tools Homogeneous Polynomials

Symmetries

Finally, let us note that if the symmetries are “too complex” to
derive closed formulas for the routines exll, one can always
perform a binary search on the array clmo.

In this case, it is very convenient to use an order such that the
integer values stored in clmo are sorted as integer numbers.

Although this is not as efficient as a closed formula, it can be
easily applied in all the cases.

38 / 45

Introduction Basic Tools Homogeneous Polynomials

Different number of variables

As the examples in this paper are three degrees of freedom
Hamiltonian systems, the basic routines explained here handle
polynomials with six variables.

If one is interested in a different number of variables, it is not
difficult to build the corresponding basic routines.

For instance, later on we need to handle the normal form of a
3DOF Hamiltonian system, that depends on 3 variables. They are
constructed using the same algorithms as for six variables.

We have put those routines in file mp3.c, Note that this file is,
essentially, a minor modification of file mp6.c.

In a similar way we have the file mp4s.c and mp4p.c, that are
needed during the reduction to the centre manifold.

39 / 45

Introduction Basic Tools Homogeneous Polynomials

Homogeneous Polynomials

The routines of this section are contained in the files basop6s.cc
and basop6sp.cc.

Note that we have several versions of some of them, in order to
deal with polynomials with different symmetries.

I recommend to give a look at the source code, since it will clarify
(we hope!) our explanations.

In what follows, assume that p1 and p2 are two arrays containing
(the coefficients of) homogeneous polynomials of degrees g1 and
g2.

40 / 45

Introduction Basic Tools Homogeneous Polynomials

Sums

Assume that both have the same degree, and that we want to add
them, storing the result in an array called p3.

If we call nm the number of monomials of one of these polynomials
(this is the value returned by a routine like ntph6), then the sum is
easily computed:

for (i=0; i<nm; i++) p3[i]=p1[i]+p2[i];

Here we have assumed that we have defined the operation + for
the type of the coefficients of the polynomial

41 / 45

Introduction Basic Tools Homogeneous Polynomials

Products

Let us see the product of homogeneous polynomials (now we are
not assuming that p1 and p2 have the same degree).

The algorithm is very straightforward and uses the previous rutines.

Let us call n1 and n2 the number of monomials of each polynomial
p1 and p2.

Then, to multiply the monomial number i of p1 with the monomial
number j of p2 we only have to compute the corresponding
multiindices k(i) and k(j), to ask for the position where the
coefficient of the monomial k(i) + k(j) must be stored, and to add
there the product of the coefficients.

Doing this for all the possible values of i and j we obtain the
desired product.

42 / 45

Introduction Basic Tools Homogeneous Polynomials

Poisson bracket

The Poisson bracket of two homogeneous polynomials can be
implemented using the same ideas as the product.

The algorithm we have used is based on the following identity:∑
k,`

pk,`x
ky `,

∑
k ′,`′

qk ′,`′xk ′
y `′

 =

∑
k,`,k ′,`′

pk,`qk ′,`′

 3∑
j=1

(kj`
′
j − k ′j `j)

xk+k ′
y `+`′

xjyj

 ,

where, of course, k, `, k ′ and `′ belong to N3.

Thus, for any term of this sum, we proceed as in the product of
homogeneous polynomials: we look for the exponents of the
monomials, we compute the exponents of the result and, in the
corresponding position, we add the coefficients.

43 / 45

Introduction Basic Tools Homogeneous Polynomials

Poisson bracket

nt1=ntph6s(g1); nt2=ntph6s(g2); nt3=ntph6s(g3);

for (i=0; i<nt1; i++) {

llex6s(i,k1,g1);

for (j=0; j<nt2; j++) {

llex6s(j,k2,g2);

for (l=0; l<6; l++) k3[l]=k1[l]+k2[l];

w=p1[i]*p2[j];

m=k1[0]*k2[1]-k2[0]*k1[1];

if (m != 0) {

k3[0]--; k3[1]--; lloc=exll6s(k3,g3);

p3[lloc] += m*w; k3[0]++; k3[1]++;

}

m=k1[2]*k2[3]-k2[2]*k1[3];

if (m != 0) {

k3[2]--; k3[3]--; lloc=exll6s(k3,g3);

p3[lloc] += m*w; k3[2]++; k3[3]++;

}

m=k1[4]*k2[5]-k2[4]*k1[5];

if (m != 0) {

k3[4]--; k3[5]--; lloc=exll6s(k3,g3);

p3[lloc] += m*w; k3[4]++; k3[5]++;

}

}

}
44 / 45

Introduction Basic Tools Homogeneous Polynomials

Input and output

We have coded several routines in order to read and write power
expansions and homogeneous polynomials (both in ASCII and
binary format).

It is important to add redundant information to the files (specially
in binary files), like some integer codes to indicate the kind of
symmetry (if any), etc.

45 / 45

	Introduction
	Center manifolds
	Normal forms
	Methodology

	Basic Tools
	Storing and retrieving monomials
	The (most) basic functions
	Symmetries
	Different number of variables

	Homogeneous Polynomials
	Sums
	Products
	Poisson bracket
	Input and output

