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Abstract

We calculate all piecewise-constant periodic orbits (with values 1) of the renormalisation recur-
sion arising in the analysis of correlations of the orbit of a point on a strange nonchaotic attractor.

Our results make rigorous and generalise previous numerical results.



1 Introduction

The occurrence and robustness of strange nonchaotic attractors was first noted by Grebogi et al in their
seminal paper [4]. A strange nonchaotic attractor is an attractor whose geometry is “strange”, and on
which the dynamics is “nonchaotic” (i.e. for which there is no positive Lyapunov exponent). Grebogi et
al [4] considered quasiperiodically forced systems of the type

Tn+l = f(wnaen) ) (11)
Ont1 =6, +w (mod 1), (1.2)

in which w is irrational, the dynamical variable z (and f) may be scalar or higher dimensional, and f
satisfies f(z,0+1) = f(x,0). (Such systems are examples of skew-product systems.) Strange nonchaotic
attractors have since been reported in other theoretical and experimental situations. References to such

occurrences may be found in [7].

In the scalar example studied in some detail in [4] the function f in equation (1.1) takes the form
f(z,0) = 2\ tanh(x) sin(276) . (1.3)

For |A] < 1 the invariant line 2 = 0 is the attractor. When |A| > 1 this invariant line is no longer an
attractor; however, since orbits are confined to a bounded region of phase space an attractor does exist.
This is shown to be strange and nonchaotic in [4].

In [9] the autocorrelation of the orbit on the strange attractor is seen to be self-similar and possess a
singular continuous spectrum. As in [2], however, we shall confine our attention to a coarser description
of the dynamics. Namely we consider only the sign of the variable z, defining

y = —sign(z). (1.4)

For the systems under consideration the dynamics are thereby reduced to the linear circle map (1.2)
together with a recording (y) of whether 6 is in [0,1/2) or (1/2,1).

In the case of golden mean forcing, the autocorrelation function of y is seen to be self-similar with

structure determined by the renormalisation recursion relation

Qn(z) = Qn-1(~w2)Qno2(W’z +w), (1.5)

where w = (v/5 — 1)/2 is the golden mean. For completeness we shall include from [2] the derivation of

this equation, in section 2.

In [2] Feudel et al numerically found a piecewise-constant period-6 orbit of this recursion. This periodic
orbit is shown in figure 1.

In this paper we shall give an explicit construction of this periodic orbit, and moreover analyse all
piecewise-constant periodic orbits. These periodic orbits correspond to taking a different coarse-grained
description from merely noting in which half of the interval 8 lies.

In a different but related work, Kuznetsov et ol [7] have given an elegant analysis of the birth of a strange

nonchaotic attractor. The same recursion is used to explain the occurrence of universal scaling factors.
In this case however periodic orbits of (1.5) of a different nature are considered.



Figure 1: The period-6 orbit discovered by Feudel et al ([2])

Remarkably Ketoja and Satija [5] also derive this same equation in their analysis of the self-similar
fluctuations of the localized eigenstates of the golden mean Harper equation (also known as the almost
Mathieu equation)

Yni1 + Y1 + 2Xcos(2m(nw + @), = Eaby (1.6)

in the supercritical regime A > 1. This finite difference eigenvalue equation is valuable in the study the
localization transition in incommensurate systems. The recursion (1.5) helps explain the universality of

the supercritical regime. Note that in [5] the iteration occurs in the form
Qn (@) = =Qn_1(—wz)Qn_a(w’s + w), (1.7)

but the substitution Q, = —Q,, renders it equivalent to (1.5). A fixed point of this recursion characterises
the universal fluctuations, and this is numerically found in [5]. The same recursion is also used in [5]
to analyse a generalised Harper equation describing Bloch electrons on a square lattice with nearest
neighbour anisotropy as in (1.6), and the addition of a next-nearest neighbour coupling term. Many
periodic orbits are found, and Ketoja and Satija [5] conjecture the existence of a universal strange
attractor under the action of the renormalization operator.

In a recent paper [8] we have proved that indeed there is a fixed point of the type numerically found
in [5]. (See also [6].) We hope to be able to extend our results on smooth solutions to shed more light on

the work of Kuznetsov et al [7] on the scenario of the birth of a strange nonchaotic attractor.

In [6] these two seemingly distinct scenarios are linked, and indeed an analogy with the critical dissipative
standard map is also drawn.



In this paper we study periodic orbits of (1.5) for which @, is piecewise-constant with @,, taking values
+1 for all z € R. By piecewise-constant we mean that for each n the function @, (z) = %1 has finitely
many discontinuities in any bounded interval of R, although @, may, and generally will, have infinitely
many discontinuities on R. Although this condition might appear somewhat restrictive, we shall see in
section 2 that this is the appropriate condition for the renormalisation analysis given by Feudel et al
in [2] of the correlation function of the sign of orbits in strange nonchaotic attractors. Moreover, as we
shall see, the periodic orbit structure for (1.5) is already very rich in this case.

Let us define, for € R, the discontinuity function

Qn(z+)
R,(z) = ——, 1.8
the ratio of the right-hand limit to the left-hand limit of @),, at . Then, since every discontinuity of @,

is isolated, R, is well defined.

Because we are not primarily interested in the value of @),, at the discontinuity points, we shall identify
any two functions having the same discontinuity points (i.e. those x with R, (x) = —1) and agreeing at
all continuity points (i.e. at those z with R,(z) = 1).

We are now in a position to give a summary of the main results of the paper. In what follows we shall
show that, if @, is a periodic orbit of (1.5) of period p, then R, is also periodic with period m where
m | p. (Here, and subsequently, the period is understood to refer to the minimal period.) Moreover we
shall see that p = m, 2m, or 3m. Reducing the study of periodic orbits of (1.5) on R to a neighbourhood
of the fundamental interval [—w, 1], we shall identify the set of discontinuities on [—w, 1] for the orbit and
show that it is a finite union of periodic orbits of the map F': [—w, 1] = [~w, 1] given by

Fz) = —wle, T € [~w,w?]; (1.9)

wilr—w™, z€w1].
Such periodic orbits are classified by their codes (also called itineraries or kneading sequences) and we
shall determine the possible values of m in terms of the codes of these orbits. We shall also identify in
detail the cases in which p = m, 2m and 3m can occur. This latter analysis is somewhat complicated and
involves some non-intuitive number-theoretic conditions on the codes. A consequence of this analysis is

that we shall show inter alia

Theorem 1. For every positive integer p > 1 there is a periodic orbit Q, of (1.5) of period p.

The paper is organised as follows. In the next section, closely following Feudel et al [2], we briefly
review how the recursion (1.5) arises in the renormalisation analysis of the autocorrelation function for
a strange nonchaotic attractor. In section 3 we establish some notation and indicate how an iterated
function system and its ‘inverse’, the function F' above (1.9), naturally arise in the recursion. The
iterated function system has as invariant set the interval [—w, 1], and we show in section 4 that it suffices
to consider the recursion (1.5) restricted to this interval. Since we are solely concerned with piecewise-
constant functions ), taking the values =1, much of the nature of the recursion can be understood from
a study of the discontinuity function R,, defined above (1.8). This we consider in detail in section 5.
However an analysis of the discontinuity function is not in itself sufficient, and in section 6 we relate the
periodicity of the discontinuities to that of @, itself. This relationship is nontrivial and requires a careful



consideration of the orbits of the map F'. The results are summarised in section 7. In section 8 we give
an analysis of the construction of periodic orbits of (1.5). The period-6 orbit of Feudel et al [2] shown in

figure 1 is seen to be but one example.

2 Renormalisation analysis of the autocorrelation function

In this section we review the work of Feudel et al [2] and show in particular how equation (1.5) arises in
a renormalisation analysis of the autocorrelation function for a strange nonchaotic attractor.

In all that follows we shall take w = (v/5 — 1)/2 and assume that A > 0. Recall that the Fibonacci
numbers are given by: Fy =0, Fy =1, F, =F,_1 + F,,_5, forn > 1.
In terms of the discrete variable y defined above (1.4), our mapping (1.1)—(1.2), with the choice of f given

by a function of the form (1.3), is now just

Ynt1 = Yn®(0n), (2.1)
Opnt1 =0, +w (mod1), (2.2)
where the “modulation function”
-1, 0<6<1/2;

3(0) = = (2.3)
+1, 1/2<6<1.

Thus
n—1
yn =[] ®(60), (2-4)
k=0
0, =60p + nw (mod 1), (2.5)

where we take yo = 1. The dynamics of y are nothing other than the recording of the location of iterates

of the linear circle map, and depend only on the initial angle 6.

The autocorrelation function C(t) of y (which has zero mean and unit variance) is the limit time average

T—
C(t —Tlgnoo Zo YilYi+t (2.6)
which in view of (2.4), and the fact that & = +1, is
T-1i-1 itt—1 | T-liHt1
= lim — B( ®(0;) = lim — B( 2.
o= Jim 7 3 TL#00 IT #0600 = Jm 7.5~ ]I #60- @

Now the ergodicity of the linear circle map allows us to write

le+t1 1 i+t—1
Tlggo—zo H@@k / H ®(6;,)db, (2.8)

and, since ® has unit period, we may also change the integration variable (initial condition 6y) to 89 — iw
resulting in

1t-1

:/0 1:[¢ 0%) de—/o A(6)d8, (2.9)



where we explicitly note the dependence of y; on the (initial) angle 6.

The autocorrelation function is observed to have scaling about Fibonacci times, and so to analyse this
we define S, (0) = yr, (0), and have, with 8y = 6 + kw (mod 1),

Fo—1
Sn(0) = [T @@ (2.10)
Ifnz_ol—l F,—1
= H ®(6k) H ®(0,) (2.11)
k=0 k=F, 1
= Sn_l(H)Sn_2(0 + Fn_lw) , (212)

which, using the fact that F,,_jw = F,_5 — (—w)" 71, is

Sn(0) = Sp—1(0)Sn—2(8 — (—w)"1). (2.13)
To analyse the scaling, we define Qn(z) = Sp((—w)"z) giving

Qn(z) = anl(_wm)Qn72(w2x +w), (2.14)
which is equation (1.5). As noted in [2]

1

! ! ()"

Thus the autocorrelation function for Fibonacci times can be determined from the average of the func-
tion @,,. For n not a multiple of three we have that F, is odd which gives C(F},) = 0. Indeed, as above,
by changing the range of the product we may write

1 2m

C(2m+1)=/0 H<I>(0k)d6=/0 ﬁ @(ek)dez/o <I>(0)ﬁ<1>(0k)<1>(0,k)d6=0, (2.16)
k=0 k=1

k=—m
since the integrand is odd about 1/2. When n is a multiple of three it is numerically observed in [2] that
the average approaches approximately 0.55 for large n. This is the relative height of the secondary peaks

in the autocorrelation function.

The results of this paper explain the periodic behaviour of the functions @, in the specific example
studied by Feudel et al, and also determine the behaviour in the presence of more general modulation
than equation (2.3).

3 Iterated function system and the inverse map F

We may write equation (1.5) in the form

Qn(z) = Qn-1(41(2))Qn—2(¢2(2)), (3.1)
where
o1(z) = —wz , 2 (z) = W’z +w, (3.2)

and w = (v/5 —1)/2 is the golden mean satisfying w? +w = 1.
Associated with this equation is an iterated function system (IFS) on R given by the two contractions
¢1, ¢=2 satisfying the following properties:



1. ¢1 and ¢, are linear contractions with fixed points 0 and 1 respectively, and with ¢} (z) = —w and
Ph(z) = w?.

2. The interval I = [-w, 1] is the fixed point set for the IFS. Indeed

d)l([_wv 1]) = [_wa w2] ) ¢2([_w7 1]) = [w27 1] ) (3.3)

so that

pr(I)Uga(l) = 1. (3.4)
We shall henceforth refer to I as the fundamental interval.

3. The fundamental interval I is the attractor for the IFS. Indeed given any compact subset K C R
and any € > 0, there exists N € N such that for any £ > N and any choice i1, ..., € {1,2} we
have

iy 00 (z) € [—w—¢g,1+¢] (3.5)

for any x € K. This property will be important when we consider the behaviour of equation (1.5)
outside the fundamental interval I.

We refer the reader to the book [1] for the theory of iterated function systems.

On the fundamental interval we may define a unique inverse map to the pair ¢, ¢o. Let F : [-w,1] —
[~w, 1] be defined by

(3.6)

as drawn in figure 2.

We shall see below that periodic points of F correspond to discontinuities of the periodic solutions of (1.5).
It is therefore appropriate to study the periodic orbit structure of F', but, before so doing, it is worth
noting that for any periodic point y € [—w, 1], precisely one of ¢1(y), ¢=2(y) is also a periodic point
of F. For suppose F*(y) = y for some £ € N. Then F(F*'(y)) = y, so ¢; ' (F*~'(y)) = y for some
i € {1,2}, which depends on whether the periodic point F*~!(y) € [~w,w?] (in which case i = 1), or
F*1(y) € [w?,1] (in which case i = 2). We have that F*1(y) # w?, since w? is not periodic under F.
Thus one of ¢ (y), $2(y) equals F*~1(y), which is periodic.

Now suppose that both ¢ (y) and ¢2(y) are periodic. Then there exist 41, £» € N such that F4 (¢, (y)) =

$1(y), F2(d2(y)) = d2(y)- Then ¢ (y) = F2(¢1(y)) = F=(¢2(y)) = ¢2(y), where we have used the
fact that F'(¢;(z)) = =, for ¢ = 1, 2, a simple consequence of the definition of F'. Now the only solution

of the equation ¢ (y) = ¢2(y) is y = —w so we must have ¢ (y) = w? = ¢o(y), which is impossible since
w? is not a periodic point of F and the result is proved.

We now consider periodic orbits of the map F'.

We may analyse the dynamics of F' in terms of the code of a point € I. It is convenient for our purposes
to define the code in terms of the symbols 1 and 2, rather than 0, 1, or +1, —1, as is usually done. Let



Figure 2: The function F.

the interval [—w,w?) be encoded with the symbol 1 and (w?, 1] with the symbol 2. We define the code of
z € I to be the sequence (an)n>o in {1, 2}No given by

o = 1, F*(2) € [~w,w?); (3.7)
2, F"(z) € (w?1].

As is usual we ignore the (countable) set of points whose orbits under F include the point w?. (Such
points are not periodic points of F.) Hence the codes are all infinite sequences. In terms of the code

apaias - .. of a point x € [—w, 1], we have
F(z) = (—w ™))%z — (ag — 1w ™. (3.8)

Since F is uniformly expanding (|F"'(x)| > w™!) every point x € I corresponds to a unique code and vice
versa. In particular, periodic orbits of F' correspond to periodic codes in {1,2}Ne under the shift map o:

a(aoalaz...) =aag... (39)
A periodic orbit yg,y1,--. ,yr—1 of period k of F' is given uniquely by a periodic code
apdy ...Qp—10001 - .. Qp—1 -+ , (310)

which we henceforth denote by aga;y -..ag—1-

It is straightforward to calculate the periodic orbit yo,¥1,-.. ,yk—1 of F corresponding to a given code

aoay - ..ag—1. For we have ¢! o---0¢,!(yo) = yo, or, equivalently, ¢g, © -+ 0 @a,_, (Y0) = yo. The

(unique) solution of this equation is readily calculated to be

_ =X (e — ()
B 1— (—w)¥ei ’

Yo (3.11)



where empty sums are defined to be zero. The other points of the orbit may be calculated by applying
this formula with the code agpay . ..ax_1 cyclically permuted.

For example, F'(y) has two fixed points: y = 0 with code 1, and y = 1 with code 2. The period-2 orbit
with code 21 is given by yo = 1/2 and y; = —w/2. It is the fixed point y = 0 and this period-2 orbit
that are the discontinuity points in the fundamental interval of the period-6 orbit shown in figure 1.
As an example of applying the formula (3.11), we calculate the period-4 orbit of F' with code 1211:
Yo = —w?/(1+w’), 11 =w/(1 +w?), y2 = —wt/(1 + w?), y3 = w3 /(1 + w®).

In what follows it will be the code of the periodic orbit that is important, not the orbit itself. Therefore,
from now on, we shall principally refer to periodic orbits of F' just by their codes.

4 Reduction of (), on R to the fundamental interval

In this section we consider equation (3.1) outside the fundamental interval [—w, 1] i.e., on the whole of R.
In what follows we restrict to @, taking values +1.

Because the fundamental interval I attracts points under the IFS (3.2), we have the following lemma:

Lemma 1. Let o, Q1 be initial conditions on R and let € > 0 be such that Qu(z) = Q1(x) = 1, for all
x € [—w—e¢,1+¢€], and let Q,, satisfy equation (3.1). Then for each L > 1, there exists N > 0 (depending
only on L) such that Qn(z) =1 for all z € [-L,L] and alln > N.

Proof. Let (o, Q1 satisfy the hypotheses of the lemma, and let L > 0 be given. Since ¢ ([—~w—¢,1+¢€]),
do([~w —€,1+¢]) C[-w—¢,1+¢], we have that Q,(z) =1foralln >0and all z € [-w—¢,1 +¢].

Now, from the properties of iterated function systems (section 3), it follows that there exists N; € N such
that for any k > N; and any choice i1,...,i; € {1,2} we have

¢i10”'o¢ik(m)6[_w_531+6] (41)
for all z € [-L, L]. Tterating (3.1), we see that Q,(z) may be written as a product

Q@)= JI  Qusr, (8006 (). (4.2)
i1,i2,...,ik€{1,2}
Hence setting N = 2Ny, we have for n > N and z € [-L, L],
Q@)= I  Qux,i@uo-0gi(2) =1 (4.3)
i1,i2,...,ix €{1,2}

This completes the proof of the lemma. O

From the lemma we may prove the following proposition:

Proposition 1. Let Q,, be a piecewise-constant periodic solution of (3.1) of period p on R with Q,(1+) =
Qn(1). Then Q, is periodic with period p on the fundamental interval I. Conversely, suppose that Q,
is periodic with period p on I. Then there is a unique extension Q, of Qn to R such that Q,, is periodic

on R with period p.



Proof. First of all let @), be periodic on R with period p, and with Q,(14+) = @,(1) for all n > 0.
Then, clearly, @, is periodic on I with period p' dividing p. Let € > 0 be chosen so that for all n > 0
there are no discontinuities of @, in the intervals [-w — €, —w) and (1,1 + €], and such that ¢; and ¢
map [—w — &, —w) into I. Such an € exists since the discontinuities are isolated on R, @, is periodic,
and ¢;(—w) = ¢o(—w) = w?, which is not a discontinuity of any @,. Furthermore, since @, has no
discontinuities on (1,1 + €], we have that Q,(z) = Qn(1) for z € [1,1 + €] and so @, is periodic on
[1,1+ €] with period dividing p’. Now for z € [—w — €, —w), we have that ¢ (z), ¢2(z) € I, so from (3.1)
we have that @, () is periodic with period dividing p’. By the multiplicative property of equation (3.1),
the functions Q, = Qnyp/Qn satisfy equation (3.1) and Qo, Q1 are identically 1 on [~w —&,1 + ¢].
Applying lemma 1, we have that Qpn4p (z) = Qn(x) for all z € R, since @y, is periodic on R. Hence p = p'
and @, is periodic with period p on I.

Conversely, suppose @, is periodic with period p on I. Let € > 0 be given as above such that ¢; ([—w —
g, —w]) and ¢ ([—w — €, —w]) do not contain discontinuities of @, for n > 0. (Such an ¢ exists since w? =
¢1(—w) = ¢2(—w) is not a discontinuity of any @), and there are only finitely many discontinuities of the
Q@ on I since @, is periodic.) Then we may extend Qo, @1 to [—w—¢,1+¢€] by setting Qo(z) = Qo(—w),
Q1(z) = Q1(—w) for z € [~w — &, —w) and Qo(z) = Qo(1), Q1(z) = Q:1(1) for z € (1,1 + €]. Moreover,
since ¢y ([—w—e,1+4¢]), pa([~w—¢,1+¢]) C [~w—¢g,1+4¢], for n > 2 we may define @, on [—w —¢, —w)
and (1,1+¢] by equation (3.1) and then @, is periodic with period p on [-w—¢, 1+¢]. Consider now, the
initial conditions Qg = Qp/Qo, Q. = Qp+1/Q1. Then Qo, Q1 satisfy lemma 1. Let 2’ € Rand let L > 1
be such that z' € [-L, L]. Applying lemma 1, and using the multiplicative property of equation (3.1), we
have that there exists N > 0, depending only on L, such that Q4,(z) = Qn(z) for all z € [-L, L] and
all n > N. We define Qo(z') = Qp(2') and Q1(2') = Qppy1(z'), where k is an integer such that kp > N.
(Note that any such k will give the same value for Qo(z') and Qi(z').) Now, for n > 2, we define Q,,
by equation (3.1) (with the Q’s replaced by the Q’s). We observe that for n > 2, Qn(z') = Qrprn(z’).
This follows by induction: Qp(2') = Qn1(61(2"))0n2(62(&") = Quprn-1(1(&")Qepin_2(¢2(a’)) =
Qkptn(z'), by equation (3.1). (Here we have used the fact that ¢1(z'), ¢a2(z') € [-L, L] so the same
value of k is applicable for these points.) Thus it follows that Qnip(2') = Qrprnip() = Qrpin(z') =
Qn(a') for all n > 0. This defines Q,, on R such that equation (3.1) holds, Q, = Q, on I, Qq, Q1 are
right continuous at 1, and Q,, is periodic on R with period dividing p. Since @, is periodic on I with
period p, it follows that Q,, has period p.

This completes the proof of the proposition. O

In fact the fundamental interval I ‘drives’ the recurrence (3.1) as we see from the following proposition,

which follows from lemma 1.

Proposition 2. Let Qg, Q1 be piecewise-constant initial conditions on R and let Qo(1+) = Qo(1),
Q1(14) = Q1(1). Let Q,, satisfy (3-1), and be periodic of period p on the fundamental interval I. Then
the sequence Q,, converges to the unique periodic extension Q,, given by proposition 1, i.e., for all integers
r >0 we have Qrinp(x) = Q. () as n = oo.

From the results of this section we see that, without loss of generality, we may restrict our analysis of the
periodic orbits of (3.1) to the fundamental interval I, as we shall henceforth do.

10



5 Analysis of the discontinuities

In order to study the piecewise-constant periodic orbits of the recurrence (1.5) with @Q,(z) = £1 and
with initial conditions Qg, @1, it is helpful to consider the dynamics of the discontinuities of @,. We

may define, for each z € R and n > 0,

Qn(z+)
R.(z) = ===10 5.1
the ratio of the right-hand limit at = to the left-hand limit at . Since @, (z) = £1, we have R, (z) = %1,
and it is clear that R,(z) = —1 if and only if @, has a discontinuity at z. Since @, has at most

finitely many discontinuities in any compact interval we have that R, is well defined. Because of the
multiplicative nature of the recurrence (1.5), and because ¢1, ¢ are orientation reversing and preserving

respectively, we have

_ Qn(et) _ Qnoa(¢1(2)—) Qn2(da2(2)+)

) = 0ue) = Qus(62(0)5) Qu2l02(2)) 62
so, using R, (z) = 1/R,(z), we obtain
Ry (2) = Bn-1(¢1(2)) Rn—2(¢2(2)) , (5.3)

and R, satisfies the same recurrence relation as Q,,. However R, () = 1 except at points of discontinuity
of @, where R, (z) = —1.

We first of all discuss the dynamics of R,, and then relate the dynamics of @), to those of R,,. Indeed, it
is clear that if @), is periodic with period p € N, then R,, is also periodic with period m dividing p. Our
task is to determine the possible periods m of R,, and relate m to p, the period of Q.

From now on we assume that @), is periodic with period p and that R, is periodic with period m, and, in
view of proposition 1, we only consider the behaviour of @, and R,, on the fundamental interval [—w, 1].
We denote by

D = {z € [-w,1] : Ry(x) = —1 for some n > 0}, (5.4)

the restricted discontinuity set. Then D is the set of points in the fundamental interval [—w, 1] for which
@, has a discontinuity for at least one n > 0. One important observation is that since each @,, is
piecewise-constant (and so the set of discontinuities of @, on [—w, 1] is finite), and since @, is periodic,
it follows that D is a finite set.

5.1 The restricted discontinuity set and the map F

In this section we show that the restricted discontinuity set D consists of finitely many periodic orbits of
the map F'. Indeed we have the following result:

Proposition 3. Let Q,, be a periodic orbit of (1.5) with Q,(x) = £1, and let D be the restricted discon-

tinuity set. Then D consists of a finite collection of periodic orbits of the map F.

For suppose y € D. Then R,(y) = —1 for some n > 0. From (5.3) we have that R,_;, (¢, (v)) = —1
for some i1 € {1,2}. We therefore have ¢;,(y) € D. Continuing in this way, we obtain a sequence

11



i1,42,... € {1,2} such that ¢;, o---o¢; (y) € D. Since D is finite there exist ¢, £' € N with £ > ¢’ and
i, -0 iy (y) = by, o+ 0 di, (y). Applying F* to this equation gives F*=*(y) = y, so that y is a
periodic point of F of period &k dividing £ — ¢'.

Now let 5o = y,y1,---,yr—1 be the points on the orbit of yo under F' with y; i1 (moa xy = F(y:) for
1=0,1,...,k—1, and let aga; ...ax—1 be the code of the orbit. Then for 0 < i < k — 1 we have

¢2 (i) =yis1 or, equivalently, (5.5)
Pai_y (Yi) = Yi-1, (5.6)
where here, and in what follows, we assume that expressions relating to the periodic orbit yo,y1,--- , Yrp—1

are reduced modulo k.

Moreover, by the results of section 3, we have that precisely one of ¢ (y;), ¢2(y;) is periodic, so that
¢2(y;) € Difa;_1 =1 and ¢1(y;) € D if a;_; = 2. It follows that the recurrence (5.3) becomes

R 1(yic1), ai-1 =1
Rn(yi) = (5‘7)
Ry—2(yi-1), @i-1 =2,

where we have used the facts that Rp,—2(¢2(y;)) = 1if a;—1 = 1 and R,—1(é1(y;)) = 1if a;—1 = 2. This

can be written as

Rn(yi) = Rn—a;_, (Yi-1) - (5.8)

From this we see that Ry4ag4-ta;_; (¥i) = Rn(yo), so that if yo € D and R,(yo) = —1 we have y; € D,
since Rntaq+-tai—1 (¥i) = Rn(yo) = —1.

We conclude that not only must every point y in D be a periodic point of F', but that every point on the
periodic orbit of y also lies in D, so that D consists of complete orbits of F'. Since D is finite, proposition 3
now follows.

From (5.8) we see that only one of the factors in the right-hand side of (5.3) is different from +1, although
which one depends on the code aga; ...ax—1. We also observe that in (5.8) n decreases by a;—1. Now,

over the whole of the orbit yo,y1,... ,yx—1 we have that n decreases by
k—1
£=Y"ai, (5.9)
i=0
ie.,
Rn(yi) = Ra—t(yi) (5.10)

for 0 <i <k — 1. It follows that we must have m | £. We therefore conclude the following:

Proposition 4. The period m of the discontinuity function Ry, restricted to a periodic orbit yo,. .., Yr—1
of F divides £, the sum of the code over the orbit of F.

We now introduce three examples of periodic orbits of F' which we shall use to illustrate the theory as it
develops.

Example 1. Period-4 orbit of F' with code 1122. Then ¢ = 6.
Example 2. Period-4 orbit of F' with code 1211. Then ¢ = 5.
Example 3. Period-6 orbit of F' with code 111222. Then ¢ = 9.
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5.2 The discontinuity matrix

Let yoy1 - . - yr—1 be a periodic orbit of F' with code agpay . ..ag—1, and with £ given by equation (5.9). We
shall first consider the dynamics of R,, on this orbit.

Tt is helpful at this point to introduce an £ x k matrix M, the discontinuity matriz, with entries +1 defined
by

Mp,i = Bn(yi) , (5.11)

for0<n</f-1,0<4i<k—1. Then the entry in row n and column 7 is the value of R,, at the point
y; on the orbit yo,v1,.-- ,Yk—1-

The relation (5.8) above gives a special structure to the matrix M. Indeed (5.8) translates to
Mn,i = n—a;—1,i—1; (512)

where here, and in what follows, indices referring to the periodicity of R,, are reduced modulo 4.

The structure (5.12) can be more easily understood as follows. Column i of the matrix M is simply
column (i — 1) cyclically permuted downwards by a;_1 single cyclic permutations. This observation also
holds when ¢ = 0, for then (5.12) becomes

Mn,O = Mn—ak_l,k—l . (513)

Let us denote the column 0 by (Xo,X1,...,X¢—1), i.e., Mpo = X, for 0 < n < £ —1. Then the
relation (5.12) tells us that

Mn,l = Mn—ag,O = Xn—ao ) (514)
and, in general,

My ; = Mn_ = Xn_ R (5.15)

im1 im1
j=0 3,0 j=0 i

so that the columns of M are simply cyclic permutations of the column 0 of M.
As an illustration consider example 2. Recall that the code is 1211, the period k is 4, and £ = 5. The

matrix M is

Xo X4 X2 Xu
X: Xo X3 Xo

M=| X, X; X. X3 |. (5.16)
X; X Xo X4
X, X3 X1 Xo

Note that the column ¢ is obtained from the column (i — 1) by cyclically permuting the column (i — 1)
downwards by a;_1.
5.3 Periodicity of the discontinuities

Not only does any periodic orbit R, with discontinuities at a periodic orbit yo,v1,... ,yx—1 of F have a
discontinuity matrix M with the structure (5.15), but also, conversely, any matrix M satisfying (5.15)
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corresponds to a periodic orbit of R,,, by defining R,,(x) = 1 except on the points yo, - .., yr_1 where we
define R, (y;) = Mpmode,i for n > 0. The period of R,, certainly divides £, but may not actually be equal
to £. Indeed, trivially, setting M, ; = —1 for all ¢, n gives a periodic orbit of period 1 for R,. In fact the
period of R,, depends only on the period of column 0 of M viewed as a sequence of £1. This is because
this column is periodic with period m if and only if it is invariant under m single cyclic permutations
and m is the least positive integer for which this is true, i.e., Xp1m = X, and X4 # X, for all n if
1 < 7 < m. Now the other columns of M are obtained from column 0 by cyclically permuting and thus
they will also have period m. In fact, since any column of M can be obtained from any other one by
cyclic permutations it follows that all columns of M have the same period m. Indeed, for r € N

Mn+r,i =X

£—1
”+r72j=0 aj

= M, ; (5.17)

£=1 =
n-YtZia;+r

if, and only if, m | r. This is because the X,, have period m. Thus each column of M has period m. We
conclude that the period m of R,, is the period of the first column (Xo, X3,... ,X,—1) of M. It is now
clear that m | £ and that for every m dividing £ we can find a column (Xo, X1, ... ,X,—1) with period m.

It is worth remarking that the first two rows n = 0 and n = 1 of M are not independent, so that, although
the recursion (1.5) is second order, we cannot choose Ry and R; arbitrarily on yo,...,yr—1 and obtain a
periodic orbit.

We have therefore solved the question of the periodic behaviour of the discontinuities R,, for a single
periodic orbit yo,y1,--. ,yr_1 of F' with code agay -..ax_1. In summary, the period m of R,, corresponds
precisely to the period of a single column of M, i.e., R, (y;) for any 0 < i < k — 1. We have m divides
L= Zf;ol aj, and conversely, for every m dividing ¢, we can, for suitable choice of the column 0 of M,
viz., (Xo, X1,...,X¢_1), arrange for (Xo, X1,...,Xs 1), and thus M and R,,, to have period m.
Consider example 2. Here the first column is (Xo, X7, X2, X3, X4). The only positive integers dividing
£ =5 are 1 and 5, so the only possible periods in this case are m = 1 and m = 5. Setting Xo = X; =
Xo = X3 = X, = —1 gives period 1, whilst any other choice (with at least one —1) gives period 5. Setting
Xo = X1 = Xy = X3 = X4 =1 gives period 1, but then the orbit of F' will not lie in D.

5.4 Multiple periodic orbits in D

Having considered the dynamics of the discontinuity function R,, on a single periodic orbit of F', we now
consider the case in which the restricted discontinuity set D consists of more than one periodic orbit of F'.
To do this, we must establish some notation.

Firstly, let ¢ be the number of periodic orbits of F'in D. For 0 < s < t—1, we consider the periodic orbit s
of F'in D. We make the general convention that superscript s refers to the orbit s. Let k£° denote its
period and let the points yg,... ,y;._; be the members of the orbit. We denote the code by ag...af._;.
Let

k°—1

=Y a. (5.18)
7=0

Now, from the multiplicative structure of (5.3), we have that a product of solutions is again a solution
of the equation. Moreover, because the periodic orbits in D are distinct, and are never mapped to each
other under the two maps ¢1, ¢2, we have that the dynamics of R,, on each of the periodic orbits in D
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are independent. Indeed, we may write

t—1
Ry(z) = [[ Ri(=), (5.19)
s=0
where R? is the restriction of R, to the periodic orbit s, i.e.,

Rn(x)a T € {ygr":ylf;sfl};

1, otherwise .

We may apply the analysis of the previous subsections to each of the functions R?. This is because
R? () = 1, except when z is one of the points on the periodic orbit y§...y5. ; of F. In particular, for
each orbit in D we can formulate the £ x k® discontinuity matrix M?*, where, for 0 < n < £* — 1 and
0<i<k*—1,

My = R (y7) .- (5.21)

We observe that these matrices are independent of each other since the dynamics of R, on each periodic
orbit in D are independent.

The theory for R,, that we discussed above carries over in a straightforward manner to the function RS.
To simplify notation, we adopt the convention that, when dealing with periodic orbit s and its matrix,

expressions relating to the periodic orbit yg,... ,y;._; are reduced modulo k® whilst those relating to
the periodicities of R,, are reduced modulo £%. Thus, as in (5.12), we have

My =My _qe i1 (5.22)
for0 <n < ¢*—1and 0 < i < k*—1, and the matrix M* is determined by its column 0: (X§, X{,...,X/._;).

Indeed, as in (5.15),

Mﬁz =X’

i1l sy
n Zj:oa’j

(5.23)

and the period m?® of the column 0 is precisely the row period of M*. We also have m?® | £2. Conversely,
let £ =lcm(£°,...,¢¢=1). Then for any m | £ we define m® = ged(m, £%). Then m? | £° and by appropriate
choices of (X§,X?,...,X/._,) we may construct a matrix M?® with row period any m?® dividing ¢°, and,
extending periodically to all n > 0, we have that I, has period m® restricted to the orbit yg3,... ,yf._-

We therefore have the following proposition for piecewise-constant, right-continuous functions taking the
values +1:

Proposition 5. Let Q,, be a periodic orbit of (1.5). Then the period m of the discontinuity function R,
is given by

m = lem(m®,... ,m1), (5.24)

where m?® is the period of the function R} and is given by the period of (X§, X{,... ,X[._;), i-e., column O
of the discontinuity matriz M*. Furthermore, m divides

L=lem(£°, ... 0t1). (5.25)

Moreover, by appropriate choices of (X§,X{,...,X[. 1), for any m dividing { we may construct a peri-

odic orbit of R,, with period m.
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Let us illustrate this result when D is the union of examples 1-3 in subsection 5.1. Then £ = lcm(6,5,9) =
90. Hence R,, has period dividing 90 and, conversely, for any m dividing 90, we may ensure that R,, has
period m.

6 The relationship between @), and R,

Let D be the restricted discontinuity set. We now consider the period of the functions @),, and relate it
to that of the discontinuity functions R,,. We first of all note that R,, does not completely determine
Q. However, @, is determined by R,, together with the value @, (z) at a single point x. Although any
choice of x would be sufficient, for our purposes it is convenient to take £ = 1+, the right-hand limit at
z = 1. We write

Q" = Qu(14). (6.1)

Indeed, since @, is right-continuous, this is just @, (1), but we write QL+ to emphasise the fact that it
is the right-hand limit. Now, on the fundamental interval, we have

Qn(z) = Qu(z+) = Q" [ Ra(v) (6.2)
zy<€yl§)1

Qn(z-)=Qx" ] Ra(w), (6.3)
z<y<l1
yeD

for z € [—w,1]. It follows that @, is periodic with period p if and only if R,, is periodic with period m
dividing p and QL* is periodic with period p, or R,, is periodic with period p = m and QL is periodic
with period dividing p. We can therefore reduce the problem of the periodicity of @, to that of QL and
of R, on [—w,1].

To simplify the notation in what follows we introduce the quantities

k®—1

D= ][ Ratv), Dy= ] Raws)- (6.4)
i=0

yeD

We now evaluate (1.5) at £ = 1+ to obtain

Q= Qu(14) = Qno1(—w—)Qn_2(1+) (6
= Q1 Qn 3 Dn (6.
= (Q15)’QL3Dn 1Dy s (6
=QM.,D, 1D, >, (6

where we have used the fact that (QL*,)? = 1 since Q. = £1.

Now each of the products D,,—1, D,—2 in (6.8) is a product of entries in the matrices M® for 0 < s <t—1.
Indeed for each n in the range 0 < n < m — 1 we have

t—1 t—1k°—1
D, =[[D; =11 II M. (6.9)
s=0 s=0 i=0
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so in (6.8) we have expressed QLT in terms of Qibt3 and a product of entries in the matrices M?,
0 <s<t—1, and hence of the X .

Now an orbit of the second order recurrence (1.5) is periodic with period p if and only if Q9 = @Qp, and
Q1 = Qp+1, where p is the least such positive integer. We know that p is a multiple of m, the period
of R,. To obtain the relationship between p and m, we investigate Q%7 /Q¢" and Q. ;/Q1". We note

that p = m if and only if both of these ratios have value 1, i.e.,

1+ Q1++1
m m

tm o= Tl o, (6.10)
0 1

In what follows we shall need to evaluate products of the form

II o (6.11)

nZrmod3
r<n<m+r

where m > 1 and r € {0,1,2}. We therefore prove the following lemma, which we shall use in our
subsequent work.

Lemma 2. Let a' be a positive integer and let D,, = 1 have period dividing o', i.e., Dy o = D, for
all n. Let V' be a positive integer with b’ =0 mod 3 and o' | b/, and let r € {0,1,2}. Then:

1. if a’ =0 mod 3 then

I 2.=C II D) (6.12)

nZrmod3 nZrmod3
r<n<bt/+r r<n<a’+r

2. if a’ =0 mod 3 then
II Dn=1; (6.13)

nZrmod3
r<n<2a’+r

3. if @’ Z0mod 3 then
I[I Dn=1; (6.14)

nZrmod3
r<n<3a’+r

4. if a’ Z0mod 3 then
II Dp.=1. (6.15)

nZrmod3
r<n<b +r

Proof. Suppose that a’ = 0 mod 3. Then

b /a'—1
II p.= ] 11 D, (6.16)
nZrmod3 7=0 nZrmod3
r<n<b +r ja'+r<n<(j+1)a’+r
b /o' —1
= H Dn_ja’ (617)

J=0 n—ja'#rmod3
r<n—ja’'<a'+r

—( I o). (6.18)

nZrmod3
r<n<a'+r
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In the above calculation we have used the fact that 3 | a' | b' and D,,4 o = D,,. This proves assertion 1.
Assertion 2 follows immediately from 1, with ¥’ /a’ = 2.

Now suppose @’ Z 0mod 3 and r < n < a' + r. Then precisely one of n, n + a’, n + 2d’ is congruent to
r mod 3. Furthermore, because D,, = D, = D, 12, each factor occurs precisely twice in the product

II pn= ]I D 11 D, 11 D, (6.19)

nZrmod3 nZrmod3 nZrmod3 nZrmod3
r<n<3a’+r r<n<a’+r a'+r<n<2a’+r 20’ +r<n<3a’+r

and since D, = £1 each factor cancels itself out. Thus assertion 3 follows, and assertion 4 follows easily
from 1 and 3. u

We now return to evaluating the ratios QL /Qs" and Qin—:—l/ Qi". They can be obtained by iterating
equation (6.8); their values depend on the residue of m modulo 3. Accordingly, we divide into three cases.

6.1 m=1mod3

In this case we have, iterating (6.8), and using (6.6),

Qn _ &
m_ _
“m === J[ Dn (6.20)
0 0 n#lmod3
1<n<m
Qb QL
m _ 2 _ Nl+
ot = X2 H D,=Q} H D,. (6.21)
1 1 pn#2mod3 n#Z2mod3
2<n<m+1 1<n<m+1

We see that whether (6.10) holds, or not, depends both on the product of the D,, (which themselves are
products of entries from the matrices M?®) and on Q(1)+, Q}J“. In the case (6.10) we have that @, has the

same periodicity as R, i.e., p = m. Otherwise we have p > m. From (6.8) we have

1
é; B D Q3;+1 _ D 29
= [ Da o II o (6.22)
0 n#Z0mod3 1 n#Zlmod3

0<n<3m 1<n<3m+1

Now from lemma 2 (3), with @’ =m and r = 0,1, we have Q3" /Qst = Q3. ,/Q1" = 1, and hence we
have p = 3m. (We cannot have p = 2m for this would imply p = m, since 2 and 3 have greatest common
divisor 1.)

6.2 m=2mod3

The analysis in the case m = 2 mod 3 is similar, and again leads to the conclusion that either p = m or
p = 3m. Indeed, we have

QuF
=@ I[ Dn (6.23)
0 n#2mod3
1<n<m
Qi ot
m+1 _ Wo
=2 I Da (6.24)
1 1 pz0mod3
1<n<m+1

and a similar calculation to the above gives Q3}/Q¢t = Q3 1/QiT = 1, even when (6.10) does not
hold.
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6.3 m=0mod3

We now consider the case m = 0 mod 3. By iterating equation (6.8), we have

1 1+
@ _ D Omir _ D 6.25
= ]I D = I Dn (6.25)
0 nzZ0mod3 1 nzZlmod3
0<n<m 1<n<m+1

We observe that, in this case, whether equation (6.10) holds or not is independent of Q(1,+ and Q1. Now,
if (6.10) does not hold, then

14 1+
dm _ D, =1 Qomir _ D,=1 6.26
1+ n Y Q1+ - n ) ( ° )
0 nzZ0mod3 1 n#Zlmod3

0<n<2m 1<n<2m+1

which follows from lemma 2 (2). We therefore conclude that, in this case, either p = m or p = 2m.

We may therefore sum up these results as follows.

Proposition 6. Let @), be periodic with period p and let R,, have period m. Then if m Z 0 mod 3, then
either p = m or p = 3m. Otherwise, if m = 0 mod 3, then either p =m or p = 2m.

7 Theorem 2

We now compile the results of the previous sections into the following theorem.

Theorem 2. Let Q,, n > 0, be a periodic orbit of period p of (1.5) with Qn(x) = %1 for all z, Qn
right-continuous, and such that the restricted discontinuity set D is finite. Let m be the period of the
discontinuity function R, given by (5.1). Then

1. D is a finite set of t periodic orbits (yf), 0 <s<t—1,0<i<k’—1 of F with codes af...a}._,;
2. the period m of R, divides £ = lem(£°,... ,0!~1) where (° = Ef;l as;
3. the period p of Q,, is either m, 2m or 3m. If m Z 0 mod 3 then p = m or p = 3m depending on

the values of R, and Q(1)+, }+. However if m = 0 mod 3 then either p = m or p = 2m and this

depends only on the values of R,,.

Theorem 2 gives only a partial classification of the periodic orbit structure of (1.5). It remains to
determine what periods p for @,, can actually be achieved for a given choice of restricted discontinuity
set D. It is this question that we study in the rest of the paper.

8 The construction of periodic orbits

In this section we consider how, by an appropriate choice of the X?, and Q(l)Jr and Q1*, we may construct
periodic orbits with a given restricted discontinuity set D.

Let D be a finite collection of ¢ periodic orbits of F. We adopt the notation of subsection 5.4 for the
orbits yf, viz., £°, £ etc. We know (by theorem 2) that the period m of R, must divide £. Now suppose
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that m is any positive integer dividing £. Let 0 < s <t — 1 and let m® = ged(m, £?). Then by choosing
column 0 of M?, ie., (X§,X{,...,X/._;), to have period m?®, we may ensure that R} has period m?°.
Thereby we may ensure that R,, will have period lem(m?,...,m!~!) which is equal to m, and that the

restricted discontinuity set is D.

However, in order to determine the possible values of p, the period of ),,, we must be more careful in our
choices, at least in the case m = 0 mod 3. We now consider the two cases m #Z 0 mod 3 and m = 0 mod 3

separately.

Suppose first that m #Z 0 mod 3. From subsections 6.1 and 6.2, and in particular from equations (6.20)
and (6.23), we see that, if R, is chosen to have period m, then we may choose Q(1)+ and Q}Jr so that
either equation (6.10) holds (in which case p = m) or else it does not hold (in which case p = 3m). We
are therefore able to conclude the following result.

Proposition 7. Let D be a finite collection of t periodic orbits of F with the notation of subsection 5.4
and let m divide £ with m Z 0 mod 3. Then for both p = m and for p = 3m, there exists a periodic orbit
Qn of (1.5) of period p and with restricted discontinuity set D.

81 m=0mod3

The case m = 0 mod 3 is more delicate, since in that case we see from equation (6.25) that p is unaffected
by the choice of Q;* and Q;¥; it depends only on R,, and, in particular, the X2. From subsection 6.3,
we see that p = m if and only if the products

Py = H D, P = H D, (8.1)
nZ0mod3 nZlmod3
0<n<m 1<n<m+1

are both equal to 1; otherwise p = 2m. We shall have to be more careful in the way the X are chosen.
In particular, we must examine in more detail the products Py and P;.

Writing
= [ pi, P = ][ Ds, (82)
nZ0mod3 nZlmod3
o<n<m 1<n<m+1
we have that
t—1 t—1
r=[[r, P=]]P. (8.3)
s=0 s=0

We now study P§ and P§. Recall that m® = ged(m,£%). Then we have m® | £5 and m® | m. If
m?® #Z 0 mod 3 then (m/m?®) = 0 mod 3. Therefore, from lemma 2 (using (1) with ' = m and o' = 3m?,
and then (3) with a’ = m?®), we have that

rE=( [[ pome=1, pP=C [ D=1 (8:4)
nZ0mod3 nZlmod3
0<n<3m?® 1<n<3m®+1

We therefore conclude that, unless m® = 0 mod 3, we have P§ = P} = 1.
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Now suppose m® = 0 mod 3. Then from lemma 2 (1) (with ¥’ = m and o' = m?), we have

Pp=( I ppemo,  pr=¢ [ Do, (85)
nZ0mod3 nZlmod3
0<n<m?® 1<n<m®+1

We observe that we shall again have P§ = P¢ = 1 unless m/m?® is odd. Hence we have:

Proposition 8. Let m = 0 mod 3. Then

t—1 t—1
Py = 11 Ps, P = 11 Pf. (8.6)
s=0 s=0
3|m*, 2f(m/m*) 3|m*, 2f(m/m*)

(Here empty products are defined to equal 1.)

We now introduce a condition on the orbit s of F' which is necessary for F§ = P’ = 1 not to hold. We
call orbits satisfying this condition active.

8.2 Active periodic orbits of F'

In view of the previous proposition, we make the following definition.

Definition. Let m be a positive integer dividing £ and divisible by 3. The periodic orbit y§,4{,... ,yz._
of F with code ajaj ...af._, is said to be active with respect to m if

1. 3|6 = Ef;l a; (so that 3 | m® = ged(m, £));
2. m/m?® is odd; and

3. in the sequence a,ag + af, ... ,a3 + aj + --- 4+ aj._; the three residue classes modulo 3 do not all
occur with the same parity, i.e., there is at least one residue class that occurs an even number of

times and another which occurs an odd number of times.

Note that whether a given code is active or not with respect to m does not depend on the restricted
discontinuity set D (and hence £) directly, but only on the choice of integer m dividing £.

This definition is not at all intuitive, and we shall illustrate it with reference to examples 1 — 3 and with
m = 30.

Example 1: The code is 1122 and the orbit is active with respect to m, since 3 | £* = 6, m* = gcd(30,6) = 6
so m/m® =5 is odd. Furthermore a§,a§ +af,... ,a§ +ai +---+a}._, =1,2,4,6 =1,2,1,0 mod 3, so
the residue class 1 occurs an even number of times and the residue classes 0, 2 occur an odd number of
times.

Example 2: The code is 1211 and the orbit is not active with respect to m, since 31 £° = 5.

Example 3: The code is 111222 and the orbit is not active with respect to m. Indeed it fails on two
counts, since 3 | £ = 9, and m® = gecd(30,9) = 3, so m/m® = 10 is even. Moreover we have af, a§ +
ai,...,af+ai+---+af._, =1,2,3,5,7,9=1,2,0,2,1,0 mod 3, so each residue class occurs an even
number of times.

Now let m® = 0 mod 3, let m/m® be odd, and suppose that (X§,X{,..., X5 ._) is periodic with pe-
riod m®. Then the rows of the matrix M?® are also periodic with period m?, and all entries are one
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of X§,X7,...,X>._; which we regard as unknowns taking values £1. We are interested in evaluat-
ing P§ and P{ as functions of the unknowns X§, X7, ... ,X}._{. Now each entry of M?® is one of
X§,X$,...,X5._1 and so P§ and P{ are each products of the unknowns X§, X7,...,X?3._;. Since

each of these is £1, the important ones are those that occur to an odd power in the product.
In what follows, by the parity of a set, we mean the number reduced modulo 2 of elements in the set.

We may identify these using the following lemma:

Lemma 3. Let the orbit s in D satisfy m® = 0 mod 3 and let m/m?® be odd. Then for r = 1,2, we have

pr= [ xp)ren (8.7)
0<n/<m*
where T'(n',r) is the parity of the set
i-1
{i | 0<i<k,n'+) af#rmod3}. (8.8)
j=0

Proof. Let r = 0,1. From (8.5) we have

k-1 k5 —1
s __ s __ e — E
e T p=T O M= T I Xog 9)
nZrmod3 i=0 nZrmod3 nZrmod3 =0
r<n<r+m?® r<n<r+m?® r<n<r+m?®
. . .y i—1 .
where the subscript is reduced modulo m?®. Writing n' =n — Y, a® mod m®, we obtain
p g ]7(] 7 Y
k-1
i
rr= ] II = I &), (8.10)
0<n/<m* =0 o<n'<ms*

n' +E;;é aj#rmod3

since X*, = £1. This completes the proof of the lemma. O

n' —

From this lemma it follows immediately that those of the X2 occurring to an odd power in F§ come in
residue classes modulo 3, and similarly for Pf.

We let Zs3 denote the additive group of residue classes modulo 3, and Zs denote the residue classes
modulo 2. Let 4 : Z3 — Z4 be the number modulo 2 of residue classes modulo 3 occurring in a§, a§ +
aj,...,ay +ai +---+aj_,. Then, from the above definition, the orbit is active if and only if ¥ is

surjective, i.e., there exists at least one residue class u with 4(u) = 0, and another, u', with F(u') = 1.
Let y(n',r) be the parity of the set {i |0 <i < k®, n' + Z;;t a; = r mod 3}. Then, since ¢* =0 mod 3,
{i]0<i<k®, n’-i-zj;taj =rmod3}={i|1<i<k? n’+Z;;%)aj = r mod 3}, and it is clear that

y(n',r) = 4(r —n') and
L(n',r)y =~ ,r+1)+v(n',r+2)=5r+1-n") +5r +2-n'), (8.11)

where, of course, here, and in what follows, we reduce the sums modulo 2. Furthermore, T'(n',r) =
I'(n' mod 3,r). This means that we need only examine the three residue classes modulo 3. Moreover we
have I'(n/,r) =T(n’ + 1,7 + 1).

For an inactive orbit we have T'(n',r) = 0, since 7(u) + F(u') = 0 for all choices of u, u' € Z3. (This

follows because ¥ = 0 or 4 = 1.) However if the orbit is active then as n' runs from 0 to 2 precisely two
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I'(n',r) will be 1 and the third 0. We show the possibilities for r = 0 (i.e., for F{) in the following table.
We have I'(n/,0) = (1 — n') + %(2 — n'), so that

I'(0,0) = 5(1) + 4(2) (8.12)
I'(1,0) = 4(0) + (1) (8.13)
T'(2,0) = 7(2) + 5(0) . (8.14)
50) | 41) | 72) | active | T(0,0) | T(1,0) | T(2,0)
0 0 0 no 0 0 0
1 0 0 yes 0 1 1
0 1| 0] yes 1 1 0
0 0 1 yes 1 0 1
1 1 0 yes 1 0 1
0 1 1 yes 0 1 1
1 0 1 yes 1 1 0
1 1 1 no 0 0 0
The parity of the residue class n’ in Py is
I'(n',1)=T(n' —1,0). (8.15)

Thus the residue classes occurring an odd number of times in Pf are those occurring an odd number of
times in P§ increased by 1 modulo 3. It follows that one residue class occurs in both P§ and P and the
other two in one each. We establish the following notation. Let ¢, ¢f be the residue classes occurring in
P§ and let cf, cj the residue classes occurring in Pf. Then

= I x I x: (8.16)
n=cymod3 n=cimod3
0<n<m?® 0<n<m?

= I x: II X (8.17)
n=c{mod3 n=cjmod3
0<n<m?® 0<n<m?

a product of two residue classes modulo 3.

We now return to example 1, which is active with respect to m = 30. Recall that the code is 1122, so
£? = 6 and m® = 6. For convenience we drop the index s. The matrix M for this orbit is

Xo X5 Xy X
X1 X9 X5 X3
Xy Xi7 X9 X
M= 2 1 0 4 . (818)
X: Xo Xi X5
Xy X3 Xo Xo

X5 X4 X3 Xy

23



Then, in view of lemma 2 (1),

P= ][ D (8.19)

nZ0mod3
0<n<6

3

I 11 M (8.20)
n=1224,5 i=0
= (X1 X0 X5 X3) (X2 X1 X0 X4)(Xg X3X2X0) (X5 Xg X3X71) (8.21)
= XX, Xs5X, . (8.22)

Similarly P, = X1 X2X4X5. Now ag, a9 + a1,a9 + a1 + az,a0 + a1 +a2+a3 =1,2,4,6 =1,2,1,0 mod 3.
Hence 5(0) = 1, 5(1) = 0, %(2) = 1, and so T(0,0) = (1) +3(2) = 1, T(1,0) = 5(0) + 5(1) = 1,
I'(2,0) = %(2) + 4(0) = 0. Thus ¢ =0, ¢1 = 1, ¢ = 2. We have therefore that

= J] X. J] X« (8.23)

n=0mod3 n=1mod3

0<n<6 0<n<6
= (XoX3)(X1X4), (8.24)

and

= J] X. J] X« (8.25)

n=1mod3 n=2mod3

0<n<6 0<n<6
= (X1 X4)(X2X5), (8.26)

which indeed agree with the direct calculation above.

We next consider example 3, which is inactive with respect to m = 30. Since m = 30, and £°* = 9, we
have m® = 3. We have (again dropping the index s) that the matrix M for this orbit is

Xo Xo Xy
M = X1 X() .X2 . (827)
X, X1 Xo

We have

I M [ Mai=1, (8.28)

n=1mod3 n=2mod3
0<n<3 0<n<3

as is easily seen (using X2 = 1 for all n). Hence Py = 1 and similarly P; = 1.

In order to simplify the presentation of the next section, we introduce a relabeling of the X for active
orbits. Specifically, we define, for n > 0

Y? = XercS (8.29)
where we reduce modulo m?. Then Y§¥ = X7, Yy’ = X% and Y’ = X, and the column (Y¢',... Y. )
is simply (X§,...,X}._;) relabeled, and, in particular, the two columns have the same period as se-
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quences of +1. Then, in terms of the Y,? we have

= I vi ] v (8.30)
n=0mod3 n=1mod3
0<n<m?® 0<n<m?

= J] vi J] v (8.31)
n=1mod3 n=2mod3
0<n<m?® 0<n<m?®

In summary, we have the following proposition.

Proposition 9. Let m = 0mod 3. Then the products Py, Py for the orbit s satisfy Pj = P§ =1
irrespective of the values of X§,..., X5 ._1 if and only if the orbit s is not active with respect to m.
If, on the other hand, the orbit s is active with respect to m, then P§ and P{ are given by (8.16) and
(8.17) where I'(c§,0) = I'(¢§,0) = 1 and T'(cf,1) = I'(c§,1) = 1. In terms of the relabeled variables
Ye,..., Y P§ and P{ are given by (8.30) and (8.31).

> tme—1»

In summary, for orbits active with respect to m, we have a systematic method of calculating the
products P§, P{ given by (8.16-8.17) in terms of the unknowns X§,X7{,...,X5. ; or, equivalently,
Yy, Y? Ys

o, YE, ...

s tms—1-

8.3 Realisation of the possible values of p for m = 0 mod 3

We know from theorem 2 that either p = m or p = 2m when m = 0 mod 3. We now wish to see which of
these cases can occur. We recall that if m Z 0 mod 3 then both p = m and p = 3m can occur for suitable
choices of Q¢T, Q1. In the case m = 0 mod 3 these quantities do not determine QL¥/Q¢™, Qnf,/Q1"

and the period p is determined completely by the columns of discontinuities (X§,... , X7._;)-

However, unless the restricted discontinuity set D contains some periodic orbits that are active with
respect to m, then the period p = m, since we have Py = P, = 1 in this case.

Now suppose that there are some periodic orbits in D which are active with respect to m. We shall now
study whether, by appropriate choice of the X for the active orbits, we may ensure both that R, has
period m® = gcd(€%,m) on the orbit s and that either Py = P; = 1 (in which case p = m) or not (in
which case p = 2m). We divide the analysis into three distinct subcases which we treat separately. Our
constructions serve only as examples; they are by no means unique. Other choices of the X can be made
to achieve the same result.

8.3.1 Case (i): D contains at least two periodic orbits active with respect to m

Let there be v such orbits labeled sg,...,s,_1 for 1 < v <t — 1. Referring to subsection 8.2, we recall
that (with respect to the Y;%¢), 0 and 1 are the residue classes occurring to an odd power in FPy(s;), and 1
and 2 are the residue classes occurring to an odd power in P;(s;). Then, by assigning Y,® appropriately,
we may ensure that that p = m or p = 2m.

We first of all assign those X3 for s # sg, ..., Sy—1 so that the period of the column (X§,... ,X5. ) is
m?®, but otherwise arbitrarily.

Consider the assignments given by the following table:
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S0 S1 82 ce Sy—1
vl 1 1 . 1
vel-1 -1 -1 ... -1

Y| 1 +1
P 01 1 1 ... 1
Ye.. | 1 1 1 . 1

For each of s = sg,... ,s,-1 we set ¥;? =1 for n #0,1,2, so that
v—1 v—1 v—1 v—1
Py = H YE)SI' H Yl.ﬂ 7 P = H Yl.ﬂ H Y;i . (8.32)

i=0 i=0 i=0 i=0

Then from (8.32) we have that Py = (£1)(—1)?, P, = (—=1)?(£1).

The two +1 entries can be chosen to obtain either p = m or p = 2m, as required. To achieve p = m we
choose both the signs to be (—1)?, and to achieve p = 2m we choose (at least one of) the signs to be

—=(=1)*.
8.3.2 Case (ii): D contains only one periodic orbit active with respect to m, but m® # 3

Let the active periodic orbit be sg. Firstly, the Y;? for s # s are set to have period m?® but are otherwise
arbitrary. We assign Y,7° according to the following table.

S0

Yy | +1

vy | -1
Yy | 1

vl o1
DA 1

Then Py = P, = F1 and so the two +1 entries can be chosen to obtain either p = m or p = 2m, as
required. We note that since m®® > 6 we have the column (Y;°,..., Y%, ;) has period m®, even when
Yoo =Y =Y =-1.

8.3.3 Case (iii): D contains only one periodic orbit active with respect to m, and m® =3

Let the active periodic orbit be so. Then m® = 3, and Py = Y;°Y;*°, P, = Y"°Y;°. It is not possible to
choose Yy, Y70, Y;*° so that Py = P; = 1 and Y5°, Y{*°, Y;’° are not all equal. (Note that if they are all
equal then the period is 1 not 3.) Thus it is not possible to obtain p = m in this case and p = 2m for
any choice of Y;°, Y77, Y of period 3.

8.4 Theorem 3

In summary, combining the results of section 8, we have proved the following theorem:
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Theorem 3. Let D be a set of t periodic orbits (yf), 0 < s <t—1,0<i<k’*—1 of F, and let £*,
£ be as in section 5.4. Then, for any m | £, setting m® = ged(m, £°), the variables X§,... ,X5._, for
0 <s<t—1 may be chosen so that:

1. R, is periodic with period m® on y};

2. R, is periodic with period m;

3. the restricted discontinuity set of Q, is D.
The period p of Q. is related to m as follows:

4. if m #Z 0 mod 3 then there are choices of Q(I)Jr, }Jr so that p=m or p = 3m;
5. if m = 0 mod 3 and there are no periodic orbits in D active with respect to m, then p =m;

6. if m = 0 mod 3 and there are at least two periodic orbits in D active with respect to m then there

are choices of X} such that p=m or p = 2m;

7. similarly, if m = 0 mod 3 and there is only one periodic orbit in D active with respect to m, and

m?® > 3, then there are choices of X} such that p =m or p =2m;

8. finally, if m = 0 mod 3 and there is exactly one periodic orbit in D active with respect to m, and,

for that orbit, m® = 3, then p = 2m for all choices of X; of period m®.

The theorem has an important corollary (theorem 1).

Corollary 1. For every p > 1 there is a periodic orbit Q,, of (1.5) of period p.

Proof. Let p € N and let D consist of the orbit with code equal to p copies of 111222. Then £ = 9p and
the orbit is inactive (as can be easily checked). Let m = p. We may use part 4 or part 5 of theorem 3 to
obtain an orbit of @,, of period p depending on whether p Z 0 mod 3 or p = 0 mod 3. O

As an illustration of the theory, we refer back to examples 1 — 3 with reference to theorem 3. Let D
consist of the union of the three periodic orbits in examples 1 — 3. Recall that £ = 90 in this case. Let
us choose m = 30. Then we are in case 7 of theorem 3, since we have one active orbit with respect to m
and m® = ged(30,6) = 6. We therefore are able to choose the X so that p = 30 or p = 60 in this case.
Finally, let us return to figure 1 and the periodic orbit found by Feudel et al ([2]). In this case D consists
of the fixed point with code 1 and the period 2 orbit with code 21. Then £ = lem(1,3) = 3 and, choosing
m = 3, we have that the period 2 orbit is active with respect to m = 3. We are therefore in case 8 of
theorem 3 so that we have p = 2m = 6 in this case. In fact we have Py = 1 and P; = —1, as can be easily
seen from figure 1.

9 Conclusion

Orbits of the renormalisation recursion (1.5) arise in the analysis of self-similarity in a variety of phenom-
ena. The recursion, despite being multiplicative in nature, is also nontrivial from a mathematical point

of view.
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In this paper we have given the complete solution in the case of piecewise-constant functions taking
values £1. A particular instance of such a solution was numerically calculated by Feudel et al [2] in their
analysis of the autocorrelation function for a strange nonchaotic attractor.

In a previous paper [8] we have considered analytic solutions of the fixed point equation corresponding
to (1.5). This solution helps explain the universality of the supercritical regime of the Harper equation,
and is also directly of importance in the study of the onset of a strange nonchaotic attractor [6], [7].
We hope to be able to combine the ideas on periodic orbit structure developed in this paper with the
analysis of our previous work [8] to understand the universal strange attractor found in a generalised
Harper equation [6].

We remark that an additive version of the renormalisation recursion (1.5) is derived in [3] in the analysis
of the self-similarity of the autocorrelation of a quasiperiodically forced two-level system. Again, the
piecewise-constant periodic orbits are important in determining the precise nature of the autocorrelation.
Much of our work in this paper is also applicable to this additive case, but there are also some subtle
differences which we shall explore in the near future.

Finally we remark that the fact that w in (1.1) is the golden mean is essential for our analysis. It seems
likely that a similar study could be undertaken for other quadratic irrationals (which have eventually
periodic continued fraction expansions). However it is not clear how to extend our work to more general

rotation numbers.
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