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1.Introduction

The analysis in the interpolating family of IL, spaces associated to a probability measure plays an essential
role in the study of the classical Markov semigroups. In general it is important for their construction as well
as for the investigation of the ergodicity properties. It is especially useful if the underlying configuration
space is infinite dimensional. In this paper we introduce some basic ideas concerning the application of
interpolating I, spaces to study Markov semigroups in the noncommutative context of quantum spin systems
on a lattice. In Section 2 we show that using the idea of thermodynamic limit, it is possible to give a very
natural and very explicit construction of an interpolating family of spaces L,, p € [1,00), associated to a
quantum Gibbs state on the algebra of quantum spins on a lattice. In the noncommutative setting such
family is no longer unique. In Section 3 we show that in this framework one can define in a natural way a
Markov generator of quantum spin flip stochastic dynamics which satisfies detailed balance condition in a
judiciously chosen Ly space associated to a Gibbs states corresponding to a given interaction at some given
inverse temperature § € (0,00). As a consequence of that, such stochastic dynamics leaves this Gibbs state
invariant. In that section we restrict ourselves to a finite volume theory to make the ideas and constructions
as explicit as possible. The infinite volume case is considered in Section 4 where we provide an abstract
sufficient condition for the existence of an infinite volume translation invariant stochastic dynamics. Under
our conditions the stochastic dynamics can be constructed as the thermodynamic limit of the corresponding
finite volume stochastic dynamics with an appropriate control of the convergence (called an approximation
property). They are also sufficient for the infinite volume Markov semigroup to possess a Feller property in
the sense of mapping the inductive limit of local algebras into itself. We also show that under appropriate
finite volume condition (similar to the classical one [AH]) we have a strong exponential decay to equilibrium
(proven along the lines of [SZ]).

Section 5 is devoted to a complete description of a construction of an infinite volume translation invariant
stochastic dynamics of the diffusion type with generator built of elementary completely positive generators
introduced in [QSV].

The study of Markov semigroup in noncommutative setting is relatively more complicated than in classical
case and the progress in this domain is much slower. We would like to mention few recent works in this
subject. In particular the works [Ma3], [FNW], [N], where the completely positive hamiltonian semigroup
in ground state representation has been considered. A first (very special) example of translation invariant
stochastic dynamics satisfying a detailed balance condition has been constructed in [GM], where the authors
used a clever representation associated to a classical Gibbs measure at a finite temperature. One should
also mention more recent interesting construction of [Mal,2] where some translation invariant dynamics has
been constructed, although in general without characterizing the set of corresponding invariant states.

An interesting dual approach involving a construction of quantum analog of a Markov process has been
also developed recently with a growing number of works. The interested reader can find a more detailed
references for example in the recent interesting work [BGW].

2. Non-commutative L, Spaces Associated to a Gibbs State.

Let Z® be a d-dimensional integer lattice and let F denote the family of all its finite subsets. By Fy we will
denote an increasing sequence of finite volumes invading all the lattice Z¢. Given a sequence {Fa}aer,, we
will denote its limit as A — Z¢ through the sequence Fy by limg, Fa.

Let A be a C*algebra with norm || - || defined as the inductive limit over a finite dimensional complex
matrix algebra M. Later it will be natural to view A as a noncommutative analog of the space of bounded
continuous functions. For a set X € F, let Ax denote a subalgebra of operators localized in the set X, i.e.
the subalgebra in 4 isomorphic to MX . For an arbitrary subset A C Z? we define A, to be the smallest
(closed) subalgebra of A containing | J{Ax : X € F, X C A}. An operator f € A will be called local if there
is some Y € F such that f € Ay. By Ay we denote the subset of A consisting of all local operators. We
will use notation .,43' and AT, respectively, for the corresponding subsets of nonnegative elements.
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By Trx, X € F, we denote a normalised partial trace on A4, i.e. the unique completely positive map

TI‘_)(Z.A—>.AXc (21)
which satisfies the following conditions
(i)
Vf€EA g,h€Axe Trx(9fh) = 9(Trx f)h (2.2)
(i)
Trxl=1 (2.3)
(iii)
Vf g€ Ax Trxfg = Trxgf (2.4)

From (i) and (ii) the following property follows
Trx (Trx f) = Trx f (2.5)

Let us recall that a map satisfying properties (i) and (ii) is called a conditional expectation. Let Tr =

limz, Tra be the normalized trace on 4. We have

Tr (Trx (f*)g) = Tr (f*Trx (g)) (2.6)

(A detailed account of matricial algebras can be found in [KR].)
Let ® = {®x € Ax}xecr be a (Gibbsian) potential, i.e. a family of selfadjoint operators such that

[|®]1 = sup Z [[Px]| < oo (2.7)

ieZ? xer
X 58

A potential ® = {®x }xer is of finite range R > 0, iff &x = 0 for all X € F, diam(X) > R. We define a
corresponding Hamiltonian Hy and the interaction energy Uy in A € F, by setting

Hy=Hao(®)= ) &x (2.8)
XCA
and
Ur=Ur(®)= > ox, (2.9)
XNA#D

respectively. Let pp be a density matrix given by

e~ BHA

with 8 € (0,00). We define a finite volume Gibbs state wy as follows

wa(f) = Tr(paf) (2.11)

It is known, see e.g. [BR], that for sufficiently small 5 € (0, 00) the following limit state on A exists and is
faithful

w = 1}__1;1(_0/\ (2.12)
Let
af(f) = etitin femitiin (2.13)
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denote the finite volume automorphism group associated to potential ®. One has the following KMS
condition for the finite volume state wy

wa(f*g) = walalis(9)f*) (2.14)

Suppose the potential ® = {®x } xcr satisfies also

B|prp e = AXNe x| < 2.15
[|1®]]exp, -supdze [[@x]| < o0 (2.15)

ieZ xer
X3i

for some £ > 0. Then the following limit exists, [BR],

ou(f) = limal(f) (2.16)
0

for every f € Ap and defines the automorphisms group associated to the infinite volume state w. In fact

every operator f € Ap is an analytic element for oy, in the sense that for all 3, such that |5] € [0, Bp), with

some [y € (0, 00) sufficiently small dependent only on the potential ®, the following series converges in the

norm of the algebra A

=Y E g 2.17
ais(f) =) ——03(f) (2.17)
n=0 ’
where é¢ is the generator of the automorphism group «; given on the local elements by
d o
ba(f) = _Eaf(f)ltﬂ) = lé:mz[HA(é),f] (2.18)

where [Fy, F5] = F1Fs — FoF; denotes the commutator of two operators F; and F5. Given ® satisfying
(2.15), the biggest fo = Fo(®) for which the series (2.17) is convergent for every f € Ag is called the radius
of analyticity (of the modular dynamic).

Let us mention that the infinite volume state w satisfies the following KMS condition

w(f*g) = wla—ig(9)f) (2.19)

Therefore it is called an (ay, 5) - KMS state.
For later purposes we need to recall, [Se], [Ku], [Dix], [Ye], [Ne], some properties of norms || - ||z, (mv),
p € [1,00), associated to a normalised trace Tr, defined on Aq as follows

£l () = (Tx| £17)7 (2.20)

where |f| = (f* f)% First of all we note that for p = 2 the corresponding norm is associated to the following
scalar product

< f,g>1e=Trf*g (2.21)

and one has the following Holder inequalities with IL,(Tr)-norms, see e.g. [Se], [Dix],

[ < frg > | <Az, cmollglle, (o) (2.22)

with p,q € (1,00) such that p=! +¢7' = 1, and for r € [1,00), see e.g. [Dix] (Corollary 3 p.23),

fallr, (me) < Fllm,cmo)llgllm, (o) (2.23)

provided that p=' + ¢~ =~ 1.



Applying (2.22) with ¢ = 1 and f replaced by |f|" for some r € [1,00) , and £ > 1 instead of p, or simply
taking ¢ = 1 in (2.23), we get the following important special case

[z, cme) < Fllz, () (2.24)
when r < p. Clearly we have also
Ay < [IF1 (2.25)
and therefore one can naturally regard || - || as an analog of the uniform norm on the space of bounded
continuous functions.
Let us mention also that one has
||f||1L,,(Tr) = sup |’I‘rg*f| (2~26)

gllz g (rey=1

where ¢ is the dual index given by p~! 4+ ¢! = 1.
Given (2.26) one can easily get the Minkowski inequality. One can get it also using the Holder inequality by
the following elementary arguments for the case p > 2, for which we have

1S+ gl oy = Telf + 9P = Te(f* + g")(F + 9If + 972 =

=Tef* fIf +gP 2+ Tef g|f +g/P~2+ Teg* fIf +g|P~2 + Trg*g|f + g7 2 (2.27)

. . . . . 9 » » .
If p > 2, we use Holder inequality with the functions f* f and |f + ¢g|’~* and norms £ and g respectively,

2
to get
0 < Tef*fIf + 9P < AT, (e - 1 + 9115 (e (2.28)

and similarly for the last term on the right hand side of (2.27). For a term containing a product of f* and
g, by trace property and the Schwartz inequality, we have first

1
2

[ Tef*glf + g =2 = [Te(A1F +9155°) gl + 15| < (Tes* £1F +91P=2)F (Teg"glf +9~2)

(2.29)

Now the right hand side can be estimated with use of (2.28). Similarly we handle the other term involving
¢* and f. Combining all that we obtain

2 —
15+ 910 vy < (Nl mey + gl ) 1S + 0 2 (2.30)

Hence, by simple algebra, we arrive at the following Minkowski inequality for IL,(Tr) norms

[1f+gllz, ) <z, + gllm, (e (2.31)

See e.g. [Dix], [Se], for the general case p € [1, ).

Given a finite volume Gibbs state wy, we define the following L,(wa), p € [1,00), norms on .4

1
flyon = (Tol0F 1531 (232)
In particular for p = 2 we see that the corresponding norm is given by the following scalar product
<f,0%us =T (i pR0) = T (03 F03) (pR0r})) (2.33)

Using the information about the IL,(Tr)-norms, one can get the following important for us lemma.



Lemma 2.1:

For any f,g € Ao and any p,q € [1,00) we have:
(i) For any ¢ € C

0 < |lefllz,ws) = lel - NFlL,wa) (2.34)

with the equality on the left hand side iff cf = 0,
(ii) Hélder inequalities

| < fr9 >0 [ S FL w1912y (2.35)

with p,q € (1,00) such that p~! +¢~! =1, and if p < q we have

AL wa) S I llLqwny < 17 (2.36)

(iii) Duality
Forp € (1,0)
fllzywny = sup [ <g,f>u, | (2.37)
N9l L g(wa)=1
where ¢ is the dual index given by p~' +¢ 1 =1
(iv) Minkowski inequality

[1f 4+ 9llz,wn) < NFEpwa) + 19112y wa) (2.38)

[e]

Proof: The proof of (2.34) is trivial. Since by definition (2.10) we have py > 0, we can get equality on
the left hand side of (2.34) iff ¢f = 0. To get (2.35) we use the following arguments, (see e.g. [Tr]), with
p,q € (1,00) satisfying p~t + ¢t =1

| < f,g >0, | = |Tx (pif*pig) | = |Tr <pA I py g> | = |Tr ((pA R ) <pA gpy )) | (2.39)

where we have used the trace property. Applying to the right hand side the Hélder inequality (2.22) for
trace, we get the Holder inequality (2.35) for the case of finite volume sate wy.

To get the inequality on the left hand side of (2.36), (the second Holder inequality), we observe first that if
p < q, we have

1 1 1

P~ 2 A
1 intony = 10 £ 1 mey = [l (p: prq) . (2.40)

where s7! + ¢7! = p~1. Now by (double) application of the Holder inequality (2.23) for traces with use of

the normalisation condition Trpy = 1, we arrive at the left hand side inequality of (2.36).

The right hand side inequality of (2.36) is proven in Appendix 1 by elementary inductive arguments.

The Minkowski inequality (2.38) follows from the corresponding inequality (2.31) for the trace with the
1 1

function pf\_” fpli_”.

o

Let us note that for p € IV we have the following useful representation of the IL,(wa )-norms for nonnegative
elements f € Ag:

Lemma 2.2 Let f € AY.

If p=1, then
|z wn) = walf) =< fi1 >0, =<1, f >, (2.41)
Ifpe IN, p> 1, then
11y =00 (@D 1)) (2.42)
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with the following (shift invariance) property
wa <a%iﬁ(f)a/2\ipiﬁ(f)"'a/(\%;—l) iﬁ(f)> =wa <aé\ﬁ—a)iﬁ(f)aé\;‘—p—a)iﬁ (f)'“aé\@g—l) _a)iﬁ(f)> (2.43)

for any a € [—1,+1].
If p € IN is even, then for any f € Ag we have

1% () = wa @;Pm(f*)af%mf)...a?%lm(f*)a?%lmm) (2.44)

Tt is clear that if 5 € (0, 8), with By € (0, 00) being not bigger than the radius of analyticity and such that
the limit (2.12) exists, the above formula has a limit and we can define on .4 the L,(w)-norms corresponding
to the (ay, #) - KMS state w. Similarly one can expect that the corresponding sequences of other norms on
Ao also converges in the thermodynamic limit. We have the following theorem.

Theorem 2.4:

Let w be an (o, 5)-KMS state. There is a family of norms IL,(w), p € [1,50) on Ag such that the following
conditions hold
(i) For any f € Af and any p € IN we have

11, ) = @ (o is(Pagip(F)eaans (1) (2.45)
(ii)
111 = ((@gis (D) ayis( ) (2.46)
(iii) For any p, q € [1,00) such that p~' +¢71 =1
1< g, f >ul < Nl @)llgllz,w) (2.47)
and if p < gq
0 < Ifllzpwy < Nl < NS (2.48)
(iv)
||f||L,,(wj) = sup |< g, f >w| (2'49)
||g||Lq(u)=1
[e]
Remark: In general one could define the following norms
limsup || ]|z, w)
Fo
see also [Ha],[T2], [Ko], [MZ]. o
Using anorm |||, («) introduced above, we can define the corresponding set IL,(w) of equivalence classes of

Cauchy’s sequences {f, € Ag}nemnw modulo the class of the zero operator. It follows from the corresponding
Minkowski inequality that one can introduce in this space the structure of complex linear space. In this way
we arrive at the following definition.



Definition 2.4:

The linear space IL,(w), p € [1,00), defined above is called the IL,-space associated to an (ay, 3)-KMS state
w. °

Whenever it will not cause a confusion we will use a short notation IL, for the space IL,(w).
Let us note the following fact.

Proposition 2.5
If p,q € [1,00), and p < q, then
ACL,CL, (2.50)

[e]

Let us mention that it is also possible to define different family of interpolating norms and spaces. For
example one could define an L, space by taking the following natural choice of the scalar product

< fg>'=w(fyg) (2.51)

The reason why we prefer to make the other choice will become clear later in the next section where we
introduce the stochastic dynamics.

Finally we would like to say that our construction of I, spaces is similar to the corresponding construction in
the semifinite case considered in [Tr], [Zo], [Sh]. Although, let us stress, that by taking the thermodynamic
limit we are able to define our IL, spaces in a more general setting, i.e. in the thermodynamic limit we
do not use integration with respect to a tracial state. Let us recall that the existence of a faithful trace
excludes the von Neumann algebras of type IIT associated to an infinite volume Gibbs state corresponding
to a potential ®, [Po], [BR]. For general von Neumann algebras a rather involved construction of IL, spaces
has been completed in the following works: [Ha], [Co], [ArM], [Hi], [T1], and of the interpolating spaces in
[Ko], [T2]. In our work, having some concrete applications in mind, we have applied a pragmatic functional
analytic approach, instead of the wise measure theoretic one. Let us say however that it is useful to use both
constructions.

3. Markov Generators and Markov Semigroups of a Finite System

In this section we introduce a family of Markov generators and semigroups corresponding to a block spin
flip stochastic dynamics of a quantum spin system on a lattice.
For X € F,let Ex s : A — A be a map defined as follows

Exa(f) = Trx (vk afyxa) (3.1)

where yx A = vx,a(%), with
vxa(s) = pi (Trxpa)™’ (3.2)
where Trx is the partial trace and pa the density matrix of a finite volume Gibbs state wa. The map Ex a

has the following properties.

Proposition 3.1:
(i)
Exa(A) C Axe (3.3)
(i)
Ex A is completely positive , i.e. [St] for any n € IN the map Eg?g\ on the space n x n matrices
{ar1 € A}p =1, n defined by

E\({an}) = {Ex a(an)} (3.4)



1s positive.,
(iii)
EX,A(l) =1
)
Remark: Note that in general we have not
Exa(9fh) = g(Exaf)h (3.6)
(3.7)

for g,h € Axc, and therefore in general
Ex A (Exa(f)) # Ex,a(f)

Proof: The property (i) follows from the definition of Ex o and the property of the partial trace. The
complete positivity property is a consequence of the fact that Ex o is defined as a composition of two
obviously completely positive maps: the partial trace and the map

(3.8)

AS fr—xafrxa

To see the unit preserving property, we use definitions (3.1) and (3.2) from which we have

Ex (1) = Trx (vk a7x4) = Trx <(Pi (Texpn)*) py (’I‘rpr)_%>

_1 _1 _1 _1
= Trx ((’I‘rpr) 2 pa (Trxpa) 2) = (Trxpa)”? (Trxpa) (Trxpa)™? =1 (3.9)
This ends the proof.
&
For later purposes let us mention the following particular consequences of Proposition 3.1.
Proposition 3.2
(i) Positivity
vf e At Exa(f) >0 (3.10)
(ii) * - Invariance
Vie A (ExA(f)" = Exa(f)
(3.11)
(iii) Boundedness
ViEA [Ex (DI < II£]]
(3.12)
(iv) The Kadison - Schwarz inequality
Exa(f)"Exa(f) < Exa(f*f) (3.13)

Vie A



The proof of (i) and (ii) easily follows from n = 1 positivity, and (iii) follows from (3.5) and (3.10), while
(iv) is a consequence of n = 2 positivity; see e.g. [BR] vol.2, [Ta].
Another important consequence of our definition (3.1) of the map Ex a is the following property.

Proposition 3.3

The map Ex , is a positive, symmetric and bounded operator in Ly(wy) with

Ex Al La(wn)—Lawa) = 1 (3.14)

Proof: First of all let us note that, by the boundedness property (3.12), the operator Ex a is well defined
as an operator in Lo(wy) for any finite set A € F. Using the definition of ILy(wy) - scalar product, the * -
invariance of the map Fx o and a property of the trace, we have

< Ex ()9 >us=Tr (p{(Exa(5) p39) = Tr (Exa(F)ri903) (3.15)
Now from the definition (3.1) of Ex a, we get
Tr (Exa(f)piopi) = Tr (Tex (v vxa) Tex (piory ) ) = (3.16)
and using the definition of yx,a(s) in (3.2), we arrive at
=Tr (Trx <7;(,A(i)p};f*Pi7X,A(%)> Trx (’r},A(i)piypi'yx,A(i))) (3.17)

From this the symmetry as well as positivity of the operator Ex s in IL(wa) follows. The proof of (3.14)
will be given later, (see Proposition 3.6iv).

¢
Let £x o be an operator on A defined by
EX,Af = EX,A(f) — f (318)
It has the following properties.
Proposition 3.4:
(i)
Lxal=0 (3.19)
(ii) * - Invariance
(Lxaf)" = Lxa(f) (3.20)
(iii) Dissipativity
Forany fe A
Lx alf f) = Lxalf)f = FLxa(f) >0 (3.21)
(iv) Symmetry
For any f,g € A we have
<LxA(f), 9 > =< [, Lx A(9) >u, (3.22)
(v) Boundedness
ILx, (NI < 2] 1] (3.23)
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and
Lx A Lswa) < 211 La(wa) (3.24)

Proof: We shall proof only the dissipativity property, as all the others easily follow from the definition of
Lx a and the corresponding properties of Ex a. To get (iii), we observe that

Lxalf f) = Lxa(f ) = FLxalf) = Exa(ff) = Exa(f)f = ExaA(H)+ [ =
= (Exa(f*f) = Exa(f)Exa(f)) + |[Exa(f) - I” (3.25)

Hence using the Kadison - Schwarz inequality (3.13) for Ex 5, we conclude that

Lx a(f*f) = Lxa(f)f = Lxa(f) 20 (3.26)

This ends the proof of Proposition 3.4.
¢

Remark: After this Proposition the careful reader should understand the usefulness of our choice of Ia(wy)
space.

Definition 3.5:
An operator L defined on a dense subalgebra D(L) C A satisfying the conditions (i) - (iii), will be called a
Markov pre - generator. o

Remark: The most complete abstract characterization of generators of norm continuous semigroups on C*
- algebras can be found in [EO], while a characterization of generators of positive Cy semigroups is given in
[BDR].
Let Lx4jA be the bounded symmetric Markov generators defined similarly as above for the translations
X +j of a given finite set X € F. Using these operators we would like to introduce the following Markov
generators

LY =" Lxqgnf (3.27)

jeA

defined for any A € F on the algebra A. From Proposition 3.4 it is clear that £%** is a bounded operator on
the algebra as well as bounded and symmetric in Lo(wy). Let PtX’A =ett"" bea corresponding semigroup.
It has the following properties.

Proposition 3.6:
(i) Positivity preserving: For any f € At

PMAf>0 (3.28)
(ii) Unit preserving
pAM=1 (3.29)
(iii) ILs - Symmetry
< PEM) g >0a=< £, PN g) >0, (3.30)
(iv)
||P‘2X’A||LQ(CUA)—>LQ(LUA) S 1 (331)
and
< LX), f >ua< 0 (3.32)
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(v) Invariance: For any f € A

WA (PtX’A(f)) = wa(f) (3.33)
Equivalently we have
wa (Lxa(f) =0 (3.34)
e
Remark: The inequality (3.32) implies
< EX,A(f)1f>wAS<faf>wA (335)

which implies (3.14) of Proposition 3.3. (In fact one can prove it also in a more direct way.)

Proof: The positivity preserving property (i) follows by the following (actually stronger) property in the
proof of which we use the standard arguments, see e.g. [B], [BR], based on the dissipativity property of the
generator LXA.

13
PENS ) = PENSPEN () = - / ds L PEN (PRAGF)PEA(f) =
13
/ dsPOM {0 (PEAPYIA) = (CXAPIA™) PEAS) = PEAGT) (XA PEA () 2 0

0
(3.36)
The properties (ii) and (iii) follow from the properties (i) and (iv) of generator £LX* given in Proposition
3.4. To get (3.31) we use the symmetry of the operator PtX’A and the fact that for any f € A we have

1P = wa()lleagen) S WP = waDIF < IIf = wa(H)]] (3.37)

From this, by use of spectral theorem we conclude that (3.32) has to be true. To prove the invariance we
observe that by the definition of ILa-norm and properties (i) and (ii),we have

wA (PtX’A(f)) =<1, P1X7A(f) Zwy=< P1X7A1a J>un= (")A(f) (3'38)

This ends the proof of Proposition 3.6.

Let us recall the following definition.

Definition 3.7: A strongly continuous semigroup Py, t > 0, on a Banach algebra IB, is called Markov iff it
is positivity and unit preserving. In case when A C IB, we say that the semigroup P; has a Feller property
iff

VfeA t>0, PfeA (3.39)

[e]

Thus the semigroups PtX’A constructed above are Markov semigroups on A and ILa(wy), and obviously have
the Feller property.

Given an automorphism group a; on an algebra A (or some its closure) it is easy to construct semigroups
which preserves all the (a;, 3) - KMS states, for all 3’s. Therefore the following feature of the stochastic
dynamics introduced above is important.
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Theorem 3.8:
Let L5 0 = L5 A, 50 be the Markov generator defined by (3.18) with X = {j} and let

EO,A — Zﬁj,l\
JEA
If for some state v on Ax we have for any f € Ax
vCPA(f)y =0 (3.40)

then v is (o, B) - KMS . o

Remark: Similar result is true with the operator ZX+ch Lx4ja and arbitrary set X € F, provided that
the union of X +j C A covers the set A.

Proof: Suppose a state v on Ax has a density p, > 0 with respect to the normalized trace Tr. Then the
condition (3.40) implies that for every f € A, we have

1 1 1 1
0=Tr|p > Lialh) | =D <pr?popn s Lia(f) >ua= D < Lialpr popp ) f >un (341
JEA JEA JEA

-1 _1
In particular choosing f = p, *p,p,° we get
P R ST
D <Lialpn  pupx ™) px pupn” Sun=0 (3.42)
JEA
This can be written in the following form
Y < E3alpx*pupn )i o popn® >en= AL 8" pupn o) (3.43)
JEA

Since the operators Ej o are all contractive in La(wy ), the above equality can only be true if for every j € A,
we in fact have

Ea(pa?pupp’) = pa pupy” (3.44)

The left hand side of this equality, by definition of Ej o, commutes with every element of A;. Since this is
true for every j € A and {A;}jea generates Ap, we conclude that

=

pa Pupa’ =1, (3.45)

i.e. py = pa, which clearly implies our theorem.

&

Finally let us mention that as shown in Appendix II the infinite volume limit of 44 make sense as operators
(possibly in some larger algebra). This motivates the general considerations of the next section, in which we
formulate some general conditions for existence and ergodicity of infinite volume translation invariant spin
flip stochastic dynamics.
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4. Quantum Stochastic Dynamics: The Spin Flip Case

Let
03f = f — Tryf (4.1)
We define the following seminorm ||| - ||| in .4
A= > 11if] (4.2)
jez?
One can see that the seminorm ||| - ||| is finite on a subalgebra A1 C A containing Aq and it vanishes only
on constants.
For X € F, let
Lx+i(f) = Exyi(H) = f (4.3)

where Ex4j is a two - positive unit preserving map on A, such that Ex1;(A) C Axcyj. We define a finite
volume generator £ as follows

LX =D Lxq (4.4)

JEA

The generator £% is well defined bounded operator on all the algebra .A. Let Pt)fA = emf, t > 0 be the
corresponding finite volume semigroup.
We would like to consider also an infinite volume generator £* defined formally by the formula (4.4) with
A = Z?. To ensure that it is defined on a sufficiently large domain, we will require that the elementary
generators Lxy; satisfy the following regularity property.

Definition 4.1:

The operator Lx; is called regular if and only if there are nonnegative constants bj)l({, ik e Z?, such that
Exafll < Y billowsll (4.5)
kez?
and
sup Z bj)1(< = < > (4.6)
kezdjezd
[e]

Remark: Let us mention that all block spin flip generators for classical discrete spin systems are regular.

It is easy to see that under the assumption of regularity, the finite as well as infinite volume generators are well
defined on the domain containing the subalgebra .4;, which is dense in 4. If the elementary generators £xyj
would be additionally symmetric in the space Lo(w), for some state w, the operator £X, as a nonpositive
densely defined symmetric operator in ILs(w), could be extended to a selfadjoint operator, (although possibly
not in a unique way). Using this extension we could define in IL2(w) an infinite volume semigroup which in
general need not to have the Feller property, (i.e. it would not need to map A into A). Our first aim will
be to formulate a condition which allows to construct an infinite volume semigroup P, ¢ > 0 as a limit
of finite volume semigroups in a way which ensures also the Feller property. It will be useful also to study
the ergodicity properties of the semigroup PX. To formulate our condition formally we use an idea from
statistical mechanics of classical spin system on a lattice.

Definition 4.2:

The elementary generators Lx4j,j € Z? satisfy CX_condition if and only if there are nonnegative constants
aflﬂ, fork,1 € Z°, such that af_’?l__‘i = aflﬂ, for any i€ Z? and for any f € A, we have

14



(i)

[0, Lx i)D" agy™lonf ] (4.7)
lez?
with 1
klez?
(ii)
1 .
X Yoo ayM<r<t (4.9)

keXe4jleZz?

Remark: For the construction of the infinite volume Markov-Feller semigroup we will need only the condition
CX (i). The condition CX (ii) is similar to the famous uniqueness condition of Dobrushin and Shlosman.
One can expect that also in the case of quantum spin systems one could use it to develop a uniqueness theory
along the lines of [DS1-3], (or better to say its dual version of Aizenman and Lieb). In our paper we will
use it in @ similar way as in [SZ], (see also [AH]), to prove the corresponding strong ergodicity property of
infinite volume semigroup.

The interest in the condition CX is motivated by the following implications.

Theorem 4.3:

Suppose that the operators Lxyj are regular and that the condition CX (i) is satisfied. Then the following
limit exists and defines a Markov semigroup on A

PX = £" = lim P, (4.10)
0

and we have the following approximation property:

There are positive functions ¢ and D satisfying ¢(t) —:—co 0 and D(t) —4— 00, such that for any f € Ay,
Y € F, we have

IPX f = PAASI < C(Y)e®IIIAN (4.11)

with some constant C'(Y') € (0, 00) independent of f, provided

d(f,A%) > D(1) (4.12)
o
Theorem 4.4:
If also CX (ii) is satisfied then we have
NPXFI < e CmIXT 7 (4.13)

and therefore the semigroup P/ is strongly ergodic in the sense that there is unique P/ -invariant state w
for which we have

1P1f = wfl] < 2= == IXT g (4.14)

for every f € Ay. o

The proof of Theorem 4.3 is rather standard. We include it for the readers convenience.
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Proof of Theorem 4.3: For A; € F,i=1,2,let P} = ¢'*i = PffAl. Then we have

L (Pf =PI = Lo(P2S ~ PL) 4 (L2 — L1)PLf (4.15)
Hence p
SPL (P2~ Py = PP (L2~ Lo)PLf (4.16)

Integration of this equation from 0 to ¢ and use of contractivity property of Markov semigroup, yield

1 t
1P =PI =11 [ asPE(ea - £0PIAl < [ dsliee - £0 P (117)

0 0
Therefore we need to study the expression (L5 — L£1)P}f. As the difference of two Markov operators of

interest to us equals to a sum of elementary generators £xj, it is sufficient to study Lx 43P} f for j € VA
Since however by our regularity assumption we have

x4 PP FI1 < bikl[ok P E] (4.18)
k

we shall study the behavior of & P} f. For this we use the following differential equation

d
Eakpglf =hLi1P f = L1 (P f) + [0k, L1)P) f (4.19)
Hence we get
d
@ P (OePL) = PL il LPLF = 3 PLy (b Cx il PLY) (4.20)
i€A,

Integration of this equation and use of contractivity property of the Markov semigroups, give the following

bound .
6w Py I < lon ]+ Z/ d3||[Ox, Lx 4] P; f]] (4.21)
0

i€A;

If the condition CX (i) is satisfied, the right hand side of (4.21) can be bounded by

(BPLII< N0l + [ d5S Gl = DljaPL | (4.22)
0 1
with a translation invariant matrix
Gx(k-1)= ) o (4.23)
iezd
Since by our assumptions about afl"'i we have

Y Gx (k) =D D aptt =" e <KX <0 (4.24)

kezZ? k i

we can solve the inequality (4.22) by iteration and we obtain the following bound

86PLE < 30 (09%),, llanf] (4.25)
1

Combining (4.17), (4.18) and (4.25), we arrive at the following estimate

IPEf =PI <t D0 D b (€9%)  llansll (4.26)

JeA2\A; k1
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Hence for any As C z? containing a set A; we have

IPPf = PHAIL<t Y Y b (9% llans ] (4.27)

jEAL K1

Using the summability properties (4.6) and (4.24) of the matrices involved on the right hand side of (4.27),
one can easily conclude that the limit

PXf= lim PXAf (4.28)
exists for all local elements f € Ag. Hence, by continuity in the norm || - ||, it exists also for any f € A.

From the estimate (4.27) one gets also the approximation property (4.11-12) with the appropriate functions
©(t) and D(t), (the second dependent only on the choice of the former). This ends the proof of Theorem 4.3.
¢

Proof of Theorem 4.4: To proof Theorem 4.4 we follow closely [SZ]. First we note that by our assumption
Ex43A C Axeqj and therefore for any k € X + j we have

nLx+if = O(Exyif = f) = —0kf (4.29)
Using this we get
d, , . , .
EdszXf = LXPYf=—|X|WP)f+ LY P f+ D [0k Lx45)PXS (4.30)
jX°+jdok
where we have set
L= 3" Lxy (4.31)
jiXetiok
Setting PX¥ = et£"  we get
d S S
= (eWIPXFaPY ) = 30 eIPEE (0, Lx il PXT) (4.32)
jiXe+iok

Integrating this equation from 0 to ¢, and taking into account that PtX’k is a contraction semigroup on .4,
we obtain the following bound

t
|owPX FII < e X1 f1] + / dse™ U= IXE N[0k, Lx15] P 1] (4.33)
0 jiX°o+jak
Applying to the last term on the right hand side the condition CX (i), we get
-t
llowPX f1 < e XN +/ dse” U IXT Y a M| P f]] (4.34)
0 i Xe+jsk1ezd

Summing this inequalities over k € Z? and taking into the account that by translation invariance of af{"j

and the condition CX (ii) we have
X
Yo D> ag” <X (4.35)
keZ?jX°+j3k
we obtain

't
12X 1] Se"'x'lllflllﬁ-KIXI/0 dse™ =X | PX 11| (4.36)
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From this the inequality (4.13) easily follows. To prove the strong ergodicity property we note first that, by
weak compactness of the space of states on A and the fact that by our construction P has Feller property,
the set of P-invariant states is nonempty. Let w be one such state. Then we have

1PXf—wfll=IPFf—w(PEf)ll =10 (P feol-10 PXf)|I<|IPXfel-10PYfl]  (437)

the norm on the right hand side means the norm on the injective tensor product algebra A by itself, while
© is a completely positive map from A ® A to A defined by O(z1 ® 22) = w(21)xa, where 21,25 € A, (c.f.
Section IV .4 in [Ta], in particular Corollary 4.25). Choosing some lexicographic sequence {j,}nen in Z°
and observing that

PXfe1-10P f=201-10X (4.38)
with
B =(PYf— T, PXf)+ Y Tryy, gy (P f =Ty, P S) (4.39)
ne€IN

one easily arrives at the following inequality

1Y f —wfll < 2[1PX 1| (4.40)
Now the desired bound (4.14) follows from the first part of Theorem 4.4.
¢
In the rest of this section we would like to consider the elementary operators defined by
Lx4i(f) = Texyi(Vx 4 frx+s) — f (4.41)

with some yx4; € A, such that ’I‘I'X_|_j(7}(+jfyx+j) = 1. This assumption assures that the finite volume

dynamics P} = ¢'% have the Feller property. We would also like to formulate the general conditions

implying the regularity and CX conditions. To get the first one, we will need the following simple lemma (in
which we use a notation {z, y} for the anticommutator of operators z and y, defined by {z,y} = zy + yz).

Lemma 4.5:
The operators Lx4j admits the following representation

1 1
Lxi(F) = 5T (g Myxas) + 5 Texgy kgl vxni]) +

+ 5T (10 = Toxsaf), (kagixss = DY) + (Trxagf = 1) (142

and so

1 " " *
[Lx+;(N) < §(||[7x+j,f]||-||7x+j||+|I7X+j||~||[f,7x+j]ll)+(||7x+nx+j—1ll+1) > lofI] (4.43)
ke X +j

Proof: We have

Lxi(f) = Trx4i(Yx4ifrx+i) — f = (4.44)

1 * 1 * 1 *
= §T1“X+j (450 Flyx+i) + §T1“X+j (Vxa50F 7x4i]) + §TI'X+J' {fvxarx+id) = f
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Using the normalisation condition Trx 4 j (7}_” vx+j) = 1 and a property of the partial trace, we can represent
the last part of the right hand side of (4.44) as follows

1 1
§T1‘X+j {f vxeyx4it) — f = §T1‘X+j ({(f = Trx4if), (Vxgy7x45 — 1) + (Trx g5/ — f) (4.45)

Combining this with (4.44) we get the desired representation (4.42). The inequality (4.43) easily follows
from (4.42).

&

Given Lemma 4.5 we obtain the following condition for the regularity.

Theorem 4.6:

Suppose
sup, > > [0y x 45| < o0 (4.46)
KEZ je o 1:d(L, X +5)> d(k X +5)

Then the operators Lx 4 given by (4.41) satisfies the regularity condition. o

Proof: In view of Lemma 4.5 it is sufficient to prove that the following inequality is true

x4, S <Y bk 10/ (4.47)
k

with some nonnegative constants Eﬁc such that
sup E Eﬁ; < o0 (4.48)
kK =
j

To do this let us choose a lexicographic sequence 1,,n € IN, such that for some countable exhaustion
F={A =X+]j,Ans1 DAptmen we have

I, €Apmandl,y € Apy1 \ Ay = 0" >n (4.49)

We observe now the following representation for a commutator, (which follows from the simple fact that a
commutator vanishes if one of its entries equals to a multiple of the identity).

9. 1= > [Trp, 1,35(0.0), 7] = D0 >0 [Tray, 1,4(00,.9), Trqy 1,3 01,y F)] (4.50)

meIN meIN nez+t

with the convention in the second term that Try, = I. (Observe that the last partial trace on the right hand
side of (4.50) is associated to the set {11, ..,1,}, not to its complement, as in the previous trace.) Using also
the local structure of our algebra, we get

0. /1=> > [Tru, 1,)c(0.9), Trpy, 1,3 (01,4, F)] (4.51)

ne€IN m>neIN

Hence we obtain

Mg A< YL D2 longll | - 161, F]] (4.52)

n€IN \m>n€eIN

An application of this formula to the case studied by us leads to the following inequality (4.47) with the
corresponding constants bj)li given by

b = > [0, Yx 45l (4.53)
L (L X +5)>d(k, X +5)
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Thus the condition (4.46) implies that
su E b < oo 4.54
kp ik ( )

Similar considerations involving 7% ,; together with the use of (4.43) allows us to construct the constants
bﬁ; such that

IEx (NI D bk llow | (4.55)
jez?
and
sup Z bj)l({ < 00 (4.56)
kezdjezd
This ends the proof of Theorem 4.6.
&

Now we shall study the CX condition. We have the following result

Theorem 4.7:
Suppose that (4.46) is true. Then

1[0k, LX) <Y~ asa - || f]] (4.57)
le X
with
aa < ||Oyx || b5 + > yx [l 16, 7x [+ x (@ € X)[lyx [ - [|0kyx || (4.58)
(o]
Proof: Using Lemma 4.5 one can see that for any k € Z? we have
[0k, Lx](f) = A1+ A2+ A3 (4.59)
where )
Al = o (Tex (Irk, Teiflyx) = TexTex ([vx, flvx)) (4.60a)
A2(f) = A1(f*)* (4.600)
and
1 * *
A3 = o (Trx ({(Traf = TrxTref), (v 7x = D) = TreTrx ({(F = Texf), (vkvx = D)) (4.61)

Let us consider first A1l. After simple calculations one gets
2A1 = Trx ([0yx, Treflyx) + Trx ([Treyk, Tricf]0kyx)

— TreTrx ([Okvx, flyx) — TrTrx ([Treyy, fl0kyx) (4.62)

Now we use similar idea as in (4.50) to expand % and f. By this we get the following representation of the

first term on the right hand side of (4.62)

Trx ([Oxvx, Treflyx) = ZZTI'X ([0 Trq1,, 1,300, 7 Tre T, 13004 flyx ) =
L. 1,
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= Z Z Trx ([OxTr,, 1,120, 7% TreTrq, 1,300, flyx)

ln lmid(m,X)>d(In,X)
d(ly , X)>d(k,X)

(4.63)
Hence we obtain the following bound on the first term on the right hand side of (4.62)

ITex ([erk, TrwfTyx) 11 <Y > v [l - N, v | - 1160, fI (4.64)

ln Im:d(lm, X)>d(1n, X)
d(lm, X)>d(k, X)

The similar estimate will remain true also for the third term on the right hand side of (4.62). The second
(as well as the last) term from the right hand side of (4.62) can be bounded as follows

[[Trx ([Trevx, Trxflokyx ) [| < Z owyx || - boy l1anfl] (4.65)
lez?

Combining (4.64) and (4.65) we get

IAL+A2( < > | llowrx]l oy + > lyx [l 16, 7% I | - oIl (4.66)

lez4 Im :d(lm, X)>d(1,X)
d(lm, X)2d(k, X)

For the A3 term we have

2A3 = Trx ({(Trif — Tex Trwcf), (v 7x)}) — TeTex ({(f — Trx £), (vrx)}) (4.67)
whence we obtain
1A3]] < S (Ilvxl - llowrx]l) - llaaf| (4.68)
le X

Combining (4.66) and (4.68), we obtain

1[0k, LxJ(N)I] < Z ax - ||OLf]| (4.69)

lex

with

aa < [ |0y || by + > yx Il N yx | +x(@ e X)llyx(] - [oeyx | (4.70)

Im:d(Im , X)>d(1,X)
Al , X)>d(k,X)

This ends the proof of Theorem 4.7.
¢

Since also in this paper we would like to discuss the general strategy for the case of diffusion type stochastic
dynamics, some specific applications of the above presented strategy will be studied elsewhere.
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5. Quantum Stochastic Dynamics: The Diffusion Case

Let w be an (a4, 3)-KMS state of a quantum lattice system. In this section we consider a family of La(w, A)
spaces with the following scalar product

<f[,g>up=w ((ai,\ﬁ/2(f))*aim/2(g)) ) Aelo,1] (5.1)

If 3 € (0,00) is sufficiently small, then for f,g € Ao we have ajrg/2(f), @irg/2(g) € A and in this case the
right hand side of (5.1) make sense. In general it has to be understood in the sense of analytic continuation
of an appropriate function.

In particular for A = 0 we have

< fi9>wo=w(f"g)

whereas for A = 1 we have
< f,g>ua=wl(gf")

The case A = 1 has been considered in the previous sections. Let ||+ [[1,(w,) denote the corresponding norm.
The index A will be frequently omitted, as all the claims of this section remain true for every ILo(w, A) space.
For z € A, let V, denote the associated derivation given by V. (f) = i[z, f]. Let 7; denote the translation
automorphism on A corresponding to the translation of the lattice by a vector j € Z®. For a subalgebra B
of A, we define 7(B) = Ujez2 73(B).

For later purposes we would like to distinguish following Asymptotic Abelianess conditions.

Conditions AA :

There isp € [1,2], a finite set Mg of selfadjoint elements in the single spin algebra M and a dense subalgebra
A in A such that for any © € 7(Mg) and f € A, we have

Weak Asymptotic Abelianess:

(WAA,) / IV () (DI s < o0

-0

Strong Asymptotic Abelianess

(SAA,) | I¥aoDlpds < o

— 00

Remark: The choice of Mgy seems to be natural (see discussion given later), although some other choices
should not be a’priori excluded, as e.g. 67, (x). )

Let Ky be a positive definite function belonging to IL,(IR,ds), for ¢ = % and suppose a condition
WAA, is satisfied with some p € [1,2]. We introduce an elementary quadratic form E;(-, -) = Ex (-, -) in
direction z € 7(My), with the domain D = D(&;) = A as follows

Ef9) = /; /_ drdsKy(r —5) < Vo, (@) (f), Va,()(9) >w = (5.2)

T—co

T T
= lim / / drdsKx(r —s) < Va,()(f), Va,()(9) >u= Tlim Er(f,9)
—rJ=7 — 00

If a condition AA is true, then (using Holder’s and Young’s inequalities) one can see that £;(-,-) is a well
(densely) defined nonnegative form.
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Suppose additionally that the function K, is analytic in an open strip containing Imz € [—(1 — X)3, Af]
and satisfies the following conditions

Ki(s—r—iB(1 =X)) =Ki(r — s+ if}) (5.3)
One can realize that by setting
Ko = [ dgeKa(o) (5.1
with
Ki(q) = (1 +e702V)C(g) (5.5)
where
0 <C(q) = C(—q) (5.6)

is some sufficiently smooth and fast decreasing function. For later purposes we assume that K, is bounded
for every A € [0, 1] and that the following condition is satisfied

sup / dr|Kx(r+i8)| < oo (5.7)
B'€[-8,8]/ —oo

For T € (0,00) we define on .A the following bounded generators Ly ; = L; » 1 of (completely) positive
semigroups

Lo(f) = Loan(f) = /_T/_Tdr ds K(r — 8)i (Vao)(£)as (2) = an(@)Varor(f))  (5.80)

where

Ex(r —s) =Kux(r—s+1ipA) (5.8b)

One has the following interesting fact.

Theorem 5.1:
IfSAA ;| and (5.3) are satisfied with the positive definite kernel Ky € IL1 (IR, dr), then the following operator

L= [ [ drdskar = 9i(Toio (Do) - ar@Fuiolf) = Jim Leal) (59

is well defined as an operator L : Dy — A, on a dense domain Dy = A, and if

sup ||aigi(2)[| < C1 < 00, (5.10)
B'e[-8,8]

its quadratic form in ILy(w, A) coincides with —&; (-, -). Moreover the operator Ly Is:
*-invariant ,i.e.

(L )" = Lo(f*) (5.11)
and dissipative, 1.e. for any f € A we have
Cof,0) = 5 (Ll 1) = (Laf ) f = F (L)) > 0 (5.12)

The operators (5.9) have been first introduced in [QSV] in the special case of Ls(w,A = 0) space. The
theorem says that one can introduce a similar well defined and symmetric operator in every ILa(w, A) space.
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For the proof of this theorem, as well as for some later purposes, we need to study the nonnegative quadratic
form &, 7(-, ) and the completely positive operator L, 7, both defined for T € (0, c0) on all the algebra A.
The quadratic form & 7.3 = &» 7 2(, ) defines a nonpositive symmetric operator f;xyT = fmT’x on La(w,A)
described in the following lemma.

Lemma 5.2
Lx,T = L:L‘,T + 6L:c,T (513)

with

T B
—SLer(f) =i / ar / a8 (1= X) (KA(T = = i(8 = B)(1 = 1)V (Nr 4311 -0 (2) -
5.14
—KA (=T =1 =i(B = 3)(1 = M) Ve, @) (Fa—rizi-1)())

+A(KAT —r+i(B - BN ar—ipn(2)Va, (@) (f) = Ka(=T —r+ (8 — 5/))‘)a—T—iﬁ’A(x)var(ﬂf)(f)) )

Proof of Lemma 5.2: First of all, using the formula (5.1) together with the (a4, 8) -KMS condition, we
note that

< Vo, o)) Va9 >wn=<f,i (Va,@)(9)rpis1-3)(2) = tr_ipa()Va,2)(9)) >w.a (5.15)
Thus we have

T T
Eer(frg) =<, i/T/TdT ds (Ka(s — )V, (o) (9) s 4ip1-2)(x) — Ka(r — s)ar_ipa(#)Va,(2)(9)) >w,r

(5.16)
To discuss the first and the second term under the double integral, we consider the following analytic functions
in a strip containing I'mz € [—if(1 — A), i8]

z— Kx(z —1f(1 = A) = 7) < [, Vo, (@) (9)e:(2) >0, (5.17)

and

z—K)(z+iBr—s)< [, az(r)vas(x)(g) >wa (5.18)

respectively. Then by Cauchy integral theorem, we obtain for the first term

T T
/ dsKx(s—7) < [, Va,()(9)asyip-r)(2) >w7,\:/ dsKx(s —r—if(1=2X)) < f,Va,()(9)as(x) >ur +
-T =T

B
+ [ ap (= (KT = r =8 = )1 = 0) < L. Vo @orsizaon(@) >en (.19

~Ka(=T = = i(8 = B)(1= V) < £, Vao)(0)a-14i8:1-2(2) >un )
and for the second

T

T
/ K (r—5) < f, 0r—ip2(2)V o () (0) > n= / drKy(r—s+iBA) < f,0n(2) Ve, (2)(8) Sur +
-T =T

8
+/ d5/A<K,\(T —s+i(B =)A< far—ign(®)Va,@)(9) >wr + (5.20)
0
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~ Ky (=T = s +i(8 = BN < fr0mzia(0) Vo, ()(9) >0 )

Now applying the condition (5.3) to the K in the first term on the right hand side of (5.19) together with
(5.16) and setting Ka(r — s) = Ka(r — s + iBX), we arrive at the following equality

£ar(f,0) =< T, / [ a5 16sr = 9 (T 0)006) 421 Ve0) 0+

(5.21)
T 8
+ < f, Z/T dT’/ dﬁ/(l — A) (K)\(T —r— Z(ﬁ — 6/)(1 — /\))Var(x)(g)aT_l_m/(l_)\)(x)
- 0
— K (=T = 1= i(8 = B)(1 = ) Ve, (o (0) 7 isr(1-0)(2) ) >un
T B
t<fi [ ds [T agA(RAT = 5418 = B )01 () Vo) (0)
-7 0
—Kix(-T —-s+1iB - ﬁl)A)a—T-iﬁ'/\(x)vas(x)(g)) >0
=< f,—Lor(9) >w =< f, (Lo 7 — 6La 7)(9) >wx
This ends the proof of Lemma 5.2.
¢
The next useful fact is the following lemma.
Lemma 5.3
If
sup / dr|Kx(r +i8")| < o (5.22)
ﬁl
and
sup ||ayg(2)]] < C1 < oo (5.23)
B e[-5,0]
then for any f € A we have
Tim (8L £(F)]] = 0 (5.24)
Moreover, if
WP llevigags24+8m (@), evias 246 (@) i((1—>\/2)ﬁ—ﬁ’)($)||%} <Cy< o0 (5.25)
then
sup ||6Lg 7|1, -1, < C < 0 (5.26)
T

Proof of Lemma 5.3: Suppose f € A. Then we have
oo B
e (DI < [ dr [ (=2 (KA == i (1= W)+ KT =7 = i1 = 1)) +
/\(lKA(T—TwLiﬁ’/\)IJrIKA(—T—TH'B'A)I)) sup  ({aggn (@)]) - [V, @) (H (5.27)

p'el-p,p]
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Since by our assumption the last factor on the right hand side of (5.27) is integrable, the conditions (5.22)
and (5.23) together with (5.27) imply
Jim (6L (1) = 0 (5.28)

(From (5.27) one can also see that in fact sup;y [|6Lg r||4—4 < 00.) If the condition (5.25) is satisfied, then
the right,as well as the left, multiplication by ay4:p/(2), for any t € R, #' € [-3, 5] is a bounded operator
in La(w,A) with a norm not exceeding the left hand side of (5.25); see Lemma AIIIl.1 in Appendix III.
Therefore we have

o0 B
<00 >un | <263 [ dr [ 8 (1=NIKAi8 (1N HNK 45 D] 9]0 s
-0 0

(5.29)
Hence (5.26) follows. This ends the proof of Lemma 5.3.
&
Proof of Theorem 5.1: Since for f € fi, we have
o0
Lol < 2Kl [ sl oo (5:30)

so, if SAA ; holds, the right hand side is finite, i.e. Ly is well defined on the dense domain Dy = A. Using
Lemma 5.2 and (5.24) from Lemma 5.3, one can easily see that

gx(f:g) =< f,=Lgg >, (531)

This ends the proof of the first part of the theorem. The *-invariance condition follows from our assumption
that K, > 0 (see (5.5)), which implies that K > 0, and therefore we also have Ka(r—s)=K3(s—r). To
prove the dissipativity let us first note that for any f, ¢ € Dg also fg € Dg. Then by direct calculations with
f,9 € Do, we get

L.(f*g) = f"Le(9) + Lo (f")g + 2/_ /_ drds Ka(r = $)Va, o) (F*) * Va.(2)(9) (5.32)

whence, using the fact that K, is positive definite, we obtain

L.(f,f) :/_ /_ drds Kx(r — $)Va, () ([*) - Va,@)(f) >0 (5.33)

This ends the proof of Theorem 5.1.
¢

Remark: Let us note that the square of gradient form Ty is well defined under weaker AA condition than
the one assumed in Theorem 5.1.

It follows from Theorem 5.1 that L, is a densely defined, symmetric and nonnegative operator in Lo, i.e.
a pre - generator of a completely positive Markov semigroup. Its closure in s, which will be denoted
later on by the same symbol L;, can be used to define a semigroup for which the (ay, 5)-KMS state is
invariant. It will be made clear later that the corresponding semigroup is indeed a Markov semigroup. One
can expect however that such semigroup would have rather poor ergodic properties. Therefore one would
like to consider a translation invariant generator defined as a sum of all elementary generators. We define
it as follows. Let 2* € My, a = 1,.., D, be a base consisting of selfadjoint elements of norm one and let
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xj = {z§ = 7j(2z")}a=1,,p. We introduce a gradient at a point j € Z* by Veif = (VQS(zja)f)

a=1,..,D"
With this notation we define an elementary generator L;j as follows

L) = Jim Tir()) (534
with -
Lir(f) == [ [ drds k= )i(Ves() o) = () - Vi) (53)

where the dot means a scalar product of finite component vectors. As follows from the definition and
Theorem 5.1, Lj is a selfadjoint nonpositive operator with a domain D D A. For A € F we define a finite
volume generator Ly as follows
La=) 1 (5.36)
JeEA
with a dense domain D(Lj) C Ls(w) which is the closure of A in the corresponding graph norm. By the
construction it has the following properties.

Theorem 5.4
Suppose the conditions of Lemma 5.3 are satisfied for ¢ = z{, j € A, a = 1,..,D. Then the nonnegative
selfadjoint operator (L, P(Lyp)) in ILo(w) is the generator of a finite volume Markov semigroup P} = e'la.

[e]

Proof: The operator Ly is defined as a finite sum of nonnegative selfadjoint operators Lj with a common
essential domain Dy = A. Therefore it inherits the corresponding properties. We need only to show that it
generates a Markov semigroup. For this, let us note that on its essential domain Dy we have

Laf= 7121;0 LA7Tf, f €Dy (5.37)

where Ly 7y is defined as a corresponding sum of bounded generators Lj, j € A given in (5.35). Clearly
L7 is bounded on A. Therefore it can be used to define a Markov semigroup PtA’T = ¢e!laT on A4, Let
L1 be a selfadjoint nonnegative operator in Ly defined by the quadratic form

Ene(f,9)= > &alf9) (5.38)
JEA
with
Er(f9)= Y, Exr(f.9) (5.39)
a=1,..,D

Under the conditions of Lemma 5.3 it is now easy to see that the operator

§Lar =Lar —Lax (5.40)
satisfies
sup |[6La 7|, —m, < CA] (5.41)
T€(0,00)

with some positive constant C'independent of A. Using this and observing that PtA’T =ellar = et(f‘A’T‘éLA’T:),
by an appropriate Duhamel expansion in ILs, we arrive at the following stability estimate

1P|y < €M (5.42)
This together with (5.37) implies (via Theorem 7.2, p. 44 in [Go]) that

PAf =Ly~ lim pPMTf (5.43)
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for any f € L, and since every PtA’T is positivity and unit preserving, so must be P,A. This ends the proof
of Theorem 5 .4.
&

Remark: Since our proof relies on some ILo procedures, it does not tell us whether the semigroup PP, t > 0,
has a Feller property, although the approrimating semigroups PtA’T clearly have it.

A global generator L is formally defined as follows

L=) L (5.44)

jez?

To give a rigorous meaning to this definition we will need to impose the following additional restriction called
Hyper Asymptotic Abelianess:

Suppose A= Ay and we have
(HAA) Vs s (DM o) < ¥(s, f)
with some positive function ¢ (s, f) such that
U(s. ) < O+ |y~ (14072 (5.45)
with some positive constants C'(f) and ¢ possibly dependent on the function f. o

The following result shows that definition of the global generator can make sense.

Theroem 5.5:
Suppose that the following Finite Speed of Propagation property for automorphism group «; is true for any
feAr AEF,

1V if 1] < D(f)e=taibnmes) (5.46)

with some positive constants D(f), k and v possibly dependent on f € Ag. Then the global generator L is
a well defined selfadjoint operator in ILs(w) with a dense domain D D Ay, provided the condition HAA is
satisfied. Moreover the corresponding semigroup P; = 'Y is Markov. o

Remark: The finite speed of propagation of information (5.46) for automorphism semigroups of quantum
spin systems on a lattice has been proven long time ago in [LR].

Proof: Let us consider the increasing sequence of nonnegative, symmetric and closed quadratic forms Ex (-, -),
A € F, with a common dense essential domain A. By general arguments, see e.g. [Ka] Theorem 3.13, p.

461, the quadratic form
5(-,~)El}m€1\(-,~) (5.47)

if well defined on a dense domain, is also closed, symmetric and nonnegative quadratic form. Thus in this
case it defines a selfadjoint operator, denoted later on by —L. Moreover we have by general arguments ([Ka]
Theorem 3.13, p. 461), that the resolvent R(A) of the operator L satisfies

R(A) =Tlim(A - Lyt (5.48)

Since by Theorem 5.4 the finite volume resolvents on the right hand side of (5.48) are positive for A € RT,
so is R(A). This implies that L is a Markov generator. Now to finish the proof it suffices to show that the
quadratic form &(-, -) is well defined on A. To do this we note that

o<ern< Yy B / f drdsKa(r — )1V omy (Pl s - Ve eoy (Pl <
pY/—o /-

jezda=1,.,
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<ol X X [ dslVanen (Dl (5.49)
pDY—x

jezda=1,.,

(where we have used property of the Fourier transform of a convolution and the Parseval’s equality). Thus
it is sufficient to show that for arbitrary Ao € F and every f € Aj,, we have

Z / d5||vas(‘rj(z))f||21,2 < 00 (550)

jezi”

for any z in the chosen base of M. To do that, first we represent the sum on the left hand side of (5.50) as
follows

> > / ds||V oy T, = (5.51)

NEIN N-1<d(j,Ao)<N “~

=2 X (/||<N ds||V a5 1 s +/|| . d5||Vo<s<rj<x>>f||?LQ)
s|< 55 1> 55

NeIN N-1<d(j,Ao)<N v

Now, using the finite speed of propagation (5.46), we get the following bound on the first part of the sum
on the right hand side of (5.51).

N
> > /||<ﬂ ds||Va,(ryen Iz, < D > DN <o (5.52)

NEIN N=1<d(j,Ao)<N NEIN N-1<d(j,Ao)<N

To obtain an estimate on the second part of the sum on the right hand side of (5.51) we make use of our
HAA assumption. We get

D / |Vl < S % / ds (s, f)” <
s]> 2% |s]> 2%

NeIN N-1<d(j,Ao)<N NEIN N=1<d(j,Ao)<N

: Z E /|8|>ﬂ ds C(f)(1+ |s|) =1+ < Z E Ci(N +1)7(H) <

NeIN N=1<d(j,Ao)<N NeIN N=1<d(j,Ao)<N

< ) CoNTHN +1)71H) < oo (5.53)
NeIN
with some positive constants C; and C dependent on f. Combining (5.52) and (5.53), we obtain the desired
estimate (5.50). This ends the proof of Theorem 5.5

o

tL can have

It does not follow from our construction whether the infinite volume Markov semigroup P; = e
a Feller property. This would be desirable in order to have a more interesting ergodicity theory. Therefore
it would be useful to find some general conditions under which one could construct a Feller semigroup, i.e.
a Markov semigroup mapping the algebra A into itself. One could have a hope that such result is possible
if one would impose the following Ultrastrong Asymptotic Abelianess condition:

There are positive constants C and ¢ such that

(UAA) IVa,@ fIl < C(L+ s

for any f € Ay and x € M.

Then of course one could mimic our arguments to show that the operator L from (5.44) is defined on the
dense domain Ag, which is in this case mapped into A. Unfortunately such the appealing direction is wrong,.
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This is because already the modified UAA condition with the decay (1 + |s|)~2, with arbitrary B > d,
implies for any z € Ag the following estimate

[l ()| < C'(1+ |s])=F=D (5.54)

provided the Finite Speed of Propagation property is true; here the triple bar norm ||| - ||| is the same as in
Section 4 ( because of Lemma IV.1 in the Appendix IV). But if (5.54) holds, then for any two a;-invariant
states w and @, and any selfajoint f € A we get

w(f) —e(f) = lwlasf) —e(asf)] = wow(asf @1 -1 af)| < 2l[|as(Hl] — 0 (5.53)

when s — oo. This implies that there could be only one (a;, 3)-KMS state for all temperatures. Clearly
such a situation is not very exciting and we should not follow in this direction. Let us note that actually this
excludes also the possibility of introducing a strong version of HAA | with L, norm replaced by the algebra
norm, in case when d = 1. We do not know at the moment whether or not the weak asymptotic abelianess
with A = Ay can hold with a faster decay than the strong one. It may be so that in one dimensional systems
one can realize only a spin flip stochastic dynamics considered in previous sections.
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Appendix I
In this Appendix we give a simple proof of the inequality

AL wng) < NS (AL0)

For this we will need the following lemma in which we set A = |pﬁ fp%|

Lemma AI.1
For any k € IV, and ¢ > 2% 4+ 1 we have

2k_1

1 L _q{_9ky L .. 28 1 o
1A,y < IIFI 4 (Mw -2, f qup2q> (AL1)

Proof: Let us consider first the case k = 1. We have
S T R B -2 1 1, 1 1,921
1711 oy = Ted? = Te (47250 gk fpi ) = T (453 -3pdi prpt ) (FpRa™5743)) (4l

Applying to the right hand side of (A1.2) the Holder inequality we get

W=

—2_1 1 2 1 -2 _1 —2,1 1 " 2,1 %
A1, oy < (T (43228 gk ot A% 0)) 7 (1 (AT 2t p i 4724 ) =
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(Tr (Aq-?’pﬁf*p%fpﬁ))% (’I‘r (A¥+%pﬁf*fpﬁ,4qzi+%)) (AL.3)

The second factor on the right hand side of (AI.3) can be estimated as follows

10

1

(e (45 p a2 40))E < iy (1o (a0774)) (A14)

Since by our assumption Trp = 1, by Holder inequality for the trace, we estimate the second factor from the

right hand side of (AT.4) as follows

(T (4774%))" < (TeA)'T =l (AL5)
From (AI.4)-(ALb5) we get
1
—241 1 1 —2,1 b g-1
(o (A3 pp A <A1 I (AL6)

Using this together with (AI1.2)-(AI3) we get

1

115 oy < AT (AT e ok %) (ALT)
This ends the proof of the case k = 1. Let us suppose now that (AI.1) is true for some k£ — 1 € IN such that

28=1 1+ 1 < q. We will show that it has to be true also for k. For this we note that the 2~ power of the
second factor from the right hand side of (AI.1) with £ — 1 can be represented as follows

k=1 1 0 2k=1 1 gm1—2k71 k-1 4 k-1 2"‘1 2kt
T‘1‘<A"'1'2 p¥fip e fp2q>=T‘1“<<A > T prfrp e )(fp%‘l T3 >> (AL8)

Applying to the right hand side of (AL.8) the Holder inequality we get

-1 1 2k—1 1
T‘r<A4_1_2k pﬁf*prpE) < (AT1.9)

k1 2k 1 g—1—2k—-1 k-1 1 g—1-2k—1  ok-—1 %
S(Tr <Aq‘1‘2 pzf*prpE» <T1 <A ot pmfifpE AT 2t ))

The first factor has the correct form. The second can be estimated, by similar arguments as in the case

[NIE

k =1, as follows

(e (4235 et )) < U1 (1 (47794)) T < 1UAILIS115 s, (AT20)

Using the above considerations (AI.8)-(AI.10), we obtain the following bound

__k—li*2k__1L2k+1 1 _q_ok 1 . 28 1
(e (=t 18 ) )7 <l A (e (40 i g )

1
2k

(AI.11)
From this and (AIL.1) for the case k — 1, we get
2k—1_3
||f||,Lq§’;A1 < (AL.12)

3 - y - 2t L Lk 1 ok 1 ELk
Slpm <TrAq_1_2kaf*prpE> ”f”L(wA ) <T1“ <Aq‘1‘2kpﬁf*p7fpﬁ>>
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Hence the case k follows. This ends the proof of the lemma.

¢
In particular if ¢ = 2¥ + 1, Lemma A.1 gives us the following estimate
2 21 _ 1,28 1 *
L gwag) S WA= [ Tr [ p2af7pa fp3a (A1.13)
Now we note that the following lemma is true.
Lemma AI.2: For any s € [0, 1] we have
1 s 1-s
(Te (p*F*p'=2f)) " < (Trpf*f)* (Tepff*) 2 (AL.14)
e

Use of Lemma AlL2 for s = % together with (AI.13) ends the proof of the desired inequality (AIL.0) for
p=2% 4 1. The general case now follows from the Holder inequality on the left hand side of (2.32).

Proof of Lemma AI.2: The shortest proof one gets by applying the three lines theorem to the bounded
analytic in the strip Re z € [0, 1] function

o (£ f) (AL15)

For the case of interest to us with s = %, ¢ = 2% + 1, one can use also the following elementary induction.

We apply the following elementary step 2% times.

Sl _al ol _ol41 S+l _ol41 3 1
Tr <p?f*pgq_f) = Tr <pq ot ) (p% 1) < (Tr <p N A f)) (Tepf*f)*  (AL16)
for I =0,..,k — 1. In this way we arrive at the following inequality
‘Trp%f*p%f‘ < (Trpff*)t+or (Trp%fp%f*)qu (AL.1T)

The second term on the right hand side involves the similar expression as the starting one, with the roles of
f and f* exchanged. Therefore we can apply to it the same arguments. Using this, by induction we arrive
at the inequality of interest to us.

¢
Appendix II
Let us define the following function
Yxa(2) = pa(Trxpa) ™" = e (TrxemPHn) (AI11)

As for every A € F the symmetric operator Hp 1s bounded, it is clear that this is an operator analytic
function on C'. Moreover the following useful fact is true.
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Lemma AII1:
Let 3y be the radius of analyticity. Then there is a constant C' € (0, c0) such that forany A € F, 3 € (=0, o)
and z € C, |Rez| < 1 we have

llyxa(2)ll <C (AI1.2)

[e]

Proof: Since the function yx A(z) is analytic, applying the three lines theorem in the strip 0 < Rez < 1, we
have

[y, A ()] < sup [[yx,a (1 + it)]| (AIL.3)
teR
Clearly from the definition of yx a(z), we have
lyxa(1+ )] < [lvx (D] (AIL.4)
Let us note now that
_ -1 -
yxa(1) = ePHa (Teye PHa) ™" = ey \(1) (Texéx A (1)) (AI1.5)
where we have used a particular case of the following notation
Ex a(s) = ePHaem 3PN (AII.6)

Now we observe that, if the set X is sufficiently far from the boundary of A, we have

disﬁx,A(S) = Bajys(Ux) - €x,a(s) (AILT)

where Ux =) ynxz @v. I (1+6)8 € (—fo, +00), with some 6 € (0, 00), we have for s € [-1—6, 1+ 6], the
following unique solution of the differential equation (AIIL.7) subjected to the initial condition £x A(s = 0) =1

Exa(s) = 1+Zﬁ”/0 dsl.../o dspaly 5(Ux)...aly, 5(Ux) (AI1.8)
n=1
Hence we get
o allml sl < ey ()] < eomPera oty @) (A11.9)

Using this and (AIL.5) we get that for sp = +1 we have
[lvx.as0)]] < e2Posperallonss (Ul (AI1.10)

On the other hand it is clear that
llvx,a(s =0)|I =1 (AI1.11)

Since yx a(z) is analytic in the strip |Rez| < 1+ 6, (and obviously bounded for any fixed A € F), using the
three lines theorem, we conclude that for any z with 0 < |Rez| < 1 we have

llyx.a(z)]] < e2fiesPosmpaaliads (Ul (AI1.12)

This ends the proof of Lemma AII.1.
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Using the method of [Ar] one can also show the similar result for the spin systems with finite range inter-
actions on one dimensional lattice at arbitrary temperature. From the uniform boundedness result for the
sequence of operator valued analytic in the strip functions yx a(z), we see that one can choose a (weakly)
convergent subsequence to an operator valued analytic function yx (z). In general the limit point yx (z) need
not to be an element of the algebra A.

Appendix III
In this Appendix we consider left and right multiplication operators in Ly(w, A).

Lemma III.1
For any f,g € ILa(w, ) and an operator I such that F'g and gF are in ILy(w, \) we have
| < fiFg>on | <langa(P) < £, f>2,<9,9>2 (AITI.1)

and
| < £,0F >0 | < llairgpa(F)aioxmp(FOF < £,F >2,< 9.9 >2 (AII1.2)

Proof: We have

< Fg,Fg>un=w((ainp/2(9) (aingr2(F) (ing2(F))aing2(9)) < lleingso(F)||? < 9,9 >wr  (AIIL3)

From this the inequality (AITI.1) follows. To get the inequality (AII1.2) we note that by definition of the
scalar product and the KMS condition for the state w we have

< gF, gl > = w((aing/2(F) (@irg/2(9))" (@irg/2(9))ing2(F)) = (AIIT.4)

= w((aing/2(9))" (@ing/a(9)) ding/2(Feig(aing2(F)7))
Hence by Schwartz inequality we obtain
< gl gF >, \<
(ATTT.
<< 9,9 > (@ ((@ingra(F)ainya)s(F*)) (@ing/a(9))* (@inga(9)(@ing 2 (Faig - x2)s(F*)))

)

n= Ot

Iterating this procedure, in the limit we arrive at the following bound
<GP gF >4 23<< 9,9 >ua [(@ing/a(F)ai-x/2)s(F7)]| (AII1.6)

This clearly implies the inequality (ATII.2).

Appendix IV

Let {:L‘jl :a=1,.., D} be a base of the single spin algebra Mj, consisting of unitary operators. We define a
seminorm ||| - |||, on Ag as follows

lllo = 3 N1¥2s 1 (AIV.1)

jez?
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Let

FIERIE (AIV.2)
jezd
where
05 = f — Trjf (AIV.3)
Lemma IV.1

The triple bar seminorms introduced above are equivalent and one has with some A > 0

ATHIAN < Ao < AILAL (AIV.4)
Proof: We have
Voo FI| = (125, £ = [l[z5, f = Tes £l < 2[|f — Tejf1] = 2[5 ]| (AIV.5)

Summation over a’s and j’s yields the right hand side inequality in (AIV.4). To get the inequality on the
left hand side we observe first that for any vector @ and a positive operator f we have

z§, S = Maf™ faf = fI] > £(@, (2§ faf — [)P) (AIV.6)

By an appropriate choice of the vector ® and the base 2§ : a=1,..,D, one can arrange that m;*q) a =
1,.., D', with D' < D, is an O-N base in the corresponding finite dimensional Hilbert space associated to the

point j . Then summation over a’s of (AIV.6) yields

g All > £(®, (f — Tesf)®@) = F(S, 6;0) (ATV.T)

a=1,..,D’

Hence taking the possible linear combinations with different ® and the supremum over all possible choices,
we arrive at the following inequality

> =g Al = 16511 (AIV.8)

a=1,..,D’

Summing over j’s we obtain the left hand side inequality (AIV.4) for a positive operator f. From this the
general case follows by an appropriate choice of the constant.

&
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