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• Fluid mixing efficiency is a crucial issue in many
engineering applications

• Efficient mixing is usually related to turbulent regimes and
to mechanical devices

• Some industrial applications require an efficient mixing in
the absence of turbulence or high shear stresses

• Rayleigh–Bénard convection can offer an alternative to the
use of mechanical devices
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The design of reactors in which efficient mixing is
achieved without moving parts

The application of dynamical systems theory to the
analysis of dynamics and mixing properties in flows in-
duced by Rayleigh–Bénard convection inside a cube

• Analyze the rich dynamics of fluid particle trajectories
• Characterize well-mixed regions inside the cube
• Investigate the dependence of mixing properties on the

Rayleigh number
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Ra = gβL3∆T/αν
Pr = ν/α
β thermal expansion
ν kinematic viscosity
α thermal diffusivity
∆T = Th − Tc

θ=[T−(Th+Tc)/2]/∆T−z

Continuity

∇ · ~V = 0

Momentum
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Pr
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∂~V
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2 θ~ez −∇p
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∂θ

∂t
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2 (~V · ∇)θ =
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1

2 ~V · ~ez

Boundary conditions
~V = θ = 0 en ∂Ω
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Regular regions and
Lyapunov exponents

Critical points

Streamlines and
trajectories

Comparison of B2 and
B3

Conclusions and
outlook

WSIMS08, Barcelona, December 1-5, 2008 5

Galerkin spectral method
with basis functions
{~Fi(x, y, z)} satisfying
the boundary condi-
tions and the continuity
equation

Solution
(

~V
θ

)

=
∑

i

ci(t)~Fi

+
Stability Analysis

solution
Conductive

bRaclose to 
New solution at Ra

Bifurcation Ra Rab
Main eigenvalues
Main eigenvectors

Bifurcation Location

Technique
Branch Switching

Procedure
Parameter Continuation

Tracked solution branch

D. Puigjaner, J. Herrero, C. Simó, F. Giralt, J. Fluid Mechanics, 598, 393–427, (2008)
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Steady solutions that are stable over some Ra range
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B2

Initial Ra
6 798

Stability Range
67 730–85 694 Ra=7 000 Ra=51 000 Ra=80 000

B3

Initial Ra
11 612

Stability Range
20 637–79 362

Ra=12 000 Ra=51 000 Ra=80 000

λ2 is the second largest eigenvalue of the tensor S2 + Ω2
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Solution
Symmetry Group

(generators)

Invariant

Planes

B2 Sd− , −I x + y = 0

B25 −I –

B251 Sy, −I y = 0

B3 Sd+
, −Sy

{

x + y = 0

x − y = 0

Sy reflection about the plane y = 0
Sd+

reflection about the plane x − y = 0
Sd− reflection about the plane x + y = 0

−I simmetry with respect the origin
−Sy rotation of angle π around the y–axis
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Particle trajectories (Negligible diffusivities)






ẋ = u(x, y, z)
ẏ = v(x, y, z)
ż = w(x, y, z)

Advection equations

• Symmetries and invariant planes
• Poincaré sections
• Periodic orbits and their stability
• Size and shape of regular regions
• Maximal Lyapunov exponents and metric entropy
• Critical points in the interior and on the boundary

◦ Stability analysis
◦ Poincaré–Hopf index theorem

C. Simó, D. Puigjaner, J. Herrero, F. Giralt, Communications in Nonlinear Science and

Numerical Simulation, doi:10.1016/j.cnsns.2008.07.012. In Press
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• Poincaré Maps I
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• Poincaré Maps II

Regular regions and
Lyapunov exponents

Critical points

Streamlines and
trajectories

Comparison of B2 and
B3

Conclusions and
outlook

WSIMS08, Barcelona, December 1-5, 2008 10

512 equidistributed initial conditions integrated up to t = 103

B2, z = 0

Ra = 104 Ra = 3.3 × 104
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• Periodic orbit

• Poincaré Maps II

Regular regions and
Lyapunov exponents

Critical points

Streamlines and
trajectories

Comparison of B2 and
B3

Conclusions and
outlook

WSIMS08, Barcelona, December 1-5, 2008 11

-2

 0

 2

 4

 20  40  60  80  100
n

argument
trace

10 (x-coordinate) 

y = 2π/k, k = 2, · · · , 7



Poincar é Maps II
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B2, z = 0

Ra = 6.87099 × 104 Ra = 8.5 × 104
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Vc= volume occupied by the chaotic zone (points outside
invariant tori)

Computation Procedure

• Divide the cavity into n × n × n cubic cells (n = 200)
• Compute trajectories of fluid particles initially located at x0,

for any x0 in the set CI (final time tM = 106)

CI =

{(

−0.375+
i

8
, 0.48,−0.375+

j

8

)

, i, j = 0,· · · ,6

}

• Store the cells visited by one or more trajectories
• Nr(t) = number of cells that at time t have not yet been

visited by any particle trajectory (every ∆t = 200)
• Check that Nr(t) is almost constant in t ∈ [3

4
tM , tM ]

• Points at a distance less than 0.01 from the boundaries are
considered as non-regular
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LM(x0) = lim
t→∞

1

t
log

(

‖ lt ‖

‖ l0 ‖

)

lt = Dxφ(t, x0)l0 where l0 is an arbitrary vector and
φ(t, x0) is a solution of the differential equation with
φ(0, x0) = x0

Computation Procedure

• 49 equidistributed initial conditions on the plane y = 0.48
• finite time approximations of LM (final time=105)
• transient values (t ≤ 104)
• calculate log (‖ lt ‖ / ‖ l0 ‖) /t every 103 units of time

after the transient (t > 104)
• average with respect to time and initial conditions
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hm = LM × Vc
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B2, Ra = 6 × 104
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Interior: fixed points of the advection equations (~V = 0)
Boundary: wall x3 = 0

dxi

dτ
=

∂ui

∂x3

+
∂2ui

∂x3∂x1

(x1−b1)+
∂2ui

∂x3∂x2

(x2−b2)+
1

2

∂2ui

∂x2
3

x3

dx3

dτ
=−

1

2

(

∂2u1

∂x1∂x3

+
∂2u2

∂x2∂x3

)

x3

τ = x3t rescaled time
b = (b1, b2, 0) point on the wall x3 = 0

Trajectories of particles passing very close to the wall are
obtained by taking the limit (x1, x2, x3) → (b1, b2, 0)

dxi

dτ
=

∂ui

∂x3

i = 1, 2
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λ1, λ2, λ3 eigenvalues associated to the linearization of the
vector velocity field about a critical point xc.

Divergence–free flow (volume–preserving flow)

λ1 + λ2 + λ3 = 0 if xc is in the interior of the cube;
1

2
(λ1 + λ2) + λ3 = 0 if xc is on a wall of the cube ;

2(λ1 + λ2) + λ3 = 0 if xc is on an edge of the cube;

Classification of critical points

• SF: stable focus with a 1D unstable manifold
• UF: unstable focus with a 1D stable manifold
• 2S: saddle with a 2D stable manifold
• 1S: saddle with a 1D stable manifold
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Regular regions and
Lyapunov exponents

Critical points

• Critical points I

• Critical points II
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Poincaré–Hopf index theorem

The sum of the Poincaré indexes over all the isolated critical
points of a vector field on a compact orientable differentiable
manifold is equal to the Euler characteristic of the manifold

Change from the cubical domain to the 3D sphere S
3

• the interior of the cubical domain is topologically equivalent
to a 3D open ball B3 and its boundary is equivalent to a 2D
sphere S

2

• deform B3 to get a 3D hemisphere whose equator is S
2

• take a symmetric copy of the 3D hemisphere and glue both
hemispheres after identifying the S

2 boundaries

The Poincaré index of a critical point xc satisfying Reλi 6= 0,
is (−1)np , where np = #{λi | Reλi < 0, i = 1, 2, 3}.
Interior critical points must be counted twice.
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Interior Walls Edges

SF UF 2S 1S SF 2S 1S 2S 1S
10−3Ra (2) (-2) (2) (-2) (1) (1) (-1) (1) (-1)

10 2 3 2 0 4 2 6 0 2
11 2 3 0 0 4 2 2 2 4
28 2 1 0 0 4 0 2 0 4
41 2 1 0 0 0 4 2 0 4
58 4 3 0 0 0 4 2 0 4
60 4 2 1 2 0 4 2 0 4
61 4 4 1 0 4 0 2 0 4
63 6 6 1 0 4 0 2 0 4
65 6 6 1 0 4 2 4 0 4

68.58 6 6 2 1 4 2 4 0 4
68.71 6 6 2 1 4 6 8 0 4

68 6 6 1 0 8 2 8 0 4
58 6 6 1 0 8 0 6 0 4
57 6 6 1 0 4 4 6 0 4
52 6 6 1 0 4 0 2 0 4



Critical points:bifurcations and invariant planes I

Motivation and
Objectives

Problem description

Dynamical systems
approach and results

Poincaré Maps

Regular regions and
Lyapunov exponents

Critical points

• Critical points I

• Critical points II
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Ra = 104 Ra = 5.8 × 104
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Ra = 6.3 × 104 Ra = 8.5 × 104

-0.5 -0.25  0  0.25  0.5
x+y=0

1

4

4 6

6

1

4

4 6

6

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5
z

x+y=0

1

4

4
6

6

1

4

4
6

6

× SF: stable focus + 2S: saddle with two stable directions

UF: unstable focus



Limiting Streamlines ( B2)

Motivation and
Objectives

Problem description

Dynamical systems
approach and results

Poincaré Maps
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• The dynamics are characterized by regions with regular
motion surrounded by regions of chaotic motion

• Changes on the topology and on the chaotic level of the
flows are related to bifurcations of critical points

• The detailed knowledge of the flow provided by the
dynamical systems approach can be relevant in selecting
the parameter ranges and flow patterns at which more
efficient mixing is achieved



Future work

Motivation and
Objectives

Problem description

Dynamical systems
approach and results

Poincaré Maps
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• Study the relative position of the most relevant invariant
manifolds of the fixed points and hyperbolic periodic orbits

• Study the effect of a non–negligible molecular diffusion on
the dynamics of particle trajectories

• Extend the study to non-stationary flows
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fk(x) : Ck(x) =
cosh(λkx)

cosh(λk/2)
−

cos(λkx)

cos(λk/2)
;

Sk(x) =
sinh(µkx)

sinh(µk/2)
−

sin(µkx)

sin(µk/2)

gk(x) : cos((2k − 1) π x) ;

sin(2k π x)

λk y µk are the positive solutions of

tanh(λk/2) + tan(λk/2) = 0

coth(µk/2) − cot(µk/2) = 0
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