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FIG. 1: Time dependence of normal mode energies for a planar OCS trajectory at an energy
of 20,00 cm™!. The labels CO, CS and Bend indicate the internal coordinates approximated
by the normal modes. Arrows mark points of sudden energy exchange between the normal

modes.
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Phenomenology of OCS

What are these structures allowing transitions to other parts of phase space?
In three dimensions, these invariant structures can be invariant tori with
dimensions one (i.e. periodic orbits), two or three. These structures can also
include the stable/unstable manifolds of these objects. How are invariant
structures relevant in the phenomena of capture in chaotic systems? Since
Hamiltonian systems do not possess “sinks”, no such dynamical object can

attract and hold forever trajectories.
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Phenomenology of OCS

Objects in Hamiltonian systems (such as equilibrium points, periodic orbits
or invariant tori of various dimensions) according to their linear stability
properties are “marginally stable” at best i.e. eigenvalues of their Jacobian
matrix are unimodular. The only other qualitatively different behavior can be
characterized as hyperbolic. Objects that are hyperbolic are characterized as
saddle points: they both attract and repel, and typical trajectories passing by
such objects are first slowed down as they approach it and then repelled as

they move away from it.
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Figure l. A series of time slices of a surface of section for a
collinear 0OCS trajectory. The time ranges in ps of each plot
are: a) 0.0 - 4,2, b) 4.2 - 7.0, ¢) 7.0 ~ 24.9, d) 24.9 - 30.0,
e) 30.0 - 38.5, £) 38.5 - 45.3.
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Figure 2. The bottom plot shows the ln of the relative distance
between the collinear trajectory shown in Figure 1 and a col-
linear trajectory started initially very close to it. The top
plot shows a 23 line fit to the bottom. The letters on these
plots correspond to the plots in Figure l.
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FIG. 2: (Qcs, Pos) surfaces of section for a collinear OCS trajectory. (a) First 24.6 ps of
the trajectory. (b) Next 4.5 ps. Between (a) and (b), the trajectory crosses a phase space

bottleneck. e i
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FIG. 3: Phase space structure of collinear OCS. Shown are the 3:1 and 5:2 resonance zones,

and the 2+ golden mean cantorus separating the two chaotic regions illustrated in Fig. 2.
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Trapping and Roaming in 3d Hamiltonians

@ Very slow relaxation; a “numerical experiment”:

o Trapping stage
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Trapping and Roaming in 3d Hamiltonians

@ Very slow relaxation; a “numerical experiment”:

o Trapping stage

o Escape stage
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Trapping and Roaming in 3d Hamiltonians

@ Very slow relaxation; a “numerical experiment”:

o Trapping stage
o Escape stage

o Chaos (or Roaming)
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Trapping and Roaming in 3d Hamiltonians

@ Very slow relaxation; a “numerical experiment”:
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Trapping and Roaming in 3d Hamiltonians

@ Very slow relaxation; a “numerical experiment”:
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@ Look for invariant surfaces

@ 2-tori are important
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“Stable” Periodic Orbits
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First we notice that if a trajectory is initiated along a periodic orbit, the
system will never reach equilibrium since the energy will remain confined on
the periodic orbit for all times. In the neighborhood of a periodic orbit, it is
expected that, at least for a short time, the trajectory will mimic the dynamics
of the periodic orbit (whatever its stability is) by continuity. After this
trapping time, the trajectory might explore a larger domain in phase space.
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Hydrogen atom in magnetic and electric fields: chaos.
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Hydrogen atom in magnetic and electric fields: chaos.
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in Small Molecul
Hydrogen in Crossed Fields
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@ Energy (far) above the threshold energy;
@ Hard chaos, lots of UPOs;
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Trapping by unstable orbits

e Capture
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Trapping by unstable orbits
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e Trapping
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Trapping by unstable orbits

o Capture
e Trapping
@ Escape

@ Shadowing by unstable POs
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Trapping by unstable orbits

Capture

Trapping

Escape

Shadowing by unstable POs

“Bottleneck” as an unstable PO
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The Focus: Bottlenecks in OCS

@ Planar carbonyl sulfide (OCS): a three degree of freedom
Hamiltonian system, with no apparent symmetries, no small
parameter €, no possibility to estimate size of resonance zones.
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The Focus: Bottlenecks in OCS

@ Planar carbonyl sulfide (OCS): a three degree of freedom
Hamiltonian system, with no apparent symmetries, no small
parameter €, no possibility to estimate size of resonance zones.

@ Mapping out resonance channels by invariant tori (on the surface
of section), to explain energy transfer processes
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The Hamiltonian of a Rotationless OCS

Ri, Ra, @, Py, Py, Po. Ry = /R + G — 2RiRy cos

H=T(R\,Ry,,P1,P2,P,) + V(R|, Ry, ) ,

T =
5 +

P? P3 P, P
Al P + pu3P1P; cosa — p3Py sin 1 + 2
2 R, Ry

H1 M2 3 COSs v
+P s+ -
“ (21?% 2R2  RiR )
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The Hamiltonian of a Rotationless OCS

3
V(R17R27 a) = Z Vi(Ri) + VI(RDR%RS)’
i=1

2
Vi(R)) = D; (1 — e PAR)T AR = (R~ RY)  Morse,

3
Vi = P(R1,R2,R3) H (1 — tanh v;AR;) Sorbie-Murrell,
i=1

P = Z (CiARl' + CZ'J'ARI'ARJ' + CijkARiARjARk
+ i AR AR AR AR;) a quartic polynomial.
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The Hamiltonian of a Rotationless OCS

Parameters:
o A,Di,RY, Bi, cvi, i, ciy cijy cijp (i = 1,2, 3) — fixed;
e E=H(R|,Ry,a, Py, P, P,) — tunable.
Collinear OCS (a = 7, P, = 0) equipotential lines:
5

45
4 L
35+

)

3 L
@ Dissociation E = 0.1

e £=0.09-0.10
@ Chaotic

25 ¢
2+
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Transport theories

2-d:
o Tori — barriers — less volume
partakes in transport.
e 7 tori — last destroyed by
perturbations
e “small separatrix splitting” —
power laws.
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Transport theories

2-d: (N > 3)-d, chaotic.
@ Tori — barriers — less volume @ No barriers.
partakes in transport.

e 7 tori — last destroyed by
perturbations

@ Vanishing measure of N-tori
(Froeschlé’s conjecture.)

e “small separatrix splitting” —
power laws.
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Transport theories

2-d: (N > 3)-d, chaotic.
@ Tori — barriers — less volume @ No barriers.
partakes in transport.

e 7 tori — last destroyed by
perturbations

@ Vanishing measure of N-tori
(Froeschlé’s conjecture.)

e “small separatrix splitting” —
power laws.

Ergodicity?
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Outline of the talk

© Focus: Invariant Tori in the Phase Space of OCS
@ Tools to Detect Resonances
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The Stability Landscape in Terms of Periodic Orbits

Define surface of section X to be the set of points x of a trajectory
such that
Ux)=0,

with X - U /0x > 0. From two consecutive points X, = x(#,) and
Xu+1 = X(t, + A(Xp, 1,)) on the Poincaré section, we define a
Poincaré map Fry,
Fs(Xn) = Xpt1-
In what follows, we have used the surface > defined by
Uix)=P,.

Periodic orbit is a fixed point on the surface of section, such that

fg(x) =X

Bottlenecks to vibrational energy flow in OCS
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The Stability Landscape in Terms of Periodic Orbits

Averaged density of periodic orbit points, projected onto the
(Ry, Ry)-plane, weighted by the “local escape rate” ’y; , given by the

sum of positive Lyapunov exponents, )\Ep ) >0 or, in terms of

Lyapunov multipliers for the periodic orbit p, given by

v = 1_[1_:|A_(p)|>1 |AE‘D) ]‘VT(F) where Agp) is an eigenvalue of DFy,
evaluated at the periodic points. Periodic orbits with the following
number of intersections with the Poincaré section are determined:
1(4),2(9), 3(10), 5(24), 7(26), 11(40), 13(33), 17(21), 19(43),
23(41),29(34), 31(28), 37(43), 8(101) where the number of orbits is
shown in parentheses. Energy is set at £ = 0.09. Lighter areas are
dominated by more regular orbits, darker by unstable orbits. We
analyze the region located near O, where (R, Ry) ~ (2,2.5).
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Temporal features: The Time-Frequency Analysis

A finite segment of a trajectory: {X,},=1... n, X, = X(1,,). Take
snapshots with a fixed time increment, #,1; = t, + A. To select only
the main frequency, scale the time increment A by the period 7}, of
the organizing periodic orbit and select A = T, /4

Instantaneous frequencies: The Wavelet Decomposition

1 [t [Tt
W)= [ g () dr 1)
—00
Morlet-Grossman Wavelet (adjustable 1 and o):
@b(f) — eLnteftQ/Zaz/(O_Zﬂ_)l/Af )
Density of Energy in the time-frequency plane:

Pyf(t,€ =n/s) = |Wf(t,5)]* /s, 3)

Ridges of Py can be interpreted as instantaneous frequencies.

R. Pagkauskas Bottlenecks to vibrational energy flow in OCS
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Instantaneous Frequencies: Trapping, Escape, Roaming.
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Trapping is Generic
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3-dof: Compact Invariant Surfaces

Equilibria ( 0-dim )

Periodic sausages (1-dim )

°
°
@ two-dimensional sausages (2-dim)
@ 3 dimensional sausages

°

Normally Hyperbolic Invariant Wiirst
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Continuation Procedure

Consider a fixed point Xy on the surface of section %, i.e.
fz (Xo) = X0. Near X0,

Fx (X) = Fx (Xo) + DFx (Xo)(X — X()) + R(X — Xo) , @

Consider a closed curve +(s) on the Poincaré section ¥ defined on a
torus s € T', and consider the dynamics of x(s) = Xo + ev(s). If
DFr;(x0) has at least one pair of eigenvalues in the form

A = exp (+w), it is possible to find a «(s) such that

DFsy(s) = (s + we) and |w — we| = o(€). Therefore the equation

Fu(x(s)) = x(s + w), (5)

has a family of solutions, parametrized by the rotation number w.

Bottlenecks to vibrational energy flow in OCS
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Unstable Tori as Transition Bottlenecks
Geometry of Invariant Surfaces

Computation of 2-d tori

W’u

Bottlenecks to vibrational en

Project M — ¥
Loop

v(0) =v(0+1)
Rotation
number w

dlefhr

flow in OCS



Tools to Detect Re
Focus: Invariant Tori in the Phase Space of OCS Unstable Tori as Transition Bottlenecks

Geometry of Invariant Surfaces

The type of internal dynamics on T! is likely to be a rotation. We
assume that the Poincaré map Fyx has an invariant curve with an
irrational rotation number w, and that there exists a map (at least
continuous) x : T' — ¥ such that a rotation number w can be defined.

F(x)(0) = Fs(x(0)) — (Tux)(0). (6)

The zeros of F correspond to (continuous) invariant curves of rotation
number w.
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First we expand x(#) in a Fourier series with real coefficients,

x(0) = % + Z (ag cos k6 + by sin k6) (7)
k>0

where ag, by € R” for k € N (n being the dimension of the flow) and
x(0) is a periodic function with period 2, i.e. x(6 + 2) = x(6).
Truncate these series at a fixed value of N, 2N + 1 unknown
coefficients ag, ag, and by for 1 < k < N. A mesh of 2N + 1 points on
T!:
2j .
0 = N1 for0 <j < 2N,
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Fx(x(6;)) are functions of ay, by:
Fi({ar}, {bi},w) = Fu(od({act, {be}.)))
_¢({ak}? {bk}>] + l(w))>

for 0 <j < 2N and where i(w) = (2N + 1)w/2, and as, bys are the
unknowns in the above equation.

OF; OF; OF;
Fj(a,b —Loag + Lobe + —Léw =0
](a7 7V) aak ak + 8bk k + 80} w b
where a = (ag,ay,...,ay) and b = (by,...,by). If x(0) is a Fourier

series corresponding to an invariant curve then, for any ¢ € T,

y(0) = x(0 + o) is a different Fourier series corresponding to the

same invariant curve as X(¢). The Jacobian of F; around the invariant

curve has, at least, a one-dimensional kernel. Use the SVD.

Testing the spectrum of the solution (and the norm of its eigenvectors
weighted by the frequency, penalizing high harmonics): a smooth i
solution should contain a unit eigenvalue.
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Normal stability

Normal stability properties of invariant loops are determined by the
solutions (A1) of the generalized eigenvalue problem,

DF5(x)(0)y(0) = AT (),

dlefhr
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Normal stability

The eigenvalues A have the following properties: 1) A = 1 is an
eigenvalue; the corresponding eigenvector is the derivative of the loop
x, 2) if A is an eigenvalue; then A exp (2tk7mw) is also an eigenvalue
for any k € 7Z, 3) the closure of the set of eigenvalues is a union of
circles centered at the origin.

Accuracy of eigenvalues can be estimated by

1l ® = il i1
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Jacobian Projection in Local Coordinates

Figure: Reduction of the Jacobian DFx;(x, T) to derivative of the map
DZFs (x). If x(z) intersects the Poincaré section at x’ € X at time 7, the
nearby x(t) + 0x(¢) trajectory intersects it time 7 4 ¢ later. As

(7 -V'6t) = —(7 - DFx 6x), the difference in arrival times is given by
§t=—(7 -DFs ox)/(7 V'), and the projection of the Jacobian to the

surface of section is DFx:(x0) ~ DFs;; = DFs;; — vi(1 - DFx); /(7 -V)). i
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If (X,Q) and (Y, =) are symplectic vector spaces, a smooth map
f + X — Yis called symplectic (canonical) if it preserves the
symplectic (canonical) forms, that is, if

E(Df(2) - 21, Df (2) - 22) = Q21, 22)

Uuivj

(P(”>V>)IJ - 11] B <v,u> ®)
The normal vector to the co-dimension-one surface of section is
n(x), x € X. The surface of section maps x’ = Fx(x). We denote
derivative of the Hamiltonian as a vector by h(x) = dH(x), and
h = h(x), "' = h(x'), and similarly v = v(x), V' = v(x). We also
denote 71(x) = In(x).

J= P(v(x'), n(x"))JP(In(x), Iv(x)) 9)
In practice locally ¥ is defined by x,, = 0 : n(x); = dim,

(In(x))i = diz(m)» o (m) is the index of the canonically conjugate
variable to x,,.
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Poincaré Surface of Section
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Frequency-Halving Bifurcation

2 T T T T T
1} 1 ]
P, oF 1 1 P
a1t 15 ]
2 ) . . . A
3.56 229 23 231 232 233 234
R,
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Outline of the talk

© Focus: Invariant Tori in the Phase Space of OCS

@ Geometry of Invariant Surfaces
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Normally Non-Hyperbolic Invariant Manifolds

Rational Rotation Numbers

Bifurcations, complicated configurations happen because these
surfaces are not Normally Hyperbolic.

*all_f.dat’ usi 1:2:3:7 eve 4:8
’all.dat’ usi 1:2:3:7 eve 4:8
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Normally Non-Hyperbolic Invariant Manifolds

Rational Rotation Numbers

Bifurcations, complicated configurations happen because these
surfaces are not Normally Hyperbolic.

2.35

@ 230+

2.25 - - -
3.55 3.6 3.6 3.6

dlefhr

Bottlenecks to vibrational en flow in OCS



Conclusions and Outlook

Summary

@ Crossover between trapping and Roaming of trajectories has
been identified as transition from a resonance channel to chaotic
zone (and vice versa.)

@ R. Paskauskas, C. Chandre, and T. Uzer, Phys. Rev. Lett., 100,
083001, 2008.
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Conclusions and Outlook

Summary

@ Crossover between trapping and Roaming of trajectories has
been identified as transition from a resonance channel to chaotic
zone (and vice versa.)

@ Codimension-one invariant tori can be used to map out the
resonance channels, and their bifurcations to identify points of
transition.

@ R. Paskauskas, C. Chandre, and T. Uzer, Phys. Rev. Lett., 100,
083001, 2008.
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Conclusions and Outlook

Outlook

A challenging problem: Many body systems with Long-Range
Interactions. Applications in plasma physics.

o Large number of degrees of freedom (N ~ 103~%)

o Energy transfer to the Thermodynamic Mode occurs on a very
slow time scale, t ~ N'*7 . Is it due to resonances?

Bottlenecks to vibrational energy flow in OCS
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