

Hamiltonian formulation of reduced Vlasov-Maxwell equations

Cristel CHANDRE

Centre de Physique Théorique – CNRS, Marseille, France

Contact: chandre@cpt.univ-mrs.fr

importance of stability vs instability in devices involving a large number of charged particles interacting with fields: plasma physics (tokamaks), free electron lasers

> Here: reduced models of such systems (easier simulation, better understanding of the dynamics)

Outline

- Hamiltonian description of charges particles and electromagnetic fields

- Reduction of Vlasov-Maxwell equations using Lie transforms

Alain J. BRIZARD (Saint Michael's College, Vermont, USA)

- Reduced Hamiltonian model for the Free Electron Laser

Romain BACHELARD (Synchrotron Soleil, Paris) Michel VITTOT (CPT, Marseille)

Motion of a charged particle in electromagnetic fields

> in canonical form

$$H\left(\mathbf{p},\mathbf{q},t\right) = \frac{\left(\mathbf{p} - \frac{e}{c}\mathbf{A}\left(\mathbf{q},t\right)\right)^{2}}{2m} + eV\left(\mathbf{q},t\right) \quad \text{with } \left\{f,g\right\} = \frac{\partial f}{\partial \mathbf{q}} \cdot \frac{\partial g}{\partial \mathbf{p}} - \frac{\partial f}{\partial \mathbf{p}} \cdot \frac{\partial g}{\partial \mathbf{q}}$$
equations of motion :
$$\begin{cases} \dot{\mathbf{p}} = \left\{\mathbf{p},H\right\} = -\frac{\partial H}{\partial \mathbf{q}}\\ \dot{\mathbf{q}} = \left\{\mathbf{q},H\right\} = \frac{\partial H}{\partial \mathbf{p}}\end{cases}$$

> in non-canonical form: *physical variables*

$$\mathbf{v} = \frac{1}{m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A}(\mathbf{q}, t) \right)$$
$$\mathbf{x} = \mathbf{q}$$

$$H(\mathbf{v}, \mathbf{x}, t) = \frac{1}{2}m\mathbf{v}^{2} + eV(\mathbf{x}, t) \quad \text{with } \{f, g\} = \frac{1}{m} \left(\frac{\partial f}{\partial \mathbf{x}} \cdot \frac{\partial g}{\partial \mathbf{v}} - \frac{\partial f}{\partial \mathbf{v}} \cdot \frac{\partial g}{\partial \mathbf{x}} \right) + \frac{e\mathbf{B}}{m^{2}c} \cdot \left(\frac{\partial f}{\partial \mathbf{v}} \times \frac{\partial g}{\partial \mathbf{v}} \right)$$

equations of motion :
$$\begin{cases} \dot{\mathbf{x}} = \{\mathbf{x}, H\} = \mathbf{v} & \text{gyroscopic bracket} \\ \dot{\mathbf{v}} = \{\mathbf{v}, H\} = \frac{e}{m} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \end{cases}$$

Definition: Hamiltonian system

- a scalar function H, the Hamiltonian

- a Poisson bracket
$$\{F, G\}$$
 with the properties
antisymmetric $\{F, G\} = -\{G, F\}$
Leibnitz law $\{F, GK\} = \{F, G\}K + G\{F, K\}$
Jacobi identity $\{\{F, G\}, K\} + \{\{K, F\}, G\} + \{\{G, K\}, F\} = 0$

- equations of motion

$$\frac{dF}{dt} = \left\{F, H\right\}$$

- a conserved quantity $\Big\{ F, H \Big\} = 0$

Eulerian version: case of a density of charged particles

- density of particles in phase space
$$f(\mathbf{x}, \mathbf{v}, t)$$

example:
$$f(\mathbf{x}, \mathbf{v}, t) = \frac{1}{N} \sum_{i} \delta(\mathbf{x} - \mathbf{x}_{i}(t)) \delta(\mathbf{v} - \mathbf{v}_{i}(t))$$
 Klimontovitch distribution

- evolution given by the Vlasov equation

$$\frac{\partial f}{\partial t} = -\mathbf{v} \cdot \nabla f - \frac{e}{m} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}}$$

- Eulerian, not Lagrangian:

for any observable
$$\mathcal{F}[f]$$
, we have $\frac{d\mathcal{F}}{dt} = \frac{\partial \mathcal{F}}{\partial t} = [\mathcal{F}, \mathcal{H}]$

- still a Hamiltonian system

Hamiltonian :
$$\mathcal{H}[f] = \iint d^3x d^3v f\left(\frac{m}{2}\mathbf{v}^2 + eV\right)$$

with $\left[\mathcal{F}, \mathcal{G}\right] = \iint d^3x d^3v f\left\{\frac{\delta \mathcal{F}}{\delta f}, \frac{\delta \mathcal{G}}{\delta f}\right\}$

Eulerian version: case of a density of charged particles

- an example:
$$\rho[f](\mathbf{x}_0) = e \int d^3 v f(\mathbf{x}_0, \mathbf{v})$$

 $\frac{\partial \rho}{\partial t} = [\rho, \mathcal{H}] = \int d^3 x d^3 v f\left\{\frac{\delta \rho}{\delta f}, \frac{\delta \mathcal{H}}{\delta f}\right\}$

- functional derivatives

$$\mathcal{F}\left[f+\phi\right] = \mathcal{F}\left[f\right] + \int d^{3}x d^{3}v \ \frac{\delta \mathcal{F}}{\delta f} \phi + O\left(\phi^{2}\right)$$

- here:
$$\frac{\delta \rho}{\delta f} = e \,\delta \left(\mathbf{x} - \mathbf{x}_0 \right)$$
 and $\frac{\delta \mathcal{H}}{\delta f} = \frac{1}{2} \, m \mathbf{v}^2 + e \, V$

- therefore:
$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} \cdot \mathbf{J}$$
 with $\mathbf{J}[f] = e \int d^3 v f \mathbf{v}$

Vlasov-Maxwell equations: self-consistent dynamics

> description of the dynamics of a collisionless plasma (low density)

Variables: particle density $f(\mathbf{x}, \mathbf{v}, t)$, electric field $\mathbf{E}(\mathbf{x}, t)$, magnetic field $\mathbf{B}(\mathbf{x}, t)$

$$\frac{\partial f}{\partial t} = -\mathbf{v} \cdot \nabla f - \frac{e}{m} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{v}}$$
$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E}$$
$$\frac{\partial \mathbf{E}}{\partial t} = c \nabla \times \mathbf{B} - 4\pi \mathbf{J}$$
where $\nabla \cdot \mathbf{E} = 4\pi\rho$ and $\nabla \cdot \mathbf{B} = 0$

Vlasov-Maxwell equations... still a Hamiltonian system

$$\begin{aligned} \text{Hamiltonian} : \mathcal{H} \Big[\mathbf{E}, \mathbf{B}, f \Big] &= \iint d^3 x d^3 v f \frac{m}{2} \mathbf{v}^2 + \int d^3 x \frac{\left| \mathbf{E} \right|^2 + \left| \mathbf{B} \right|^2}{8\pi} \\ \text{with} \Big[\mathcal{F}, \mathcal{G} \Big] &= \iint d^3 x d^3 v f \left\{ \frac{\delta \mathcal{F}}{\delta f}, \frac{\delta \mathcal{G}}{\delta f} \right\} \\ &+ \frac{4\pi e}{m} \iint d^3 x d^3 v \frac{\partial f}{\partial \mathbf{v}} \cdot \left[\frac{\delta \mathcal{F}}{\delta \mathbf{E}} \frac{\delta \mathcal{G}}{\delta f} - \frac{\delta \mathcal{F}}{\delta f} \frac{\delta \mathcal{G}}{\delta \mathbf{E}} \right] \\ &+ 4\pi c \int d^3 x \left[\frac{\delta \mathcal{F}}{\delta \mathbf{E}} \cdot \nabla \times \frac{\delta \mathcal{G}}{\delta \mathbf{B}} - \nabla \times \frac{\delta \mathcal{F}}{\delta \mathbf{B}} \cdot \frac{\delta \mathcal{G}}{\delta \mathbf{E}} \right] \end{aligned}$$

Equation of motion for $\mathcal{F}[\mathbf{E}, \mathbf{B}, f]$: $\left| \frac{d\mathcal{F}}{dt} = \frac{\partial \mathcal{F}}{\partial t} = [\mathcal{F}, \mathcal{H}] \right|$ Remark: div B et div $\mathbf{E} - \int d^3 p f$ are conserved quantities antisymmetry, Leibnitz, Jacobi

> Morrison, PLA (1980) Marsden, Weinstein, Physica D (1982)

From microscopic to macroscopic Vlasov-Maxwell equations

- Elimination (or decoupling) of fast time and small spatial scales for a better understanding of complex plasma phenomena

- reduced Maxwell equations in terms of ${\bf D}$ and ${\bf H}$

 $\begin{array}{l} \nabla \cdot \mathbf{D} = 4\pi \rho_{R} \\ \frac{\partial \mathbf{D}}{\partial t} = c \nabla \times \mathbf{H} - 4\pi \mathbf{J}_{R} \\ \mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}, \qquad \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M} \\ \\ \text{where} \\ \rho_{R} = \rho + \nabla \cdot \mathbf{P}, \quad \mathbf{J}_{R} = \mathbf{J} - c \nabla \times \mathbf{M} - \frac{\partial \mathbf{P}}{\partial t} \\ \text{reduced polarization density / magnetization current / polarization current density} \end{array}$

- Can we represent the reduced Vlasov-Maxwell equations as a Hamiltonian system? Hint: use of Lie transforms
- *Deliverables*: Expressions of the polarization **P** and magnetization **M** vectors

Reduced fields as Lie transforms of f, E and B

Given a functional $\mathcal{S}[\mathbf{E}(\mathbf{x},t),\mathbf{B}(\mathbf{x},t),f(\mathbf{x},\mathbf{v},t)]$, we define some new fields as

$$\begin{vmatrix} \mathbf{D} \\ \mathbf{H} \\ F \end{vmatrix} = e^{-\mathcal{L}_{\mathcal{S}}} \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \\ f \end{pmatrix} = \begin{pmatrix} \mathbf{E} - [\mathcal{S}, \mathbf{E}] + \frac{1}{2} [\mathcal{S}, [\mathcal{S}, \mathbf{E}]] + \cdots \\ \mathbf{B} - [\mathcal{S}, \mathbf{B}] + \frac{1}{2} [\mathcal{S}, [\mathcal{S}, \mathbf{B}]] + \cdots \\ f - [\mathcal{S}, f] + \frac{1}{2} [\mathcal{S}, [\mathcal{S}, f]] + \cdots \end{pmatrix} \end{vmatrix}$$

Remark: If the variable χ is only a function of **x** then $e^{-\mathcal{L}_s}\chi$ is only a function of **x**

The functionals transforms into $\ \bar{\mathcal{F}} = e^{-\mathcal{L}_{S}}\mathcal{F},$

resulting in a new Hamiltonian and a new Poisson bracket...

Polarization, magnetization, reduced density, etc...

$$\mathbf{P} = \frac{1}{4\pi} \Big(e^{-\mathcal{L}_{\mathcal{S}}} - 1 \Big) \mathbf{E} = c \nabla \times \frac{\delta \mathcal{S}}{\delta \mathbf{B}} - \frac{e}{m} \int d^{3} v f \frac{\partial}{\partial \mathbf{v}} \Big(\frac{\delta \mathcal{S}}{\delta f} \Big) + \cdots$$
$$\mathbf{M} = \frac{1}{4\pi} \Big(1 - e^{-\mathcal{L}_{\mathcal{S}}} \Big) \mathbf{B} = c \nabla \times \frac{\delta \mathcal{S}}{\delta \mathbf{E}} + \cdots$$

so that
$$\begin{cases} \mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} \\ \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M} \end{cases}$$

Reduced evolution operator

$$\frac{\partial \overline{\mathcal{F}}}{\partial \overline{t}} \equiv \left(e^{-\mathcal{L}_{\mathcal{S}}} \frac{\partial}{\partial t} e^{\mathcal{L}_{\mathcal{S}}} \right) \overline{\mathcal{F}} \\
= e^{-\mathcal{L}_{\mathcal{S}}} \left[e^{\mathcal{L}_{\mathcal{S}}} \overline{\mathcal{F}}, e^{\mathcal{L}_{\mathcal{S}}} \overline{\mathcal{H}} \right] = \left[\overline{\mathcal{F}}, \overline{\mathcal{H}} \right]$$

Reduced Vlasov-Maxwell equations

$$\begin{aligned} \frac{\partial \mathbf{D}}{\partial \overline{t}} &= c\nabla \times \mathbf{H} - 4\pi \overline{\mathbf{J}} \\ \frac{\partial \mathbf{H}}{\partial \overline{t}} &= -c\nabla \times \mathbf{D} \\ & \frac{\partial \mathbf{D}}{\partial t} = \frac{\partial \mathbf{D}}{\partial \overline{t}} + \left[\mathbf{D}, \mathcal{H} - \overline{\mathcal{H}}\right] = c\nabla \times \mathbf{H} - 4\pi \mathbf{J}_{R} \\ \frac{\partial \mathbf{H}}{\partial t} &= \frac{\partial \mathbf{H}}{\partial \overline{t}} + \left[\mathbf{H}, \mathcal{H} - \overline{\mathcal{H}}\right] = -c\nabla \times \mathbf{D} - 4\pi \frac{\partial \mathbf{M}}{\partial t} + 4\pi c\nabla \times \mathbf{P} \\ & \text{Reduced Vlasov equation} \quad \frac{\partial F}{\partial \overline{t}} = -\mathbf{v} \cdot \nabla F - \frac{e}{m} \left[\mathbf{D} + \frac{\mathbf{v}}{c} \times \mathbf{H}\right] \cdot \frac{\partial F}{\partial \mathbf{v}} \\ & F = f - \left\{f, \frac{\delta S}{\delta f}\right\} - \frac{4\pi e}{m} \frac{\partial f}{\partial \mathbf{v}} \cdot \frac{\delta S}{\delta \mathbf{E}} + \cdots \end{aligned}$$

guiding center theory / gyrokinetics

What S?

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{H} \\ F \end{pmatrix} = e^{-\mathcal{L}_{\mathcal{S}}} \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \\ f \end{pmatrix}$$

- Elimination of small spatial and fast time (averaging) scales of $f(\mathbf{x}, \mathbf{v}, t)$: guiding-center gyrokinetics reduced models for free electron lasers

-Use of KAM algorithms (at least one step process)

For
$$\mathbf{F} = f + \delta f$$
, homological equation $\mathbb{P}(\delta f + [\mathcal{S}, f]) = 0$

- Advantages: preserve the structure of the equations, invertible, symbolic calculus

Brizard, Hahm, Rev. Mod. Phys. (2007)

Strategies to reduce Vlasov-Maxwell equations

>rigorous: $\mathcal{ar{H}}=\mathrm{e}^{-\mathcal{L}_{\mathcal{S}}}\mathcal{H}$

> non-rigorous: truncate the Hamiltonian system

- the equations of motion
- the Hamiltonian and the Poisson bracket

> the canonical version provides a way out...

Reduced model for the Free Electron Laser

From: Vlasov-Maxwell Hamiltonian

$$\mathcal{H}\left[\mathbf{E},\mathbf{B},f\right] = \iint d^3x d^3p \ f\left(\mathbf{x},\mathbf{p}\right)\sqrt{1+\mathbf{p}^2} + \int d^3x \frac{\left|\mathbf{E}\right|^2 + \left|\mathbf{B}\right|^2}{2}$$

To: Bonifacio's reduced FEL Hamiltonian model

$$H[f, I, \varphi] = \iint d\theta dp f(\theta, p) \left(\frac{p^2}{2} + 2\sqrt{I}\sin(\theta - \varphi)\right)$$

with (I, φ) intensity and phase of the electromagnetic wave

... in a Hamiltonian way

A Free Electron... what?

General layout of free-electron laser

Vlasov-Maxwell: canonical version

① Change of variables:
$$(f, \mathbf{E}, \mathbf{B}) \mapsto (f_{\mathbf{m}}, \mathbf{Y}, \mathbf{A})$$

 $f(\mathbf{x}, \mathbf{p}) = f_{\mathbf{m}}(\mathbf{x}, \mathbf{p} + \mathbf{A}(\mathbf{x}))$
 $\mathbf{E} = -\mathbf{Y}$
 $\mathbf{B} = \nabla \times \mathbf{A}$

Bracket: canonical

$$\begin{bmatrix} \mathcal{F}, \mathcal{G} \end{bmatrix} = \iint d^3 x d^3 p f_{\rm m} \left[\nabla \frac{\delta \mathcal{F}}{\delta f_{\rm m}} \cdot \frac{\partial}{\partial \mathbf{p}} \frac{\delta \mathcal{G}}{\delta f_{\rm m}} - \frac{\partial}{\partial \mathbf{p}} \frac{\delta \mathcal{F}}{\delta f_{\rm m}} \cdot \nabla \frac{\delta \mathcal{G}}{\delta f_{\rm m}} \right] + \int d^3 x \left[\frac{\delta \mathcal{F}}{\delta \mathbf{A}} \cdot \frac{\delta \mathcal{G}}{\delta \mathbf{Y}} - \frac{\delta \mathcal{F}}{\delta \mathbf{Y}} \cdot \frac{\delta \mathcal{G}}{\delta \mathbf{A}} \right]$$

Hamiltonian: $\mathcal{H} = \iint d^3 x d^3 p f_{\rm m} \sqrt{1 + (\mathbf{p} - \mathbf{A})^2} + \int d^3 x \frac{\left| \mathbf{Y} \right|^2 + \left| \nabla \times \mathbf{A} \right|^2}{2}$

② Translation of A by a constant function (external field-undulator): $\mathbf{A}(\mathbf{x}, t) \mapsto \mathbf{A}_w(\mathbf{x}) + \mathbf{A}(\mathbf{x}, t)$ Bracket: canonical (canonical transformation)

Hamiltonian:
$$\mathcal{H} = \int \int d^3x d^3p f_{\rm m} \sqrt{1 + (\mathbf{p} - \mathbf{A}_w - \mathbf{A})^2} + \int d^3x \frac{|\mathbf{Y}|^2 + 2\nabla \times \mathbf{A}_w \cdot \nabla \times \mathbf{A} + |\nabla \times \mathbf{A}|^2}{2}$$

$$\mathbf{A}_{w} \text{ helicoidal undulator: } \mathbf{A}_{w} = \frac{a_{w}}{\sqrt{2}} \left(e^{-ik_{w}z} \ \hat{\mathbf{e}} + e^{ik_{w}z} \ \hat{\mathbf{e}}^{*} \right)$$

One mode for the radiated field

③ Paraxial approximation and circularly polarized radiated field

$$\mathbf{A} = -\frac{i}{\sqrt{2}} \left(a \mathbf{e}^{ikz} \hat{\mathbf{e}} - a^* \mathbf{e}^{-ikz} \hat{\mathbf{e}}^* \right) \quad \text{where} \quad \hat{\mathbf{e}} = \frac{\hat{\mathbf{x}} + i\hat{\mathbf{y}}}{\sqrt{2}}$$
$$\mathbf{Y} = \frac{k}{\sqrt{2}} \left(a \mathbf{e}^{ikz} \hat{\mathbf{e}} + a^* \mathbf{e}^{-ikz} \hat{\mathbf{e}}^* \right)$$

Remark: *a* does not depend on *x* and *y* but depends on time (dynamical variable)

$$\begin{aligned} \mathbf{Bracket:} \quad \left[\mathcal{F}, \mathcal{G}\right] &= \iint d^3 x d^3 p \, f_{\mathrm{m}} \left[\nabla \frac{\delta \mathcal{F}}{\delta f_{\mathrm{m}}} \cdot \frac{\partial}{\partial \mathbf{p}} \frac{\delta \mathcal{G}}{\delta f_{\mathrm{m}}} - \frac{\partial}{\partial \mathbf{p}} \frac{\delta \mathcal{F}}{\delta f_{\mathrm{m}}} \cdot \nabla \frac{\delta \mathcal{G}}{\delta f_{\mathrm{m}}} \right] + \frac{ik}{V} \left(\frac{\partial \mathcal{F}}{\partial a} \frac{\partial \mathcal{G}}{\partial a^*} - \frac{\partial \mathcal{F}}{\partial a^*} \frac{\partial \mathcal{G}}{\partial a} \right) \\ \mathbf{Hamiltonian:} \quad \mathcal{H} &= \iint d^3 x d^3 p \, f_{\mathrm{m}} \sqrt{1 + \mathbf{p}^2 + aa^* - i\sqrt{2} \left(a \, \mathrm{e}^{ikz} \, \hat{\mathbf{e}} - a^* \, \mathrm{e}^{-ikz} \, \hat{\mathbf{e}}^* \right) \cdot \mathbf{A}_w} + \left| \mathbf{A}_w \right|^2 \\ &+ k^2 V aa^* - \frac{ikS}{\sqrt{2}} \int dz \left(a \, \mathrm{e}^{ikz} \, \hat{\mathbf{e}} - a^* \, \mathrm{e}^{-ikz} \, \hat{\mathbf{e}}^* \right) \cdot \nabla \times \mathbf{A}_w \end{aligned}$$

Dimensional reduction

④ The fields do not depend on x and $y \Rightarrow$ no transverse velocity dispersion $f(\mathbf{x}, \mathbf{p}) = \widehat{f}(\mathbf{x}, p_{\parallel})\delta(\mathbf{p}_{\perp})$ if $\mathbf{p}_{\perp}(t=0) = 0$ If $\mathbf{p}_{\perp}(t) = 0$ then no modification of the (x, y) distribution $f(\mathbf{x}, \mathbf{p}) = \tilde{f}(z, p_{\parallel})\delta(\mathbf{p}_{\perp})\delta(x)\delta(y)$ if x(t=0) = y(t=0) = 0 (injection at the center) Bracket: $\left[\mathcal{F},\mathcal{G}\right] = \iint dz dp_{\parallel} \tilde{f} \left[\frac{\partial}{\partial p_{\parallel}} \frac{\delta \mathcal{F}}{\delta \tilde{f}} \frac{\partial}{\partial z} \frac{\delta \mathcal{G}}{\delta \tilde{f}} - \frac{\partial}{\partial z} \frac{\delta \mathcal{F}}{\delta \tilde{f}} \frac{\partial}{\partial p_{\parallel}} \frac{\delta \mathcal{G}}{\delta \tilde{f}} \right] + \frac{ik}{V} \left[\frac{\partial \mathcal{F}}{\partial a} \frac{\partial \mathcal{G}}{\partial a^{*}} - \frac{\partial \mathcal{F}}{\partial a^{*}} \frac{\partial \mathcal{G}}{\partial a} \right]$ Hamiltonian: $\mathcal{H} = \iint dz dp_{\parallel} \tilde{f} \sqrt{1 + p_{\parallel}^2 + aa^* - i\sqrt{2} \left(a e^{ikz} \hat{\mathbf{e}} - a^* e^{-ikz} \hat{\mathbf{e}}^*\right)} \cdot \mathbf{A}_w + \left|\mathbf{A}_w\right|^2$ $+ k^{2} V a a^{*} - \left(\frac{i k S}{\sqrt{2}} \int dz \left(a e^{i k z} \hat{\mathbf{e}} - a^{*} e^{-i k z} \hat{\mathbf{e}}^{*} \right) \cdot \nabla \times \mathbf{A}_{w}$ (5) Autonomization: $\left[\mathcal{F},\mathcal{G}\right]_{a} = \left[\mathcal{F},\mathcal{G}\right] + \frac{\partial \mathcal{F}}{\partial t} \frac{\partial \mathcal{G}}{\partial E} - \frac{\partial \mathcal{F}}{\partial E} \frac{\partial \mathcal{G}}{\partial t}$ with $\mathcal{H}_{a} = \mathcal{H} + E$ Time dependent transformation (canonical): vanishing $\hat{f}(\theta, p_{\parallel}) = \tilde{f}(z, p_{\parallel})$ with $\theta = (k + k_w)z - kt$ $\hat{a} = a e^{ikt}$ $\hat{E} = E + Vk^2aa^*$ and $\hat{t} = t$ **Bracket:** canonical Hamiltonian: $\mathcal{H} = \iint d\theta dp_{\parallel} \hat{f} \left(\sqrt{1 + p_{\parallel}^2 + \hat{a}\hat{a}^* - ia_w \left(\hat{a} e^{i\theta} - \hat{a}^* e^{-i\theta} \right) + a_w^2} - \frac{k}{k+k} p_{\parallel} \right)$

Bonifacio's FEL model

(c) Resonance condition:
$$p_{\parallel} = p_R + p$$
 with $|p| \ll p_R$ weak radiated field: $|\hat{a}| \ll \gamma_R \equiv \sqrt{1 + p_R^2}$
Bracket: $[\mathcal{F}, \mathcal{G}] = (k + k_w) \iint d\theta dp \hat{f} \left[\frac{\partial}{\partial \theta} \frac{\delta \mathcal{F}}{\delta \hat{f}} \frac{\partial}{\partial p} \frac{\delta \mathcal{G}}{\delta \hat{f}} - \frac{\partial}{\partial p} \frac{\delta \mathcal{F}}{\delta \hat{f}} \frac{\partial}{\partial \theta} \frac{\delta \mathcal{G}}{\delta \hat{f}} \right] + \frac{i}{kV} \left(\frac{\partial \mathcal{F}}{\partial \hat{a}^*} \frac{\partial \mathcal{G}}{\partial \hat{a}} - \frac{\partial \mathcal{F}}{\partial \hat{a}} \frac{\partial \mathcal{G}}{\partial \hat{a}^*} \right)$
Hamiltonian: $\mathcal{H} = \iint d\theta dp \hat{f} (\theta, p) \left(\frac{1 + a_w^2}{\gamma_R^3} \frac{p^2}{2} - \frac{ia_w}{\gamma_R} (\hat{a} e^{i\theta} - \hat{a}^* e^{-i\theta}) \right)$

⑦ Normalization

Stransformation (canonical) into intensity/phase $a = i\sqrt{I}e^{-i\varphi}$ **Bracket: canonical** $\left[\mathcal{F},\mathcal{G}\right] = \iint d\theta dp f \left[\frac{\partial}{\partial \theta}\frac{\delta\mathcal{F}}{\delta f}\frac{\partial}{\partial p}\frac{\delta\mathcal{G}}{\delta f} - \frac{\partial}{\partial p}\frac{\delta\mathcal{F}}{\delta f}\frac{\partial}{\partial \theta}\frac{\delta\mathcal{G}}{\delta f}\right] + \frac{\partial\mathcal{F}}{\partial \varphi}\frac{\partial\mathcal{G}}{\partial I} - \frac{\partial\mathcal{F}}{\partial I}\frac{\partial\mathcal{G}}{\partial \varphi}$ **Hamiltonian:** $\mathcal{H} = \iint d\theta dp f \left(\theta, p\right) \frac{p^2}{2} + 2\sqrt{I} \iint d\theta dp f \left(\theta, p\right) \cos\left(\theta - \varphi\right)$

Outlook: on the use of reduced Hamiltonian models

Long-range interacting systems : QSS, transition to equilibrium,...

Gyrokinetics: understand plasma disruption, control,...

Contact: chandre@cpt.univ-mrs.fr

References: Bachelard, Chandre, Vittot, PRE (2008) Chandre, Brizard, in preparation.