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A familiar example:

+ Besides our Moon, in the Solar system, there are 22 satellites in 1-1
spin-orbit resonance: Phobos, Deimos [Mars]; Io, Europa, Ganymede, Callisto,

Amalthea [Jupiter]; Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Iapetus, Janus,

Epimetheus [Saturn]; Ariel, Umbriel, Titania, Oberon, Miranda [Uranus;] Charon [Pluto].
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+ There is only one more body in spin–orbit resonance:

Mercury observed in a 3:2 resonance

+ Eccentricities for the 1:1 resonances: 0.0001 (Thetis), 0.0002 (Deimos), ...

0.0288 (Titan), 0.0554 (Moon);

+ Eccentricity of Mercury: 0.206.
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 4

Goal of the talk

+ Provide a mathematical nearly–integrable, nearly–conservative model for
the spin–orbit problem and discuss a dynamical system approach

(1) Numerical experiments

(2) ∃ quasi–periodic attractors

Università Roma Tre
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Goal of the talk

+ Provide a mathematical nearly–integrable, nearly–conservative model for
the spin–orbit problem and discuss a dynamical system approach

(1) Numerical experiments

(2) ∃ quasi–periodic attractors

(3) ∃ of periodic attractors

(4) Basins of attraction of periodic attractors

- (1)+(2) by A. Celletti and L. Chierchia, using Nash–Moser (KAM)

- (3)+(4) by LB and L. Chierchia, using Lyapunov–Schmidt decomposition.
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 6

Mathematical model

+ The satellite/planet is a triaxial nearly–rigid ellipsoid

Università Roma Tre
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 7

Equations of motion
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 7

Equations of motion
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• V = “Keplerian potential” = − 1

2 ρe(t)3
cos(2x− 2 fe(t)) =

X
j 6=0
j∈Z

αj(e) cos(2x− jt)

• ε, η, υ are positive numbers

î ε = 3
2

B−A
C

, (0 < A < B < C being the inertia moments of the planet)

î η = KΩe : K ≥ 0 measures the non–rigidity of the planet ,

Ωe := 1 + 15
2

e2 + O(e4)

î υ = υe := 1 + 6e2 + O(e4)

. The dissipative term η(ẋ− υ)! averaged effect of tides (see [A.C.M. Correia,

J. Laskar: Mercury’s capture into the 3/2 spin–orbit resonance..., Nature 429, 2004])
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. the size of physical parameters e, ε, K are: e ≈ 0.0554 (Moon) , or 0.206
(Mercury), ε ≈ 10−4, K ≈ η ≈ 10−8

. Spin–orbit resonances are (2πq)–periodic orbits x(t) such that (lifting the
angle x on R) x(t + 2πq) = x(t) + 2πp ! period T = 2πq ; rotation

number (frequency) ω = p/q

. for η = 0, (∗) is Hamiltonian à KAM & Aubry-Mather theory hold....

Università Roma Tre
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 9

Numerical simulations

[A. Celletti, L. Chierchia: Measure of basins of attraction in spin–orbit dynamics],
Celestial Mechanics & Dynamical Atronomy, to appear

+ Numerical method:

(1) long time evolution (Yoshida’s algorithm) of 1000 initial data randomly
(Monte–Carlo) chosen

(2) detect periodic/quasi-periodic attractors

(3) compute the percentage of initial points evolving towards a given
attractor =: “Basin–of–Attraction Measure”

Università Roma Tre
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ωattract 1/1 3/2 2/1

BAM 96 .7% 3% 0 .3%

+ “Mercury” parameters: e = 0.206, ε = 10−3, K = 5 · 10−6, (υ = 1.256)

ωattract 1/1 5/4 1.256 3/2 2/1 5/2 3/1

BAM 4 .7% 6 .8% 71 .6% 13.3% 2 .5% 0 .6% 0 .3%
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(∗) ẍ + η(ẋ− υ) + εVx(x, t) = 0 (?)
n η = KΩe = K(1 + O(e2))

υ = υe = 1 + O(e2)

Università Roma Tre
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(∗) ẍ + η(ẋ− υ) + εVx(x, t) = 0 (?)
n η = KΩe = K(1 + O(e2))

υ = υe = 1 + O(e2)

• Let V be real–analytic on T2.

• Denote Dκ,τ := {ω ∈ R : |ωn1 + n2| ≥ κ|n1|−τ , ∀n ∈ Z2, n1 6= 0}.

Theorem. Fix 0 < κ < 1 ≤ τ and η0 > 0. There exists 0 < ε0 < 1 such that

for any ε ∈ [0, ε0], any η ∈ I0 := [−η0, η0] and any ω ∈ Dκ,τ ,

∃! function u = uε(θ; η, ω) = O(ε) with 〈u〉 :=
R
T2u dθ

(2π)2
= 0 such that

x(t) = ωt + u(ωt, t) solves (∗) with υ = ω (1 + 〈(uθ1
)2〉).

Furthermore, the function uε is smooth in the sense of Whitney in all its variables ,

is real–analytic in θ ∈ T2 and ε, C∞ in η ∈ [−η0, η0] and Whitney C∞ in ω.

. The function e → υe in (?) is strictly increasing: (0, 1)
υ↔ (1,∞)

Università Roma Tre
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 12

Co–existence of spin–orbit resonances

[LB, L. Chierchia: On the basins of attraction of low-order resonances in weakly dissipative
spin–orbit models, Journal of Differential Equation, to appear]
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 12

Co–existence of spin–orbit resonances

[LB, L. Chierchia: On the basins of attraction of low-order resonances in weakly dissipative
spin–orbit models, Journal of Differential Equation, to appear]
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 12

Co–existence of spin–orbit resonances

[LB, L. Chierchia: On the basins of attraction of low-order resonances in weakly dissipative
spin–orbit models, Journal of Differential Equation, to appear]
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ẍ + η(ẋ− υ) + εVx(x, t) = 0 with V =
X
j 6=0
j∈Z

αj(e) cos(2x− jt)

Theorem 1. Let p and q be positive co–prime integers with q = 1, 2, 4. Then,

for ε and η small and positive, there exist (elliptic) spin–orbit resonances of

type (p, q)

provided
˛̨
υ(e)− p

q

˛̨
<

8<: rpq := |βpq|(ε/η) if q = 1, 2

rpq := |βpq| 16 (ε2/η) if q = 4

Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 12

Co–existence of spin–orbit resonances

[LB, L. Chierchia: On the basins of attraction of low-order resonances in weakly dissipative
spin–orbit models, Journal of Differential Equation, to appear]
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ẍ + η(ẋ− υ) + εVx(x, t) = 0 with V =
X
j 6=0
j∈Z

αj(e) cos(2x− jt)

Theorem 1. Let p and q be positive co–prime integers with q = 1, 2, 4. Then,

for ε and η small and positive, there exist (elliptic) spin–orbit resonances of

type (p, q)

provided
˛̨
υ(e)− p

q

˛̨
<

8<: rpq := |βpq|(ε/η) if q = 1, 2

rpq := |βpq| 16 (ε2/η) if q = 4

where: βp1 = −2α2p , βp2 = −2αp

Università Roma Tre
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for ε and η small and positive, there exist (elliptic) spin–orbit resonances of

type (p, q)

provided
˛̨
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q

˛̨
<

8<: rpq := |βpq|(ε/η) if q = 1, 2

rpq := |βpq| 16 (ε2/η) if q = 4
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K 1/1 5/4 3/2 2/1 5/2 3/1

10−3 2% - 5.7% - - -
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5 · 10−5 4.4% 7.7% 11.6% 3% 0.6% -

10−5 4.7% 8.4% 12.6% 2.9% 1.1% 0.5%

5 · 10−6 4.7% 6.8% 13.3% 2.7% 0.6% 0.3%
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5 · 10−6 4.7% 6.8% 13.3% 2.7% 0.6% 0.3%

+ Theretical results (value in the grid is rpq − |υ(e)− p/q|):

K (1,1) (5,4) (3,2) (2,1) (5,2) (3,1)

10−3 1.05 0.0058 0.7 −0.27 −1.0 −1.67

5 · 10−4 2.35 0.017 1.65 0.19 −0.84 −1.59

10−4 12.81 0.11 9.24 3.92 0.75 −1.01

5 · 10−5 25.88 0.22 18.74 8.60 2.75 −0.28

10−5 130.46 1.16 94.69 45.99 18.76 5.55

5 · 10−6 261.17 2.33 189.62 92.72 38.77 12.86
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. Eq. ẍ + η(ẋ− υ) + εVx(x, t) = 0 can be rewritten as:

Università Roma Tre
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. Looking for (p, q)–spin orbit resonances xpq(t) is equivalent to look for

solution of the form xpq(t) = ξ + p
q t + u

(
t
q

)
with u 2π-periodic and with

zero average 〈u〉 = 0.

. Eq. ẍ + η(ẋ− υ) + εVx(x, t) = 0 can be rewritten as:

Lu = Φξ(u) (?)

where:
Lu = u′′ + ηu′

is a linear operator and
Φξ(u) = ηυ− εfx

(
ξ + pt + u(t), qt

)
is the nonlinearity.

In the functional equation (?), η, ν, ε, p, q are parameters, while the unknowns
are the (2π–periodic with zero average) function u and the “phase” ξ ∈ T1.
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 15

The Lyapunov–Schmidt decomposition

. The kernel and the range of the linear operator L = ∂2
t + η∂t are the

constants and the zero average functions, respectively.

. L is invertible on the space of the zero average functions.

à Eq. Lu = Φξ(u) can be split into: (Lyapunov–Schmidt decomposition)

(R) u = εL−1[Φ̂ξ(u)]

Università Roma Tre
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 15

The Lyapunov–Schmidt decomposition

. The kernel and the range of the linear operator L = ∂2
t + η∂t are the

constants and the zero average functions, respectively.

. L is invertible on the space of the zero average functions.

à Eq. Lu = Φξ(u) can be split into: (Lyapunov–Schmidt decomposition)

(R) u = εL−1[Φ̂ξ(u)] where Φ̂ξ(u) := Φξ(u)−〈Φξ(u)〉
ε (“Range equation”)

Università Roma Tre
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 15

The Lyapunov–Schmidt decomposition

. The kernel and the range of the linear operator L = ∂2
t + η∂t are the

constants and the zero average functions, respectively.
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à Eq. Lu = Φξ(u) can be split into: (Lyapunov–Schmidt decomposition)

(R) u = εL−1[Φ̂ξ(u)] where Φ̂ξ(u) := Φξ(u)−〈Φξ(u)〉
ε (“Range equation”)

(B) 〈Φξ(u(·, ξ))〉 = 0 (“Bifurcation or Kernel equation”)

. (R) is easly solved for ε small by standard contraction arguments
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constants and the zero average functions, respectively.

. L is invertible on the space of the zero average functions.

à Eq. Lu = Φξ(u) can be split into: (Lyapunov–Schmidt decomposition)

(R) u = εL−1[Φ̂ξ(u)] where Φ̂ξ(u) := Φξ(u)−〈Φξ(u)〉
ε (“Range equation”)

(B) 〈Φξ(u(·, ξ))〉 = 0 (“Bifurcation or Kernel equation”)

. (R) is easly solved for ε small by standard contraction arguments (no small
divisors) Then we find

u(t) = u(t; ξ, ε) = εu1(t; ξ) + ε2u2(t; ξ) + · · · u1 = L−1[Φ̂(0)].
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If φ(0)(ξ) is not identically zero (nondegeneracy) =⇒ the bifurcation eq.
can be solved for value of ην/ε inside the range of φ(0) ⇐⇒ η < const ε
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be solved for value of ην/ε2 inside the range of φ(1) ⇐⇒ η < const ε2.
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Nondegeneracy for the spin-orbit model

We have that the spin-orbit problem is nondegenerate, namely φ(0) 6≡ 0, iff
q = 1 or 2, while, for q ≥ 3, φ(1) 6≡ 0 iff q = 4.

In particular
φ(0)(ξ; p, 1) = βp1 sin(2ξ)
φ(0)(ξ; p, 2) = βp2 sin(2ξ)
φ(1)(ξ; p, 4) = βp4 sin(4ξ)

where
βp1 = −2α2p , βp2 = −2αp , βp4 =

∑
j∈Z

j 6=0,p

αp−jαj

(p−2j)2 .
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Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 18

Estimates on the basins of attraction

Theorem 2. Let p and q be positive co–prime integers with q = 1, 2 ; let

xpq(t) = xpq(t; ξ) be an elliptic spin–orbit resonance , i.e., ξ is such that

θ := 〈Vxx(ξ + pt, qt)〉t > 0 .

Then, if ε and η are small enough and η2 < 2εθ

Università Roma Tre
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Theorem 2. Let p and q be positive co–prime integers with q = 1, 2 ; let

xpq(t) = xpq(t; ξ) be an elliptic spin–orbit resonance , i.e., ξ is such that

θ := 〈Vxx(ξ + pt, qt)〉t > 0 .

Then, if ε and η are small enough and η2 < 2εθ , all solutions starting in a

(η/
√

ε)–neighborhood of (xpq(0), ẋpq(0)) approach exponentially fast xpq(t).

+ Idea of proof:

Let x(t) = xpq(t) + w(t) be a solution.

Then w satisfies w′′ + ηw′ + εfx(xpq + w, qt)− εfx(xpq, qt) = 0.
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Let x(t) = xpq(t) + w(t) be a solution.

Then w satisfies w′′ + ηw′ + εfx(xpq + w, qt)− εfx(xpq, qt) = 0.

Then, z(t) := etη/2w(t) satisfies the equation

(†) Lz = εetη/2Q(e−tη/2z) where: L is the (linear) Hill’s operator

L = ∂2
t + ε

“
(θ − η2/4ε) + γ(t)

”
with γ zero-average and 2π–periodic

Università Roma Tre



Weakly–dissipative spin-orbit models SIMS 2008 18

Estimates on the basins of attraction

Theorem 2. Let p and q be positive co–prime integers with q = 1, 2 ; let
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θ := 〈Vxx(ξ + pt, qt)〉
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Theorem 2. Let p and q be positive co–prime integers with q = 1, 2 ; let

xpq(t) = xpq(t; ξ) be an elliptic spin–orbit resonance , i.e., ξ is such that

θ := 〈Vxx(ξ + pt, qt)〉t > 0 .

Then, if ε and η are small enough and η2 < 2εθ , all solutions starting in a

(η/
√

ε)–neighborhood of (xpq(0), ẋpq(0)) approach exponentially fast xpq(t).

+ Idea of proof:

Let x(t) = xpq(t) + w(t) be a solution.

Then w satisfies w′′ + ηw′ + εfx(xpq + w, qt)− εfx(xpq, qt) = 0.

Then, z(t) := etη/2w(t) satisfies the equation

(†) Lz = εetη/2Q(e−tη/2z) where: L is the (linear) Hill’s operator

L = ∂2
t + ε

“
(θ − η2/4ε) + γ(t)

”
with γ zero-average and 2π–periodic and Q is a

nonlinear quadratic operator (i.e., |Q(w)| ≤ c|w|2).
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Since w(t) := e−tη/2z(t), to prove that w(t) t→+∞−→ 0 exponentially fast, we
have to show that |z(t)| ≤ const. ∀ t ≥ 0.
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Since w(t) := e−tη/2z(t), to prove that w(t) t→+∞−→ 0 exponentially fast, we
have to show that |z(t)| ≤ const. ∀ t ≥ 0.

z satisfies z = L−1
[
εetη/2Q(e−tη/2z)

]
where L = ∂2

t + ε
(
(θ − η2/4ε) + γ(t)

)
.

Let c(t) and s(t) denote the (“fundamental”) solutions of Lz = 0 with initial
data c(0) = 1 = s′(0), c′(0) = 0 = s(0). We have to show that they stay
bounded for all t > 0.

Since 〈γ〉 = 0, a necesary condition is θ − η2/4ε > 0. Indeed we assume
η2 ≤ 2θε.

The crucial point here is the degeneracy of L for ε → 0.

In fact L ε→0−→ ∂2
t , whose fundamental solutions are c(t) ≡ 1 and s(t) ≡ t which

is not bounded!
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As well known from classical Floquet Theory, if the solutions ρ = ρ± of the

characteristic equation

ρ2 − [c(2π) + s′(2π)]ρ + 1 = 0
are distinct, then Lz = 0 has two independent solutions of the form

z±(t) = e±iλtP±(t) where λ is such that e±iλ = ρ± and P± are 2π–periodic

functions.

Then we prove that, for ε small, the characteristic equation has two distinct
solutions, λ is real and λ ∼

√
ε.

Finally, notwithstanding the degeneracy L ε→0−→ ∂2
t , we show suitable estimates

on P± as ε → 0.

In particular

c(t) ∼ cos(λt) , s(t) ∼ sin(λt)
λ

, .
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Further developments

- improve estimates on basins of attraction (including quasi-periodic
attractors);

- discuss connection with Goldreich-Peale-Correia-Laskar probability
capture

- discuss more “realistic models” (allow inclinations in the restricted
model, non–restricted models, more degrees of freedom,...)

- develop a general theory for nearly–conservative, nearly–integrable
systems

- put real numbers into theorems.
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