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Introduction Known results Numerical Algorithm Application

The Pólya-Tchebotaröv problem, 1929

Problem (1)

Given a finite number of points E := {a1, . . . ,an} ⊂ C, find the
continuum K with minimal capacity such that E ⊂ K .

Definition (Capacity)
Let K ⊂ C be a compact set.

cap(E) := sup
{|f ′(∞)| : f ∈ Hol(C \ K ), ‖f‖∞ ≤ 1, f (∞) = 0

}
.
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Problem (2)

Given a finite number of points E := {a1, . . . ,an} ⊂ C \ {0} find
a conformal map f : D→ f (D) ⊂ C \ E such that f (0) = 0 and
|f ′(0)| is maximal.
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Laurentiev’s Theorem

Theorem (Laurentiev, ’34)

If E = {a1, . . . ,an} ⊂ C, there exists a unique extremal domain
Ω = f (D) for the problem 2 such that:

1 C = Ω ∪ Γ (Γ := ∂Ω).
2 The boundary Γ consists of finitely many simple arcs of

analytic curves.
3 To any arc αβ consisting of regular points of Γ there

correspond under the conformal mapping f−1 two arcs of
the same length on the unit circle.

5 / 44



Introduction Known results Numerical Algorithm Application

Laurentiev’s Theorem

Theorem (Laurentiev, ’34)

If E = {a1, . . . ,an} ⊂ C, there exists a unique extremal domain
Ω = f (D) for the problem 2 such that:

1 C = Ω ∪ Γ (Γ := ∂Ω).
2 The boundary Γ consists of finitely many simple arcs of

analytic curves.
3 To any arc αβ consisting of regular points of Γ there

correspond under the conformal mapping f−1 two arcs of
the same length on the unit circle.

5 / 44



Introduction Known results Numerical Algorithm Application

Laurentiev’s Theorem

Theorem (Laurentiev, ’34)

If E = {a1, . . . ,an} ⊂ C, there exists a unique extremal domain
Ω = f (D) for the problem 2 such that:

1 C = Ω ∪ Γ (Γ := ∂Ω).
2 The boundary Γ consists of finitely many simple arcs of

analytic curves.
3 To any arc αβ consisting of regular points of Γ there

correspond under the conformal mapping f−1 two arcs of
the same length on the unit circle.

5 / 44



Introduction Known results Numerical Algorithm Application

Laurentiev’s Theorem

Theorem (Laurentiev, ’34)

If E = {a1, . . . ,an} ⊂ C, there exists a unique extremal domain
Ω = f (D) for the problem 2 such that:

1 C = Ω ∪ Γ (Γ := ∂Ω).
2 The boundary Γ consists of finitely many simple arcs of

analytic curves.
3 To any arc αβ consisting of regular points of Γ there

correspond under the conformal mapping f−1 two arcs of
the same length on the unit circle.

5 / 44



Introduction Known results Numerical Algorithm Application

Goluzin’s theorem

Theorem (Goluzin, 1946)
Let a1, . . . ,an be arbitrary given points in C. Let K be the
extremal continuum for Problem 1. Then K is the union of the
closures of all critical trajectories of the quadratic differential

Q(z)dz2 = −
∏n−2

l=1 (z − bl)∏n
k=1(z − ak )

dz2

where bl are some unknown parameters. The extremal function
g : C∞ \ D→ C∞ \ {a1, . . . ,an} (g(∞) =∞) satisfy

(
zg′(z)

)2
=

∏n
i=1(g(z)− ai)∏n−2
j=1 (g(z)− bj)

.
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Kuzmina and Fedorov’s work

1 Kuzmina in 1982 computes the extremal domain in the
case of three points.

2 Fedorov in 1984 extended to four points with a certain
symmetry.
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Notations

Let Ωn be the extremal domain for the Problem 2 in case of
n + 1 points {a1, . . . ,an,∞}. Let f : D→ Ωn be the conformal
map such that f (0) = 0. f satisfies(

zf ′(z)

f (z)

)2

= C
∏n

i=1(f (z)− ai)∏n−1
j=1 (f (z)− bj)

, (1)

where bj are unknown and C =
Qn−1

l=1 (−bl )Qn
k=1(−ak )

.
The code can be downloaded from
http://www.maia.ub.es/cag/code/tchebotarev/.
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Introduction Known results Numerical Algorithm Application

Case of 3 points

Assume that we have a1,a2 6= 0 and a3 =∞. Without loss of
generality we will always assume that f (1) =∞.

a1

a2

b∞

Figure: Sketch of the extremal compact for three points
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We only have one unknown parameter b:

f ′(z)2 = C
(f (z)− a1)(f (z)− a2)

f (z)− b
f (z)2

z2 (2)

Figure 1

a1

a2

b∞
f

1

β1

β2

β3

α1

α2

Figure: Configuration for n = 3

where f (0) = 0.
Note that f (eiαi ) = ai for i = 1,2 and f (eiβi ) = b for i = 1,2,3.
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We have 6 real unknown parameters in our problem:
Re(f ′(0)), Im(f ′(0)),Re(b), Im(b), β1, β2 and we can impose the
following three complex equations

f (eiβ1/2) = f (e−iβ1/2).

f (ei(α1+β1)/2) = f (ei(α1+β2)/2).

f (ei(α2+β2)/2) = f (ei(α2+β3)/2).
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To impose the equations we need to evaluate f (eiγ) for any
γ ∈ [0,2π) \ {α1, α2, β1, β2, β3}. For that, denote z(t) = f (teiγ).
We know z(0) = 0 and z ′(0) = f ′(0)eiα. Note that
z(1) = f (eiα).

z ′(t)2 = C
(z(t)− a1)(z(t)− a2)

(z(t)− b)

z(t)2

t2 (3)

12 / 44



Introduction Known results Numerical Algorithm Application

To impose the equations we need to evaluate f (eiγ) for any
γ ∈ [0,2π) \ {α1, α2, β1, β2, β3}. For that, denote z(t) = f (teiγ).
We know z(0) = 0 and z ′(0) = f ′(0)eiα. Note that
z(1) = f (eiα).

z ′(t)2 = C
(z(t)− a1)(z(t)− a2)

(z(t)− b)

z(t)2

t2 (3)

12 / 44



Introduction Known results Numerical Algorithm Application

To impose the equations we need to evaluate f (eiγ) for any
γ ∈ [0,2π) \ {α1, α2, β1, β2, β3}. For that, denote z(t) = f (teiγ).
We know z(0) = 0 and z ′(0) = f ′(0)eiα. Note that
z(1) = f (eiα).

z ′(t)2 = C
(z(t)− a1)(z(t)− a2)

(z(t)− b)

z(t)2

t2 (3)

12 / 44



Introduction Known results Numerical Algorithm Application

We used the Taylor integration method which allows us to
integrate the singularity in t = 0.
As f is conformal, we know that z(t) = z1t + z2t2 + . . ., where
z1 = f ′(0)eiγ .
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Case of 4 points

The extremal domain can be of two types. If two of the points
are symmetric respect to the line through the other two points
(there is an explicit solution given by Fedorov

a1

a2
b∞

a2

a3
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General case

a3

a2

b1
b2

a1

a4
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Conformal map g : Dc → Ω, g(∞) =∞ where g(eiβ j
k ) = bj

(j = 1,2, k = 1,2,3), g(eiαi ) = ai (i = 1,2,3) and g(1) = a4.
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Assume that a4 =∞ and ai 6= 0.

f ′(z)2 = C
(f (z)− a1)(f (z)− a2)(f (z)− a3)

(f (z)− b1)(f (z)− b2)

f (z)2

z2 . (4)
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We can reduce the number of unknown parameters:
β1

3 = 2π − β1
1 , β2

3 = β1
3 − (β2

1 − β1
2). Unknown values

f ′(0),b1,b2, β
1
1 , β

1
2 , β

2
1 , β

2
2 .

We need a system of 10 real equations (5 complex equations)

f (eiβ1
1/2) = f (e−iβ1

1/2)

f (ei(α1+β1
1)/2) = f (ei(α1+β1

2)/2)

f (ei(β1
2+β2

1)/2) = f (ei(β2
3+β1

3)/2)

f (ei(α2+β2
1)/2) = f (ei(α2+β2

2)/2)

f (ei(α3+β2
2)/2) = f (ei(α3+β2

3)/2)
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Case of 6 points (with symmetry)

We have a1,a2, . . . ,a6 =∞, a3 ∈ R and a5 = ā1,a4 = ā2. The
extremal compact may be of two types

a1

a3b1

a2

a4

a5

b2a6

a1

a2

a3

a4
a5

a6 b1

b2

b3

Figure: Structure of the extremal domains for n = 6 with symmetry
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We can do some reductions to get a system of equation with
less dimension.

1 First configuration: a3 ∈ R (→ b1,b2 ∈ R).
2 Second configuration: a3 ∈ R (→ b1 ∈ R→ b3 = b̄2).

By symmetry, f ′(0) ∈ R and α3 = π.

20 / 44
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First configuration

Figure: Extremal domain for n = 6 with symmetry (configuration 1)

Configuration: 0 β1
1 α1 β

1
2 β

2
1 α2 β

2
2 α3 β

2
3 α4 β

2
4 β

1
3 α5 β

1
4 2π
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First configuration

We have 7 real unknown parameters: Re(f ′(0)), Re(b1),
Re(b2), β1

1 , β1
2 , β2

1 , β2
1 .

Im(f (eiβ1
1/2.0)) = 0

f (ei(α1+β1
1)/2) = f (ei(α1+β1

2)/2)

Im(f (ei(β1
2+β2

1)/2)) = 0
f (ei(α2+β2

1)/2) = f (ei(α2+β2
2)/2)

Im(f (ei(α3+β2
2)/2)) = 0

22 / 44
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Second configuration

Figure: Extremal domain for n = 6 with symmetry (configuration 2)

0 β1
1 β

2
1 α1 β

2
2 α2 β

2
3 β

1
2 α3 β

1
3 β

3
1 α4 β

3
2 α5 β

3
3 β

1
4 2π
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Second configuration

We have 8 real unknown parameters: Re(f ′(0)), Re(b1),
Re(b2), Im(b2), β1

1 , β2
1 , β2

2 ,β2
3 .

Im(f (eiβ1
1/2.0)) = 0

f (ei(α1+β2
1)/2) = f (ei(α1+β2

2)/2)

f (ei(α2+β2
2)/2) = f (ei(α2+β2

3)/2)

Im(f (ei(α3+β2
3)/2)) = 0

f (ei(β1
1+β2

1)/2) = f (ei(β2
3+β1

2)/2)

24 / 44
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Remark

In the implementation of the method, we found a problem when
the distance between the arcs on the unit circle is very small,
we can’t integrate properly the differential equation because we
are near the poles bi . However this problem can solved by a
change of variables.
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The fundamental frequency of a drum

Theorem (Makai, 1965)
Let D ⊂ C be a simply connected domain. Let RD be the
inradius of D and let λD be the first eigenvalue for the Laplacian
in D. There is a universal constant a such that

λD ≥ a
R2

D
. (5)

Makai’s proof also shows that 1/4 ≤ a < π2/4 = 4.9348.
Bañuelos and Carroll proved that 0.619 < a < 2.13.
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The expected lifetime of a Brownian motion

Let Bt be the Brownian motion in D, τD = inf {t > 0 : Bt /∈ D} be
the exit time of Bt from D and Ez(τD) the expectation of τD.
It is known that there is a universal constant b such that,
whenever D is a planar simply connected domain,

sup
z∈D

Ez(τD) ≤ bR2
D. (6)

It is known that 1.584 < b < 3.228.
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The univalent Bloch-Landau constant

If f is an analytic and one to one mapping from the unit disk,
then there exists a universal constant U such that

Rf (D) ≥ U|f ′(0)|. (7)

This means that the image of the unit disk under any conformal
map f contains disks of radius less that U|f ′(0)|.

28 / 44
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Theorem (Koebe 1/4)

If f belongs to S (f univalent in D, normalized with f (0) = 0 and
f ′(0) = 1) then there is a disk D(0,1/4) ⊂ f (D). The radius 1/4
cannot be improved. The function f (z) = z/(1− z)2 is extremal.

This implies U ≥ 1/4. The best value of U is known as the
univalent or schlicht Bloch-Landau constant.

29 / 44
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We can reformulate this problem in terms of the density of the
hyperbolic metric.
If f is a conformal mapping from the unit disc such that f (0) = z
then the density of the hyperbolic metric is σ(z; D) = 1/|f ′(0)|.
So we have the following inequality

σD := inf
z∈D

σ(z; D) ≥ c
RD

. (8)

where c := U (introduced by Landau in 1929).
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Lower bounds for U

E. Landau U > 0.566 Mathematische Zeitschrift, 1929
E. Reich U > 0.569 PAMS, 1956
J. Jenkins U > 0.5705 J. Math Mech, 1961
S. Toppila U > 0.5708 Finnish Annals, 1968
J. Jenkins U > 0.57088 Indiana, 1998
X. Chengji U > 0.570884 J. Nanjing 1999
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The upper bounds

To get an upper bound we construct an extremal domain Ω with
inradius RΩ = 1 and we compute the conformal representation
fΩ : D→ Ω, then U ≤ 1/|f ′Ω(0)|. We assume always that
f (0) = 0.
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Szego, 1923

U ≤ 0.78539
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Robinson, 1935

U ≤ 0.65779
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Goodman, 1945

U ≤ 0.65647
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Beller and Hummel, 1985

U ≤ 0.6564155
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Carroll-Ortega, 2008

U ≤ 0.65639361315219
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Relation with the Pólya-Tchebotaröv problem

1

w1

w2

w̄2

w̄1

-2 R
z3

a1

1b1

a2

ā2

ā1

b20

φ

h

0 1

f

1 R3-8

z1

z2

γ̄1

γ1

γ̄2
z̄2

γ2

z̄1

Dw1,w2,R
Ωz1,z2,R

E
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Construction of the domain Dw1,w2,R

1 R

P1

2ei π
3

P2

P3

w1

w2

γ1

γ2

Figure: Election of w1 and w2 39 / 44
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C1

C2

C3

C4Cw1

Cw2

Im(z) < 1

1 R

P1

2eiπ3

P2

P3

w1

w2

γ1

γ2

|z| = R − 1

Γ1

Γ2
q

Figure: Prohibited zones
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Results

We have computed the bounds for all three problems explained
before.
To construct the point w1 we move on the real axis
x >= 1 +

√
2
√

3− 3 and define the point P2 and then w1.
Given x , first find the biggest R such that |q| = 1− R, then
compute the bounds of the constants.

41 / 44
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Bloch-Landau constant

x = 2.1383799965243 and R = 5.1195152501 and
U ≤ 0.656319277272 (≤ 0.65639361315219)
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Constants a and b.

1 Improved upper bound for the fundamental frequency has
been found for x = 2.1282995811037759 and
R = 5.10223601895443 and it is

a ≤ 2.0907934752309(< 2.13)

2 Improved lower bound for the expected life time of a
Brownian motion has been found for x = 2.174447128952
and R = 5.1836816989 and it is

b ≥ 1.670724582110(> 1.584)
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Thank You!
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