Conjuntos atractivos en ciertos sistemas triangulares

Sara Costa Romero

(en colaboración con Ll. Alsedà)

Departament de Matemàtiques Universitat Autònoma de Barcelona

Seminario informal UB, 5-III-2009

Ejemplo GOPY

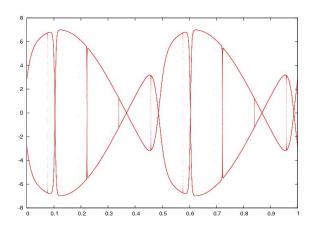
$$\begin{cases} \theta_{n+1} = \theta_n + \rho \pmod{1} \\ x_{n+1} = 2\sigma \cos(2\pi\theta_n) \tanh(x_n) \end{cases}$$

con ρ irracional.

Ejemplo GOPY

$$\begin{cases} \theta_{n+1} = \theta_n + \rho \pmod{1} \\ x_{n+1} = 2\sigma \cos(2\pi\theta_n) \tanh(x_n) \end{cases}$$

con ρ irracional.



Modelos de Keller y Haro

$$\begin{cases} \theta_{n+1} = \theta_n + \rho \pmod{1} \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (1)

cuando ρ es irracional, $g: \mathbb{S}^1 \longrightarrow [0, \infty)$ es continua y log-integrable, y $f: [0, \infty) \longrightarrow [0, \infty)$ es \mathcal{C}^1 , estrictamente creciente, f(0) = 0 y f' es estrictamente decreciente.

Modelos de Keller y Haro

$$\begin{cases} \theta_{n+1} = \theta_n + \rho \pmod{1} \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (1)

cuando ρ es irracional, $g:\mathbb{S}^1\longrightarrow [0,\infty)$ es continua y log-integrable, y $f:[0,\infty)\longrightarrow [0,\infty)$ es \mathcal{C}^1 , estrictamente creciente, f(0)=0 y f' es estrictamente decreciente.

- Modelo Keller: f acotada, $f'(0) \in \mathbb{R}$ y
- Modelo Haro: f no necesariamente acotada, $f'(0)=\infty$ y lím $_{n\to 0}\frac{f'(x)x}{f(x)}<1$
- [Kel] G. Keller, A note on strange nonchaotic attractors, Fund. Math., 151 (1996), no. 2, 139–148.
 - [Haro] A. Haro, On strange attractors in a class of pinched skew products, Preprint.

Conjuntos atractivos en ciertos sistemas triangulares

> Sara Costa Romero

Inciso

Exponentes de Lyapunov para sistemas triangulares dos dimensionales

El exponente de Lyapunov vertical en el punto z viene dado por

$$\lambda(z) = \limsup_{n \to \infty} \frac{1}{n} \log \left| \frac{\partial x_n}{\partial x} \right|.$$

Exponentes de Lyapunov para sistemas triangulares dos dimensionales

El exponente de Lyapunov vertical en el punto z viene dado por

$$\lambda(z) = \limsup_{n \to \infty} \frac{1}{n} \log \left| \frac{\partial x_n}{\partial x} \right|.$$

Si μ es una medida T-ergódica.

Por los teoremas de Oseledec y Ergódico de Birkhoff, para μ -c.t. punto $z = (\theta, x)^t \in \mathbb{S}^1 \times \mathbb{R}$ los dos exponentes de Lyapunov son:

$$\lambda(z) = \int_{\mathbb{S}^1} \log|g| \,\mathrm{d}m + \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log|f'(x_k)|,$$

У

$$\overline{\lambda}((\theta,x)^t) = \int_{\mathbb{S}^1} \log |R'| dm,$$

siendo *m* la medida *R*-ergódica.

Medidas invariantes y ergódicas

Sara Costa Romero

Una medida de probabilidad μ es T-invariante si,

$$\mu(A) = \mu(T^{-1}(A)) \quad \forall A$$

Y es T-ergódica si $\mu(A) \in \{0,1\}$ para todo A tal que $T^{-1}(A) = A$.

Medidas invariantes y ergódicas

Una medida de probabilidad μ es T-invariante si,

$$\mu(A) = \mu(T^{-1}(A)) \quad \forall A$$

Y es T-ergódica si $\mu(A) \in \{0,1\}$ para todo A tal que $T^{-1}(A) = A$.

Si μ y ν son dos medidas T-ergódica, entonces $\mu(\operatorname{Sop}(\nu)) = 0$ y vice-versa.

Conjuntos atractivos en ciertos sistemas triangulares

> Sara Costa Romero

Fin inciso

Teorema de Keller y Haro

Sara Costa Romero

Teorema

Para el sistema (1) existe una función semicontinua superiormente

$$\varphi:\mathbb{S}^1\longrightarrow [0,\infty)$$

cuyo grafo es invariante y verifica:

- $\lim_{n\to\infty} |x_k \varphi(\theta_k)| = 0$ para c.t $\theta \in \mathbb{S}^1$ y todo x > 0, cuando m es la medida de Haar-Lebesgue de \mathbb{S}^1 .
- La medida de Lebesgue del círculo, levantada al grafo de φ es una medida de Sinai-Ruelle-Bowen; es decir

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}h(T^n(\theta,x)^t)=\int_{\mathbb{S}^1}h\circ T\,\mathrm{d}m$$

siendo h una función de clase C^0 .

Teorema de Keller y Haro

Teorema [Kel]

- $\lim_{n\to\infty} |x_k \varphi(\theta_k)| = 0$ para c.t $\theta \in \mathbb{S}^1$ y todo x > 0, cuando m es la medida de Haar-Lebesgue de \mathbb{S}^1 .
- La medida de Lebesgue del círculo, levantada al grafo de φ es una medida de Sinai-Ruelle-Bowen.

Teorema de Keller y Haro

Teorema [Kel]

- $\lim_{n\to\infty} |x_k \varphi(\theta_k)| = 0$ para c.t $\theta \in \mathbb{S}^1$ y todo x > 0, cuando m es la medida de Haar-Lebesgue de \mathbb{S}^1 .
- La medida de Lebesgue del círculo, levantada al grafo de φ es una medida de Sinai-Ruelle-Bowen.
- Si $\sigma := f'(0) \exp\left(\int_{\mathbb{S}^1} \log g(\theta) d\theta\right) > 1$, entones $\varphi \equiv 0$ y $\lambda(\theta, x) = \lambda_{\varphi} = \log \sigma$ para m-c.t. $\theta \in \mathbb{S}^1$ y cada $x \geq 0$.

Teorema de Keller y Haro

Teorema [Kel]

- $\lim_{n\to\infty} |x_k \varphi(\theta_k)| = 0$ para c.t $\theta \in \mathbb{S}^1$ y todo x > 0, cuando m es la medida de Haar-Lebesgue de \mathbb{S}^1 .
- La medida de Lebesgue del círculo, levantada al grafo de φ es una medida de Sinai-Ruelle-Bowen.
- Si $\sigma := f'(0) \exp \left(\int_{\mathbb{S}^1} \log g(\theta) d\theta \right) > 1$, entones $\varphi \equiv 0$ y $\lambda(\theta, x) = \lambda_{\varphi} = \log \sigma$ para m-c.t. $\theta \in \mathbb{S}^1$ y cada $x \geq 0$.
- Si $\sigma>1$, entonces $\lambda(\theta,x)=\lambda_{\varphi}<0$ para m-c.t. y todo x>0. El conjunto $\{\theta: \varphi(\theta)>0\}$ tiene medida de Lebesgue total.

Teorema de Keller y Haro

Teorema [Kel]

- $\lim_{n\to\infty} |x_k \varphi(\theta_k)| = 0$ para c.t $\theta \in \mathbb{S}^1$ y todo x > 0, cuando m es la medida de Haar-Lebesgue de \mathbb{S}^1 .
- La medida de Lebesgue del círculo, levantada al grafo de φ es una medida de Sinai-Ruelle-Bowen.
- Si $\sigma := f'(0) \exp \left(\int_{\mathbb{S}^1} \log g(\theta) d\theta \right) > 1$, entones $\varphi \equiv 0$ y $\lambda(\theta, x) = \lambda_{\varphi} = \log \sigma$ para m-c.t. $\theta \in \mathbb{S}^1$ y cada $x \geq 0$.
- Si $\sigma>1$, entonces $\lambda(\theta,x)=\lambda_{\varphi}<0$ para m-c.t. y todo x>0. El conjunto $\{\theta: \varphi(\theta)>0\}$ tiene medida de Lebesgue total. Además
 - si $g(\theta) > 0$ para todo $\theta \in \mathbb{S}^1$, entonces $\varphi(\theta) > 0$ para todo $\theta \in \mathbb{S}^1$. En este caso φ es continua y si g es \mathcal{C}^1 , entonces φ es \mathcal{C}^1 .

Teorema de Keller y Haro

Teorema [Kel]

- $\lim_{n\to\infty} |x_k \varphi(\theta_k)| = 0$ para c.t $\theta \in \mathbb{S}^1$ y todo x > 0, cuando m es la medida de Haar-Lebesgue de \mathbb{S}^1 .
- La medida de Lebesgue del círculo, levantada al grafo de φ es una medida de Sinai-Ruelle-Bowen.
- Si $\sigma := f'(0) \exp \left(\int_{\mathbb{S}^1} \log g(\theta) d\theta \right) > 1$, entones $\varphi \equiv 0$ y $\lambda(\theta, x) = \lambda_{\varphi} = \log \sigma$ para m-c.t. $\theta \in \mathbb{S}^1$ y cada $x \geq 0$.
- Si $\sigma>1$, entonces $\lambda(\theta,x)=\lambda_{\varphi}<0$ para m-c.t. y todo x>0. El conjunto $\{\theta: \varphi(\theta)>0\}$ tiene medida de Lebesgue total. Además
 - si $g(\theta) > 0$ para todo $\theta \in \mathbb{S}^1$, entonces $\varphi(\theta) > 0$ para todo $\theta \in \mathbb{S}^1$. En este caso φ es continua y si g es \mathcal{C}^1 , entonces φ es \mathcal{C}^1 .
 - Si existe $\hat{\theta} \in \mathbb{S}^1$ de manera que $g(\hat{\theta}) = 0$, entonces el conjunto $\{\theta : \varphi(\theta) > 0\}$ es "magro" y φ es discontinua en m-c.t. punto

Conjunto atractivo

Digo que el grafo de una aplicación o correspondencia ϕ es atractivo para un sistema triangular dos dimensional si:

- es positivamente invariante
- $\lim_{n\to\infty} |x_n \phi(\theta_n)| = 0$ para *m*-c.t θ y un conjunto de medida de Lebesgue positiva de x en cada fibra $\{\theta\} \times \mathbb{R}$.

Modelo de Alsedà y Misiurewicz

$$\begin{cases} \theta_{n+1} = \theta_n + \rho \pmod{1} \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (2)

cuando ρ es irracional, $g: \mathbb{S}^1 \longrightarrow [0, \infty)$ es continua y log-integrable, y $f: [0, 1] \longrightarrow [0, 1]$ es \mathcal{C}^1 , unimodal, f(0) = 0 = f'(1) y f' es estrictamente decreciente.

Modelo de Alsedà y Misiurewicz

$$\begin{cases} \theta_{n+1} = \theta_n + \rho \pmod{1} \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (2)

cuando ρ es irracional, $g:\mathbb{S}^1\longrightarrow [0,\infty)$ es continua y log-integrable, y $f:[0,1]\longrightarrow [0,1]$ es \mathcal{C}^1 , unimodal, f(0)=0=f'(1) y f' es estrictamente decreciente.

Añadiendo alguna hipótesis adicional, demostraron un resultado muy parecido al de Keller.

La función que da el atractor se define en CASI TODO PUNTO de la base, y para el resto, la definen como 0 (ojo con la invariancia)

[L-M] Ll. Alsedá y M. Misiurewicz. Attractors for unimodal quasiperiodically forced maps, J. Difference Equ. Appl, 14 (2008), no. 10, 1175–1196.

Nuestro objetivo

Extender los resultados de Keller, Haro y Alsedà y Misiurewicz al caso

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (3)

cuando

- $R:\mathbb{S}^1\longrightarrow\mathbb{S}^1$ es una aplicación continua del círculo de grado 1 sin puntos periódicos
- $g: \mathbb{S}^1 \longrightarrow \mathbb{R}$ continua y log-integrable
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ es \mathcal{C}^1 (en $\overline{\mathbb{R}}$), estrictamente creciente, f(0) = 0, y $f'\big|_{(-\infty,0)}$ estrictamente creciente, y $f'\big|_{(0,\infty)}$ estrictamente decreciente.

Nuestro objetivo

Extender los resultados de Keller, Haro y Alsedà y Misiurewicz al caso

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (3)

cuando

- $R:\mathbb{S}^1\longrightarrow\mathbb{S}^1$ es una aplicación continua del círculo de grado 1 sin puntos periódicos
- $g: \mathbb{S}^1 \longrightarrow \mathbb{R}$ continua y log-integrable
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ es \mathcal{C}^1 (en $\overline{\mathbb{R}}$), estrictamente creciente, f(0) = 0, y $f'\big|_{(-\infty,0)}$ estrictamente creciente, y $f'\big|_{(0,\infty)}$ estrictamente decreciente.
 - si $f'(0) \in \mathbb{R}$, entonces f es acotada (en caso contrario necesitaríamos hipótesis extra)
 - si $f'(0) = \infty$, entonces $\lim_{n\to 0} \frac{f'(x)x}{f(x)} < 1$

Nuestro objetivo

Extender los resultados de Keller, Haro y Alsedà y Misiurewicz al caso

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = g(\theta_n) f(x_n) \end{cases}$$
 (3)

cuando

- $R: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ es una aplicación continua del círculo de grado 1 sin puntos periódicos
- $g: \mathbb{S}^1 \longrightarrow \mathbb{R}$ continua y log-integrable
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ es \mathcal{C}^1 (en $\overline{\mathbb{R}}$), estrictamente creciente, f(0) = 0, y $f'\big|_{(-\infty,0)}$ estrictamente creciente, y $f'\big|_{(0,\infty)}$ estrictamente decreciente.
 - si $f'(0) \in \mathbb{R}$, entonces f es acotada (en caso contrario necesitaríamos hipótesis extra)
 - si $f'(0) = \infty$, entonces $\lim_{n \to 0} \frac{f'(x)x}{f(x)} < 1$

También nos interesa $f: [-1,1] \longrightarrow [-1,1]$ bimodal verificando $f(0) = f(\pm 1) = 0$ pero se complica toda la demostración mucho.

Conjuntos atractivos en ciertos sistemas triangulares

> Sara Costa Romero

Aplicaciones del círculo: resumen de lo que nos interesa

 $R:\mathbb{S}^1\longrightarrow\mathbb{S}^1$ continua

Una elevación (*lift*) suya es una aplicación $\widehat{R} : \mathbb{R} \longrightarrow \mathbb{R}$ que hace que conmutativo el siguiente diagrama:

$$\begin{array}{ccc} \mathbb{R} & \stackrel{\widehat{R}}{\longrightarrow} & \mathbb{R} \\ & & \downarrow^{\mathrm{fr}} & & \downarrow^{\mathrm{fr}} \\ \mathbb{S}^1 & \stackrel{R}{\longrightarrow} & \mathbb{S}^1 \end{array}$$

siendo
$$fr(x) = x - [x]$$

 $R:\mathbb{S}^1\longrightarrow\mathbb{S}^1$ continua

Una elevación (*lift*) suya es una aplicación $\widehat{R} : \mathbb{R} \longrightarrow \mathbb{R}$ que hace que conmutativo el siguiente diagrama:

$$\begin{array}{ccc} \mathbb{R} & \stackrel{\widehat{R}}{\longrightarrow} & \mathbb{R} \\ & & \downarrow^{\mathrm{fr}} & & \downarrow^{\mathrm{fr}} \\ \mathbb{S}^1 & \stackrel{R}{\longrightarrow} & \mathbb{S}^1 \end{array}$$

siendo fr(x) = x - [x]

El grado de R viene dado por $grado(R) = \widehat{R}(x+1) - \widehat{R}(x)$.

Números de rotación

Si $\operatorname{grado}(R)=1$ se define el número de rotación del punto $\theta\in\mathbb{S}^1$ como

$$\rho(\theta) = \lim_{n \to \infty} \frac{\widehat{R}^n(\theta) - \theta}{n}.$$

siendo \widehat{R} la única elevación tal que $\widehat{R}(0) \in [0,1)$.

Números de rotación

Si $\operatorname{grado}(R)=1$ se define el número de rotación del punto $\theta\in\mathbb{S}^1$ como

$$\rho(\theta) = \lim_{n \to \infty} \frac{\widehat{R}^n(\theta) - \theta}{n}.$$

siendo \widehat{R} la única elevación tal que $\widehat{R}(0) \in [0,1)$.

- **1** Si $\rho(\theta) \in \mathbb{Q}$, θ es un punto periódico
- ② Si R es no decreciente el número de rotación está bien definido y es constante.
- 3 En general, el conjunto de distintos números de rotación de *R* es un intervalo cerrado no degenerado.
- 4 Si R no tiene puntos periódicos, entonces tiene un único número de rotación y es irracional.

Propiedades

Las aplicaciones continuas sin puntos periódicos son $\acute{\text{UNICAMENTE}}$ ergódicas.

Denotaremos su soporte por \mathcal{P} .

- Es positivamente invariante
- Para todo $\theta \in \mathbb{S}^1$, $\omega(\theta) = \mathfrak{P}$.
- En $\mathcal P$ las órbitas se comportan como las rotaciones irracionales.

Clasificación y soportes

- Rotación irracional $\mathcal{P} = \mathbb{S}^1$ e invariante y m Lebesgue
- Conjugada a una rotación irracional $\mathcal{P} = \mathbb{S}^1$ e invariante y m equivalente a Lebesgue
- Semiconjugada a una rotación \mathcal{P} es raro¹ (nowhere dense): el interior de la clausura es el vacío. Tiene medida de Lebesgue 0.
 - Contraejemplo de Denjoy (R homeomorfismo) ₱ invariante y perfecto
 - No decreciente
 - General

Cómo es este conjunto ${\mathfrak P}$

Para cada θ definimos J_{θ} como el mayor conjunto cerrado que contiene a θ pero a ninguno de sus iterados (para delante)

Cómo es este conjunto ${\mathfrak P}$

Para cada θ definimos J_{θ} como el mayor conjunto cerrado que contiene a θ pero a ninguno de sus iterados (para delante) \mathcal{P} es la unión de los extremos de dichos intervalos.

Esta notación y los resultados al respecto están extraidos de:

[AK] J. Auslander e Y.Katznelson, *Continuous maps of the circle without periodic points*, Israel J. Math., **32** (1979), no. 4, 375–381.

Propiedades J_{θ}

• Los intervalos $R^n(J_{\theta}) = J_{R^n(\theta)}$ son disjuntos 2 a 2.

Propiedades J_{θ}

- Los intervalos $R^n(J_\theta) = J_{R^n(\theta)}$ son disjuntos 2 a 2.
- Los extremos van a extremos, y los intervalos a intervalos: Si θ' es un extremo de J_{θ} , entonces $R(\theta')$ es un extremo de $R(J_{\theta}) = J_{R(\theta)}$.

Propiedades J_{θ}

Sara Costa Romero

- Los intervalos $R^n(J_\theta) = J_{R^n(\theta)}$ son disjuntos 2 a 2.
- Los extremos van a extremos, y los intervalos a intervalos: Si θ' es un extremo de J_{θ} , entonces $R(\theta')$ es un extremo de $R(J_{\theta}) = J_{R(\theta)}$.
- Si $R(\theta) = R(\theta')$, entonces $J_{\theta} = J_{\theta'}$
- Si $\theta' \neq \theta$, entonces o bien $J_{\theta} = J_{\theta'}$ o bien $J_{\theta} \cap J_{\theta'} = \emptyset$

Propiedades J_{θ}

- Los intervalos $R^n(J_\theta) = J_{R^n(\theta)}$ son disjuntos 2 a 2.
- Los extremos van a extremos, y los intervalos a intervalos: Si θ' es un extremo de J_{θ} , entonces $R(\theta')$ es un extremo de $R(J_{\theta}) = J_{R(\theta)}$.
- Si $R(\theta) = R(\theta')$, entonces $J_{\theta} = J_{\theta'}$
- Si $\theta' \neq \theta$, entonces o bien $J_{\theta} = J_{\theta'}$ o bien $J_{\theta} \cap J_{\theta'} = \emptyset$
- Existe a lo sumo una cantidad numerable de intervalos J_{θ} no degenerados

Propiedades J_{θ}

- Los intervalos $R^n(J_\theta) = J_{R^n(\theta)}$ son disjuntos 2 a 2.
- Los extremos van a extremos, y los intervalos a intervalos: Si θ' es un extremo de J_{θ} , entonces $R(\theta')$ es un extremo de $R(J_{\theta}) = J_{R(\theta)}$.
- Si $R(\theta) = R(\theta')$, entonces $J_{\theta} = J_{\theta'}$
- Si $\theta' \neq \theta$, entonces o bien $J_{\theta} = J_{\theta'}$ o bien $J_{\theta} \cap J_{\theta'} = \emptyset$
- Existe a lo sumo una cantidad numerable de intervalos J_{θ} no degenerados
- Dado $\theta' \in \mathbb{S}^1$, no necesariamente distinto de θ , $\theta' \in \omega(\theta)$ si y sólo si θ' es un extremo de $J_{\theta'}$.

Además,

• si θ' es un extremo de J_{θ} no degenerado, para todo $\theta'' \in J_{\theta}$ $\lim_{n \to \infty} d(R^n(\theta'), R^n(\theta'')) = 0$

Además,

- si θ' es un extremo de J_{θ} no degenerado, para todo $\theta'' \in J_{\theta}$ $\lim_{n \to \infty} d(R^n(\theta'), R^n(\theta'')) = 0$
- para todo $\theta \in \mathcal{P}$, $\operatorname{Card}(R^{-1}(\theta) \cap \mathcal{P}) = \{1, 2\}$. Siendo 2 para a lo sumo una cantidad numerable de $\theta \in \mathcal{P}$.

Además,

- si θ' es un extremo de J_{θ} no degenerado, para todo $\theta'' \in J_{\theta}$ $\lim_{n \to \infty} d(R^n(\theta'), R^n(\theta'')) = 0$
- para todo $\theta \in \mathcal{P}$, $\operatorname{Card}(R^{-1}(\theta) \cap \mathcal{P}) = \{1, 2\}$. Siendo 2 para a lo sumo una cantidad numerable de $\theta \in \mathcal{P}$.
- existe a lo sumo un punto $\theta' \in \mathrm{Orb}(\theta) \cup (\mathrm{Orb}_{-}(\theta) \cap \mathcal{P})$ tal que $\mathrm{Card}(R^{-1}(\theta') \cap \mathcal{P}) = 2$, donde $\mathrm{Orb}_{-}(\theta)$ denota la órbita para atrás de θ .

Un conjunto invariante

El conjunto $\widetilde{\mathcal{P}} = \mathcal{P} \setminus \left(\bigcup_{\theta \in P} \cup_{n \in \mathbb{Z}} R^n(\theta) \right)$ es positiva y negativamente invariante. $(P = \{\theta \ \operatorname{Card}(R^{-1}(\theta) \cap \mathcal{P}) = 2\})$.

Un conjunto invariante

El conjunto $\widetilde{\mathcal{P}}=\mathcal{P}\setminus \left(\bigcup_{\theta\in P}\cup_{n\in\mathbb{Z}}R^n(\theta)\right)$ es positiva y negativamente invariante. $(P=\{\theta\ \operatorname{Card}(R^{-1}(\theta)\cap\mathcal{P})=2\})$. $\operatorname{Cl}(\widetilde{\mathcal{P}})=\mathcal{P}$

Un conjunto invariante

El conjunto $\widetilde{\mathcal{P}} = \mathcal{P} \setminus \left(\bigcup_{\theta \in P} \cup_{n \in \mathbb{Z}} R^n(\theta)\right)$ es positiva y negativamente invariante. $(P = \{\theta \ \operatorname{Card}(R^{-1}(\theta) \cap \mathcal{P}) = 2\})$. $\operatorname{Cl}(\widetilde{\mathcal{P}}) = \mathcal{P}$

Si R es una rotación irracional, o conjugado a una, $\widetilde{\mathcal{P}}=\mathbb{S}^1.$

Si R es un contraejemplo de Denjoy, $\widetilde{\mathcal{P}} = \mathcal{P}$.

Resultado Principal I

Bajo las hipótesis anteriores:

 $oldsymbol{0}$ existe una correspondencia bivaluada $arphi: \mathcal{D} \longrightarrow \mathbb{R}$ dada por

$$\theta \longmapsto \{\varphi^+(\theta), \varphi^-(\theta)\}$$

que es T-invariante, siendo $\varphi^+:\mathbb{S}^1\longrightarrow [0,\infty)$ es semicontinua superiormente, y $\varphi^-:\mathbb{S}^1\longrightarrow (-\infty,0]$ semicontinua inferiormente, y $\mathcal{D}=\mathbb{S}^1$ si R es un homeomorfismo, y $\mathcal{D}=\widetilde{\mathcal{P}}$ en caso contrario.

Bajo las hipótesis anteriores:

1 existe una correspondencia bivaluada $\varphi: \mathcal{D} \longrightarrow \mathbb{R}$ dada por

$$\theta \longmapsto \{\varphi^+(\theta), \varphi^-(\theta)\}$$

que es T-invariante, siendo $\varphi^+:\mathbb{S}^1\longrightarrow [0,\infty)$ es semicontinua superiormente, y $\varphi^-:\mathbb{S}^1\longrightarrow (-\infty,0]$ semicontinua inferiormente, y $\mathcal{D}=\mathbb{S}^1$ si R es un homeomorfismo, y $\mathcal{D}=\widetilde{\mathcal{P}}$ en caso contrario.

2 Para $(\theta, x)^t \in \mathbb{S}^1 \times \mathbb{R}$,

$$|x_n - y_n| \to 0$$
 cuando $n \to \infty$

donde $y \in \varphi(\theta)$, y $x \cdot y \ge 0$.

Resultado Principal II

Denotamos por Λ el exponente de Lyapunov en $x \equiv 0$:

$$\Lambda := \log f'(0) + \int_{\mathbb{S}^1} \log |g| \mathrm{d} m$$

si $f'(0) \in \mathbb{R}$, y en caso contrario $\Lambda = \infty$.

3 Dependiendo del signo de Λ pueden ocurrir 2 cosas:

Resultado Principal II

Denotamos por Λ el exponente de Lyapunov en $x \equiv 0$:

$$\Lambda := \log f'(0) + \int_{\mathbb{S}^1} \log |g| \mathrm{d} m$$

si $f'(0) \in \mathbb{R}$, y en caso contrario $\Lambda = \infty$.

- **3** Dependiendo del signo de Λ pueden ocurrir 2 cosas:
 - si $\Lambda < 0$, entonces $\varphi^+(\theta) = 0 = \varphi^-(\theta)$ para *m*-c.t.
 - si $\Lambda > 0$, entonces $\varphi^+(\theta) \cdot \varphi^-(\theta) \neq 0$ para *m*-c.t. En cuyo caso, $x \equiv 0$ es un repulsor.

Resultado Principal II

4 La medida R-ergódica m se puede elevar a una medida definida sobre el grafo de φ de la siguiente manera:

$$\mu(A) = \frac{1}{2}m(\pi_{\theta}(A \cap \operatorname{grafo}(\varphi^{+}))) + \frac{1}{2}m(\pi_{\theta}(A \cap \operatorname{grafo}(\varphi^{-}))).$$

Es una medida T invariante y su soporte es $\operatorname{Sop}(\mu) = \operatorname{Cl}(\varphi) \cap (\mathcal{P} \times \mathbb{R}).$

Resultado Principal III

s Si μ es T-ergódica, entonces el grafo de φ es un conjunto atractivo minimal y si existe otro conjunto T-invariante D, $m(\Gamma \triangle D) = 0$.

Resultado Principal III

- **6** Si μ es T-ergódica, entonces el grafo de φ es un conjunto atractivo minimal y si existe otro conjunto T-invariante D, $m(\Gamma \triangle D) = 0$.
- **6** Si μ no es T-ergódica, el grafo de φ se divide en el grafo de dos APLICACIONES $\xi_1, \xi_2 : \mathbb{S}^1 \longrightarrow \mathbb{R}$ de manera que
 - sus grafos son *T*-invariantes y atractivos minimales
 - $\mu(\operatorname{grafo}(\xi_1)) = \frac{1}{2} = \mu(\operatorname{grafo}(\xi_2))$
 - $\mu(\mathsf{Cl}(\mathsf{grafo}(\xi_1)) \cap \mathsf{Cl}(\mathsf{grafo}(\xi_2))) = 0$

Resultado Principal IV

7 El exponente de Lyapunov vertical es negativo para todo $x \neq 0$ y m-c.t. θ .

Resultado Principal IV

7 El exponente de Lyapunov vertical es negativo para todo $x \neq 0$ y m-c.t. θ .

En particular

• Si μ es T-ergódica, para μ -c.t. $(\theta,x)^t$, el exponente de Lyapunov vertical viene dado por

$$\lambda := \int_{\mathbb{S}^1} \log |g| \, \mathrm{d} m + \frac{1}{2} \int_{\mathbb{S}^1} \log f' \circ \varphi^+ \, \mathrm{d} m + \frac{1}{2} \int_{\mathbb{S}^1} \log f' \circ \varphi^- \, \mathrm{d} m$$

? El exponente de Lyapunov vertical es negativo para todo $x \neq 0$ y m-c.t. θ .

En particular

• Si μ es T-ergódica, para μ -c.t. $(\theta, x)^t$, el exponente de Lyapunov vertical viene dado por

$$\lambda := \int_{\mathbb{S}^1} \log |g| \, \mathrm{d}m + \frac{1}{2} \int_{\mathbb{S}^1} \log f' \circ \varphi^+ \, \mathrm{d}m + \frac{1}{2} \int_{\mathbb{S}^1} \log f' \circ \varphi^- \, \mathrm{d}m$$

ullet En caso contrario, μ no es T-ergódica, las medidas

$$\nu_1(D) = \textit{m}(\pi_{\theta}(D \cap \operatorname{grafo}(\xi_1))) \text{ y } \nu_2(D) = \textit{m}(\pi_{\theta}(D \cap \operatorname{grafo}(\xi_2)))$$

son T-ergódicas, y para ν_i -c.t. el exponente de Lyapunov vertical es

$$\lambda_i := \int_{\mathbb{S}^1} \log |g| dm + \int_{\mathbb{S}^1} \log f' \circ \xi_i dm.$$

Conjuntos atractivos en ciertos sistemas triangulares

> Sara Costa Romero

Un par de ejemplos

Consideramos el sistema

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = 7|\cos(2\pi\theta_n)|f(x_n) \end{cases}$$

donde

$$f(x) = \begin{cases} \tanh(x) \text{ si } x > 0\\ \frac{\tanh(x-2) + \tanh(2)}{1 - \tanh(2)^2} \text{ en caso contrario.} \end{cases}$$

Tiene dos atractores

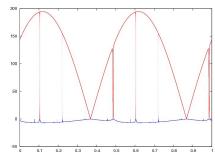
Consideramos el sistema

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = 7|\cos(2\pi\theta_n)|f(x_n) \end{cases}$$

donde

$$f(x) = \begin{cases} \tanh(x) \text{ si } x > 0\\ \frac{\tanh(x-2) + \tanh(2)}{1 - \tanh(2)^2} \text{ en caso contrario.} \end{cases}$$

Tiene dos atractores



El sistema

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = 7(\cos(2\pi\theta_n) - 2)f(x_n) \end{cases}$$

siendo

$$f(x) = \begin{cases} \tanh(x) & \text{si } x > 0\\ \frac{\tanh(x-2) + \tanh(2)}{1 - \tanh(2)^2} & \text{en el otro caso.} \end{cases}$$

tiene un único atractor.

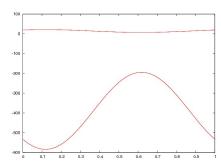
El sistema

$$\begin{cases} \theta_{n+1} = R(\theta_n) \\ x_{n+1} = 7(\cos(2\pi\theta_n) - 2)f(x_n) \end{cases}$$

siendo

$$f(x) = \begin{cases} \tanh(x) & \text{si } x > 0\\ \frac{\tanh(x-2) + \tanh(2)}{1 - \tanh(2)^2} & \text{en el otro caso.} \end{cases}$$

tiene un único atractor.

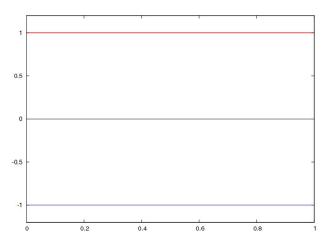


Conjuntos atractivos en ciertos sistemas triangulares

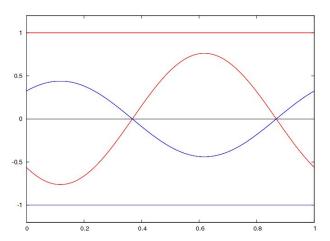
> Sara Costa Romero

Esquema de la demostración

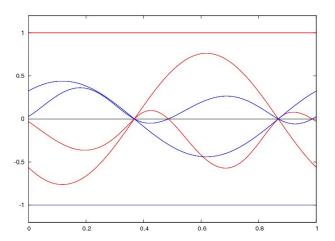
Construcción de φ^\pm



Construcción de φ^{\pm}



Construcción de φ^{\pm}



Conjuntos atractivos en ciertos sistemas triangulares

> Sara Costa Romero

Resto de la demostración

Básicamente jugar con las propiedades geométricas de la función f

Caso Alsedà y Misiurewicz

Se un resultado totalmente análogo.

Caso Alsedà y Misiurewicz

Se un resultado totalmente análogo. El primer paso de la demostración es encontrar φ^\pm . Con ella se puede acotar la región donde se encuentra el grafo invariante.

Caso Alsedà y Misiurewicz

Se un resultado totalmente análogo.

El primer paso de la demostración es encontrar φ^{\pm} .

Con ella se puede acotar la región donde se encuentra el grafo invariante.

Encontrarlo pero sólo en \mathfrak{D} .

- Dónde podemos iterar para atrás
- En dónde están definidas las funciones invariantes

- Dónde podemos iterar para atrás
- En dónde están definidas las funciones invariantes
- Una vez obtenida la invariancia para delante, buscarla para atrás.
- En cuántos puntos podemos asegurar que no se anula.

- Dónde podemos iterar para atrás
- En dónde están definidas las funciones invariantes
- Una vez obtenida la invariancia para delante, buscarla para atrás.
- En cuántos puntos podemos asegurar que no se anula.
- ¿Su clausura es verdaderamente un atractor (métrico)?
- ¿Qué pasa con los exponentes de Lyapunov fuera del grafo?

- Dónde podemos iterar para atrás
- En dónde están definidas las funciones invariantes
- Una vez obtenida la invariancia para delante, buscarla para atrás.
- En cuántos puntos podemos asegurar que no se anula.
- ¿Su clausura es verdaderamente un atractor (métrico)?
- ¿Qué pasa con los exponentes de Lyapunov fuera del grafo?
- ...