Working seminar on Celestial mechanics UB, 27 February 09

M. Ollé

Poincaré in his book 'Méthodes nouvelles de la mécanique celeste' defines three types of periodic orbits (PO) in the RTBP for $\mu > 0$ and small:

- First kind: close to keplerian circles
- Second kind: close to keplerian ellipses

both included in the so called 'First species solutions' and

- Second species solutions: close to a set of connected arcs of keplerian ellipses, each such arc is an orbit with consecutive collisions.
- In the 70's a very complete numerical exploration for $0.1 \le \mu \le 1/2$ was performed by E. Strömgren and his associates in Copenhagen. The classification of the families computed is based on 7 special points of the RTBP: $L_1, ..., L_5$ and the points where the primaries are located.
- Study of invariant manifolds of a collinear point L_i , i = 1, 2, 3.

Other applications:

- Space dynamics: using the Earth-Moon system as the primaries in the RTBP, space probe trajectories connecting the two force centers can be established.
- Stellar dynamics: tendency of stars in a cluster to form binaries.
- In general, close approaches, collisions and captures cannot be handled without regularization.

Regularization of the planar RTBP

The equations of motion in synodical coordinates are

$$\begin{cases} \ddot{x} - 2\dot{y} = \Omega_x \\ \ddot{y} + 2\dot{x} = \Omega_y \end{cases} \iff \ddot{x} + i\ddot{y} + 2i(\dot{x} + i\dot{y}) = \Omega_x + i\Omega_y \iff \ddot{z} + 2i\dot{z} = \operatorname{grad}_z \Omega \qquad (1)$$

where $\dot{z} = \frac{dz}{dt}$, z = x + iy and $\operatorname{grad}_z \Omega = \Omega_x + i\Omega_y$

$$\Omega = \frac{1}{2} \left[(1-\mu)r_0^2 + \mu r_1^2 \right] + \frac{1-\mu}{r_0} + \frac{\mu}{r_1}$$
$$r_0 = \sqrt{(x-\mu)^2 + y^2} \qquad r_1 = \sqrt{(x-\mu+1)^2 + y^2}.$$

So, the equations become singular when r_0 or $r_1 \rightarrow 0$ (collision with either of the primaries).

In order to regularize the eq (1), we consider two transformations

$$\begin{cases} z = f(w) \\ \frac{dt}{ds} = g(w) = |f'(w)|^2 \end{cases}$$

with w = u + iv.

Then **Proposition**

(i) The transformed eq becomes

$$w'' + 2i|f'|^2w' = |f'|^2 grad_w \widetilde{\Omega} + \frac{|w'|^2 \overline{f}''}{\overline{f}'}$$

with $\Omega(x,y) = \Omega(x(u,v), \underbrace{y}(u,v)) = \widetilde{\Omega}(u,v)$. (ii) Defining $\mathcal{U} = \tilde{\Omega} - \frac{C}{2}$ and using the Jacobi integral $(2\Omega(x, y) - (\dot{x}^2 + \dot{y}^2) = C)$, we obtain

$$w'' + 2i|f'|^2 w' = grad_w(\mathcal{U}|f'|^2).$$

Proof.

$$\dot{z} = \frac{dz}{dw}\frac{dw}{ds}\frac{ds}{dt} = f' \cdot w'\dot{s}$$
$$\ddot{z} = f'w'\ddot{s} + f''w'\dot{s}w'\dot{s} + f'w''\dot{s}\dot{s} = f'w'\ddot{s} + (f''w'^2 + f'w'')\dot{s}^2$$

Let us transform $\operatorname{grad}_{z}\Omega$.

Lemma 1

$$\overline{f}' \operatorname{grad}_z \Omega = \operatorname{grad}_w \widetilde{\Omega}$$

where $\operatorname{grad}_{w} \widetilde{\Omega} = \widetilde{\Omega}_{u} + i \widetilde{\Omega}_{v}.$

Proof.

$$z = x + iy = f(w) = f(u, v) \Longrightarrow \frac{df}{dw} = \frac{\partial f}{\partial u} = x_u + iy_u = -i\frac{\partial f}{\partial v}$$

From Cauchy-Riemann eqs, $x_u = y_v$, $x_v = -y_u$ we have

~

$$grad_{w}\widetilde{\Omega} = \widetilde{\Omega}_{u} + i\widetilde{\Omega}_{v} = \Omega_{x}x_{u} + \Omega_{y}y_{u} + i(\Omega_{x}x_{v} + \Omega_{y}y_{v}) =$$
$$= \Omega_{x}x_{u} + \Omega_{y}y_{u} + i(-\Omega_{x}y_{u} + \Omega_{y}x_{u}) =$$
$$= (x_{u} - iy_{u})(\Omega_{x} + i\Omega_{y}) = \overline{f}' \operatorname{grad}_{z}\Omega. \quad \Box$$

So, equation (1) reads

$$f'w'\ddot{s} + (f'w'' + f''w'^2)\dot{s}^2 + 2if'w'\dot{s} = \frac{1}{\overline{f}'}\operatorname{grad}_w\widetilde{\Omega}$$

Dividing by $f'\dot{s}^2$,

$$\frac{w'}{\dot{s}^2}\ddot{s} + w'' + \frac{f''}{f'}w'^2 + 2i\frac{w'}{\dot{s}} = \frac{1}{|f'|^2\dot{s}^2}\operatorname{grad}_w\widetilde{\Omega}$$

and equivalently

$$w'' + w'\frac{\ddot{s}}{\dot{s}^2} + i\frac{2w'}{\dot{s}} = -\frac{w'^2 f''}{f'} + \frac{1}{|f'|^2 \dot{s}^2} \operatorname{grad}_w \widetilde{\Omega} \,.$$
(2)

Let us compute $\frac{\ddot{s}}{\dot{s}^2}$:

$$\begin{split} \dot{s} &= \frac{1}{g} = \frac{1}{|f'|^2} = \frac{1}{f'\overline{f'}} \qquad (**) \\ \ddot{s} &= -\frac{\dot{g}}{g^2} = -\dot{g}\dot{s}^2 \longleftrightarrow \frac{\ddot{s}}{\dot{s}^2} = -\dot{g} \end{split}$$

Lemma 2 $\dot{g} = \frac{\overline{f}''\overline{w}'}{\overline{f}'} + \frac{f''w'}{f'}.$

$$\mathbf{Proof.} \ \dot{g} = f' \frac{d\overline{f}'}{dt} + \overline{f}' \frac{df'}{dt} \underset{(*)}{=} \left(f'\overline{f}''\overline{w}' + \overline{f}'f''w' \right) \dot{s} \underset{(**)}{=} \frac{\overline{f}''\overline{w}'}{\overline{f}'} + \frac{f''w'}{f'} \qquad \Box$$

$$(*): \ \frac{df'}{dt} = \frac{df'}{dw} \cdot \frac{dw}{ds} \dot{s} = f''w'\dot{s}$$

$$\frac{df'}{dt} = \frac{df'}{dt} = \frac{df'}{dw} \frac{dw}{ds} \dot{s} = \overline{f}''\overline{w}'\dot{s}$$

So, equation (2) becomes

$$w'' - w' \left[\frac{\overline{f''}\overline{w'}}{\overline{f'}} + \frac{f''w'}{w'} \right] + 2i|f'|^2w' = -\frac{w'^2f''}{f'} + |f'|^2 \operatorname{grad}_w \widetilde{\Omega}$$

or

$$w'' + 2i|f'|^2 w' = \underbrace{|f'|^2 \operatorname{grad}_w \widetilde{\Omega} + \frac{|w'|^2 \overline{f}''}{\overline{f}'}}_{RT}, \qquad (3)$$

as (i) states.

(ii) Now for the right hand side term, we use $U = \tilde{\Omega} - \frac{C}{2}$, so $\operatorname{grad}_{w} \tilde{\Omega} = \operatorname{grad}_{w} U$. From the Jacobi integral

$$|\dot{z}|^{2} = 2\widetilde{\Omega} - C = 2U \underset{\dot{z}=f'w'\dot{s}}{\Leftrightarrow} 2U = |f'|^{2}|w'|^{2}\dot{s}^{2} = \frac{|w'|^{2}}{|f'|^{2}} \iff |w'|^{2} = 2|f'|^{2}U.$$

So,

$$RT = |f'|^2 \operatorname{grad}_w U + \frac{2|f'|^2 U\overline{f}''}{\overline{f}'} = |f'|^2 \operatorname{grad}_w U + 2f'\overline{f}'' U$$

Now we use

Lemma 3 If $g_1(w)$, $g_2(w)$, are real analytic functions of a complex variable w, then

(i) $grad_w(g_1(w)g_2(w)) = g_1grad_wg_2 + g_2grad_wg_1.$

(ii) If G(w) is an analytic complex function of a complex variable w, then $grad_w |G(w)|^2 = 2G \frac{\overline{dG}}{\overline{dw}}$.

Proof.

(i) $\operatorname{grad}_w(g_1g_2) = (g_1g_2)_u + i(g_1g_2)_v =$

$$= g_{1_u}g_2 + g_1g_{2_u} + ig_{1_v}g_2 + ig_1g_{2_v}$$

$$= g_1[g_{2_u} + ig_{2_v}] + g_2[g_{1_u} + ig_{1_v}]$$

$$= g_1 \operatorname{grad}_w g_2 + g_2 \operatorname{grad}_w g_1$$

(ii) If G = R + iI

$$|G|^{2} = R^{2} + I^{2}$$

$$\operatorname{grad}_{w}|G|^{2} = 2RR_{u} + 2II_{u} + i(2RR_{v} + 2II_{v})$$

$$2G\frac{d\overline{G}}{dw} = 2(R + iI)(R_{u} - iI_{u}) = 2[RR_{u} + II_{u} + i(-RI_{u} + IR_{u})] \underset{R_{u}=I_{v}, R_{v}=-I_{u} (CR)}{\stackrel{\uparrow}{=}}$$

$$\operatorname{grad}_{w}|G|^{2}. \square$$

Therefore

$$\operatorname{grad}_{w}(U|f'|^{2}) \stackrel{(i)}{=} U\operatorname{grad}_{w}|f'|^{2} + |f'|^{2}\operatorname{grad}_{w}U \stackrel{(ii)}{=} \\ = U2f'\overline{f}'' + |f'|^{2}\operatorname{grad}_{w}U = RT$$

So, finally,

$$w'' + 2i|f'|^2w' = \operatorname{grad}_w(U|f'|^2)$$

and the proposition is proved. $\hfill\square$

Local regularization of the RTBP: Levi-Civita transformation

In order to deal with the regularized equations, we must choose a particular f(w). Since we have two sungularities: $P_0(\mu, 0)$, $P_1(\mu - 1, 0)$ we will consider a transformation for each singularity

- (a) The transformation $z = f(w) = \mu + w^2$ regularizes the singularity at P_0 .
- (b) The transformation $z = f(w) = \mu 1 + w^2$ regularizes the singularity at P_1 .

So both transformations are called 'local' since choosing one of them we just eliminate one of both singularities.

Example 1.

$$\begin{split} z &= f(w) = \mu + w^2 \ , \qquad z = x + iy \qquad w = u + iv \\ \frac{dt}{ds} &= |f'(w)|^2 = 4(u^2 + v^2) \\ \text{See the geometry of the change of variables } z, w \text{ in [1].} \end{split}$$

f transforms f transforms

u

$$P_{0}(\mu, 0) \longrightarrow (0, 0)$$

$$P_{1}(\mu - 1, 0) \longrightarrow w_{1,2} = \pm i$$

$$(0, 0) \longrightarrow w_{1,2} = \pm i\sqrt{\mu}$$

$$(x, y) \longrightarrow (u, v)$$

$$= \pm \sqrt{\frac{(x - \mu) + \sqrt{(x - \mu)^{2} + y^{2}}}{2}}, \qquad v = \frac{y}{2n}.$$

The regularized equation?

$$w'' + 2i|f'|^2w' = \operatorname{grad}_w(U|f'|^2)$$

$$U = \frac{1}{2} \left[(1-\mu)r_0^2 + \mu r_1^2 \right] + \frac{1-\mu}{r_0} + \frac{\mu}{r_1} - \frac{C}{2} = \frac{1}{2} \left[(1-\mu)|w|^4 + \mu |1+w^2|^2 \right] + \frac{1-\mu}{|w|^2} + \frac{\mu}{|1+w^2|} - \frac{C}{2}$$

$$\begin{array}{c} \uparrow \\ r_0 = |z - \mu| = |w^2| \\ r_1 = |z - \mu + 1| = |1 + w^2| \end{array}$$

Since $|f'|^2 = 4(u^2 + v^2)$, we have

$$u'' + iv'' + 8i(u^2 + v^2)(u' + iv') = (4U(u^2 + v^2))_u + i(4U(u^2 + v^2))_v \iff$$
$$\longleftrightarrow \begin{cases} u'' - 8(u^2 + v^2)v' = (4U(u^2 + v^2))_u \\ v'' + 8(u^2 + v^2)u' = (4U(u^2 + v^2))_v \end{cases}$$

where

$$4U(u^{2} + v^{2}) = 2(u^{2} + v^{2}) \left[(1 - \mu) \underbrace{(u^{4} + v^{4} + 2u^{2}v^{2})}_{(u^{2} + v^{2})} + \mu \left\{ (1 + u^{2} - v^{2})^{2} + 4u^{2}v^{2} \right\} \right] + 4(1 - \mu) + \frac{4\mu(u^{2} + v^{2})}{\sqrt{(1 + u^{2} - v^{2})^{2} + 4u^{2}v^{2}}} - 2C(u^{2} + v^{2})$$

and $(4U(u^2 + v^2))_u$, $(4U(u^2 + v^2))_v$ become singular only at $P_1: \pm i$. In particular, the velocities at P_0, P_1 are:

• At P_0 : $r_0 = 0$, $z = \mu$, w = 0

$$\begin{split} |\dot{z}| &\longrightarrow \infty \qquad (\text{since} \quad |\dot{z}| = 2U) \\ |w'| &= 2\sqrt{2(1-\mu)} \qquad (\text{since} \quad |w'|^2 = 2|f'|^2U = 8(1-\mu)) \end{split}$$

• At P_1 : $r_1 = 0$, $z = \mu - 1$, $w = \pm i$ $|\dot{z}| \longrightarrow \infty$ $|w'| \longrightarrow \infty$ (6)

$$\rightarrow \infty$$
 (since $|w'|^2 = 2|f'|^2 U \longrightarrow \infty$)

Example 2. Similarly for P_1 . Comments.

- 1. Global regularizations: Birkhoff, Thiele-Burran, Lemaïtre. (see [1])
- 2. In the spatial RTBP, the generalization of the Levi-Civita coordinates was done by Kustaanheimo and Stiefel, the so called KS coordinates.
- 3. Reference [1]: "The theory of orbits" (V. Szebehely) and references therein.