Reconfiguration of spacecraft formations in the vicinity of Libration points.

Laura Garcia-Taberner

June 9, 2009

	÷.					-	
		I C		C,	υ		

Adaptive remeshing

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

= 900

Outline

- Adaptive remeshing
 - Adaptive re-meshing method
 - Numerical results

100	+ -	0	~		0		-	5
	ш	o	u	u	C I			
		-	-	-	-	-	-	

Remeshing - 1

Adaptive remeshing

ъ

Sac

Outline

- 2 Methodology
- 3 Remeshing 1• Examples
- Adaptive remeshing
 - Adaptive re-meshing method
 - Numerical results

Remeshing - 1

Adaptive remeshing

Formations of spacecraft

- A set of *N* spacecraft flying in harmony
- A virtual larger instrument

ヘロト 人間 とくほ とくほ とう

Sac

Adaptive remeshing

= 900

General Purpose

Reconfiguration and deployment of spacecraft formations

Examples:

- Reorientation of formations
- Swap spacecraft
- Rendevous of stacks

Adaptive remeshing

The reconfiguration problem

Problem to solve

- Reconfiguration of N spacecraft in a fixed time T (fixed initial and final position)
- Minimizing fuel consumption
- Collision avoidance

 Assume the spacecraft are in a Halo orbit about L₂ (120,000 km of *z*-amplitude in the Sun-Earth system).
 The procedure is similar if they are in another libration point orbit, about the Earth or in free space.

L	A	I	- 11	
III	tro	au	cu	on

Remeshing - 1

Adaptive remeshing

ъ

Sac

Outline

- 3 Remeshing 1• Examples
- Adaptive remeshing
 - Adaptive re-meshing method
 - Numerical results

Governing equations

We consider the linearized equations about the nonlinear orbit, due to the size of the formation:

 $\dot{\mathbf{X}}_i(t) = \mathbf{A}(t)\mathbf{X}_i(t)$

Add of a control $U_i(t) = (0, 0, 0, u_i^x(t), u_i^y(t), u_i^z(t))^t$

 $\dot{\mathbf{X}}_i(t) = \mathbf{A}(t)\mathbf{X}_i(t) + U_i(t)$ $\mathbf{X}_i(0) = \mathbf{X}_i^0, \quad \mathbf{X}_i(T) = \mathbf{X}_i^T$

Objective: find the controls u_i , $i = 1 \dots N$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 → のへで

Adaptive remeshing

The finite element method

• The FEM is usually a discretization on space, but we considere it on time: we divide the time interval [0, *T*] in a number *M* of smaller intervals (elements) (can be different for each spacecraft).

$$t0 = 0 \quad t1 \quad t2 \qquad tk \qquad tM = T$$

- A delta-v applied to each node.
- Formulate the optimal problem. For each spacecraft, we considere the functional to be minimized:

$$J = \sum_{i=0}^{N} J_i, \quad J_i = \sum_{k=0}^{M} ||\Delta v_{i,k}||,$$

where || * || denote the Euclidean norm.

Adaptive remeshing

Comments on the functional to be minimized

Derivatives of

$$J_i = \sum_{k=0}^{M} \rho_{i,k} ||\Delta \mathbf{v}_{i,k}||$$

are ill conditioned when $||\Delta v||$ are small.

Alternative function to minimize:

$$J_i = \sum_{k=0}^M \rho_{i,k} ||\Delta v_{i,k}||^2.$$

- Derivatives can be calculated in any case.
- The value of J_i is directly related with fuel consume.

Remeshing - 1

Adaptive remeshing

Obtention of the elements

Discretization on time:

- Divide the time interval [0, *T*] in a number *M* of smaller intervals (elements)
- Possibility of use of elements of different length in the same discretization
- The discretization can be different for each spacecraft.
- A delta-v applied to each node.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Adaptive remeshing

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Collision avoidance

• Procedure:

- A sphere evolves each spacecraft.
- The spheres cannot intersect at any time.
- Implementation:
 - Test of the restriction on each element, for each pair of spacecraft.
 - Restrictions enter in the optimal problem in a natural way.
 - Possibility of adding other restrictions in a similar way.

Adaptive remeshing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The uncoupled system

Objective: uncouple the system

$$\dot{\mathbf{X}}(t) = \mathbf{A}(t)\mathbf{X}(t). \tag{1}$$

Jordan form of A(t):

$$D(t) = \begin{pmatrix} \lambda_1(t) & & & \\ & -\lambda_1(t) & & & \\ & & 0 & \lambda_2(t) & & \\ & & -\lambda_2(t) & 0 & & \\ & & & 0 & \lambda_3(t) \\ & & & & -\lambda_3(t) & 0 \end{pmatrix}.$$
(2)

 $\dot{\mathbf{Z}} = D(t)\mathbf{Z}.$

Adaptive remeshing

Equations for the uncoupled system

$$\dot{z}_1 = \lambda_1(t) z_1, \qquad \dot{z}_2 = -\lambda_1(t) z_2$$
 (3)

 $\ddot{z}_1 = (\dot{\lambda}_1(t) + \lambda_1^2(t))z_1, \qquad \ddot{z}_2 = (-\dot{\lambda}_1(t) + \lambda_1^2(t))z_2.$ (4)

$$\dot{z}_3 = \lambda_2(t) z_4, \qquad \dot{z}_4 = -\lambda_2(t) z_3,$$
 (5)

$$\ddot{z}_3 = \frac{\dot{\lambda}_2}{\lambda_2} \dot{z}_3 - \lambda_2^2 z_3, \quad \ddot{z}_4 = \frac{\dot{\lambda}_2}{\lambda_2} \dot{z}_4 - \lambda_2^2 z_4.$$
(6)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adaptive remeshing

Controls for uncoupled coordinates

$$\dot{z}_1 = \lambda_1(t)z_1 + U_1, \tag{7}$$

$$\ddot{z}_1 = (\dot{\lambda}_1(t) + \lambda_1^2(t))z_1 + \lambda_1(t)U_1 + \dot{U}_1.$$

$$U_1(u_1) = U_0 + (-\frac{\lambda_1}{\dot{u_1}}U_0 + \frac{1}{\dot{u_1}}u_0)(u_1 - u_0), + O((u_1 - u_0)^2),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Adaptive remeshing

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Obtain the change of coordinates

Change of coordinates: $\mathbf{x} = P(t)\mathbf{z}$ P(t) is solution of

$$\dot{\boldsymbol{P}}(t) = \boldsymbol{A}(t)\boldsymbol{P}(t) - \boldsymbol{P}(t)\boldsymbol{D}(t). \tag{8}$$

Solved numerically using that:

 $P^{-1}(0)A(0)P(0) = D(0).$

P(0) constructed using the eigenvectors of A(0).

Adaptive remeshing

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

The optimal problem

Functional to be minimized

$$J = \sum_{i=0}^{N} J_i, \quad J_i = \sum_{k=0}^{M} ||\Delta v_{i,k}||$$

Constraints

- Collision avoidance
- Geometrical constraints

Adaptive remeshing

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Sac

Outline

- Adaptive remeshing
 - Adaptive re-meshing method
 - Numerical results

Changing the mesh discretization

(I) Taking out nodes

- Remove some of the nodes which have a delta-v less than a tolerance *T_m*.
 - If there is only an isolated delta-v less than *T_m*, take off the node.
 - If there are consecutive delta-v less than *T_m*, decrease the density of nodes.

5990

Adaptive remeshing

Changing the mesh discretization

(II) Adding nodes

• Add nodes when there is a delta-v greater than T_M .

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q ()・

Adaptive remeshing

Changing the mesh discretization

(III) Remeshing depending on relative values of delta-v

- This procedure is applied when there are no nodes with a delta-v smaller than T_m or higher than T_M .
- Remove delta-v when they are very small when compared with the ones in a neighborhood.
- This is useful in situations where the bang-bang control is the optimal solution.

うくで

Remeshing - 1

Adaptive remeshing

Flow chart of the algorithm

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Adaptive remeshing

Bang-bang versus low thrust

• Bang-bang:

- When there is no collision risk with rectilinear trajectories, the optimum trajectory is a bang-bang control for each spacecraft.
- The bang-bang control is the critical case, because almost all delta-v are zero.
- After a few iterations, all the nodes are removed.

• Low thrust:

 Adding nodes, the total amount of delta-v is reduced and the trajectory tends to low thrust when adding more nodes.

Remeshing - 1

Adaptive remeshing

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EXAMPLES

- Parallel shift ending with a bang-bang solution
- Switching satellites in the TPF formation using low thrust
- Test bench stress testing example
- Rendevous of two stacks

Adaptive remeshing

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples

Parallel shift example

- First configuration: 3 spacecraft in the vertices of a hexagon
- Last configuration: the spacecraft in the other vertices of the hexagon

Remeshing - 1

Adaptive remeshing

Examples

Parallel shift example

Delta-v in the successive iterations:

三 のへで

Adaptive remeshing

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples

A low thrust example of reconfiguration

- Example using the Terrestrial Planet Finder configuration
- Collision of spacecraft with a naive bang-bang control
- Switch of the spacecraft in the baseline in pairs

Remeshing - 1

Adaptive remeshing

Sac

Examples

A low thrust example of reconfiguration

Delta-v obtained with different number of elements

Remeshing - 1

Adaptive remeshing

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples

Test bench example

- Example with 12 spacecraft, in the vertices of two regular perpendicular hexagons.
- Change the position of the spacecraft, rotating them 120 degree (multiple collision with rectilinear trajectories).

Adaptive remeshing

Examples

Test bench example

Costs:

- With a security distance of 10 meters, there is no collision with rectilinear trajectories, and the solution is low thrust.
- With more than 10 meters of security distance, the cost increases with the security distance.

Sec. distance	10 elem	20 elem	50 elem	100 elem
10	0.24	0.24	0.24	0.24
20	1.66	1.43	1.34	1.29
30	1.92	1.64	1.45	1.41
40	2.01	1.89	1.76	1.73

Adaptive remeshing

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Examples

Rendevous of two stacks

- Rendevous of two stacks of spacecraft separated by 1000 meters.
- One stack with 3 spacecraft and another stack with 4 spacecraft.
- The security distance increases from 0 to the final security distance.
- The optimal is a bang-bang trajectory for each spacecraft.

・ロト ・ 四ト ・ 日ト ・ 日ト

1

Sac

Outline

- 2 Methodology
- 3 Remeshing 1• Examples

Adaptive remeshing

- Adaptive re-meshing method
- Numerical results

Adaptive remeshing

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Adaptive re-meshing method

Adaptive re-meshing advantages

- Control of the error
- Efficient computation
- Capability to add more spacecraft

Remeshing - 1

Adaptive remeshing

Adaptive re-meshing method

Schema of re-meshing

Initial mesh

Remeshing - 1

Adaptive remeshing

Adaptive re-meshing method

Schema of re-meshing

Initial mesh

Remeshing - 1

Adaptive remeshing

Adaptive re-meshing method

Schema of re-meshing

```
Initial mesh

Solution (FEM)

Calculate error
```


Remeshing - 1

Adaptive remeshing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Adaptive re-meshing method

Schema of re-meshing

Remeshing - 1

Adaptive remeshing

Adaptive re-meshing method

Schema of re-meshing

Adaptive re-meshing method

Estimation of the error

The two gradients

- Solution of the finite element method (approximated gradient)
 - Constant on each element (linear elements)

Obtained by integration of the equations (exact gradient)
 x = A(t)x

Comparison of the gradients

On each element, the error is calculated:

$$error_k = ||
abla_1 -
abla_2||_{L_2} = (\int_{t_k}^{t_{k+1}} (v_1 - v_2) \cdot (v_1 - v_2) dt)^{1/2}.$$

・ロト・日本・日本・日本・日本・日本

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Adaptive re-meshing method

Acceptability criteria

Compare the total error of the mesh (||e||) with the maximum length of the elements (h) General criteria: acceptance if

$||\boldsymbol{e}|| \leq \alpha \boldsymbol{h}.$

Introduction				
	100		1 LICT	tion
nnouucion		1100	JUC	пон

Obtention of the new mesh

- Li and Bettess strategy:
 - Number of elements of the new discretization:

$$\hat{M} = (\nu ||u||)^{-1} (\sum_{k=1}^{M} ||e||_{k}^{2/3})^{3/2}$$

• New length for the elements:

$$\hat{h}_k = (rac{
u ||u||}{\hat{M}||e||_k})^{2/3} h_k.$$

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

10		~		••	-
	ш	u	c		

Remeshing - 1

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Numerical results

EXAMPLES

- Parallel shift ending with a bang-bang solution
- Switching satellites in the TPF formation using low thrust

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical results

Parallel shift example

- First configuration: 3 spacecraft in the vertices of a hexagon
- Last configuration: the spacecraft in the other vertices of the hexagon

Adaptive remeshing

Numerical results

Parallel shift example

Delta-v in the successive iterations:

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ のへで

Adaptive remeshing

Numerical results

Parallel shift example

Delta-v in the successive iterations:

◆ロト ◆課 ト ◆臣 ト ◆臣 ト ○臣 - の久(で)

Adaptive remeshing

Numerical results

Parallel shift example

Delta-v in the successive iterations:

◆ロト ◆課 ▶ ◆理 ▶ ◆理 ▶ ○ 理 ● のへで

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical results

Switching satellites

- Example using the Terrestrial Planet Finder configuration
- Collision of spacecraft with a naive bang-bang control
- Switch of the spacecraft in the baseline in pairs

Adaptive remeshing

Numerical results

Switching satellites

Delta-v obtained in successive iterations

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ の々で

Adaptive remeshing

Numerical results

Switching satellites

Delta-v obtained in successive iterations

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 → のへで

Adaptive remeshing

Numerical results

Switching satellites

Delta-v obtained in successive iterations

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ の々で