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1 Dynamics of the logistic map

This will be a fast (and selective) review of the dynamics of the logistic map. Let us consider
the logistic map in the multiplicative form,

x̄ = `α(x) = αx(1− x). (1)

It can be easily checked that for the parameter α ∈ [0, 4], any point x0 ∈ [0, 1] will remain in the
interval [0, 1] under iteration by (1). This property can be used to do the following numerical
computation which sketches the dynamics of the logistic map. For each value of the parameter
α, we take an initial point x0 ∈ (0, 1) and we iterate it N1 times by the map, if N1 is big this
will bring the iterated point near to the attractor of the map for the given value of α. Finally
we have plot the next N2 iterations, which will be an approximation of the attractor of the map.
In the figure 1 are shown the results of this computation.

It can be easily checked that for α ∈ (0, 1) the point x = 0 is an attractor of the map. When the
parameter α crosses the value 1 a bifurcation occurs, the fixed point x = 0 becomes unstable and
the point x = 1− 1/α becomes stable. When the value of the parameter α continues increasing,
at α = s0 = 2 the attracting orbit of the map crosses the value x = 1/2 (at this value we have
Dxlα(x) = 0, therefore the orbit is superattractor.). Let the parameter α increase again, when
we reach the value α = f1 = 3 a new bifurcation occurs, but this one is a period doubling
bifurcation, where the fixed point becomes unstable and appears a 2 periodic orbit. Increasing
α again, at certain value s1 one of the points of the periodic orbit crosses the value x = 1/2, and
at certain value f2, the periodic orbit doubles his period again. When α continues increasing
this phenomena is repeated infinitely many times, accumulating to a certain parameter value
F1 ≈ 3.569945672..., the phenomena described is known as the period doubling bifurcation
cascade and the parameter value F1 is known as the Feigenbaum critical value. This cascade
can be seen in the figure 1.

In other words, consider fn the parameter value where the “attracting” orbit of the logistic map
doubles from period 2n−1 to 2n, and sn the parameter value where the attracting 2n periodic
orbit of the logistic map has zero differential, then we have that

lim
n→∞

sn = lim
n→∞

fn = F1.

In fact, from the Feigenbaum conjectures follow that there exist a “universal” rate δ, such that

lim
n→∞

sn+1 − sn

sn − sn−1
= lim

n→∞

fn+1 − fn

fn − fn−1
=

1
δ
.
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Figure 1: Bifurcations diagram of the logistic map (1), the vertical axis corresponds to the x
value of the attractor and the horizontal axis corresponds the parameter α (although it says r
in the picture).

The adjective “universal” is used in the sense that the accumulation rate δ does not depend on
the family of maps considered.

1.1 Renormalization operator for one dimensional maps

1.1.1 Setting up the problem

Although the problem of the renormalization for one dimensional maps can be set up in a more
general context ([5]), we will consider it in a more restrictive case, which will make it easier to
understand.

Consider M the space of analytic even maps ψ from the interval [−1, 1] into itself such that

1. ψ(0) = 1,

2. xψ′(x) < 0 for x 6= 0.

The condition 2) means that ψ is strictly increasing in [−1, 0) and strictly decreasing in (0, 1].
Note that any map in M is unimodal, indeed 0 is the turning point of the map and the unimodal
interval is [ψ2(0), ψ(0)], which makes this set up a particular case of the considered in [5].
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Figure 2: In the left we have a function ψ ∈ D(R) and are shown the geometric meaning of the
values a, b and ψ(b). In the right we have the function ψ as before and the function φ2. Notice
the resemblance between ψ2 restricted in the renormalization box [a,−a] and ψ in [−1, 1].

Set a = ψ(1) = ψ2(0), and b = ψ(a). Now, we define D(R) as the set of φ ∈M such that

1. a < 0,

2. b > −a,

3. φ(b) ≤ −a.

In the figure 2 is plotted a map of D(R). Consider the intervals I0 = [a,−a] and I1 = [b, 1]. For
any ψ ∈ D(R), it maps each of these two intervals to the other. Actually, if we consider ψ2

I0
and we apply the change of variables x → ax to ψ2, this turns out to be in M. Actually this
operation we have just described is known as renormalization (the doubling case), and the set
D(R) is the domain of the renormalizable functions. The formal definition is as follows.

Definition 1.1. We define the renormalization operator R : D(R) →M as

R(ψ)(x) =
1
a
ψ ◦ ψ(ax). (2)

where a = ψ(1).

This definition is a concrete case, where we have only considered the doubling case, for a concrete
coordinates. It can be defined in a more general context, see for instance [5]. On the other hand
the form of the maps considered allows us to write down the affine transformation explicitly.

1.1.2 The Feigenbaum Conjectures

The renormalization operator was first introduced by Feigenbaum when he was studying the
logistic map ([2] and [3]). He also proposed some conjectures on the operator, which explained
the cascades of period-doubling bifurcation that exhibits the logistic map.
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Figure 3: Representation of the dynamics of R. In the figure are plotted Φ the fixed point of
R, the stable and the unstable manifold (W s(R) and W u(R)) associated to this point and the
different “bifurcation” manifold Σn. It is also represented a one parameter family of maps such
that crosses the stable manifold transversally and the parameters values µn, for which the family
of maps intersects the different surfaces Σn.

Those conjectures were:

1. There exists a Banach space B of analytic functions such thatR|B is a bounded C2 operator,
which has a fixed point Φ (referred as the Feigenbaum fixed point).

2. The derivative DR is a compact operator whose spectrum has a unique eigenvalue δ =
4.66920... outside the unit circle and all the other eigenvalues are in the interior of the unit
disc.

3. Let Σn ⊂ B be the set of maps in the neighborhood of Φ for which the critical point is
periodic of period 2n. Then Σn, which is a codimension one Banach submanifold, intersects
the local unstable manifold of R transversally for n large enough.

The first proofs obtained of the conjectures were computer assisted, due to Lanford([4]) and
to Eckmann and Wittwer ([1]). For the time being we follow with the consequences of the
conjectures and in the next subsection we will do some comments on the computer assisted
proofs.

The conjecture 1) and 2) imply that exists a local unstable manifold W u of dimension one,
associated to the unstable eigenvalue δ and tangent to the corresponding eigenvector. The
unstable and the stable manifolds intersect transversally in Φ. See the figure 3 for a schematic
representation of the dynamics.

Note that for a given ψ0 ∈W u, for each j > 0 there exist a unique ψj ∈W u such that Rj(ψj) =
ψ0. Moreover the sequence ψj converge geometrically to Φ, with rate δ, i.e. ‖Φ−ψj‖ ≈ δ−j . On
the other hand can be checked that R(Σn+1) ⊂ Σn, if they are regular (no critical point), then
we will have equality in a small neighborhood of Φ (because they have the same codimension).
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If the conjecture 3) holds, i.e. the submanifolds Σn intersects transversally W u, we can apply
the λ-lemma and therefore will have that the submanifolds Σn accumulate at the local stable
manifold geometrically, with rate δ−1. Indeed, if we consider other codimension one “bifurcation
manifolds” transversal to W u(R), we will have the same property of accumulation. For example
consider

Σ̂0 =
{
ψ ∈ B sucht that ψ′(x0) = −1, (ψ ◦ ψ)′′′(x0) < 0

}
where x0 is a fixed point of ψ and consider

Σ̂n =
{
ψ ∈ B such that Rn(ψ) ∈ Σ̂0

}
.

This sets Σ̂n are a codimension one submanifold, and they follow the same asymptotic behavior
as Σn.

Consider a one parametric family of renormalizable maps {`µ}µ∈D with D ⊂ R, for instance
the logistic map. Suppose that the family crosses transversally W s(R) (for a certain parameter
µ∞). Then (for n big enough) this family must cross each Σn transversally in a single parameter
value µn. Indeed this parameters µn will tend to µ∞ in a geometric way (determined by δ) as
n grows to infinity.

1.1.3 On the numeric assisted proof of the conjectures

In this subsection we will give an brief idea of how the Feigenbaum conjectures were proved
with the use of computer. On a computer rigorous interval arithmetics are possible. The idea
of interval arithmetics can be extended to arithmetics of balls in Banach spaces.

Suppose we have X a Banach space equipped with a given norm ‖ · ‖A, and F : X → X and
operator. To prove that F has a fixed point note that is enough to prove it for a subspace Y
with a stronger norm ‖ · ‖B. (We say that ‖ · ‖B is stronger that ‖ · ‖A in Y , if for all y ∈ Y we
have ‖y‖A ≤ ‖y‖B.)

Let D1 be the unit disc in the complex plane and RH(D1) the Banach space of real analytic
functions on D1 and continuous in D1 equipped with the supreme norm (‖ · ‖∞). Consider also
the space `1 of absolutely convergent real sequences with the standard norm ‖ · ‖1.

Note that we can consider an inclusion of `1 in RH(D1), given by

i : `1 → RH(D1)

f = (f0, f1, . . . , fn, . . . ) 7→ f(z) =
∞∑
i=0

fiz
i (3)

Let X be the space defined by i(l1) ⊂ RH(D1), and we can consider ‖·‖S the norm in X induced
by i. In other words given f ∈ X we define

‖f‖S =
∞∑
i=0

|fi|

where f(z) =
∑∞

i=0 fiz
i.

Given a set of n + 1 intervals I0, . . . , In and a positive number r we can define the closed ball
B = B(I0, . . . , In, r) as the set of functions f ∈ X such that f(z) =

∑∞
i=0 fiz

i, with fi ∈ Ii for
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i = 0, . . . , n, and
∑

i>n |fi| < r. Given two different balls B1 and B2 we can construct a third
ball B3 such that f1 + f2 ∈ B3 for all f1 ∈ B1 and f2 ∈ B2. The same way we can construct
new balls for the pointwise multiplication, scalar multiplication, composition of functions and
differentiation of functions. This defines a rigorous arithmetic of balls in the space X. The idea
behind the computer assisted proofs of [4] and [1] is use this rigorous arithmetics to prove that a
convenient operator is contractive in X with the norm ‖·‖S , and therefore prove the Feigenbaum
conjectures.
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