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Different products

Full

• All terms are computed

Truncated in the partial or total degree of the variables

Special truncation to select terms satisfying a rule
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Available methods

Naive method

• efficient for low degree or for sparse polynomials

Karatsuba’s algorithm 

• efficient for intermediate degree and dense polynomials

• reduce the number of multiplications

FFT method

• efficient only for large degree
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Naive multiplication

Perform the multiplication of all terms 

if A, B and C,  have r, s and t terms

• rs multiplications and rs-t additions

• complexity  : O(rs)

A(x) =
damax∑

i=damin

aix
i and B(x) =

dbmax∑

i=dbmin

bix
i

C(x) =
damax+dbmax∑

k=damin+dbmin

ckxk with ck =
∑

i+j=k

aibj
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Multiplication for univariate polynomials stored as vector

Algorithm 1: Compute the full product of univariate polynomials A and
B represented with a dense vector
Input: A: polynomial {damin, damax, array of coefficients a }
Input: B: polynomial {dbmin, dbmax, array of coefficients b }
Output: C: polynomial {dcmin, dcmax, array of coefficients c }
dcmin ← damin + dbmin

dcmax ← damax + dbmax

C ← create a polynomial with minimal degree dcmin and maximal degree
dcmax

for k ← dcmin to dcmax do
c[k]← a[damin]× b[k − damin]
for j ← damin + 1 to damax do

c[k]← c[k] + a[j]× b[k − j]
end

end
return C
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Multiplication for recursive dense vector 1/2

Function mulfull(A,B) Compute the full product of multivariate poly-
nomials A and B represented with a recursive dense vector
Input: A: multivariate polynomial {damin, damax, array of coefficients a}
Input: B: multivariate polynomial {dbmin, dbmax, array of coefficients b}
Output: C: multivariate polynomial {dcmin, dcmax, array of coefficients

c}
dcmin ← damin + dbmin

dcmax ← damax + dbmax

C ← create a polynomial with minimal dcmin and maximal dcmax degree
for k ← dcmin to dcmax do

c[k]← mulfull (a[damin], b[k − damin])
for j ← damin + 1 to damax do

fmafull (a[j], b[k − j], c[k])
end

end
return C
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Multiplication for recursive dense vector 2/2
Procedure fmafull(A,B,C) Compute the full fused multiplication-
addition C = C + A × B with A,B and C multivariate polynomials
represented as recursive dense vector
Input: A: multivariate polynomial {damin, damax, array of coefficients a}
Input: B: multivariate polynomial {dbmin, dbmax, array of coefficients b}
Input: C: multivariate polynomial {dcmin, dcmax, array of coefficients c }
Output: C: multivariate polynomial

newdcmin ← damin + dbmin

newdcmax ← damax + dbmax

if newdcmin < dcmin or dcmax < newdcmax then
dcmin ←min(newdcmin, dcmin)
dcmax ←max(newdcmax, dcmax)
resize C

end
for k ← dcmin to dcmax do

c[k]← mulfull (a[damin], b[k − damin])
for j ← damin + 1 to damax do

fmafull (a[j], b[k − j], c[k])
end

end
if c contains 0 at its beginning or at its end then

adjust dcmin

adjust dcmax

resize C
end
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Multiplication for univariate polynomials stored as list

Function mulfull(A,B) Compute the full product of univariate polyno-
mials A and B represented with a list
Input: A: polynomial { list of ( coefficients a , degree δa) }
Input: B: polynomial { list of ( coefficients b , degree δb) }
Output: C: polynomial { list of ( coefficients c , degree δc)}
C ← create a empty polynomial
foreach element in A do

D ← create a empty polynomial
foreach element in B do

add to the tail of D an element (a× b, δa + δb)
end
C ← C + D

end
return C
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Multiplication for recursive list 
Procedure fmafull(A,B,C) Compute the full fused multiplication-
addition C = C + A × B with A,B and C multivariate polynomials
represented as recursive list
Input: A: polynomial { list of ( coefficients a , degree δa) }
Input: B: polynomial { list of ( coefficients b , degree δb) }
Input: C: polynomial { list of ( coefficients c , degree δc) }
Output: C: polynomial { list of ( coefficients c , degree δc) }
iter ← head of C
foreach element in A do

// avoid to scan to C when the loop on B is finished
iterb← iter
foreach element in B do

// find after iterb in C if the degree δa + δb is present
while current degree δc referenced by iterb < δa + δb do

iterb← next element after iterb
end
if δc = δa + δb then

fmafull (a, b, c)
if c = 0 then remove the element referenced by iterb

else
insert an element (mulfull (a, b), δa + δb) just before iterb

end
if current element is the first element of B then

iter ← iterb
end

end
end
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Multiplication for flat vector 1/2

How to sort  terms ?

• search  and shift operations too slow

• need an intermediate and adjustable storage : BURST TRIE

X X 1 2 m 1 2 m

variables exponents coefficients

1st term

2nd term

64th term

65th term

66th term

128th term

64*(m-1)+1 term

64*(m-1)+2 term

64*m term

1 n
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Multiplication for flat vector 2/2

Burst tries

• trie node = dense container

• leaf node = sparse container 

3 + 5z + 7z3 + 11y + 9zy + 13zyx + 8z2x2 + 9x4
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Homogeneous block

A =
damax∑

δ=damin

BHδ(a) , B =
dbmax∑

δ=dbmin

BHδ(b)

C = A×B =
dcmax∑

δ=dcmin

BHδ(c)

with
dcmin = damin + dbmin

dcmax = damax + dbmax

BHδ(c) =
∑

i+j=δ

BHi(a)×BHj(b)

aiX
d1
1 Xd2

2 ...Xdn
n × bjX

d′
1

1 X
d′
2

2 ...X
d′

n
n = aibjX

d1+d′
1

1 X
d2+d′

2
2 ...X

dn+d′
n

n
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Homogeneous block

Function fmafull(BHδ(a), BHδ′(b), BHδ+δ′(c))
Compute the full fused multiplication-addition
BHδ+δ′(c) = BHδ+δ′(c) + BHδ(a)×BHδ′(b)
Input: BHδ(a) : homogeneous blocks { degree δ, a : array of r coeff. }
Input: BHδ′(b) : homogeneous blocks { degree δ′, b : array of s coeff. }
Input: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff. }
Output: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff.}
for i← 1 to r do

for j ← 1 to s do
l← get location of the term in BHδ+δ′(c)
BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]

end
end
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Homogeneous block using functions

Function fmafull(BHδ(a), BHδ′(b), BHδ+δ′(c))
Compute the full fused multiplication-addition
BHδ+δ′(c) = BHδ+δ′(c) + BHδ(a) × BHδ′(b) using functions to compute
location
Input: BHδ(a) : homogeneous blocks { degree δ, a : array of r coeff. }
Input: BHδ′(b) : homogeneous blocks { degree δ′, b : array of s coeff.s }
Input: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff. }
Output: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff.}
for i← 1 to r do

expoa← get array of exponents from the location i in BHδ

for j ← 1 to s do
expob← get array of exponents from the location j in BH ′

δ
expoc← expoa + expob
l← get location of the term with exponents expoc in BHδ+δ′

BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]
end

end
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Homogeneous block using addressing tables

Construction of the addressing table for the product of blocks  in 3 
variables with exponent tables of degree 1 and 2.

Texp1 + Texp2 = Texp3

0 0 1
0 1 0
1 0 0

0 0 2
0 1 1
0 2 0
1 0 1
1 1 0
2 0 0

0 0 3
0 1 2
0 2 1
0 3 0
1 0 2
1 1 1
1 2 0
2 0 1
2 1 0
3 0 0

Taddr1,2

1 2 3 5 6 8
2 3 4 6 7 9
5 6 7 8 9 10

Taddr2,1 =t Taddr1,2
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Execution time to build the tables of exponents

build the tables of exponents for homogeneous blocks in 10 variables up to the degree 20
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Execution time to build the addressing tables

product of two homogeneous blocks in 5 variables up to the total degree 40

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120

tim
e 

(s
)

muliplication operations (in Millions)

20+1020+1120+12
20+13

20+14
20+15

20+16

20+17

20+18

20+19

20+20

20+1020+1120+12
20+13

20+14
20+15

20+16

20+17

20+18

20+19

20+20

20+1020+1120+12
20+13

20+14
20+15

20+16

20+17

20+18

20+19

20+20

initialization
after initialization



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Overhead to load the addressing tables from disk

 0

 5

 10

 15

 20

 25

 30

 20  22  24  26  28  30  32  34  36  38  40

ex
ec

ut
io

n 
tim

e 
ov

er
he

ad
 (%

)

total degree of the addressing table



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

0

3 5

11

BH
0

BH(X,Y,Z)

BH
1

0

0

9

BH
2

0

BH
3

0

0

0

BH
4

0

0

0

0

0

0

0

00

0

0

0

0

0

00

0

0

0

13

0

00

0

0

0

0

0

8

0

0

00

0

0

0

0

0

9

0

Homogeneous blocks

P (x, y, z) = 3 + 5z + 7z3 + 11y + 9yz + 13xyz + 8x2z2 + 9x4
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Compacted homogeneous blocks
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Homogeneous block using addressing tables

Function fmafull(BHδ(a), BHδ′(b), Taddrδ,δ′ , BHδ+δ′(c))
Compute the full fused multiplication-addition
BHδ+δ′(c) = BHδ+δ′(c) + BHδ(a)×BHδ′(b) using the addressing table
Input: BHδ(a) : homogeneous blocks { degree δ, a : array of r coeff. }
Input: BHδ′(b) : homogeneous blocks { degree δ′, b : array of s coeff. }
Input: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff. }
Input: Taddrδ,δ′ : addressing table of degree δ, δ′

Output: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t
coefficients }

for i← 1 to r do
for j ← 1 to s do

l← Taddrδ,δ′ [i, j]
BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]

end
end
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Homogeneous block using addressing tables

Function fmafull(BHδ(a), BHδ′(b), Taddrδ,δ′ , BHδ+δ′(c))
Compute the full fused multiplication-addition
BHδ+δ′(c) = BHδ+δ′(c) + BHδ(a)×BHδ′(b) using the addressing table
Input: BHδ(a) : homogeneous blocks { degree δ, a : array of r coeff. }
Input: BHδ′(b) : homogeneous blocks { degree δ′, b : array of s coeff. }
Input: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff. }
Input: Taddrδ,δ′ : addressing table of degree δ, δ′

Output: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t
coefficients }

for i← 1 to r do
for j ← 1 to s do

l← Taddrδ,δ′ [i, j]
BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]

end
end

l← Taddrδ,δ′ [BHCδ(a).index[i], BHCδ′(b).index[j]]
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Homogeneous block using addressing tables

Function fmafull(BHδ(a), BHδ′(b), Taddrδ,δ′ , BHδ+δ′(c))
Compute the full fused multiplication-addition
BHδ+δ′(c) = BHδ+δ′(c) + BHδ(a)×BHδ′(b) using the addressing table
Input: BHδ(a) : homogeneous blocks { degree δ, a : array of r coeff. }
Input: BHδ′(b) : homogeneous blocks { degree δ′, b : array of s coeff. }
Input: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff. }
Input: Taddrδ,δ′ : addressing table of degree δ, δ′

Output: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t
coefficients }

for i← 1 to r do
for j ← 1 to s do

l← Taddrδ,δ′ [i, j]
BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]

end
end
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Cache blocking technique
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B
H
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normal flow flow with cache blocking
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Cache blocking technique

/* if r not divisible by chunksize[1]
*/

for i← iteri× chunksize[1] to r do22

for j ← 1 to s do23

l← Taddrδ,δ′ [i, j];24

BHδ+δ′(c)[l]← BHδ+δ′(c)[l] +25

BHδ(a)[i]×BHδ′(b)[j]
end26

end27

Input: BHδ(a) : homogeneous blocks { degree δ, a : array of r coeff. }
Input: BHδ′(b) : homogeneous blocks { degree δ′, b : array of s coeff. }
Input: Taddrδ,δ′ : addressing table of degree δ, δ′

Input: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff. }
Input: chunksize : chunk size { arrays of two integers}
Output: BHδ+δ′(c) : homog. blocks { degree δ + δ′, c : array of t coeff.}
iteri← r/chunksize[1] /* number of chunks for the loop i */1

iterj ← s/chunksize[2] /* number of chunks for the loop j */2

for ci← 0 to iteri− 1 do3

for cj ← 0 to iterj − 1 do4

for bi← 1 to chunksize[1] do5

for bj ← 1 to chunksize[2] do6

i← ci× iteri + bi7

j ← cj × iterj + bj8

l ← Taddrδ,δ′ [i, j]9

BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]10

end11

end12

end13

/* if s not divisible by chunksize[2] */
for bi← 1 to chunksize[1] do14

for j ← iterj × chunksize[2] to s do15

i← ci× iteri + bi16

l ← Taddrδ,δ′ [i, j]17

BHδ+δ′(c)[l]← BHδ+δ′(c)[l] + BHδ(a)[i]×BHδ′(b)[j]18

end19

end20

end21

Function fmafull(BHδ(a), BHδ′(b), Taddrδ,δ′ , chunksize, BHδ+δ′(c))
Compute the full fused multiplication-addition using the addressing table
and cache blocking technique
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Benchmark of the cache blocking technique

Factor of the reduction of the execution time for the product of two 
homogeneous blocks in 8 variables of degree 7

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

G5 processor

 0  100  200  300  400  500  600  700  800  900  1000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1
Core2 duo processor

 0  100  200  300  400  500  600  700  800  900  1000
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Benchmark of the cache blocking technique

Factor of the reduction of the execution time of the product of two 
homogeneous blocks in 8 variables of degree 9
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Benchmarks

s× (s + 1) with s = (1 + x + y + z + t + u)14

CAS representation time (s)
Ginac 1.3.2 tree 4137
Maple 10 DAG 2899.70
Singular 3.0.2 list 144.27
Maxima 5.9.2 recursive list 443.95
Mathematica 5.2 tree 766.65
TRIP 0.99 recursive vector 13.50
TRIP 0.99 recursive list 12.85
TRIP 0.99 flat vector 28.10
TRIP 0.99 homogeneous blocks (with initialization) 5.44

(after initialization) 0.57
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Effect of the sparsity of the polynomials
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full product VxV with different representations

CAS representation time (s)
Maple 10 DAG 345.08
Mathematica 5.2 tree 149.63
TRIP 0.99 recursive vector 2.91
TRIP 0.99 recursive list 2.32
TRIP 0.99 flat vector 1.97
TRIP 0.99 homogeneous blocks (with initialization) 2468.10

(after initialization) 2403.45
TRIP 0.99 compacted homogeneous blocks (with initialization) 17.07

(after initialization) 15.11
TRIP 0.99 d’alembert blocks (with initialization) 22.55

(after initialization) 8.55
TRIP 0.99 compacted d’alembert blocks (with initialization) 11.01

(after initialization) 1.25

 The serie V has 3052 terms and the result has 227453 terms

d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 7

V (λ, λ′, X,X, Y, Y ,X ′, X ′, Y ′, Y ′) =
∑

Xd1X
d2

Y d3Y
d4

X ′d5X ′d6
Y ′d7Y ′d8eı(k1λ+k2λ′)
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full product VxV for different degrees
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Karatsuba's algorithm

Idea : one multiplication could be avoided for polynomial of degree 1

we need to perform 3 multiplications and 4 additions 
instead of 4 multiplications and 1 addition.

could be applied recursively to polynomials of degree 2k-1

complexity O(n1.59)

Let A and B polynomials

A(X) = a0 + a1X and B(X) = b0 + b1X

The naive multiplication C = AB is

C(X) = a0b0 + (a0b1 + a1b0)X1 + a1b1X
2

But the coefficient of X1 could be written as

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1
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Karatsuba's algorithm

4.4. MULTIPLICATION USING DFT AND FFT 51

But the coefficient of X1 could be written as

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1

This algorithm requires only 3 multiplications instead of 4 for the brut-force algorithm
but requires more additions. As the multiplication is much slower than the addition, the
execution time will be reduced. This method could generalized to any degree and this
algorithm could be applied recursively.
Let A and B polynomials of degree n− 1 and the integer n is even, n = 2k. We rewrite
A and B as

A(X) = A(0) + A(1)Xk and B(X) = B(0) + B(1)Xk

A(0), A(1), B(0) and B(1) have a degree at most k − 1. The product C = AB could be
written as

C(X) = A(0)B(0) + (A(0)B(1) + A(1)B(0))Xk + A(1)B(1)X2k

The previous improvement could be applied recursively to the coefficient of Xk until
k is equal to 0. The Karatsuba’s multiplication algorithm 11 performs the product
of two polynomials of degree 2k. Depending of the relative speed of the addition and
the multiplication of the coefficients, the recursive call could be stopped before. A
generalization of the karatsuba algorithm to any degree is available in [33].

Karatsuba’s multiplication could be computed at most in 9nlog23 or O(n1.59) opera-
tions [12].

Algorithm 11: Compute the full product of two polynomials A and B using the
Karatsuba’s multiplication algorithm

Input: A : polynomial of degree at most n− 1 with n = 2k for k ∈ N
Input: B : polynomial of degree at most n− 1
Output: C : polynomial

if n = 1 then return C ← AB
C1 ← A(0)B(0) by a recursive call
C2 ← A(1)B(1) by a recursive call
C3 ← A(0) + A(1)

C4 ← B(0) + B(1)

C5 ← C3C4 by a recursive call
C6 ← C5 − C1 − C2

C ← C1 + C6Xn/2 + C2Xn

return C

4.4 multiplication using DFT and FFT

Optimized algorithms using the Discrete Fourier Transform and Fast Fourier transform
could be used but they are only efficient for degree large 10000. These algorithms won’t
be discussed here. The FFT multiplication requires at most O(n log n) operations.
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Truncated product

Univariate polynomials

Multivariate polynomials

• keep the term 

if 

• if truncation is performed only on some variables,
truncated variables must be ordered

(a0 + a1X + ... + anXn + O(Xn))
⊗

(b0 + b1X + ... + bnXn + O(Xn))
=

(c0 + c1X + ... + cnXn + O(Xn))

aiX
d1
1 Xd2

2 ...Xdn
n

⊗
bjX

d′
1

1 X
d′
2

2 ...X
d′

n
n

d1 + d′
1 + d2 + d′

2 + ... + dn + d′
n ≤ T



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Truncated product on polynomials stored as recursive list 
Function fmatruncated(A,B,C, T) Compute the truncated fused multiplication-addition
C = C + A×B with A,B and C multivariate polynomials represented as recursive list
Input: A: polynomial { list of ( coefficients a , degree δa) }
Input: B: polynomial { list of ( coefficients b , degree δb) }
Input: C: polynomial { list of ( coefficients c , degree δc)}
Input: T : degree of the truncation
Output: C: polynomial { list of ( coefficients c , degree δc)}
if variable of A is truncated then1

iter ← head of C2

foreach element in A such that δa ≤ T do3

/* avoid to scan to C when the loop on B is finished */
iterb← iter4

foreach element in B such that δa + δb ≤ T do5

/* find after iterb in C if the degree δa + δb is present */
while current degree δc referenced by iterb < δa + δb do6

iterb← next element after iterb7

end8

if δc = δa + δb then9

fmatruncated (a, b, c, T − δa + δb)10

if c = 0 then remove the element referenced by iterb11

else12

insert an element (multruncated (a, b, T − δa + δb), δa + δb) just before iterb13

end14

if current element is the first element of B then15

iter ← iterb16

end17

end18

end19

else20

fmafull (A,B,C)21

end22
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Truncated product on homogeneous blocks 

Let 

Truncated product on the total degree

• use the full product of 2 homogeneous blocks

• use less addressing tables than for the full product

A =
∑

BHδ(a) , B =
∑

BHδ(b)

C = A
⊗

B =
T∑

δ=0

BHδ(c) with BHδ(c) =
δ∑

n=0

BHn(a)×BHδ−n(b)
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Truncated product - benchmarks 
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Perform the product of two Poisson series 
but we only want to keep terms which have specific values
for k1 and k2

e.g.,                    , we want only terms such that            and

very easy for the recursive representation if the series are 
correctly ordered.

Special truncated product in degree

S =
∑

aiX
d1
1 Xd2

2 ...Xdn
n expı(k1λ+k2λ′)

k1 = 0 k2 = 0S1 × S2 = S
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Special truncated product on magnitude

Algorithm 1: Compute the truncated product of the series A and B in the amplitude of
their coefficients
Input: A: serie

∑
aixi ordered by decreasing amplitude

Input: B: serie
∑

bixi ordered by decreasing amplitude
Input: ε0: thresold > 0
Output: C: series C = AB with all coefficients greater than ε0

C ← create an empty polynomial
foreach coefficient ai such that |aib0| ≥ ε0 do

foreach coefficient bj such that |bj | ≥ ε0/|ai| do
C ← C + aibjxi+j

end
end
return C

                                                      is kept if 

brut-force method

order the series on the magnitude of the coefficient ?

aiX
d1
1 Xd2

2 ...Xdn
n ⊗ bjX

d′
1

1 X
d′
2

2 ...X
d′

n
n |aibj | ≥ ε0



Advanced School on Specific Algebraic Manipulators, 2007, © M. Gastineau, ASD/IMCCE/CNRS

Special truncated product on magnitude

Let a variable ε, and a small parameter ε′
0 such that ε′

0
p = ε0 with p ∈ N.

Each coefficient ai of the serie A(x) could be written as

ai = a′
ix

iεk with k = " log |ai|
log ε′

0

# and a′
i =

ai

ε′
0
k

A′(ε, x) =
∑

k

(
∑

j

a′
jx

j)εk

A(x) = A′(ε′
0, x)

The truncated product A(x) ⊗ B(x) on the amplitude of the coefficient is transformed to a
truncated product A′(ε, x)

⊗
B′(ε, x) on the variable ε.

The degree of truncation is p.
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Special truncated product in amplitude58 CHAPTER 4. MULTIPLICATION

source code

s1 =(1+0.05∗x ) ˆ 3 ;
s2 =(1+0.04∗x ) ˆ 4 ;
/∗ i n t roduce the va r i ab l e eps in s1 and s2 ∗/
s1e=se r ep s ( s1 , eps , 0 . 1 ) ;
s2e=se r ep s ( s2 , eps , 0 . 1 ) ;
/∗ de f i n e the t runcature on amplitude to ( 0 . 1 ) ˆ2 ∗/
t r =({eps , 2} ) ;
use t ronc ( t r ) ;
/∗perform the product ∗/
s3e=s1e ∗ s2e ;
/∗ remove the va r i ab l e eps from s3e ∗/
s3=inv s e r ep s ( s3e , eps , 0 . 1 ) ;

Execution of the previous source code by trip
s1(x) = 1 + 0.15*x + 0.0075*x**2 + 0.000125*x**3
s2(x) = 1 + 0.16*x + 0.0096*x**2 + 0.000256*x**3 + 2.56E-06*x**4
s1e(x,eps) = 1 + 0.15*x + 0.75*x**2*eps**2 + 0.125*x**3*eps**3
s2e(x,eps) = 1 + 0.16*x + 0.96*x**2*eps**2 + 0.256*x**3*eps**3 + 0.256*x**4*eps**5

tr = ( { eps, 2 } )

s3e(x,eps) = 1 + 0.31*x + 0.024*x**2 + 1.71*x**2*eps**2 + 0.264*x**3*eps**2
s3(x) = 1 + 0.31*x + 0.0411*x**2 + 0.00264*x**3

Table 4.6: Source code and execution by TRIP of the truncated product of two series
s1 and s2 on the amplitude of the coefficients. S3 contains the result of this product.

A′(ε, x) =
∑

k

(
∑

j

a′
jx

j)εk

A(x) = A′(ε′
0, x)

The truncated product A(x) ⊗ B(x) on the amplitude of the coefficient is transformed
to a truncated product A′(ε, x)

⊗
B′(ε, x) on the variable ε. The degree of truncation is

p. So all terms with a degree less or equal than p are kept. The check will be performed
on the degree p which is faster than the check on the absolue value of the coefficients.

The example 4.6 performs the product on the amplitude of the series s1(x) = (1 +
0.05x)3 and s2(x) = (1 + 0.04x)4 with a thresold 0.01.


