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Abstract

We rigorously construct a variety of orbits for certain delay differential equations, including the
electrodynamic equations formulated by Wheeler and Feynman in 1949. These equations involve de-
lays and advances that depend on the trajectory itself, making it unclear how to formulate them as
evolution equations in a conventional phase space. Despite their fundamental significance in physics,
their mathematical treatment remains limited.

Our method applies broadly to various functional differential equations that have appeared in
the literature, including advanced/delayed equations, neutral or state-dependent delay equations, and
nested delay equations, under appropriate regularity assumptions.

Rather than addressing the notoriously difficult problem of proving the existence of solutions for all
the initial conditions in a set, we focus on the direct construction of a diverse collection of solutions.
This approach is often sufficient to describe physical phenomena. For instance, in certain models, we
establish the existence of families of solutions exhibiting symbolic dynamics.

Our method is based on the assumption that the system is, in a weak sense, close to an ordinary
differential equation (ODE) with “hyperbolic” solutions as defined in dynamical systems. We then
derive functional equations to obtain space-time corrections.

As a byproduct of the method, we obtain that the solutions constructed depend very smoothly on
parameters of the model. Also, we show that many formal approximations currently used in physics
are valid with explicit error terms. Several of the relations between different orbits of the ODE persist
qualitatively in the full problem.
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1. Introduction

We consider the problem of finding trajectories x : R Ñ Rn solving an equation of the form:

9xptq “ f ˝ xptq ` εP pt, xt, ε, µq, (1)

where f : Rn Ñ Rn is a smooth function (possibly only defined on an open subset in Rn), ε a perturbative
parameter, µ an additional parameter, P : R ˆ Rr´h, hs ˆ p0, 1q2 Ñ Rn is a smooth map. Here, R is a
space of differentiable functions which will be specified later. The notation xt is a “history segment” of
size h ě 0 of the solution which is defined as:

xtpsq
def
“ xpt` sq, s P r´h, hs. (2)

The term P changes the nature of (1) for ε ‰ 0. Hence, in spite of having the small parameter ε, the
perturbation is not small. Even for common delays

9xptq “ f ˝ xptq ` εxpt´ 1q,

the natural phase space for ε ‰ 0 is infinite dimensional, but for ε “ 0 it is just Rn. Our result can also
deal with equations like 9xptq “ f ˝ xptq ` ε 9xpt´ 1q which makes the unboundedness even more apparent.

We will take solutions of (1) for ε “ 0 which are “hyperbolic” in the sense of dynamical systems (see
Definition 2.1) and show that one can find solutions that resemble them after corrections (both in the
positions occupied and the speed of travel) when ε ‰ 0. This allows to show that the equations (1) contain
sets of solutions that support symbolic dynamics.

In Section 4.3, we formulate the precise regularity assumptions on P . We anticipate that, roughly,
the main assumptions are that applying P to functions with ℓ ` 1 derivatives produce functions with ℓ
derivatives and that there are some Lipschitz bounds in C0 when the arguments lie in spaces of smooth
functions.

A case that served as a motivation for us is electrodynamics of point charges. See Section 7.6. In the
model of [WF49], the particles move in the Liénard-Wiechert potentials (relativistic analogues of Coulomb-
Ampere formulas) generated by the other particles. This leads to advanced/delayed equations with several
delays which are obtained solving implicit equations that involve the trajectories. Given the physical
importance of these equations, there have been several results establishing existence of solutions in the
literature, mainly in the one dimensional case (see later). Other models of electrodynamics (notably several
versions of the Post-Newtonian formalism) can be accommodated. The results here provide existence of
various solutions for all of them and allow to discuss how approximate are the solutions. We note that
the effect of the delays/advances are formally of size inversely to the speed of light, 1{c, which is much
larger than radiation effects that are of size p1{cq3.

Our results also cover other cases in the literature in which the perturbation is clearly singular.
Including for an arbitrary ϑ P Rr´h, hs,

• P pt, ϑ, ε, µq “ g ˝ ϑp0q, an ODE perturbation as P
`

t, xt, ε, µ
˘

“ g ˝ xptq;

• P pt, ϑ, ε, µq “ ϑp´1q, a perturbation with a constant delay as P
`

t, xt, ε, µ
˘

“ xpt´ 1q;

• P pt, ϑ, ε, µq “ 1
εf ˝ ϑp´εq ´ 1

εf ˝ ϑp0q, the small delay system 9xptq “ f ˝ xpt´ εq;

• P pt, ϑ, ε, µq “ ϑ ˝ r ˝ ϑp0q, a state-dependent delay perturbation as P
`

t, xt, ε, µ
˘

“ xpt` r ˝ xptqq;

• P pt, ϑ, ε, µq “ ϑ˝ r ˝ϑ˝ r1 ˝ϑp0q containing nested delays as P
`

t, xt, ε, µ
˘

“ xpt` r ˝xpt` r1 ˝xptqqq;

• P pt, ϑ, ε, µq “ p ddsϑqp0q, an implicitly defined ODE as P
`

t, xt, ε, µ
˘

“ 9xptq;

• P pt, ϑ, ε, µq “ p ddsϑqp´1q, a neutral equation with a constant delay as P
`

t, xt, ε, µ
˘

“ 9xpt´ 1q;
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• P pt, ϑ, ε, µq “ ϑ ˝ r ˝ p ddsϑqp0q, a first order neutral equation as P
`

t, xt, ε, µ
˘

“ xpt` r ˝ 9xptqq;

• P pt, ϑ, ε, µq “ ϑ ˝ τptq containing an explicit time-dependent delay as P
`

t, xt, ε, µ
˘

“ xpt` τptqq;

• P pt, ϑ, ε, µq obtained by solving an implicit equation of ϑ, e.g. (60) in electrodynamics;

• a bounded time-dependent map P , so that we have a non-autonomous perturbation;

• P pt, ϑ, ε, µq “ ϑp´1q ` ϑp´2q ` ϑp`1q, a perturbation containing several delays or advances.

In the theory of delay differential equations (DDE’s) with constant delay, it is customary to take
R to be the space of continuous functions, whereas here we find it useful to consider spaces of more
differentiable functions so that the functional P can involve first derivatives (neutral equations) or more
complicated forms. Note that we are considering “history segments” that include both the past and the
future of the trajectory so that our theory works just as well for delayed, advanced, or mixed expressions.
The value h will by default belong to r0,`8q even if some existence results may hold for h “ 8. The
assumption h ă 8 seems to be essential for the local uniqueness and for the a-posteriori results.

1.1 Informal main results

Our results show that, if equation (1) admits a set consisting of uniformly hyperbolic solutions (see
Definition 2.1) when ε “ 0, under appropriate regularity assumptions on the functional P , equation (1)
admits a set of solutions which are close to the hyperbolic solutions of the ODE as long as ε is small
enough. Our result is similar to structural stability interpreted in the functional analysis formulation of
the perturbed problem (1), see Theorem 4.8. We stress that our approach does not need to discuss the
phase space of solutions to solve any possible initial value problem of (1), what we do is to search for
solutions with a specific structure. In this work we look for solutions of a form based on the uniformly
hyperbolic solution of the ODE. We consider a space of functions xptq of a specific form and formulate
equations which imply that such x satisfies (1).

The above strategy bypasses the study of general existence, uniqueness and dependence on initial
conditions of the solutions. The solutions of (1) we construct could fail to be surrounded by other
solutions. This strategy was used already in [HdlL17, HDlL16, HY20, YGdlL21, YGdlL22]. We also
note that the equations considered are numerically well conditioned and can be implemented to produce
approximate solutions.

The existence of hyperbolic sets (collections of hyperbolic orbits) in differential equations is a rather
common situation. Notably, existence of a transverse homoclinic intersections implies the existence of a
uniformly hyperbolic set (the horseshoe) which has a very rich dynamics including an uncountable set
of hyperbolic orbits described by symbolic dynamics. Other famous attractors (Lorenz, Rössler, Chua,
. . . ) have also been documented. These attractors include uniformly hyperbolic sets. Our results imply
that all these uniformly hyperbolic sets persist when we add a perturbation with a sufficiently small
parameter. The perturbations allowed are very general and include perturbations that are singular from
a conventional point of view. See an informal presentation in Theorem 1.1. A precise formulation is in
Theorem 4.8.

We call attention to [LW95] which uses Poincare returns to establish persistence of hyperbolic sets
in C1 perturbations of Functional Differential Equations that generate a C1 evolution. In [LWW16],
existence of chaotic motion was established for an SDDE analyzing the evolution and finding an analogue
of Shilnikov phenomenon. In [WZ05], the authors focused on small constant delay perturbations of an
ODE and obtained persistence of topological horseshoes. In contrast, the present method is not based on
analysis of evolution and applies to advanced/delayed equations that do not define any evolution. Indeed,
we do not need to study regularity properties of the evolution and not even the space where evolution is
defined (which may involve the study of solution manifolds).
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We also call attention to the papers [HBC`16] and [CHK17]. These papers use numerics and bifur-
cation analysis to study singularly perturbed state-dependent delay equations, where they also find that
state-dependence of the delays can generate very complex dynamics. We think it would be interesting to
reformulate our fixed point problems so that they could validate the new solutions found and, specially
the bifurcation point (where hyperbolicity is lost).

We are not assuming many properties of the hyperbolic sets beyond requiring that the hyperbolic-
ity constants are uniform (sometimes called Pesin sets [BP13] in non-uniform hyperbolic theory). The
hyperbolic sets we considered may fail to be closed or maximal.

The proofs are rater explicit and the sizes of the perturbations allowed are computable in concrete
examples. (Some related calculations were achieved in [GLMY23].)

One downside of the program presented here is that, by design, we cannot discuss properties of the
evolution for all initial data. Nevertheless, one could remark that, even in the qualitative theory of ODE’s
one often relies only on developing landmarks that organize the behavior of all the solutions. The analogue
of the qualitative theory in our program would be to develop a theory indicating that solutions of a certain
kind imply the existence of others. In that respect, we hope to come back to the study of stable manifolds
and the study of existence of symbolic dynamics from some finite calculations.

Another downside of the present treatment is that we are constrained by the regime of solutions close
to the solutions of the ODE’s. It is well known that many of the equations we study will have many
solutions which do not resemble the solutions of the ODE. Nevertheless, in physical applications (e.g.
motions of charged particles) the delays are small so that the effects of the delay are small and hard to
observe. (This is why relativity was only discovered in the XX century).

Our results will apply to the space of functions that are finitely differentiable with finite norm in a
segment, namely r´h, hs, where h ą 0 is the domain of the “history segment”. Notice that if we have
a finite differentiable function x : r´h̃, h̃s Ñ Rn in a slightly bigger history segment, h̃ ą h, then the
function xt in (2) is defined for all t P r´ph̃ ´ hq, h̃ ´ hs. Therefore, we can apply functionals to all xt in
an open interval of t.

To give in a glimpse of the precise main result on this paper (see Theorem 4.8), let us first provide an
informal result omitting many precise formalism: The result shows that under a mild set of hypotheses
on the perturbation, the system (1) has solutions nearby the hyperbolic orbit of the unperturbed ODE
and such solution will be unique in a suitable neighborhood.

Theorem 1.1 (informal result). We consider perturbation of an ODE as in (1) and let ℓ ě 0 be an
integer. Assume that:

1. The unperturbed ODE admits a solution tx0ptqutPR which is uniformly hyperbolic, see Definition 2.1.

2. The function f is uniformly bounded as well as its derivatives up to order ℓ` 3 in a δ-neighborhood
of the orbit tx0ptqu.

3. The perturbation functional P in (1) satisfies “propagated bounds” (i.e. when xt ranges in a ball in
a space of Cℓ`2 functions, P lies in a ball of Cℓ`1 functions).

4. The functional P is Lipschitz in a low regularity, i.e. for all u and v in a Cℓ`2 ball and all t and s,
there are constants B1, B2 such that

|P pt, u, µq ´ P ps, v, µq| ď B1|t´ s| `B2}u´ v}C1 .

Then there is an ε0 ą 0 such that for all |ε| ď ε0, there exist differentiable maps pxε : R Ñ Rn and
ϕε : R Ñ R such that pxε is in Cℓ`1, Dϕε is in Cℓ, and

xptq “ px0 ` pxεq ˝ ϕεptq (3)

is a Cℓ`1 solution of (1). Moreover, if (1) depends smoothly on parameters in an appropriate sense, so
does the new solution x.
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The informal Theorem 1.1 is slightly different from the formal (see Theorem 4.8). We simplified the
statement to avoid introducing Cℓ`Lip spaces and we did not include some technical considerations. All
of these are discussed in Theorem 4.8 along with the a-posteriori formulation. We also omitted several
properties that are used to prove smooth dependence on parameters, see Section 4.3.1.

Remark 1.2 (on perturbative regularity loose). Note that we are allowing that the functional P appearing
as a perturbation looses one derivative, which means P may have one derivative less than its second
argument. This will be key to apply the result to neutral differential equations and to equations with
small delay.

Remark 1.3 (on unknown corrections). We have two unknowns in our existence problem: px acting as an
additive space correction term and ϕ as a time reparametrization correction term. Both of them depend
on the perturbative parameter ε and their regularity properties are derived from a fixed point scheme.
Indeed, we will write an equation where xptq in Theorem 1.1 is a solution and arrive at a fixed point
problem after manipulation.

Remark 1.4 (on further conclusions). As a consequence of the fixed point method, we are able to formulate
and prove that the solutions we build in the perturbative system depend smoothly on parameters. The
parameters can be in the unperturbed ODE or in the perturbative map. Moreover, after a mild change of
hypotheses, we will also see how the solution can admit an exponential derivative growth, see Section 6.1.

Remark 1.5 (on interesting applications). Among the applications of our theorem, a particular case is
when the perturbed equation is another ODE. The results on persistence of such solutions were studied
originally in [Ano69] and later in [Mos69]. We, however, obtain smooth dependence on parameters, which
is not true for the formulation in the above references. The formulation we use is slightly different and
follows more closely the formulation in [dlLMM86, Appendix A], which also obtained smooth dependence
on parameters for the objects considered (the objects considered in [dlLMM86] are roughly, inverses of
the objects considered in [Ano69, Mos69]).

Remark 1.6 (on details from previous works). In previous papers [YGdlL21, YGdlL22], we formulated
the results in an a-posteriori format, meaning that if we start with an initial guess of the correction whose
error is small enough, then the theorems conclude that there is a true solution nearby. The a-posteriori
formulation is suitable for performing computer-assisted proofs (the approximate solution is produced by a
numerical calculation and the needed estimates are verified using a computer by taking care of truncation
and round-off error) [GLMY23]. Here the a-posteriori formulation will be more delicate. Indeed, we will
use a different norm to obtain contractions and the a-posteriori argument will be valid on segments of
times t, see Section 5.5.

This paper has similarities with [YGdlL22] in that we seek both an embedding and an inner dynamics.
However, this paper is significantly more difficult.

The main reason is that, given any vector field in the circle, there is a change of variables that reduce
it to a constant, so that, in [YGdlL22] the inner dynamics was just a number. In the present case, vector
fields in the line cannot, in general, be reduced to constants (or even be approximated well by periodic;
take for example, vector fields who oscillate between two values over longer and longer intervals).

Hence in the present case, rather than dealing with just a number, we have to deal with an infinite
dimensional unknown that, furthermore appears in the functional equations as a composition on the right.

If we apply the formalism in this paper to the case of periodic solutions, we will obtain a periodic
vector field X, not necessarily constant as it happens when one applies the formalism of [YGdlL22].
Furthermore, the formalism in [YGdlL22] does not satisfy the normalizations (16).

1.2 Organization of the Paper

In Section 2, we describe precisely the assumptions on the unperturbed system. The main part is the
(rather standard) definition of hyperbolic orbits, which we use to set the notation. We also present a
characterization of the invariant bundles.
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Section 3 presents the formalism we use to describe the solutions of perturbed system. We present
class of functions we will consider, and perform manipulations to derive a functional equation (called
invariance equation, see (27), (29) whose solutions give solutions of (1) when substituted in (3)). As
it turns out, this invariance equation has symmetries under changes of variables and we also present
normalization conditions that lead to unique solution.

Section 4 is devoted to completing the formulation of the fixed point problem, specifying the fixed
point operator, its domain and range, and the rigorous formulation of the main result, Theorem 4.8.

In Section 5, we present the proof of Theorem 4.8 starting with an overview of the strategy. Section 6
contains results not explicitly covered in the main formulation which require cumbersome notations.

Finally, Section 7 provides examples of physical interest where our results apply. In particular, it
includes the case in which the delay is small and the motions of charged particles with electromagnetic
interactions.

2. The unperturbed ODE

When ε “ 0, the unperturbed system (1) is an autonomous ODE. We assume that such a system has a
uniformly hyperbolic solution tx0ptqutPR, see Definition 2.1.

First, we recall that the variational equation (or equation of variation) of the unperturbed ODE (1),
around a solution tx0ptqutPR, is the time-dependent linear equation,

9ξptq “ Df ˝ x0ptqξptq, (4)

where ξptq P Rn has the heuristic meaning of small deviations from the baseline trajectory. The linear
equation (4) has a family of fundamental matrix solutions tUpv; tquv,tPR such that:

d

dv
Upv; tq “ Df ˝ x0pvqUpv; tq, Upt; tq “ Idn, (5)

where Idn denotes the n ˆ n identity matrix. Note that due to the existence and uniqueness of the
variational equations, we have

Upv; tq “ Upv, sqUps; tq. (6)

2.1 Uniformly hyperbolic solutions of an ODE and their quality measures

In this section, we present Definition 2.1. The starting point of Theorem 4.8 is precisely that we have a
solution of the unperturbed problem satisfying Definition 2.1. We note that this definition has qualitative
aspects called “quality measures of the hyperbolicity”. The ranges of perturbation parameters that are
allowed depend on the values of these numbers.

It is well known that these uniformly hyperbolic orbits often appear together in hyperbolic sets (e.g.
horseshoes, Lorenz attractor, etc.) but the quality measures may deteriorate as we consider orbits in the
attractors. This is also common in the theory of non-uniformly hyperbolic sets.

Definition 2.1 (Uniformly hyperbolic solution of an ODE). Let tx0ptqutPR be a solution of the unper-
turbed system (1). We say that tx0ptqutPR is uniformly hyperbolic if, and only if, it satisfies:

i.) For each t P R, there exists a decomposition of the tangent space at x0ptq,

Rn – Tx0ptqRn “ Ect ‘ Est ‘ Eut , (7)

such that

i.a) Ect “ Spantf ˝ x0ptqu has dimension nc “ 1.
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i.b) Est and Eut have dimensions ns and nu respectively. Thus, n “ 1 ` ns ` nu.

i.c) Eσt depends on t continuously for σ P tc, s, uu.

Moreover, the forward (resp. backward) semiflow of the variational equation is contractive on Est
(resp. Eut ). More precisely, the fundamental matrices tUpv; tquv,tPR in (5) admit center, stable, and
unstable families of linear operators

tU cpv; tquv,tPR, U cpv; tq : Ect Ñ Ecv,

tU spv; tquv,tPR, U spv; tq : Est Ñ Esv ,

tUupv; tquv,tPR, Uupv; tq : Eut Ñ Euv ,

satisfying for σ P tc, s, uu,

d

dv
Uσpv; tq “ Df ˝ x0pvqUσpv; tq, Uσpt; tq “ Id|Eσ

t
, (8)

where Id|Eσ
t
denotes the identity operator restricted to the linear subspace Eσt .

ii.) There exist CU , λs, λu ą 0 such that

|U spv; tq| ď e´λspv´tqCU v ě t,

|Uupv; tq| ď eλupv´tqCU v ď t,
(9)

where | ¨ | is the operator norm.

iii.) There exists CΠ ą 0 such that

sup
tPR

}Πσt } ď CΠ, σ P tc, s, uu, (10)

where Πσt : Rn Ñ Eσt denotes the projection corresponding to the splitting (7).

In particular, for the center direction projection, for any given vector V P Tx0ptqRn, there exists AV P R

ΠctV “ AV f ˝ x0ptq.

Definition 2.2 (Quality measures of Uniformly Hyperbolic orbit). The quantities CU , CΠ, λs, and λu
appearing in Definition 2.1 are referred to as quality measures of the hyperbolic solution tx0ptqutPR.

Remark 2.3 (on the variational on the Eσt ). The ODE’s in (8) are understood as equations for operators
on Rn. In particular, the restriction of Id on Eσt must be interpreted using the injection from Eσt to Rn
for σ P tc, s, uu.

Remark 2.4 (on the projections). The projections Πσt in Definition 2.1 may not be orthogonal projections
on the space and they depend on the decomposition, e.g., Πst could change if Eut changes even if Est
remains fixed.

The constant CΠ can be interpreted as the inverse of a measure of the angles between the spaces in
the decomposition (7).

Remark 2.5 (on hyperbolic regularity). We have formulated Definition 2.1 including continuous depen-
dence of the bundles on the base point along the orbit to keep compatibility with the standard definitions
of normally hyperbolic manifolds in [Fen72, HPS77].

These references show that, when the vector field is Cr and bounded and the hyperbolicity is uniform,
then the continuous splittings are actually Cr´1. We will provide the details in the formal result section.
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Remark 2.6 (on the quality measures). Note that the quality measures CΠ and CU depend on the metric
used. In the theoretical literature on hyperbolic systems, it is standard to define a metric (and modify
slightly the exponents of contraction) called adapted metric so that CΠ “ CU “ 1 and the center, stable,
and unstable directions are orthogonal. This adapted metric is equivalent to the original one. Some
rigorous proofs get simplified by using the adapted metric.

Nevertheless, we do not use an adapted metric in this work for several reasons. The use of adapted
metric would be confusing for us since the formulas for state-dependent delays are affected by the metric
as well. Moreover, the strength of the perturbations allowed in this paper depends on the values of the
quality measures and the sizes of the derivatives of the perturbations. Changing the metric would require
measuring the properties of the perturbing function in the adapted metric.

Besides, the use of an adapted metric also obscures the study of phenomena that happen in the
boundary of hyperbolicity. Notably [HdlL06, HdlL07] identified numerically a boundary of hyperbolicity
characterized by CΠ blowing up (the angle between the splittings going to zero) while the exponents of
contraction remain uniformly bounded away from zero.

2.2 Infinitesimal characterization of the invariant bundles of a hyperbolic orbit

It will be useful for us to characterize trajectories in Eσt for σ P tc, s, uu as solutions of ODE’s. In
Lemma 2.7, we use Uσp0; tq to connect ξptq P Eσt with Eσ0 . This gives an infinitesimal characterization of
the invariant bundles.

Lemma 2.7 (Bundle Characterization). Let tx0ptqutPR be a uniformly hyperbolic orbit and let σ P ts, c, uu.
If f is differentiable enough (at least C1), then ξptq P Eσt if, and only if,

1. ξp0q P Eσ0 ; and

2. 9ξptq “ Df ˝ x0ptqξptq ` aptq with aptq P Eσt .

Proof. ñq Let αptq “ Uσp0; tqξptq or, equivalently, ξptq “ Uσpt; 0qαptq. Note that αptq P Eσ0 for all t
and consequently 9αptq belongs to Eσ0 as well. By taking derivatives we obtain

9ξptq “ Df ˝ x0ptqξptq ` Uσpt; 0q 9αptq.

Thus, aptq
def
“ Uσpt; 0q 9αptq P Eσt .

ðq By the variation of parameters formula,

ξptq “ Uσpt; 0qξp0q `

ż t

0
Uσpt; sqapsq ds.

And by the invariance of the σ-space; i.e. Uσpt; sqEσs “ Eσt , then ξptq P Eσt .

2.3 Uniformly Hyperbolic Set

Definition 2.8 (Uniformly Hyperbolic Set). We say that a set Σ Ă R ˆ Rn is a uniformly hyperbolic set
when there exist constants CΠ, CU , λs, and λu so that all the orbits in the set Σ are uniformly hyperbolic
with the above constants as quality measures.

If the hyperbolic sets considered lie in a subset of Rn, we just need to assume that the derivatives of
the vector field f is uniformly bounded in a suitable open set containing the hyperbolic set (it needs to
contain all balls of a certain radius centered within the hyperbolic set).

One interesting example is the Lorenz attractor. The Lorenz equations are not bounded in the whole
space, but they are bounded in a neighborhood of the Lorenz attractor. The Lorenz attractor is not
uniformly hyperbolic but it contains many uniformly hyperbolic sets to which our theory applies.
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We do not assume that the set Σ has any particular structure. In particular, we do not need that the
set is closed nor that it is locally maximal, assumptions that are very common in the theory of hyperbolic
systems.

Remark 2.9 (Translation Invariance). By the uniqueness of solutions of ODE, we can identify an orbit
with its initial condition. If an orbit txptqu is hyperbolic, by definition, so are all the translates txpt` τqu

and they have the same quality measures. Hence, when considering a hyperbolic set for an ODE, we can
identify the set of hyperbolic trajectories with a set in Rn invariant under the flow.

Remark 2.10 (Loss of invariance). When the perturbation P is time-dependent, then the translation
invariance of hyperbolic solutions may be lost. For the applications to state-dependent delay or advance
equations, where the phase space is not clear, there is no easy way to identify the space of solutions with
the space of initial conditions. Hence, for our goal in this paper, it is better to think of a hyperbolic set
as a collection of trajectories rather than as a set of initial conditions.

Remark 2.11. In the standard theory of uniformly hyperbolic sets, it is natural to consider the splittings
along a trajectory txptqu not as functions of the time, but as functions of the base point. It is a standard
result in hyperbolic systems [Ano69, KH95, FH19] that the stable and unstable bundles depend on the
base point in a Hölder way.

For reasons indicated in Remark 2.10, we, instead, choose to study the splittings as functions of time.
We will be able to prove some regularity from the space of trajectories of the unperturbed system to
the space of trajectories of the perturbed system. The regularity is somewhat technical since it involves
weighted spaces.

3. Construction of perturbative solutions

In this section, we introduce the main idea of our result. We will describe the geometric motivations
and the manipulations needed to transform the problem considered into a fixed point problem. We
postpone a precise discussion of the regularity assumptions and other sophistication. Indeed, those precise
assumptions are motivated to make the arguments in this section work.

Of course, readers interested only in precise formulations can move directly to Section 4 and use the
present section as a reference for the notations we introduce.

The formalism we present resembles the proof of structural stability for Anosov Flows, which involves
a reparametrization of time and a geometric change of the trajectories. These are the two main ideas we
apply. Nevertheless, in contrast with many proofs of the structural stability, the reparameterization and
the corrections are done differently for each trajectory and we formulate a different functional equation
for each trajectory. As mentioned before, given the fact that the functional equations we need involve the
composition operator, several formally equivalent equations may have different analytic properties. We
have carefully chosen a formulation that leads to smooth dependence on parameters.

3.1 Form of the correction

Let tx0ptqu be a uniformly hyperbolic orbit of the unperturbed system in (1), then for ε ‰ 0 we consider
a solution of (1) close to tx0ptqu of the form

xptq “ px0 ` pxq ˝ ϕptq, (11)

where px “ Opεq and Dϕptq “ 1 ` Opεq are the correcting unknowns. The term ϕ encodes the internal
dynamics of the new solution while px is the displacement from x0. Note that the form (11) is reminiscent
of the Anosov Shadowing Theorem using the functional analysis approach, see Remark 1.5.

We formulate functional equations (invariance equations) for the unknown pairs px : R Ñ Rn and
ϕ : R Ñ R. These equations require that xptq in (11) is a solution of the equation (1). We then solve the
invariance equations by fixed point methods using geometric assumptions on tx0ptqu.
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We find it more convenient to use the unknown vector field X

9ϕptq “ X ˝ ϕptq, (12)

associated to ϕ instead of ϕ itself, since the invariance equations are simpler in terms of X. It is clear
that given ϕ we can obtain X by taking derivatives. Conversely, given X, we can recover ϕ using the
differential equation (12). After a normalization condition that sets ϕp0q “ 0, see Section 3.2, we see that
if X is C1, which implies that we can solve the ODE uniquely for all time, a flow ϕ : R Ñ R is determined.
Therefore, we can consider X and ϕ as equivalent unknowns. Although, of course, the natural function
spaces for them are different. Going from ϕ to X involves a loss of derivative, but going from X to ϕ
gains a derivative. We have collected some of these subtleties in Lemma 5.4.

From here, we adopt the convention that X and ϕ are related as indicated above in (12). When there
is a need to discuss the dependence of ϕ on X, we will write

ϕ “ SrXs, (13)

to indicate that ϕ is the solution of (12) with a fixed initial condition. We refer to S as the solution
operator. The operator is defined for C1 vector fields. If X is bounded away from zero, SrXs will be a
diffeomorphism on R.

To find a locally unique pair pX, pxq from the invariance equations, we require appropriate normaliza-
tions, see Section 3.2 later on. As a consequence of that uniqueness, we will be able to discuss smooth
dependence on parameters around the initial orbit tx0ptqu. However, since we are dealing with functions
defined on the whole line, this will involve some subtleties.

The strategy of invariance equations treated by functional analysis is very different from the strategy
based on defining an evolution in a space of functions associated to (1) and finding hyperbolic solutions.
Notably, we start by fixing the form, (11), and finding functions of this form that satisfy (1). There
are cases where invariant objects of systems without globally defined solutions have been studied [dlL09,
CdlL20] and we will use some of the techniques developed there.

We also note that the invariance equations in this strategy can be studied numerically or using formal
expansions. Numerical treatments of the equations for periodic orbits and their stable manifolds in simple
models were done in [GYdlL21]. An interesting problem is to extend the above numerical methods for
periodic solutions to the solutions with arbitrary time dependence considered here.

3.2 Non-Uniqueness of the parametrization and normalization conditions

The expressions in (11) is underdetermined. There are many representations of the same function xptq
using different unknown pairs. Indeed, given a solution pϕ, pxq for the invariance equations and any
diffeomorphism w of R,

xptq “ ppx0 ` pxq ˝ wq ˝ pw´1 ˝ ϕqptq

“
`

x0 ` px0 ˝ w ´ x0 ` px ˝ wq
˘

˝ pw´1 ˝ ϕqptq,
(14)

provides another choice pψ, pyq
def
“ pw´1 ˝ ϕ, x0 ˝ w ´ x0 ` px ˝ wq for the solution.

The underdeterminacy (14) can be avoided by imposing normalizations that simplify the treatment
and lead to local uniqueness of the solution. We choose two normalizing conditions:

px ˝ ϕptq P Esϕptq ‘ Euϕptq, (15)

ϕp0q “ 0. (16)

Of course, the fact that (15) and (16) are good normalizations will become apparent when we show that
we can find locally unique solution of the invariance equations satisfying them.

The heuristic reason for (15) is that adding a component of px in the direction of the flow is roughly
equivalent to adjusting ϕ, which can be seen from (14) and x0 ˝ w ´ x0 « x1

0pw ´ Idq. Meanwhile, (16)
can be justified by choosing the origin of t in the reference line.
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3.3 Formulation of the functional equations characterizing a solution of (1)

To derive functional equations for the unknowns pX, pxq, we substitute (11) into (1), yielding

Xpϕptqqpx0 ` pxq1pϕptqq “ f ˝ px0 ` pxq ˝ ϕptq ` εPrpx0 ` pxq ˝ ϕ, ε, µsptq, (17)

where ϕ “ SrXs as in (13), and 1 denotes the derivative, and P is a functional operator. Explicitly,

Pru, ε, µsptq
def
“ P pt, ut, ε, µq, (18)

where P is the perturbative map in (1).
Note that we are using that Xpϕptqq is a number, so that we can put the product by it either as a

prefactor or as a postfactor as would come from the chain rule.

Now, we start to rewrite the equation (17) separating the small terms. We first consider the linear
approximation of the vector field f along the hyperbolic orbit x0 of the ODE

f ˝ px0 ` pxq ˝ ϕptq “ f ˝ x0 ˝ ϕptq ` Df ˝ x0 ˝ ϕptqpx ˝ ϕptq ` T rx0, pxspϕptqq,

where

T rx0, pxspϕptqq
def
“ f ˝ px0 ` pxq ˝ ϕptq ´ f ˝ x0 ˝ ϕptq ´ Df ˝ x0 ˝ ϕptqpx ˝ ϕptq (19)

is the remainder of the first order Taylor expansion.

Using (19), equation (17) is rewritten as

Xpϕptqqpx1pϕptqq “ p1 ´X ˝ ϕptqqf ˝ x0 ˝ ϕptq ` Df ˝ x0 ˝ ϕptqpx ˝ ϕptq

` T rx0, pxspϕptqq ` εPrpx0 ` pxq ˝ ϕ, ε, µsptq.
(20)

We apply the time change ρ “ ϕptq, add and subtract XpρqDf ˝ x0pρqpxpρq in (20) to obtain

Xpρqpx1pρq “ XpρqDf ˝ x0pρqpxpρq ` p1 ´Xpρqqf ˝ x0pρq ` BrX, pxspρq ` εφrX, pxspρq (21)

where for typographical reasons, we introduce B to capture the “quadratically” small terms, i.e.

BrX, pxspρq
def
“ p1 ´XpρqqDf ˝ x0pρqpxpρq ` T rx0, pxspρq, (22)

and φ to represent the term from P,

φrX, pxspρq
def
“ Prpx0 ` pxq ˝ ϕ, ε, µspϕ´1pρqq “ P

`

ϕ´1pρq, ppx0 ` pxq ˝ ϕqϕ´1pρq, ε, µ
˘

. (23)

Remark 3.1. Note that φ depends on px, ϕ, x0, the perturbation P , the perturbative parameter ε, and the
parameter µ in equation (1). By using ϕ “ SrXs in (13), we consider φ as a functional which produces
a function from R to Rn given the vector field X and the deformation px. To simplify the notation, we
denote φrX, pxs without writing explicitly other dependencies.

We first consider the center direction of equation (21) to obtain equation (24). Then we use the
uniform hyperbolicity of x0 and the normalization px “ pxs ` pxu in (15) to derive (25) and (26). Thus, by
Lemma 2.7, (21) is equivalent to the following three equations and that the initial conditions of (25) and
(26) are in the corresponding bundles:

0 “ Πcρp1 ´Xpρqq ¨ f ˝ x0pρq ` Πcρ
`

BrX, pxspρq ` εφrX, pxspρq
˘

, (24)

ppxsq1pρq “ Df ˝ x0pρqpxspρq ` Πsρ
1

Xpρq

`

BrX, pxspρq ` εφrX, pxspρq
˘

, (25)

ppxuq1pρq “ Df ˝ x0pρqpxupρq ` Πuρ
1

Xpρq

`

BrX, pxspρq ` εφrX, pxspρq
˘

. (26)
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Our goal is to transform (24)–(26) into a fixed point equation for the unknowns pX, pxq. We will define
operators Γεc, Γ

ε
s, and Γεu of X and px whose fixed point solves (24)–(26).

The operator Γεc comes from isolating Xpρq in (24). More explicitly,

Xpρq “ ΓεcrX, pxspρq
def
“ 1 `

@

Πcρ
`

BrX, pxspρq ` εφrX, pxspρq
˘

, f ˝ x0pρq
D

xf ˝ x0pρq, f ˝ x0pρqy
, (27)

where x¨, ¨y denotes the inner product in Rn.
To solve equations (25) and (26), we apply the variation of parameters formula on the bundles respec-

tively and take appropriate limits. The procedure is very similar to the method of [Per29, Cot11] in the
study of invariant manifolds. Note that, although we are not considering invariant manifolds here, our
ideas can be compared to those used for studying normally hyperbolic invariant manifolds.

We first obtain that for ρ0 ě ρ ě ´ρ0,

pxspρq “

ż ρ

´ρ0

U spρ; vqΠsv
1

Xpvq

`

BrX, pxspvq ` εφrX, pxspvq
˘

dv ` U spρ;´ρ0qpxsp´ρ0q,

pxupρq “ ´

ż ρ0

ρ
Uupρ; vqΠuv

1

Xpvq

`

BrX, pxspvq ` εφrX, pxspvq
˘

dv ` Uupρ; ρ0qpxupρ0q.

(28)

Using the bounds (9) on the evolution operators U s{Uu and assuming that pxs and pxu are bounded (or
that if they grow, the growth rate is less than λs, λu respectively, we let ρ0 Ñ `8 and have

pxspρq “ ΓεsrX, pxspρq
def
“

ż ρ

´8

U spρ; vqΠsv
1

Xpvq

`

BrX, pxspvq ` εφrX, pxspvq
˘

dv,

pxupρq “ ΓεurX, pxspρq
def
“ ´

ż `8

ρ
Uupρ; vqΠuv

1

Xpvq

`

BrX, pxspvq ` εφrX, pxspvq
˘

dv.

(29)

Alternatively, one could check that Γεs and Γεu defined in (29) indeed satisfy the equations (25)–(26).
Let us provide the details for the stable case: Taking derivatives w.r.t. ρ in ΓεsrX, pxspρq and using the
fundamental theorem of calculus

d

dρ
ΓεsrX, pxspρq “ U spρ; ρqΠsρ

1

Xpρq

`

BrX, pxspρq ` εφrX, pxspρq
˘

`

ż ρ

´8

Df ˝ x0pρqU spρ; vqΠsv
1

Xpvq

`

BrX, pxspvq ` εφrX, pxspvq
˘

dv

“ Πsρ
1

Xpρq

`

BrX, pxspρq ` εφrX, pxspρq
˘

` Df ˝ x0pρqΓεsrX, pxspρq.

To justify the derivative under the integral sign, we observe that the integrand decays exponentially. The
previous derivation is a standard argument going back to [Cot11, Per29] and it has the advantage showing
that (29) is the only solution of the differential equations (25)–(26) with growth rate smaller than λs,u
and, in particular, bounded. In addition, we observe that given the exponential bounds for U s and Uu

in (9), if BrX, pxs and εφrX, pxs are bounded, the pxs and pxu produced in (29) are bounded and in the
corresponding bundles.

Note that to solve (25) and (26), we are not specifying any initial condition for pxs or pxu explicitly,
only that the solutions are uniformly bounded by an exponential of time. Indeed, these boundedness
requirement fixes the initial condition for (25) and (26): if we specified an initial condition not in the
trajectories (29), we would obtain exponential growth solutions with a rate λu or λs and in particular
unbounded.

4. Precise formulation

In this section, we introduce the function spaces and revisit the construction in Section 3.3 with precise
formulation. We also provide our main result, see Theorem 4.8.
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4.1 The operator

We consider an operator Γε depending on the perturbative parameter ε and whose inputs are:

I1) A non-zero vector field X in R (whose flow is ϕ “ SrXs);

I2) A stable correction pxs to the uniformly hyperbolic orbit x0; and

I3) An unstable correction pxu to the uniformly hyperbolic orbit x0.

The operator Γε has outputs:

O1) A new vector field Y “ ΓεcrX, px
s, pxus in R, and hence its flow ψ “ SrY s given by the initial value

problem
d

dt
ψptq “ Y ˝ ψptq, ψp0q “ 0;

O2) A new stable correction pys “ ΓεsrX, px
s, pxus to the orbit x0; and

O3) A new unstable correction pyu “ ΓεurX, pxs, pxus to the orbit x0.

Note that in both input and output cases, one could write the unknown orbit correction as a sum of stable
and unstable corrections due to (7) and (15). Indeed, px “ pxs ` pxu and since the operators Γεs and Γεu
make the corrections on the stable and unstable bundles respectively, the output py satisfies py “ pys ` pyu

as well.

We define the operator Γε with components, i.e.

Γε ”

¨

˝

Γεc
Γεs
Γεu

˛

‚.

The operator Γε acts on a function space X , which will be exhaustively detailed in Section 4.2.

Remark 4.1 (Alternatives to the fixed point operator). The operator Γε admits alternative versions, for
instance, using the corrected vector field Y instead of X in Γεs and Γεu. There are similar variations with
the other updated expressions as well.

All these alternative operators may have a convergence impact in a numerical implementation. Nev-
ertheless, to prove the existence and uniqueness of the fixed point, the Γε defined here will give easier
inequalities that otherwise can be bounded by simple triangle inequalities.

4.2 The spaces considered

As usual for fixed point problems, one tries to get both existence and uniqueness of fixed point. We look
for fixed points of the operator Γε in a product space X of finitely differentiable maps. The existence
results become better when considering a space of more differentiable functions, while the uniqueness
results will be better for a bigger space with lower regularity.

The following definitions, although standard, set the notation for the statement of our main results,
see Section 4.3.

4.2.1 Spaces of Lipschitz differentiable functions

Let ℓ ě 0 be a fixed integer, let I Ă R be an open interval, and let D be the differential operator. The space
CℓpIq denotes the space of functions defined on I, that are ℓ times differentiable, extend continuously to
the closure of I, denoted by I, and whose derivatives are bounded. More precisely,

CℓpIq “ CℓpI,Rnq
def
“

$

’

&

’

%

g : I Ñ Rn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g is ℓ times continuously differentiable in I,
the derivatives extend continuously to I, and
}g}Cℓ

def
“ max

0ďjďℓ

␣

sup
xPI

|Djgpxq|
(

ă `8

,

/

.

/

-

,
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where | ¨ | denotes a norm in Rn. By our definition, the space CℓpIq is a Banach space for each ℓ. If
the domain or range of the functions are understood, we will suppress it from the notation. We use the
identity D0 “ Id and define C0 as the set of continuous functions with bounded C0-norm.

We denote the space Cℓ`Lip as a subspace of Cℓ containing functions whose ℓ-th derivative is Lipschitz,
and we endow the space with the } ¨ }Cℓ`Lip norm. Explicitly,

Cℓ`LippIq “ Cℓ`LippI,Rnq
def
“

␣

g P CℓpI,Rnq : }g}Cℓ`Lip
def
“ max

␣

}g}Cℓ ,LippDℓgq
(

ă `8
(

.

The Cℓ`Lip space is useful for us as it is the C0 closure of the Cℓ`1 space.
The Lipschitz constant has some properties that we summarize in the following (known) lemma:

Lemma 4.2. Let f, g be continuous maps with finite Lipschitz constant and let λ be a scalar. Then

1. Lippf ` gq ď Lippfq ` Lippgq;

2. Lippλfq ď |λ|Lippfq;

3. Lippfgq ď Lippfq}g}C0 ` }f}C0 Lippgq ď 2}f}C1}g}C1; and

4. Lippf ˝ gq ď LippfqLippgq.

Given c “ pc0, . . . , cℓ, c
Lip
ℓ q P Rℓ`2

` , we denote the ball centered at l P Cℓ`Lip with radius c as

Bℓ`Lip
c plq

def
“

␣

g P Cℓ`Lip : |Djpg ´ lq| ď cj for j “ 0, . . . , ℓ and LippDℓpg ´ lqq ď cLipℓ
(

. (30)

We will use a similar notation for a ball in Cℓ space by Bℓ
cplq. If l is zero, we will sometimes omit the

center and write Bℓ
c.

The following straightforward lemma states that the Cℓ space is a Banach algebra by our definition.
With Lemma 4.2, we get that Cℓ`Lip is also a Banach algebra.

Lemma 4.3. The space Cℓ is a Banach algebra:

1. f P Bℓ
cf

and g P Bℓ
cg implies f ` g P Bℓ

cf`cg ;

2. λ P R and g P Bℓ
c implies λg P Bℓ

|λ|c; and

3. f P Bℓ
cf

and g P Bℓ
cg implies fg P Bℓ

c̃ with c̃ only depending on cf and cg.

Proof. 1. and 2. are straightforward. We define

c̃j
def
“

j
ÿ

k“0

ˆ

j

k

˙

cf,kcg,j´k

so that 3. is true by Leibnitz rule.

Hölder space and interpolation inequality For the a-posteriori formulation of our main theorem,
we briefly recall the standard notion of Hölder spaces and state the interpolation inequalities in Cr spaces
[Ste70] (A short proof of the interpolation inequalities valid in domains in Banach spaces can be found in
[dlLO99]).

Given α P p0, 1q, the Hölder space C0,αpIq is the set of functions g P C0 such that the Hölder semi-norm

rgsC0,α “ rgsC0,αpIq
def
“ sup

x,yPI
x‰y

|gpxq ´ gpyq|

|x´ y|α
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is finite. Note that for α “ 1, this semi-norm is exactly the Lipschitz constant. Similarly, given k ě 0 an
integer, the Hölder space Ck,α is defined by

Ck,α “ Ck,αpIq
def
“
␣

g P CkpIq : }g}Ck,α
def
“ maxt}g}CkpIq, rD

kgsC0,αpIqu ă `8
(

.

In particular, Ck,1 ” Ck`Lip. Notice that this yields the space inclusions

C8 Ă ¨ ¨ ¨ Ă C2 Ă C1`Lip Ă C1,α Ă C1 Ă CLip Ă C0,α Ă C0.

It is then common to define the Cr space when r ą 0 is not an integer. That is, Cr
def
“ Ck,α where

r “ k ` α, k being an integer and α P p0, 1q.

The space Cr admits interpolation inequalities. We now quote the result (omitting domain assump-
tions) from [Kol49, Had98, dlLO99] which states that if 0 ď r ă t and g P Ct, then there is a constant
Mr,t ą 0 such that

}g}Cθr`p1´θqt ď Mr,t}g}θCr}g}
1´θ
Ct ,

for any θ P r0, 1s. This is equivalent to consider s P pr, tq and µ
def
“ t´s

t´r and rewrite the inequality as

}g}Cs ď Mr,t}g}
µ
Cr}g}

1´µ
Ct . (31)

An interesting remark for the applications is that the unit ball in Ck,αra, bs where k P N, 0 ă α ď Lip,
´8 ď a, b ď 8 is compact (and therefore closed) in the C0 topology.

Arzela-Ascoli theorem shows that the ball is precompact, and we also have that Dkun converges
uniformly and are uniformly Cα, then the limit is also Cα with the same constant.

4.2.2 Contraction space for time-dependent perturbation

When the perturbation in (1) depends on time in a bounded manner, we need to bound the difference of
time reparametrizations, that is, to bound flows for two vector fields. Hence, for some fixed η ą 0, we
introduce the Razumikhin norm for continuous functions on an open interval I Ă R, which is defined as

Cη “ CηpI,Rnq
def
“

#

g : I Ñ Rn is continuous : }g}Cη “ }g}η
def
“ sup

ρPI
|gpρq|e´η|ρ| ă `8

+

. (32)

The parameter η will eventually be chosen to ensure that the operator Γε is a contraction. Note that
}g}Cη ď }g}C0 for all g P Cη. Moreover, under some assumption on η, the operator S in (13) can be
bounded as:

}SrXs ´ SrY s}Cη ď c}X ´ Y }C0 ,

for a constant c depending on η and the bound for the Lipschitz constants of the vector fields X, Y . This
is formally proved in the following Lemma 4.4.

Lemma 4.4. Let ϕ and ψ be flows of the vector fields X and Y in R in a ball BLip
pt0,t1q

p1q respectively with

zero initial condition at zero. If t0 P p0, 1q and η ą t1 ą 0, then

|ϕpρq ´ ψpρq|e´η|ρ| ď
}X ´ Y }C0

epη ´ t1q
.

Proof. Let us define the solution operator of the ODE 9ϕ “ X ˝ ϕ generated by vector field X as

ΥXpϕqpρq “

$

’

’

’

’

&

’

’

’

’

%

ż ρ

0
X ˝ ϕpsq ds ρ ě 0

´

ż ´ρ

0
X ˝ ϕp´sq ds ρ ă 0.
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We define operator ΥY similarly. Let rϕ : R Ñ R be another function. Then, for ρ ă 0 (and similarly for
ρ ě 0),

|ΥXpϕqpρq ´ ΥXprϕqpρq|e´η|ρ| ď eηρ
ż ´ρ

0
|X ˝ ϕp´sq ´X ˝ rϕp´sq| ds ď eηρ LippXq

ż ´ρ

0
|ϕp´sq ´ rϕp´sq| ds

ď }ϕ´ rϕ}η LippXqeηρpe´ηρ ´ 1q ď
LippXq

η
}ϕ´ rϕ}η.

Thus, if η ą t1 ě maxtLippXq,LippY qu, then ΥX and ΥY are contractions.

Given ΥY pψq “ ψ a fixed point, the a-posteriori estimates for ΥY says:

}ϕ´ ψ}η ď

ˆ

1 ´
t1
η

˙´1

}ϕ´ ΥY pϕq}η.

Now for ρ ă 0 (and again similarly for ρ ě 0)

|ϕpρq ´ ΥY pϕqpρq|e´η|ρ| ď eηρ
ż ´ρ

0
|X ˝ ϕp´sq ´ Y ˝ ϕp´sq| ds ď eηρ

´ηρ

η
}X ´ Y }C0 .

By taking supremum and using the fact that sup
uă0

´euu “ sup
uě0

e´uu “ e´1, we conclude that

}ϕ´ ψ}η ď

ˆ

1 ´
t1
η

˙´1 1

ηe
}X ´ Y }C0 .

Interpolation inequality The Cη space also admits interpolation inequalities based on the Cr inter-
polation inequalities for functions defined on finite intervals. Indeed, given g : ra, bs Ñ Rn, we have

}g|ra,bs}Cη ď }g|ra,bs}C0 ď eηmaxt|a|,|b|u}g|ra,bs}Cη .

Therefore, when r “ 0, we can rewrite the interpolation inequality (31) with } ¨ }η, yielding

}g|ra,bs}Cp1´θqt ď M0,t }g|ra,bs}
θ
C0}g|ra,bs}

1´θ
Ct ď M0,t e

ηθmaxt|a|,|b|u }g|ra,bs}
θ
Cη

}g|ra,bs}
1´θ
Ct .

This interpolation property will be used in the a-posteriori formulation of the main result, see Theorem 4.8
for a formal formulation and Section 5.5 for a detailed discussion.

4.2.3 The operator space for Γε

The operator Γε takes values from a space X , which is the product space of three spaces, one for each
input of the operator, endowed with the product norm.

The first input of the operator is the vector field X which corrects along the tangent direction of
the orbit. We consider a ball centered at 1 of functions R Ñ R that are ℓ times differentiable, with ℓ-th
derivative Lipschitz, that is, X P B

ℓ`Lip
t p1q for t P Rℓ`2

` . We will see in Lemma 5.4 that the flow ϕ “ SrXs

gains one regularity.

The other two inputs will be taken in a ball centered at the origin of functions R Ñ Rn that are ℓ` 1
times differentiable, with pℓ ` 1q-th derivative Lipschitz, i.e., let pxs P B

ℓ`1`Lip
s and pxs P B

ℓ`1`Lip
u for

s, u P Rℓ`3
` . Because of the normalization (15), px “ pxs ` pxu unequivocally, therefore px P B

ℓ`1`Lip
s`u .

Then, the space for Γε-inputs consists in product of balls:

pX, pxs, pxuq P X “ X ℓ
t,s,u

def
“ B

ℓ`Lip
t p1q ˆ Bℓ`1`Lip

s p0q ˆ Bℓ`1`Lip
u p0q. (33)

By construction, the center projection’s range can always be identified with R, while the stable and
unstable projection ranges are elements in Rn belonging to subspaces of ns and nu dimension respectively,
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see Definition 2.1 and Remark 2.4. Therefore, the ball Bℓ`Lip
t lies in the space of functions R Ñ R, while

the other two balls in X are for functions R Ñ Rn. Note that the space X is closed under C0-norm.

To fix the notations, we specify the components of the vectors t, s, and u appearing in X :

t
def
“ pt0, . . . , tℓ, t

Lip
ℓ q P Rℓ`2

` ,

s
def
“ ps0, . . . , sℓ, sℓ`1, s

Lip
ℓ`1q P Rℓ`3

` ,

u
def
“ pu0, . . . , uℓ, uℓ`1, u

Lip
ℓ`1q P Rℓ`3

` .

(34)

These constants in (34), jointly with the perturbative parameter ε, are the ones that we will constrain in
a finite set of inequalities to ensure that the operator Γε, defined in Section 4.1, maps X into itself and is
contractive for some distance.

Remark 4.5 (on the special constant t0). There is a crucial requirement on the value t0 to be in the
interval p0, 1q by Lemma 5.4.

Remark 4.6 (on the absence of the delay in the space definition). We stress that because we are considering
a special type of solutions (uniformly hyperbolic solutions) under perturbation, we are able to consider a
special space of functions that is not affected by any delay or functional information of the perturbative
map P . In particular, the constant h ą 0 in the “history domain” does not even enter in the space
where we apply the fixed point approach as long as the perturbative hypotheses (Hε1)–(Hε2), discussed
in Section 4.3, hold.

Remark 4.7 (on the regularity). The fact that X belongs to a space with one degree of regularity less than
the other functions grants hypothesis (Hε1) in Theorem 4.8. This allows us to consider perturbations P
that lose one derivative, a property that will be exploited in the applications, see Section 7. Notably,
that property enables the study of neutral equations, equations with small delays and the equations of
Wheeler-Feynman electrodynamics.

4.3 The main results

We establish the main results that, under appropriate hypotheses, the operator Γε in Section 4.1 has a
fixed point which is locally unique. Then by the construction of Γε in Section 4, this fixed point will be
a solution of (1) under the functional perturbation.

The result has two sets of hypotheses: a first set, (H01)–(H02), concerning the unperturbed orbit; and
a second set, (Hε1)–(Hε2), on the perturbation P . The existence of a solution is ensured by (Hε1) and
its uniqueness by (Hε2).

As indicated in Section 5.1, the only things to check are the fact that the operator Γε map a smooth
ball into itself and that it is a contraction in low regularity for all functions in such a smooth ball. We
will show that this follows from some simple hypothesis on (1) and we will verify the hypotheses of
Theorem 4.8 in concrete examples of interest. Of course, for each of the models, one could formulate the
operator Γ directly and verify the propagated bounds and the low regularity contraction.

Theorem 4.8. We consider the differential equation (1). Let ℓ ě 0 be an integer, and µ0 P R a fixed
parameter. Assume that the unperturbed system satisfies:

H01) There is a uniformly hyperbolic solution tx0ptqutPR, see Definition 2.1.

H02) The function f is Cℓ`2`Lip and bounded away from zero in a δ-neighborhood of the orbit tx0ptqutPR.

Assume that the perturbative map P : R ˆ Cℓ`1`Lippr´h, hs,Rnq ˆ p0, 1q2 Ñ Rn in (1) defines the
operator

P: Cℓ`1`LippR,Rnq ˆ p0, 1q Ñ Cℓ`LippR,Rnq, Pru, εsptq
def
“ P pt, ut, ε, µ0q

such that:
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Hε1) For all ε P p0, 1q, u P Cℓ`1`LippR,Rnq, t P R,
ˇ

ˇ

ˇ

ˇ

dj

dtj
Pru, ε, µsptq

ˇ

ˇ

ˇ

ˇ

ď CjFjp}u}Cj`1q j “ 0, . . . , ℓ, and Lip

ˆ

dℓ

dtℓ
Pru, ε, µs

˙

ď CLip
ℓ FLip

ℓ p}u}Cℓ`1`Lipq,

where the constants C’s are positive and the functions F ’s are continuous and increasing on R.

Then there exists ε0 P p0, 1q such that for all ε P p0, ε0q, there are differentiable maps ϕ and px such that
Dϕ is in Cℓ`Lip, px is in Cℓ`1`Lip, and

x
def
“ px0 ` pxq ˝ ϕ (35)

is a Cℓ`1`Lip solution of (1).

Moreover, if the history value h ă `8 and P also satisfies

Hε2) For all ε P p0, 1q, u1, u2 P Cℓ`1`LippR,Rnq, and t, s P R, there are constants L1 and L2 such that

|Pru2, εspsq ´ Pru1, εsptq| ď L1|s´ t| ` L2}u2s ´ u1t }C1pr´h,hsq.

Then there exists ε1
0 ď ε0 such that the maps ϕ and px in (35) are locally unique for all ε P p0, ε1

0q.

Furthermore, if (Hε1)–(Hε2) hold, we obtain a-posteriori result. Given an initial guess pXp0q, px
s
p0q
, pxu

p0q
q

with errors

Ec
def
“ ΓεcrXp0q, px

s
p0q, px

u
p0qs ´Xp0q, Es

def
“ ΓεsrXp0q, px

s
p0q, px

u
p0qs ´ pxsp0q, Eu

def
“ ΓεurXp0q, px

s
p0q, px

u
p0qs ´ pxup0q,

on any bounded interval ra, bs Ă R, we have

}pX ´Xp0qq|ra,bs}Cj ď cE
ℓ`1´j
ℓ`1

η , for 0 ď j ď ℓ

}ppxσ ´ pxσp0qq|ra,bs}Cj ď cE
ℓ`2´j
ℓ`2

η , for σ “ s, u, and 0 ď j ď ℓ` 1,

where Eη
def
“ }Ec}η ` }Es}η ` }Eu}η ` }DEs}η ` }DEu}η, and the constant c depends on j, a, b, ε, x0, f , h,

P .
Alternatively, when Eη ď 1, we have that

}DjpX ´Xp0qq|p0,`8q}η ď cE
1

j`1
η , for 0 ď j ď ℓ

}Djppxσ ´ pxσp0qq|p0,`8q}η ď cE
1

j`1
η , for σ “ s, u, and 0 ď j ď ℓ` 1,

Remark 4.9. Note that from the assumptions (H01), (H02), and the theory of normal hyperbolicity, we
have that for σ P tc, s, uu, the maps ρ ÞÑ Πσρ are Cℓ`1`Lip. We will use this fact in the proof of our main
result.

Remark 4.10 (on ϕ regularity). The map ϕ in Theorem 4.8 does not belong to Cℓ`1`Lip because ϕ is not
bounded in C0, see Lemma 5.4. However, the composition px ˝ ϕ is Cℓ`1`Lip when px is Cℓ`1`Lip and Dϕ
is Cℓ`Lip.

Remark 4.11 (on the perturbative parameter). We allow the perturbative map P to depend on the
perturbative parameter ε. In some applications treated in Section 7, P is obtained by power expansion
in ε which implies that P may have higher order terms in ε. In other applications such as the small delay
case, the equation will be reformulated such that P will explicitly appear.

Moreover, notice that ε P p0, 1q is not necessarily a restriction since one can always scale the map P
or change its sign to admit other ranges of ε.
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Remark 4.12 (on the choice of regularity space). The smallness of ε depends on ℓ, therefore, the method
claims results on finite regularity only. The results on analytic regularity are false without extra hypoth-
esis, see [MPNP94, MPN11].

Note that if the equation (1) is smooth enough, once obtaining that there are C1 solutions in time,
one can use the equation (1) to bootstrap the regularity of the solution as the particular problem allows.
In some cases, one may obtain C8 solutions.

Remark 4.13 (on the a-posteriori formulation). The proofs we are going to present are constructive, hence
they can be implemented numerically. The operator concatenates several elementary operations, some of
these operations for a 2D model have been addressed in a numerical toolkit in [GYdlL21].

The formulation we adopted in Theorem 4.8 admits an a-posteriori format which states that if there is
an approximate solution, then close to it there is a true solution. A-posteriori results can be the basis of
computer-assisted proofs (CAP’s) because if one is able to estimate rigorously non-degeneracy conditions
and errors, then one concludes existence of the solution. The error verification in the approximation is a
long finite calculation taking care of round-off and truncation errors. Some cases of CAP’s have already
been used in delay equations, e.g. [GMJ17, GLMY23, SZ18].

4.3.1 Parameter dependence result

Theorem 4.8 is on the case where the parameter µ “ µ0 is fixed, while we could modify hypotheses
(Hε1)–(Hε2) easily to obtain results on smooth dependence on parameters of the solution in (35).

Indeed, with µ P p0, 1q, we view ϕ and px as maps ϕ : Rˆp0, 1q Ñ R and px : Rˆp0, 1q Ñ Rn. Therefore,
the solution is of the form

xpt, µq “ x0 ˝ ϕpt, µq ` px
`

ϕpt, µq, µ
˘

.

For smooth dependence on parameters, in the first hypothesis on the perturbation (Hε1), we need
bounds on the partial derivatives with respect to t and µ by functions of }u}Cj`1 , where the norms are
understood as the norms for u : R ˆ p0, 1q Ñ Rn. Meanwhile, the second hypothesis (Hε2) should be
changed to include the parameter as follows

|Pru2, ε, µspsq ´ Pru1, ε, µsptq| ď L1|s´ t| ` L2}u2s ´ u1t }C1pr´h,hsq,

for all µ P p0, 1q. With the changes in the hypotheses, we obtain that for small ε the solution x is jointly
Cℓ`1`Lip in t and µ.

Notice that µ P p0, 1q is not necessarily a restriction since we can apply an affine transformation to it.
Also, we can generalize our result to consider higher dimensional parameter µ with similar argument.

Proving naturally the smooth dependence on parameters is one of the advantages of our framework. In
general, the smooth parameter dependence is not trivial for solutions of SDDEs, see [HKWW06, Wal03],
and it involves extra assumptions. Nevertheless, we admit that we only search for solutions of a certain
form, as in [YGdlL21, YGdlL22].

Theorem 4.8 also applies when the parameter appears in the unperturbed system. Indeed, suppose
the unperturbed equation takes the form

9xptq “ gpxptq, µ0 ` hq.

If there is µ0 such that (H01)–(H02) are satisfied for fpxq
def
“ gpx, µ0q, then we define Q as

Qpx, hq “

ż 1

0
Dµgpx, µ0 ` σhqdσ,

and consider 9xptq “ gpxptq, µ0q`hQpxptq, hq. Since g is smooth, we can incorporate Q in the perturbative
map P of a model like (1) to satisfy the assumptions. Note that here h also becomes a perturbative
parameter. We could treat the two smallness parameters ε (for P ) and h (for Q) jointly by ε or separately
in the fixed point proof of an operator Γε.
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5. Main ingredients of the proofs

The proof involves several steps; some of them are standard bounds but others are strongly related to the
type of perturbations we consider. We will start providing a general overview of the tools and steps of
the proposed proof. In particular, we will provide a sequence of lemmas, which build up the whole proof.

5.1 Overview of fixed point arguments

Here we give some ideas on the fixed point theorems used and their variants. Following the proof strategy
of center manifold theorem in [Lan73], to obtain the conclusions it suffices to show that the operator Γε

satisfies two types of bounds:

B1. Propagated bounds, see Section 5.3;

B2. Low regularity contraction, see Section 5.4.

The propagated bounds establish that a ball B in a space of smooth functions is mapped to itself by
Γε. If moreover the operator is a contraction in a low regularity norm on B, then we conclude that there
exists a unique fixed point in the low regularity closure of the smooth ball (we will denote this by B).

The desired result of existence and uniqueness of fixed points can be established by two different
arguments.

The first argument is to appeal to a version of Schauder (see [Bre11, p. 179]).

Theorem 5.1. Let X be a Banach space, C Ă X nonempty, closed convex, K Ă C compact, Γ: C Ñ C
continuous, ΓpCq Ă K. Then, Γ has a fixed point in K.

In our applications, C “ K is a ball in a space of highly differentiable functions with domain R and
Lipschitz modulus of continuity in the highest derivative. The space X is a Banach space for functions
with domain R equipped with a low regularity norm. The fact that K is compact is a consequence of an
easy version of Arzela-Ascoli theorem since R is separable. Since C “ K is a ball, convexity is obvious.

The propagated bounds in Section 5.3 show that that ΓεpKq Ă K.

A further simplification is that, since K is compact in the low regularity topology, to prove continuity
of Γε : K Ñ K it suffices to show that the graph of Γε is closed in the low regularity topology. This is
very easy to verify.

Application of the Schauder theorem obtains the existence of fixed points using only the propagated
bounds.

The low regularity contraction shows that the fixed point x˚ is unique and provides – as we show
below – with a-posteriori bounds using interpolation inequalities.

To obtain uniqueness, we could consider using other arguments (e.g. using that two fixed points satisfy
the invariance equation or other geometric properties).

The contraction in low regularity norm has other consequences besides the uniqueness of the fixed
point.

Given a point x0 P K we obtain that Γnpx0q converges exponentially fast to x˚ in the low regularity
norm. Furthermore, because of the propagated bounds, the smooth distance between Γnpx0q and x˚

remains bounded. Using interpolation inequalities [Had98, Kol49, dlLO99], we also obtain exponential
convergence of Γnpx0q to x˚ in spaces of regularity in between. This leads to an a-posteriori result
estimating the distance between x0 and x˚ based on estimates of Γpx0q ´ x0 in spaces of low regularity.
One source of interest is that such estimates for a numerical approximation x0 can be obtained using a
computer assisted proof. In our case, there are some extra complications since some of the norms we use
are weighted norms. See Section 5.5.

A second method of proof used very often in the theory of center manifolds is to use the theorem in
[Lan73]. The method in [Lan73] uses at the same time the propagated bounds and some other argument
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to produce uniqueness of fixed points, It can be applied even when we are interested in functions whose
domain is a non-separable space (so Arzela-Ascoli requires adaptation).

There are many possible variants. For the low regularity contraction we have several choices. We
can use weighted norms (we have used the Razumikhin norms (5.4) in some cases) or contractions in any
bounded interval. The only role is to get uniqueness.

Note that we need to verify the contraction property in functions which we already know that are
smooth. A notable case which appears a lot in state dependent delays is the composition operator. Note
that we can use }u1 ˝ u2 ´ u1 ˝ ũ2}C0 ď }Du1}C0}u2 ´ ũ2}C0 if the functions are defined in a convex set,
or more generally in a balanced domain – i.e. a domain in which a multiple of the distance among two
points bounds from above the length of the shortest path joining them.

Remark 5.2 (Improving the Cr`Lip regularity in the conclusions to Cr). In this paper we formulate
existence results in Cr`Lip spaces to obtain solutions in the same regularity space.

This has the minor inconvenience that one has to present extra arguments for the last Lipschitz
regularity. The Lipschitz constants, in general do not satisfy formulas such as Faà di Bruno. When we
have an Euclidean domain, the Lipschitz constant can be approximated as limit. Therefore, we could
prove the result for Cr and add a limit argument for the Lipschitz constant in the last regularity level.

Remark 5.3 (Weaker alternative uniqueness result). The approach we adopted for Theorem 4.8 also
admits a weaker version. The propagated bounds (B1) tells us that there is pX˚, px˚q in X such that
ΓεrX˚, px˚s “ pX˚, px˚q.

The low regularity contraction step, (B2), provides the uniqueness in such a ball. It needs to prove
the contraction for all pair of elements in X . However, known already the existence we can proceed by
contradiction and only check the set of possible fixed points in X . That is, if pX˚, px˚q and pY ˚, py˚q were
two different solutions, if we prove there is κ P p0, 1q such that

d
`

pX˚, px˚q, pY ˚, py˚q
˘

ď κ d
`

pX˚, px˚q, pY ˚, py˚q
˘

, (36)

for a suitable distance dp¨, ¨q, then the solution is unique. Notice that κ can depend on ε and also that
the inequality in (36) does not need to be strict. This argument is indeed weaker since it is does not say
anything about other elements in the ball and thus it does not allow an a-posteriori formulation.

5.2 Estimates on evolution

The evolution of a one-dimensional vector field can be estimated in a completely elementary manner.
Even if they are elementary, we collect the estimates in Lemma 5.4 for the ease of reference. Note that we
cannot claim that ϕ P Cℓ because our definition of Cℓ spaces involves uniform boundedness (in particular
even the identity map is not Cℓ in our definition). Even if Id R Cℓ and ϕ R Cℓ, we can “summarize” the
lemma saying that

X ´ 1 P Cℓ ñ ϕ´ Id P Cℓ`1.

Moreover, we have that px P Cℓ`1 ñ px ˝ ϕ P Cℓ`1. For higher dimensional vector fields, the estimates are
not so strong and, in fact, even for bounded vector fields the flows can have exponential growth. This
is a reason why in this work we can only deal with hyperbolic orbits and not with Normally Hyperbolic
Invariant Manifolds.

Lemma 5.4. Let X be a Cℓ`Lip vector field in R and ϕ be its associated evolution given by 9ϕptq “

X ˝ ϕptq with initial condition ϕp0q “ 0. Define X̂
def
“ X ´ 1 and assume that X̂ P B

ℓ`Lip
t p0q with

t
def
“ pt0, t1, . . . , tℓ, t

Lip
ℓ q P Rℓ`2

` . If t0 ă 1, then

1. ϕ and ϕ´1 are strictly increasing functions.
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2. For all t and s in R,

p1 ´ t0q|t´ s| ď |ϕptq ´ ϕpsq| ď p1 ` t0q|t´ s|,

1

1 ` t0
|t´ s| ď |ϕ´1ptq ´ ϕ´1psq| ď

1

1 ´ t0
|t´ s|.

(37)

In particular, p1 ´ t0q|t| ď |ϕptq| ď p1 ` t0q|t| and 1
1`t0

|t| ď |ϕ´1ptq| ď 1
1´t0

|t|.

3. |Dj`1ϕptq| ď t̃j and |Dj`1pϕ´1qptq| ď t̂j for all j “ 0, . . . , ℓ, where t̃j and t̂j only depend on
t0, t1, . . . , tj.

4. LippDℓ`1ϕq ď t̃Lipℓ and LippDℓ`1pϕ´1qq ď t̂Lipℓ , where t̃Lipℓ and t̂Lipℓ only depend on t.

In particular, Dϕ P B
ℓ`Lip

t̃
and Dpϕ´1q P B

ℓ`Lip

t̂
.

Proof. Let us first observe that Dpϕ´1qptq “ 1
Xptq , hence ϕ

´1ptq “
şt
0

dσ
Xpσq

.

1. Since t0 ă 1, we have X ą 0, which implies the monotonicity.

2. Note that

ϕptq ´ ϕpsq “

ż t

s
X ˝ ϕpuq du.

By the assumption on X̂, we obtain 1 ´ t0 ď X ď 1 ` t0, then the first inequality in (37) is proved.
We can prove the second inequality for ϕ´1 similarly. The last argument is true since ϕp0q “ 0.

3. Clearly, |Dϕptq| ď 1 ` t0. We now prove that |DjpDϕptqq| ď t̃j for j “ 1, . . . , ℓ.

i) D2ϕptq “ DX̂ ˝ ϕptqp1 ` X̂ ˝ ϕptqq which is bounded by t1p1 ` t0q.

ii) By the Faà di Bruno Formula, we have an expression of the form

Dr`1ϕ “ DrpX̂ ˝ ϕq “
ÿ

pm1,...,mrqPNr

r
ř

j“1
jmj“r

Cm1,...,mrD
m1`¨¨¨`mrX̂ ˝ ϕ

r
ź

j“1

pDjϕqmj ,

where Cm1,...,mr ’s are combinatorial numbers. By the induction hypothesis |Dj`1ϕptq| ď t̃j for
j “ 0, . . . , r ´ 1 and triangle inequality, we prove that Dr`1ϕ is bounded by t̃r depending on
t0, t1, . . . , tr.

Since

Dr`1pϕ´1q “ Dr

ˆ

1

X

˙

, (38)

we derive that Dr`1pϕ´1qptq is bounded by a t̃r only depending on t0, t1, . . . , tr.

4. Straightforward by using Lemma 4.2.

5.3 Propagated bounds

In this section, we show that for small enough ε, we can find the parameters t, s, and u of the space X ,
see (33) and (34), so that if the inputs pX, pxs, pxuq are in the space X , then its image under Γε also lies in
X .

To reach this goal, we bound ΓεrX, pxs, pxus and its derivatives by algebraic expressions of t, s, and u in
the following Lemmas. We use basic tools like triangle inequalities and rules of differentiation, including
the Leibnitz product formula, Faà di Bruno formula, etc.

At the end of the section, we discuss the choices for the parameters t, s, and u for small enough ε.
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Lemma 5.5. Let ℓ ě 0 be a fixed integer. There are constants a0, . . . , aℓ, a
Lip
ℓ , b0, . . . , bℓ, b

Lip
ℓ such that

T rx0, pxs and BrX, pxs defined in (19) and (22) have the following bounds for all j “ 0, . . . , ℓ.

1. |DjT rx0, pxspρq| ď aj for aj’s depending on s0, . . . , sj, u0, . . . , uj, }x0}Cj , and }f}Cj`2;

2. |DjBrX, pxspρq| ď bj for bj’s depending on t0, . . . , tj, s0, . . . , sj, u0, . . . , uj, }x0}Cj , and }f}Cj`2;

3. LippDℓT rx0, pxsq ď aLipℓ and LippDℓBrX, pxsq ď bLipℓ for aLipℓ and bLipℓ depending on t, s, u, }x0}Cℓ`Lip,
and }f}Cℓ`2`Lip.

Where the norms of f are evaluated on a neighborhood of tx0ptqutPR.

Proof. This lemma is proved by using Leibnitz product formula and Faà di Bruno’s formula. By the
classical Taylor error bound,

T rx0, pxspρq “

ż 1

0

ż σ

0
D2f ˝ px0 ` spxqpρqpxpρq2 ds dσ, (39)

where we use D2f ˝px0 `spxqpρqpxpρq2 to denote the result of the bilinear operator D2f ˝px0 `spxqpρq acting
on pxpρq and pxpρq. Then, we can bound DjT rx0, pxs in terms of s0 ` u0, . . . , sj ` uj , }x0}Cj , and }f}Cj`2 .
Similarly, LippDℓT rx0, pxsq can be bounded by s, u, }x0}Cℓ`Lip , and }f}Cℓ`2`Lip .

Since
DjBrX, pxs “ Djrp1 ´XqDf ˝ x0pxs ` DjT rx0, pxs,

DjBrX, pxs is bounded by an algebraic expression of t0, . . . , tj , s0, . . . , sj , u0, . . . , uj , }x0}Cj , and }f}Cj`2 .

The operator Γε defined in Section 4.1 involves quotients. To bound the center component of Γε, we
need to assume that the vector field f is bounded away from zero on the unperturbed hyperbolic solution
tx0ptqu, i.e. there is b ą 0 such that b ď inft|f ˝ x0|u. For the stable and unstable components, we use

the fact that 1 ´ t0 ă X for X P B
ℓ`Lip
t p1q.

We use rules of differentiation, Cauchy-Schwartz inequality, and Lemma 5.5 to prove:

Proposition 5.6 (center correction). There are constants bc,j and dc,j such that for all ρ P R and
pX, pxs, pxuq P X , the operator Γεc defined in (27) satisfies

1. |ΓεcrX, px
s, pxuspρq ´ 1| ď bc,0 ` εdc,0;

2. |DjΓεcrX, px
s, pxuspρq| ď bc,j ` εdc,j and j “ 1, . . . , ℓ;

3. Lip
`

DℓΓεcrX, px
s, pxus

˘

ď bLipc,ℓ ` εdLipc,ℓ ,

where bc,j’s and dc,j’s depend on }x0}Cj , }Πct}Cj , }f}Cj`2, t0, . . . , tj, s0, . . . , sj, and u0, . . . , uj. The con-

stants bLipc,ℓ and dLipc,ℓ depend on }x0}Cℓ`Lip, }Πct}Cℓ`Lip, }f}Cℓ`2`Lip, t, s, and u.

Proof. For the first bound, we use (Hε1) and Lemma 5.5, and note that the terms involving BrX, pxs and
φrX, pxs are bounded by bc,0 and εdc,0 respectively, where

bc,0 “
CΠ}f}C0

b2

„

t0}f}C1ps0 ` u0q `
1

2
}f}C2ps0 ` u0q2

ȷ

dc,0 “
CΠ}f}C0

b2
}φrX, pxs}C0 .

Then we use (Hε1), Faà di Bruno formula, Leibnitz product formula, the quotient rule, Lemma 5.4, and
Lemma 5.5 to obtain the bounds for the derivatives of Γεc.

The operators Γεs and Γεu in (29) gain one derivative thanks to the integration, which is the reason
why we define the space X in (33) with different regularities in the components. Here we bound the
derivatives of Γεs and Γεu up to order ℓ` 1.
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Proposition 5.7 (stable and unstable corrections). There are constants bσ,k and dσ,k, σ P ts, uu, such
that for all ρ P R and pX, pxs, pxuq P X , the operators Γεs and Γεu defined in (29) satisfy

1. |ΓεσrX, pxs, pxuspρq| ď bσ,0 ` εdσ,0.

2. |DjΓεσrX, pxs, pxuspρq| ď bσ,j ` εdσ,j for j “ 1, . . . , ℓ` 1;

3. Lip
`

Dℓ`1ΓεσrX, pxs, pxus
˘

ď bLipσ,ℓ`1 ` εdLipσ,ℓ`1,

where for j ą 0, bσ,j’s and dσ,j’s depend on }x0}Cj´1, λσ, }Πσt }Cj´1, }f}Cj`1, t0, . . . , tj´1, s0, . . . , sj´1,

and u0, . . . , uj´1. Moreover, dσ,j’s also depend on sj and uj. Similarly, the constants bLipσ,ℓ`1 and dLipσ,ℓ`1

depend on }x0}Cℓ`Lip, λσ, }Πσt }Cℓ`Lip, }f}Cℓ`2`Lip, t, s, and u, where the dependence on sLipℓ`1 and uLipℓ`1 is

only for dLipσ,ℓ`1.

Proof. Note that

bσ,0 “
CΠCU

λσp1 ´ t0q

„

t0}f}C1ps0 ` u0q `
1

2
}f}C2ps0 ` u0q2

ȷ

dσ,0 “
CΠCU

λσp1 ´ t0q
}φrX, pxs}C0 .

In order to bound the derivatives of Γεσ, we use the fact that Γεσ solves the differential equation

DΓεσrX, pxs, pxuspρq “ Df ˝ x0pρqΓεσrX, pxs, pxuspρq ` Πσρ
1

Xpρq

”

BrX, pxspρq ` εφrX, pxspρq

ı

, σ P ts, uu. (40)

Then we can obtain the bounds with Faà di Bruno formula, Leibnitz product formula, the quotient rule,
Lemma 5.4, and Lemma 5.5.

It remains to show that it is possible to choose the components of t, s, and u so that Γε maps X into
itself as long as ε is small enough. As we will see, we need to choose a small t0. Without loss of generality,
we assume that t0 ď 1

2 so that 1
1´t0

ď 2 and we do not need to worry about 1 ´ t0 in the denominator.

Indeed, the zero order constants should satisfy

bc,0 ` εdc,0 ď t0,

bs,0 ` εds,0 ď s0, (41)

bu,0 ` εdu,0 ď u0.

where the left sides of the inequalities come from Proposition 5.6 and Proposition 5.7. As bc,0, bs,0, and
bu,0 being quadratic in t0, s0, and u0, we can choose small enough t0, s0, and u0 so that when ε is small
enough, the set of inequalities (41) are satisfied.

For the i-th order, the following inequalities should be satisfied.

Gicpε, t0, . . . , ti, s0, . . . , si, u0, . . . , uiq ď ti,

Gispε, t0, . . . , ti´1, s0, . . . , si´1, u0, . . . , ui´1q ď si, (42)

Giupε, t0, . . . , ti´1, s0, . . . , si´1, u0, . . . , ui´1q ď ui,

where Giσ, σ P tc, s, uu are polynomials of ε and the components of t, s, and u. Moreover, one factor in
the coefficient of ti in G

i
c is ps0 ` u0q. In order to guarantee (42), we first fix si and ui, and then choose ti.

Similar arguments hold for tLipℓ , sLipℓ`1, and uLipℓ`1. Indeed, in this process, we may have to ask for smaller
ε, s0, and u0 at each step, so we will not be able to obtain C8 result with our method in general.
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5.4 Low regularity contraction

The operator Γε defined in Section 4.1 is a contraction on X ℓ
t,s,u in (33) if there is κ P p0, 1q such that

d
´

`

ΓεcrX, px
s, pxus,ΓεsrX, px

s, pxus,ΓεurX, pxs, pxus
˘

,
`

ΓεcrY, py
s, pyus,ΓεsrY, py

s, pyus,ΓεurY, pys, pyus
˘

¯

ă κ d
´

`

X, pxs, pxu
˘

,
`

Y, pys, pyu
˘

¯

, (43)

for all pX, pxs, pxuq and pY, pys, pyuq in X ℓ
t,s,u and dp¨, ¨q a distance.

We consider the distance in a low regularity space, X ℓ
t,s,u where ℓ “ 0. The space X 0

t,s,u has informa-
tion of the vector field X, px, Dpx. Because we accept time-dependence in the perturbative map P , our
construction requires to bound the difference of backward flows associated to the center correction. More
precisely, if ϕ and ψ are flows of X and Y respectively, we need to bound ϕ´1pρq ´ ψ´1pρq. Neverthelss,
this may fail to be bounded in C0 (e.g. if the vector fields differ by a constant) but, however, it can be
bounded in Cη space for η ą 0, see (32). Therefore, we consider the distance:

d
´

`

X, pxs, pxu
˘

,
`

Y, pys, pyu
˘

¯

def
“ }X ´ Y }η ` }pxs ´ pys}η ` }pxu ´ pyu}η ` }Dpxs ´ Dpys}η ` }Dpxu ´ Dpyu}η,

where the norm } ¨ }η on R is defined by

}x´ y}η
def
“ sup

ρPR
|xpρq ´ ypρq|e´η|ρ|.

In what follows and for typographical reasons, we may just write px for ppxs, pxuq to express, for instance,
}px´ py} instead of }pxs ´ pys} ` }pxu ´ pyu}. Similarly for Dpx and Dpy.

Assuming that for pX, pxq and pY, pyq in X , we have bounds in the differences involving B defined in
(22) and φ defined in (23) as in inequalities (47) and (48). Then if 0 ă b ď inft|f ˝ x0|u, we can obtain

}ΓεcrX, pxs ´ ΓεcrY, pys}η ď
CΠ}f}C0

b2

”

pdB ` εdφq}X ´ Y }η ` pcB ` εcφq}px´ py}η ` εeφ}Dpx´ Dpy}η

ı

, (44)

and for σ P ts, uu,

}ΓεσrX, pxs´ΓεσrY, pys}η ď
2CΠCU

pλσ ´ ηqp1 ´ t0q

”

pdB`εdφq}X´Y }η`pcB`εcφq}px´py}η`εeφ}Dpx´Dpy}η

ı

, (45)

where cB, dB, cφ, dφ, and eφ are constants specified in Propositions 5.8 and 5.12. Notably, we can make
the constants cB and dB small. For the stable and unstable components of Γε, we have used the bounds
in (9). We discuss the idea for the stable one. With the Razumikhin norm, we have to bound an integral
of the form:

I1 “

ż ρ

´8

e´λspρ´vqe´η|ρ|eη|v|dv.

We consider the cases when ρ ď 0 and ρ ą 0, and obtain that I1 ď 2
λs´η for both cases, provided η ă λs.

The unstable direction could be estimated similarly when η ă λu. Therefore, we derive the estimates in
(45) when η ă mintλs, λuu.

Using the expression of DΓεσ for σ P ts, uu in (40), the differences of DΓεσ can be estimated by

}DΓεσrX, pxs ´ DΓεσrY, pys}η ď }f}C1}ΓεσrX, pxs ´ ΓεσrY, pys}η

`
CΠ

1 ´ t0

”

pdB ` εdφq}X ´ Y }η ` pcB ` εcφq}px´ py}η ` εeφ}Dpx´ Dpy}η

ı

. (46)

With the bounds in (44)–(46), we prove that the operator is a contraction if ε is small enough.

We now bound the differences in B and φ for pX, pxq and pY, pyq in Propositions 5.8 and 5.12.
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Proposition 5.8. Let B be the map defined in (22) and let X, Y be in B0
t0p1q and let px, py be in B0

s0`u0p0q.
Then there are constants cB and dB only depending on }f}C2`Lip, t0, s0, and u0 such that

|BrX, pxspρq ´ BrY, pyspρq|e´η|ρ| ď cB}px´ py}η ` dB}X ´ Y }η. (47)

Proof. B consists of two terms. The one coming from the Taylor error is bounded using the integral
formulation,

T rx0, pxspρq “

ż 1

0

ż σ

0
D2f ˝ px0 ` spxqpρqpxpρq2 ds dσ.

Hence by adding and subtracting

|T rx0, pxspρq ´ T rx0, pyspρq|e´η|ρ| ď ps0 ` u0q
`

LippD2fqps0 ` u0q ` }D2f}
˘

}px´ py}η.

The other term in B is also bounded similarly, by adding and subtracting, which ends up to the final
bound

|BrX, pxspρq ´ BrY, pyspρq|e´η|ρ| ď

ˆ

}f}C1t0 ` ps0 ` u0q
`

LippD2fqps0 ` u0q ` }D2f}
˘

˙

}px´ py}η

` }f}C1ps0 ` u0q}X ´ Y }η.

Defining

cB
def
“ }f}C1t0 ` ps0 ` u0q

`

LippD2fqps0 ` u0q ` }D2f}
˘

,

dB
def
“ }f}C1ps0 ` u0q,

we have the desired inequality. Moreover, the constants cB and dB are small if t0, s0, and u0 are small.

Remark 5.9. Notice that the smallness of cB and dB is ensured by choosing small enough t0, s0, and u0.

To bound the difference in φ, we prove two preliminary lemmas. Lemma 5.10 shows how to bound the
difference of two backward flows, which motivates our choice of Razumikhin norm. Lemma 5.11 bounds
difference of two forward flows composed with backward ones. The last result is essential for the type of
functional perturbations we are interested in.

Lemma 5.10. Let X and Y be vector fields in R in a ball B0
t0p1q with t0 P p0, 1q and let η ą 0. If

9ϕ “ X ˝ ϕ and 9ψ “ Y ˝ ψ with zero initial conditions at zero, then

|ϕ´1pρq ´ ψ´1pρq|e´η|ρ| ď
}X ´ Y }η

ηp1 ´ t0q2
.

In particular, }ϕ´1 ´ ψ´1}η ď 1
ηp1´t0q2

}X ´ Y }C0.

Proof. Since ϕp0q “ ψp0q “ 0,

ϕ´1pρq “

ż ρ

0

dσ

Xpσq
and ψ´1pρq “

ż ρ

0

dσ

Y pσq
.

Therefore

|ϕ´1pρq ´ ψ´1pρq|e´η|ρ| ď
}X ´ Y }η

p1 ´ t0q2

ż 1

0
|ρ|epσ´1qη|ρ| dσ “

}X ´ Y }η

ηp1 ´ t0q2
p1 ´ e´η|ρ|q ď

}X ´ Y }η

ηp1 ´ t0q2
.
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Lemma 5.11. Let ϕ, ψ be flows of vector fields X, Y P B
Lip
pt0,t1q

p1q respectively with zero initial conditions

at zero. For all s P r´h, hs, define

αpρ, sq
def
“ ϕpϕ´1pρq ` sq and βpρ, sq

def
“ ψpψ´1pρq ` sq.

Then there is a constant z depending on t0, t1, η, h such that

sup
sPr´h,hs

|αpρ, sq ´ βpρ, sq|e´η|ρ| ď z}X ´ Y }η.

Proof. In order to consider different signs of s P r´h, hs, we define α˘pρ, sq
def
“ αpρ,˘sq and β˘pρ, sq

def
“

βpρ,˘sq for s P r0, hs. Then

sup
sPr´h,hs

|αpρ, sq ´ βpρ, sq|e´η|ρ| “ max

#

sup
sPr0,hs

|α`pρ, sq ´ β`pρ, sq|e´η|ρ|,

sup
sPr0,hs

|α´pρ, sq ´ β´pρ, sq|e´η|ρ|

+

.

By expanding in s,

α˘pρ, sq “ ρ˘

ż s

0
X ˝ α˘pρ, σq dσ and β˘pρ, sq “ ρ˘

ż s

0
Y ˝ β˘pρ, σq dσ.

Adding and subtracting,

|α˘pρ, sq ´ β˘pρ, sq|e´η|ρ| ď

ż s

0
|X ˝ α˘pρ, σq ´ Y ˝ α˘pρ, σq|e´η|ρ| ` LippY q|α˘pρ, σq ´ β˘pρ, σq|e´η|ρ| dσ.

Notice that
ż s

0
|X ˝ α˘pρ, σq ´ Y ˝ α˘pρ, σq|e´η|ρ|dσ ď }X ´ Y }η

ż s

0
eη
“

|α˘pρ,σq|´|ρ|

‰

dσ

ď }X ´ Y }η

ż s

0
eηp1`t0qσ dσ “ }X ´ Y }η

eηp1`t0qh ´ 1

ηp1 ` t0q
.

By Grönwall’s inequality,

|α˘pρ, sq ´ β˘pρ, sq|e´η|ρ| ď et1h
eηp1`t0qh ´ 1

ηp1 ` t0q
}X ´ Y }η.

Proposition 5.12. There are constants cφ, dφ, and eφ such that for all X, Y P B
Lip
pt0,t1q

p1q and px,

py P B
1`Lip
ps0`u0,s1`u1,s2`u2q

p0q, the following inequality holds for the map φ defined in (23).

|φrX, pxspρq ´ φrY, pyspρq|e´η|ρ| ď cφ}px´ py}η ` dφ}X ´ Y }η ` eφ}Dpx´ Dpy}η. (48)

Proof. By the definition of φ and the assumption (Hε2), we have that

|φrX, pxspρq ´φrY, pyspρq| ď L1|ϕ´1pρq ´ψ´1pρq| ` L2

›

›

›

`

px0 ` pxq ˝ ϕ
˘

ϕ´1pρq
´
`

px0 ` pyq ˝ψ
˘

ψ´1pρq

›

›

›

C1pr´h,hsq
.

Using Lemma 5.10, |ϕ´1pρq ´ ψ´1pρq|e´η|ρ| is bounded by a constant multiple of }X ´ Y }η. In order to
bound the second part of the above inequality, we first consider

sup
sPr´h,hs

|px0 ` pxq ˝ ϕpϕ´1pρq ` sq ´ px0 ` pyq ˝ ψpψ´1pρq ` sq|e´η|ρ|. (49)
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Using the α, β notation from Lemma 5.11 and adding/subtracting, (49) is equivalent to

sup
sPr´h,hs

ˇ

ˇpx0 ˝ α ´ x0 ˝ βq ` ppx ˝ α ´ py ˝ αq ` ppy ˝ α ´ py ˝ βq
ˇ

ˇ

pρ,sq

ˇ

ˇe´η|ρ|.

The first and third terms are bounded using Lemma 5.11 and Lipschitz property of x0 and py. The second
term is controlled as follows

|px ˝ αpρ, sq ´ py ˝ αpρ, sq|e´η|ρ| ď eηp|αpρ,sq|´|ρ|q}px´ py}η ď eηp1`t0qh}px´ py}η.

Now we consider the derivative

d

ds

”

`

px0 ` pxq ˝ ϕ
˘

ϕ´1pρq
psq ´

`

px0 ` pyq ˝ ψ
˘

ψ´1pρq
psq

ı

“ px0 ` pxq1 ˝ αpρ, sqX ˝ αpρ, sq ´ px0 ` pyq1 ˝ βpρ, sqY ˝ βpρ, sq,

which equals to the following sum evaluated at pρ, sq by adding/subtracting

px1
0 ˝ α ´ x1

0 ˝ βqX ˝ α (L1)

` x1
0 ˝ βpX ˝ α ´ Y ˝ αq (L2)

` x1
0 ˝ βpY ˝ α ´ Y ˝ βq (L3)

` ppx1 ˝ α ´ px1 ˝ βqX ˝ α (L4)

` ppx1 ˝ β ´ py1 ˝ βqX ˝ α (L5)

` py1 ˝ βpX ˝ α ´X ˝ βq (L6)

` py1 ˝ βpX ˝ β ´ Y ˝ βq. (L7)

Each line can be bounded directly or by using Lemma 5.11. Indeed,

|(L1)pρ, sq|e´η|ρ| ď p1 ` t0qLippx1
0qz}X ´ Y }η,

|(L2)pρ, sq|e´η|ρ| ď }x0}C1eηp1`t0qh}X ´ Y }η,

|(L3)pρ, sq|e´η|ρ| ď }x0}C1t1z}X ´ Y }η,

|(L4)pρ, sq|e´η|ρ| ď p1 ` t0qps2 ` u2qz}X ´ Y }η,

|(L5)pρ, sq|e´η|ρ| ď p1 ` t0qeηp1`t0qh}px1 ´ py1}η,

|(L6)pρ, sq|e´η|ρ| ď ps1 ` u1qt1z}X ´ Y }η,

|(L7)pρ, sq|e´η|ρ| ď ps1 ` u1qeηp1`t0qh}X ´ Y }η.

Collecting all the intermediate bounds we have explicit cφ, dφ, eφ depending on }x0}C1`Lip , L1, L2, h,
η, t0, t1, s1, s2, s1, and u2.

5.5 A-posteriori results

By the propagated bounds (B1), there is a fixed point v˚ of the operator Γε. For an initial guess
v

def
“ pXp0q, px

s
p0q
, pxu

p0q
q of the fixed point method, we have

}Xp0q ´ Πcrv˚s}Cℓ`Lip ď Mc ă `8,

}pxsp0q ´ Πsrv˚s}Cℓ`1`Lip ď Ms ă `8,

}pxup0q ´ Πurv˚s}Cℓ`1`Lip ď Mu ă `8.

On the other hand, from the low regularity contraction (43) and the Banach fixed point Theorem,

dpv, v˚q ď p1 ´ κq´1dpv,Γεrvsq, (50)
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where κ is the contraction rate.
The a-posteriori formulation consists in controlling derivatives of v´ v˚ by the low regularity norm of

the initial error. If the initial error is small, this formulation assures that there is a true solution close to
such initial guess in the sense of Cj . The estimation is done using interpolation inequalities.

5.5.1 A-posteriori argument on a bounded interval

On an interval ra, bs, the inequality (50) implies

}pv ´ v˚q|ra,bs}C0 ď eδηp1 ´ κq´1dpv,Γεrvsq,

where δ “ maxt|a|, |b|u. Thus, by using the interpolation inequalities in (31), we deduce that there are
constants cc, cs, and cu such that

}pXp0q ´ Πcrv˚sq|ra,bs}Cj ď cce
δη ℓ`1´j

ℓ`1 p1 ´ κq
´

ℓ`1´j
ℓ`1 dpv,Γεrvsq

ℓ`1´j
ℓ`1 0 ď j ď ℓ,

}ppxsp0q ´ Πsrv˚sq|ra,bs}Cj ď cse
δη ℓ`2´j

ℓ`2 p1 ´ κq
´

ℓ`2´j
ℓ`2 dpv,Γεrvsq

ℓ`2´j
ℓ`2 0 ď j ď ℓ` 1,

}ppxup0q ´ Πurv˚sq|ra,bs}Cj ď cue
δη ℓ`2´j

ℓ`2 p1 ´ κq
´

ℓ`2´j
ℓ`2 dpv,Γεrvsq

ℓ`2´j
ℓ`2 0 ď j ď ℓ` 1,

where Πσrwsptq
def
“ Πσt w for σ P tc, s, uu. Note that for the stable and unstable directions, we could use

the interpolation with C1 and Cℓ`1`Lip spaces as well.

5.5.2 A-posteriori argument on semi lines

Let g : R Ñ Rn be a smooth function and define gη : R Ñ Rn as

gηptq
def
“ e´η|t|gptq “

#

e´ηtgptq t ą 0

eηtgptq t ď 0.

In general, the function gη is not differentiable at t “ 0 for η ą 0. Therefore, we provide interpolation
inequalities for t ą 0 in Cη space (recall Section 4.2.2) in the following Lemma 5.13. Similar results hold
for t ă 0.

Lemma 5.13. Let g : p0,`8q Ñ Rn be a Cℓ`Lip function (ℓ ě 0). Then

}g}Cη ď 1 implies }Djg}Cη ď cj}g}
1

j`1

Cη
,

for all j “ 0, . . . , ℓ and some constants cj’s depending on η, j, and }g}Cj`1 ( }g}Cℓ`Lip when j “ ℓ).

Proof. Let us prove the result by induction:

i.) For j “ 1, we use the interpolation inequality (31). Noticing that }gη}C0 “ }g}Cη and }g}Cη ď }g}
1{2
Cη

as }g}Cη ď 1, we have

|e´ηtDgptq| “ |Dgηptq ` ηe´ηtgptq| ď }gη}C1 ` η}g}Cη ď M0,2}gη}
1{2
C0 }gη}

1{2
C2 ` η}gη}C0

“
`

M0,2}gη}
1{2
C2 ` η

˘

}gη}
1{2
C0 .

We take c1 “ M0,2}gη}
1{2
C2 ` η, so that the proof of the case j “ 1 is done.

ii.) Assume that the result is true up to j ´ 1. By Leibnitz product formula, we have

Djgηptq “

j
ÿ

k“0

ˆ

j

k

˙

Dkpe´ηtqDj´kgptq “ e´ηt

ˆ

Djgptq `

j
ÿ

k“1

ˆ

j

k

˙

p´ηqkDj´kgptq

˙

.
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Then by induction hypotheses and interpolation inequality,

|e´ηtDjgptq| “

ˇ

ˇ

ˇ

ˇ

Djgη `

j
ÿ

k“1

ˆ

j

k

˙

p´ηqk`1Dj´kgptq

ˇ

ˇ

ˇ

ˇ

ď }gη}Cj `

j
ÿ

k“1

ak}gη}
1
k

C0

ď

ˆ

M0,j`1}gη}

j
j`1

Cj`1 `

j
ÿ

k“1

ak}gη}
1
k

´ 1
j`1

C0

˙

}gη}
1

j`1

C0 ,

for some ak involving combinatorial numbers. We let cj “ M0,j`1}gη}

j
j`1

Cj`1 `
řj
k“1 ak so that the

result for j is proved.

Then from (50) and Lemma 5.13, we conclude that for a good enough initial guess,

}DjpXp0q ´ Πcrv˚sq|p0,`8q}Cη ď ccp1 ´ κq
´ 1

j`1dpv,Γεrvsq
1

j`1 0 ď j ď ℓ,

}Djppxsp0q ´ Πsrv˚sq|p0,`8q}Cη ď csp1 ´ κq
´ 1

j`1dpv,Γεrvsq
1

j`1 0 ď j ď ℓ` 1,

}Djppxup0q ´ Πurv˚sq|p0,`8q}Cη ď cup1 ´ κq
´ 1

j`1dpv,Γεrvsq
1

j`1 0 ď j ď ℓ` 1,

where Πσrwsptq
def
“ Πσt w for σ P tc, s, uu. Similar results hold on p´8, 0q.

6. Further results

In this section, we discuss bootstrap of the regularity and non-autonomous unperturbed systems.

6.1 Estimates on the growth of higher derivatives

For ODEs, one could bootstraps the regularity of the solution: An initial value problem of an ODE, say
9yptq “ g ˝yptq with yp0q “ y0, has the property that if one is able to find a C1 solution and g is Cℓ`1, then
automatically such a solution will be Cℓ`2 for ℓ ě 0. If we considered P: Cℓ`1 Ñ Cℓ`1 in Theorem 4.8,
we would have the same bootstrap property as in ODE’s and we could first find solution in C1 space.
However, this setting would not cover applications with neutral or small delays.

Instead, we consider P: Cℓ`1 Ñ Cℓ. Therefore, we are not able to bootstrap regularity directly in this
case. Hence, the fixed point method should be performed on a suitable space up to the right regularity
level (beyond C1), see Section 4.2. Nevertheless, once the Theorem 4.8 is proved, we can bootstrap other
type of solution behaviors; solutions with exponential derivative growth.

We stress that we are looking for C1 solutions such that higher derivatives can arbitrarily grow. A
simple example is the function zptq “

şt
0 sin e

s ds, which is C1 but from the second derivative on grows
exponentially. Because we will have C1 solutions, then the perturbation P will at least be C0 (otherwise
it would not be possible to be controlled by the perturbative parameter ε).

Let us now deduce how adding some slightly different assumptions to P we can include new type of
solutions. Indeed, given a C1 solution xptq of (1), if we consider the second and third derivatives, then
we have

:xptq “ Df ˝ xptq 9xptq ` ε
d

dt
P pt, xt, ε, µq,

;xptq “ D2f ˝ xptq 9xptqb2 ` Df ˝ xptq:xptq ` ε
d2

dt2
P pt, xt, ε, µq.

If :x has an exponential growth, then it necessarily comes from the perturbation P since Df and 9x are
bounded. More precisely, if there are γ ě 0 and Cj ą 0 such that

ˇ

ˇ

ˇ

ˇ

Bj

Btj
P pt, xt, ε, µq

ˇ

ˇ

ˇ

ˇ

ď Cje
γj|t|,
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then for j “ 1, . . . , ℓ, the solution :xptq will also be bounded exponentially and, in general, what we have
is that |Dj`1xptq|e´γj|t| ă `8 for j ě 0.

To provide a formal statement, let us define the exponential derivative growth space:

Definition 6.1 (Finitely differentiable space with exponential growth). Let γ ě 0 and let CℓγpI,Rnq be
the space of ℓ times differentiable functions on the interior of interval I Ă R and with finite norm:

}g}Cℓ
γ

def
“ max

j“0,...,ℓ
sup
tPI

|Djgptq|e´γj|t| for all g P Cℓγ .

Notice that when γ ą 0, an element in Cℓγ does not have Lipschitz boundedness in all its derivatives.
Corollary 6.2 is a bootstrap result in the space with exponential growth defined above.

Corollary 6.2. Let γ ě 0, let xptq be a solution from Theorem 4.8 for ℓ “ 1, and let ℓ1 ě ℓ.
Assume that the unperturbed system satisfies:

H0, γ1) The hypothesis (H02) in Theorem 4.8 holds for ℓ1,

and that the perturbation P in Theorem 4.8 satisfies:

Hε, γ1) For all ε P p0, ε0q, t P R and for j “ 1, . . . , ℓ1, u P C1pR,Rnq, Du P Cj´1
γ pR,Rnq,

ˇ

ˇ

ˇ

ˇ

dj

dtj
Pru, ε, µsptq

ˇ

ˇ

ˇ

ˇ

ď Cje
γj|t|F p}u}C1 , }Du}

Cj´1
γ

q,

where Cj ą 0 and F : R Ñ R is increasing and continuous.

Then the C1-solution xptq of (1) is such that Dx is in Cℓ
1

γ .

Notice that Corollary 6.2 does not change the range of ε ď ε0 and it can incorporate smooth parameter
dependence with the approach introduced in Section 4.3.1 using Cℓγ spaces.

6.2 Non-autonomous unperturbed system

Our set up can incorporate non-autonomous systems using the standard method of adding an extra
variable. Consider a non-autonomous system 9xptq “ gpxptq, tq, where g is ℓ-times differentiable and
Lipschitz. We introduce a new variable s, and let y

def
“ px, tq, then

y1psq “
d

ds

ˆ

xpsq
tpsq

˙

“ G ˝ ypsq “

ˆ

gpxpsq, tpsqq

1

˙

.

Let us define an affine differentiable space rCℓ
def
“ Id ` Cℓ. This space has a well-defined Lipschitz

constant. Thus, a solution y belongs to the product space Cℓ`1 ˆ rCℓ`1.

Remark 6.3. Note that our setting for hyperbolic orbits does not involve the orbit to lie on a bounded
set, it only requires that the vector field are bounded in a neighborhood of uniform size of the orbit. In
the non-autonomous case, this amounts to uniform for all the derivatives of small enough order of g –
including derivatives with respect to time – in a neighborhood of uniform size of the orbit. Hence, we can
remake all the unperturbed hypothesis admitting these affine differentiable spaces and derive a similar
result like in Theorem 4.8 that explicitly includes non-autonomous unperturbed systems.

In the applications to delay equations, we will include, for technical reasons that the delays are
bounded.

Even if this very direct approach gives results for many applications, it can be improved. Indeed, It
is well known [MNnO17] that one can obtain a theory of evolutions of the equation 9xptq “ gpxptq, tq by
assuming only that g is measurable with respect to t (several mild integrability assumptions are needed).
This is usually called Caratheodory theory. Under rather mild assumptions, the Caratheodory theory
allows to write variational equations and the remainder. The operator Γε in this paper can then be
formulated just as well. At the moment, we are not aware of any significant applications.
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7. Some models covered by the general results

This section is devoted to providing examples of perturbations P which satisfy the assumptions of our
main theorem. We show how to verify the hypotheses in Theorem 4.8 and we add some important remarks.

7.1 ODE Perturbation

A very particular case of Theorem 4.8 is when P pt, xtq “ gpt, xptqq, where the history segment xt is
evaluated at zero to obtain xptq. This case corresponds to ODE perturbations.

When there is a hyperbolic orbit in the unperturbed system satisfying Definition 2.1, we obtain that
there is a solution close to the unperturbed hyperbolic orbit applying Theorem 4.8. The hyperbolicity of
the perturbed solution can be seen from [Mos69]. This is a version of Anosov shadowing theorem [Ano69].
The precise version is close to the version in [Mos69] as modified in [dlLMM86].

We show that hyperbolic orbits have a counterpart in the perturbed system. As a corollary of our
formalism (as in [dlLMM86]), we obtain smooth dependence on parameters, see Section 4.3.1.

Note that the range of perturbation parameters for which the orbit persists depends on the hyper-
bolicity parameters of the orbit. Also the size affected by perturbations on an orbit depends on the
hyperbolicity parameters. For Anosov systems for which all the orbits have uniform hyperbolicity con-
stants, the validity range of perturbations is uniform and the size of the perturbation effects is uniform.
In non-uniformly hyperbolic sets, the allowed values of the perturbation and the size of the responses will
depend a lot on the orbits.

7.2 State and time dependent delay equations

Let us consider the model

9xptq “ f ˝ xptq ` εQ
`

t, xpt` rpt, xptqqq
˘

. (51)

where the perturbative map P is

P pt, ϑ, εq
def
“ Q

`

t, ϑ ˝ rpt, ϑp0qq
˘

.

The perturbative hypotheses in Theorem 4.8 are satisfied by considering r : R ˆ Rn Ñ R a Cℓ`Lip map
and Q : R ˆ Rn Ñ Rn a Cℓ`Lip map. In this case, the history segment can be taken as h

def
“ }r}C0 .

The hypothesis (Hε1) can be verified using the chain rule and Faá di Bruno formula. To check
hypothesis (Hε2), we analyze P in Theorem 4.8:

Pru, εsptq “ Prusptq “ Q
`

t, upt` rpt, uptqqq
˘

,

where we have omitted the ε and µ in P since in this example Q does not depend on them. Hence,

|Pru2spsq ´ Pru1sptq| ď LippQq|s´ t| ` LippQq|u2ps` rps, u2psqq ´ u1pt` rpt, u1ptqq|. (52)

The second term is bounded by adding/subtracting and triangle inequality, that is,

|u2ps` rps, u2psqq ´ u1pt` rpt, u1ptqq| ď |u2ps` rps, u2psqq ´ u2ps` rpt, u1ptqq|

` |u2ps` rpt, u1ptqq ´ u1pt` rpt, u1ptqq|

ď }u2}C1}r}C1

“

|s´ t| ` }u2s ´ u1t }C0r´h,hs

‰

` }u2s ´ u1t }C0r´h,hs.

Then we can take constants L1 and L2 so that (Hε2) is true for all u1, u2 in a ball of Cℓ`1`LippR,Rnq.
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7.3 Nested delay equations

Let us consider a differential equation with nested delay/advance terms

9xptq “ f ˝ xptq ` εQ
`

t, xpt` rpt, xpt` r1 ˝ xptqqqq
˘

.

In this case, the perturbative map for (1) is

P pt, ϑ, εq
def
“ Qpt, ϑ ˝ rpt, r1 ˝ ϑp0qqq,

and the “history segment” is h
def
“ maxt}r}C0 , }r1}C0u. If r : R ˆ Rn Ñ R is a Cℓ`Lip map, r1 : Rn Ñ Rn

a Cℓ`Lip map, and Q : RˆRn Ñ Rn a Cℓ`Lip map, then the perturbative hypotheses in Theorem 4.8 are
satisfied.

The idea is similar to Section 7.2. Now we need to bound

|u2ps` rps, u2ps` r1 ˝ u2psqqq ´ u1pt` rpt, u1pt` r1 ˝ u1ptqqq|. (53)

We obtain that

(53) ď |u2ps` rps, u2ps` r1 ˝ u2psqqq ´ u2ps` rpt, u1pt` r1 ˝ u1ptqqq|

` |u2ps` rpt, u1pt` r1 ˝ u1ptqq ´ u1pt` rpt, u1pt` r1 ˝ u1ptqq|

ď }u2}C1}r}C1

“

|s´ t| ` }u2}C1}r1}C1}u2s ´ u1t }C0r´h,hs ` }u2s ´ u1t }C0r´h,hs

‰

` }u2s ´ u1t }C0r´h,hs.

Therefore, for all u1, u2 in a ball of Cℓ`1`LippR,Rnq, there are constants L1 and L2 such that (Hε2) is
satisfied.

7.4 Neutral delay equations

As an example of neutral delay/advance equation, we consider

9xptq “ f ˝ xptq ` εQ
`

t, xpt` rpt, ddtxptqqq
˘

, (54)

Where Q : R ˆ Rn is a smooth function.
This can be made into the form (1) taking.

P pt, ϑ, ε, µq
def
“ Q

`

t, ϑ ˝ rpt, ddsϑp0qq
˘

,

that depends on time and on the derivative of the state. Note that we used the fact that dxt
ds p0q “ dx

dt ptq.
The history segment in this case is h

def
“ }r}C0 . Note that we are not assuming that that the sign of r is

negative, so that we can just as well have advanced equations.
Using the standard adding of extra variables, the unperturbed equation could be an equation of order

n` 1, but the R.H.S cannot introduce derivatives of order higher than n` 1,
To apply Theorem 4.8, we assume regularities on Q and r such that the perturbation in (54) satisfies

(Hε1). In particular, if r : R ˆ Rn Ñ R is a Cℓ`Lip map and Q : R ˆ Rn Ñ Rn is a Cℓ`Lip map, (Hε1) is
verified.

To check (Hε2), we bound the term
ˇ

ˇ

ˇ
u2
`

s` rps, ddsu
2psq

˘

´ u1
`

t` rpt, ddtu
1ptqq

˘

ˇ

ˇ

ˇ
, (55)

and obtain

(55) ď

ˇ

ˇ

ˇ
u2
`

s` rps, ddsu
2psq

˘

´ u2
`

s` rpt, ddtu
1ptqq

˘

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
u2
`

s` rpt, ddtu
1ptqq

˘

´ u1
`

t` rpt, ddtu
1ptqq

˘

ˇ

ˇ

ˇ

ď }u2}C1}r}C1

“

|s´ t| ` }u2s ´ u1t }C1r´h,hs

‰

` }u2s ´ u1t }C0r´h,hs.
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Therefore, (Hε2) is satisfied.

The modification of the verification for several delays/advances is left to the reader. Note that we can
let some of the r’s be delays and others be advances.

Similar to Section 7.3, one can also consider nested delays involving first derivative in the state, or
more generally d

dsϑpsq for s P r´h, hs. Of course, particular cases such as constant delays satisfy the
assumptions of our result.

7.5 Small delays and small advances

There are problems in the literature in which the time at which the solution needs to be evaluated contains
very small time changes. An important case, which involves special challenges, is the motion of charged
particles, studied in more detail in Section 7.6.

In this section we will show that the terms with small delay or small advances can be included in the
formalism of Theorem 4.8. The delays allowed are very general and could be functionals on the history
segment. Only some mild regularity assumptions will be imposed. In particular, we do not need to assume
that the delays are positive, so we can also consider advanced perturbations (or perturbations that include
both advanced and retarded terms). This generality becomes useful in the treatment of motion of point
charges where the delay can depend on the whole trajectory. Some of the physical theories proposed
in [WF49, WF45] involve both advanced and retarded term and, hence, they could be included in our
framework.

A small delay is a singular perturbation because the nature of the problem changes completely. Heuris-
tically, the expansions on the perturbative parameter, involve derivatives of the function. If the delay is
not zero – even if small – the phase space may be an infinite dimensional solution manifold or something
more complicated.

The simplest non-trivial case is

9xptq “ f ˝ xpt´ ετpxtqq, (56)

where τ is a functional of the trajectory segment. This case (56) fits into our framework by rewriting it
as

9xptq “ f ˝ xptq ` ε

„

1

ε
f ˝ xpt´ ετpxtqq ´

1

ε
f ˝ xptq

ȷ

.

To estimate the perturbation and verify (Hε1)–(Hε2) we use the heuristic idea that

1

ε
f ˝ xpt´ ετpxtqq ´

1

ε
f ˝ xptq « ´Df ˝ xptqx1ptqτpxtq.

Therefore, the effect of the small delay is similar to including a functional losing one derivative, which is
incorporated in Theorem 4.8 fortunately.

More precisely:

1

ε
f ˝ xpt´ ετpxtqq ´

1

ε
f ˝ xptq “ ´

ż 1

0
Df ˝ xpt´ σετpxtqqx1pt´ σετpxtqqτpxtq dσ.

Hence, equation (56) with small delays or advances fits our setting where the functional perturbative map
is

Qrϑ, εs
def
“ ´

ż 1

0
Df ˝ ϑp´σετ ˝ ϑqϑ1p´σετ ˝ ϑqτ ˝ ϑ dσ, (57)

where τ : Cℓ`1`Lippr´h, hs,Rnq Ñ R. Note that, we can also consider several delays τi in (56). Applying
Theorem 4.8, we obtain that
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Theorem 7.1. Consider the equation

9xptq “ f ˝

´

x
`

t´ ετ1pt, xtq
˘

, . . . , x
`

t´ ετLpt, xtq
˘

¯

` εP pt, xt, ε, µq. (58)

Assume (H01)–(H02) in Theorem 4.8 and that for all i “ 1, . . . , L, if xt is in a ball in Cℓ`1`Lip space,
then τipt, xtq ranges in a ball in Cℓ`Lip space, and that τi’s have Lipschitz properties.

Then, hypotheses (Hε1) and (Hε2) hold for the Qi given as

Qipt, ϑ, εq
def
“

ż 1

0
Dif

´

ϑ
`

´σετ1pt, ϑq
˘

, . . . , ϑ
`

´σετLpt, ϑq
˘

¯

ϑ1
`

´σετipt, ϑq
˘

τipt, ϑq dσ,

Assume in addition that, P defined in (23) corresponding to P in equation (58) satisfies (Hε1) and
(Hε2) in Theorem 4.8, then we have the same conclusions as Theorem 4.8.

Maybe the most unclear part of the proof of Theorem 7.1 is that Qi satisfies (Hε2) (since (Hε1) comes
from the fact that τi maps a ball in Cℓ`1`Lip to another ball in Cℓ`Lip). We illustrate (Hε2) with Q in
(57). Let ϑ and ϱ in a Cℓ`1`Lip ball and let us bound Qrϑ, εs ´ Qrϱ, εs whose integrand is (after adding
and subtracting)

Df ˝ ϑp´σετ ˝ ϑqϑ1p´σετ ˝ ϑqτ ˝ ϑ´ Df ˝ ϱp´σετ ˝ ϱqϱ1p´σετ ˝ ϱqτ ˝ ϱ

“
“

Df ˝ ϑp´σετ ˝ ϑq ´ Df ˝ ϱp´σετ ˝ ϑq
‰

ϑ1p´σετ ˝ ϑqτ ˝ ϑ (S1)

`
“

Df ˝ ϱp´σετ ˝ ϑq ´ Df ˝ ϱp´σετ ˝ ϱq
‰

ϑ1p´σετ ˝ ϑqτ ˝ ϑ (S2)

` Df ˝ ϱp´σετ ˝ ϱq
“

ϑ1p´σετ ˝ ϑq ´ ϱ1p´σετ ˝ ϑq
‰

τ ˝ ϑ (S3)

` Df ˝ ϱp´σετ ˝ ϱq
“

ϱ1p´σετ ˝ ϑq ´ ϱ1p´σετ ˝ ϱq
‰

τ ˝ ϑ (S4)

` Df ˝ ϱp´σετ ˝ ϱqϱ1p´σετ ˝ ϱq
“

τ ˝ ϑ´ τ ˝ ϱ
‰

. (S5)

The individual intermediate lines admit straightforward bounds in terms of the inputs, i.e. for s P r´h, hs,

|(S1)psq| ď }f}C2}ϑ}C1}τ}C0}ϑ´ ϱ}C0

|(S2)psq| ď σεLippDf ˝ ϱqLippτq}ϑ´ ϱ}C0}ϑ}C1}τ}C0

|(S3)psq| ď }f}C1}ϑ´ ϱ}C1}τ}C0

|(S4)psq| ď σε}f}C1}ϱ}C2 Lippτq}ϑ´ ϱ}C0}τ}C0

|(S5)psq| ď }f}C1}ϱ}C1 Lippτq}ϑ´ ϱ}C0 .

Thus, adding up all these bounds, there is a constant, say L2, such that |Qrϑ, εs ´Qrϱ, εs| ď L2}ϑ´ϱ}C1 .

7.6 Delays implicitly defined by the solution. Applications to electrodynamics

In this section, we show that our framework applies to the problem of electrodynamics of point charges
and formulate Theorem 7.3 which is obtained by applying Theorem 4.8 to (59), the model of particles
moving on the electromagnetic fields generated by others.

From the mathematical point of view, the main new problem is that the delays that appear in the
equation – the time the signals emitted by one particle take to reach another – depend on the trajectory.
The delays can only be found by solving an implicit equation that involves the whole trajectory, see (60).
We refer to this situation as implicitly defined delays.

7.6.1 Formulation of the mathematical problem

The motion of point charges under the electromagnetic field generated by others has several physical
problems due to self-energy (see [Spo04] and also [Jac99, Chapter 16]) which we will not discuss.
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We will follow the formulation of on [WF49] which avoids the self-energy problems. The basic idea
of [WF45, WF49] is that each charge moves in the field generated by the others and by external sources
(not in the field generated by themselves!). The expression of the electromagnetic fields generated by
charges in motion is obtained by solving Maxwell equations. The explicit expression of the solution of
Maxwell equations generated by charges (knowing their positions and velocities) is well known since the
turn of the XX century and is called Liénard-Weichert potentials ([LL62, Roh07, Jac99, Zan13]). The
motion of the particle in this potential is given by Newton’s laws taking the relativistic expression of the
mass. One can think of the Liénard-Wiechert potentials as the standard Coulomb/Ampere expressions
taking into account delays and Fitzgerald contractions. As in the wave equation, the solutions of the
Maxwell equations can be advanced or retarded, or convex combinations of both. In Physics literature, it
is customary to take only retarded solutions, but this restriction does not follow from Maxwell equations
or the boundary conditions and we do not need it for the results in this paper.

Hence, the equation of the ith particle are of the form:

:qiptq “ Aextpt, qiptq, 9qiptqq `
ÿ

j‰i

Ai,j
`

qiptq, 9qiptq, qjpt´ τijq, 9qjpt´ τijq, qjpt` σijq, 9qjpt` σijq
˘

, (59)

The qi represents the position of the i point charge, The term Aext denotes the external force, and Ai,j is
an explicit expression given by the Liénard-Weichert potentials that depend on the time delay/advance
defined by solving the implicit equations.

τijptq “
1

c

ˇ

ˇqiptq ´ qjpt´ τijptqq
ˇ

ˇ,

σijptq “
1

c

ˇ

ˇqiptq ´ qjpt` σijptqq
ˇ

ˇ,

(60)

with c being the speed of light. We think of c as large so that ε “ 1
c is a small parameter.

The most salient mathematical feature of (59) is that it involves delays (or advances) which correspond
to the time that the light takes to travel from the source particle to the dynamic particle. This delay
depends on the whole trajectory of both particles (one needs to solve implicitly for the trajectory of a
light ray to intersect the trajectory of the source particle). Since the Liénard-Wiechert potentials can
be retarded or advanced (or convex combinations of both)1 we get that the resulting equations can be
retarded or advanced also.

Some minor complications are that (59) presents some singularities when qiptq “ qjptq; i ‰ j or when
| 9qiptq| “ c.

The explicit form of the expressions of Ai,j and Aext in (59) can be found in any advanced textbook
and the detailed expression is not relevant for our treatment.

Our treatment is rather general and applies to other models of the same structure. Due to relativity,
all models of particles interacting by pairwise interactions are of the form (59). The structure (59) includes
models incorporating gravity or more manageable approximations of Liénard-Wiechert potentials (it is
common to keep the first order in ε and ignore higher orders in ε such as Fitzgerald contractions).

The treatment presented here extends to modifications of (59) that involve interactions among 3 or
more bodies.

:qiptq “ Aextpt, qiptq, 9qiptqq ` Fi
`

tqjpt´ τjkptqquNj,k“1, t 9qjpt´ τjkptqquNj,k“1,

tqjpt` σjkptqquNj,k“1, t 9qjpt` σjkptqquNj,k“1

˘

, (61)

where F is an expression with the same type of singularities and the delays/advances τjk, σjk are defined
in (60) or even by more general procedures that involve all the trajectories. The only requirement is that
the delays range in a Cℓ`Lip ball if the trajectories range in a Cℓ`Lip ball.

1In [WF49], it is suggested that combining the delay and advance with coefficients 1{2 is physically important.
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If there are no external electromagnetic forces (or if the external electromagnetic forces are time
independent), the classical model conserves energy, so that it does not have any hyperbolic orbits. On
the other hand, in time dependent (e.g. periodic) external fields, many interesting models (e.g. ion traps,
mirror magnet machines) have many hyperbolic orbits [Gho96, Kaj22].

In this paper, we show that near hyperbolic orbits of the unperturbed model (59), i.e. ε “ 0 in (60)
2, and if the perturbed model avoids the singularities and it has bounded delays, Theorem 4.8 applies.
Moreover, constructed solutions are similar to those hyperbolic orbits for the unperturbed model (59), as
long as 0 ă ε ! 1 in (60). See Theorem 7.3 for a precise formulation.

Before proceeding to the detailed analysis, let us make some comments on the equations and their
physical properties.

1. The expressions defining the forces are algebraic expressions (arithmetic operations and square
roots). They have singularities when there are collisions (qiptq “ qjptq for some i ‰ j) or when a
particle reaches the speed of light (| 9qiptq| “ c for some i).

We will assume that the unperturbed solutions we consider are a finite distance away from these sin-
gularities so that the expressions given the second derivatives and given the positions and velocities
are smooth functions in a neighborhood of the unperturbed solution. See Definition 7.2.

2. The delays τij or advances σij as in (60) involve solving implicit equations that involve the pairwise
trajectories qiptq and qjptq.

The physical meaning of the delays/advances are the time it takes a light signal to travel from the
particle i to the particle j. Since the speed of the particles is bounded away from the speed of light,
this time exists and is unique. Nevertheless, finding the delay requires to solve an equation that
depends on the pairwise trajectories. See (60).

Fortunately, for the method used in this paper, the main property needed is that τij and σij are
uniformly smooth assuming that the trajectories are smooth (and that they are away from the
singularities).

Note that in general τij ‰ τji even if τij ´ τji “ Opε2q. Indeed, after expanding the solution of (60)
up to first order, i.e.

τijptq “ ε|qiptq ´ qjptq| ` ε2
`

qiptq ´ qjptq
˘

¨ 9qjptq `Opε3q. (62)

(hint: It is easy to consider the expansions for τ2ij obtained by squaring both sides of (60) and
express the square of length as an inner product). The above derivation (62) of an approximate
form of the delay is purely formal. Note that it is only valid for differentiable q and that the error
incurred in the approximation depends on higher derivatives of q. Of course in a delay equation,
modifying the form of the delay is a very singular perturbation so, substituting the approximation
above may lead to equations with different solutions.

In Theorem 4.8 the main objects are sets of uniformly differentiable q. In these sets of uniformly dif-
ferentiable functions, the approximations in (62) are uniform (in a norm involving one less derivative
than the uniform).

3. Theorem 4.8 also applies to many modifications of the model and produces solutions. For example,
ignoring The Figtgerald contractions [Ver16] or changing the delay by its state dependent approx-
imation (62) [Dri84] (they are formally second order in ε). The exact solutions of these models
obtained applying Theorem 4.8 will be approximate solutions of (59).

In theoretical Physics, there are also other methods to produce approximate solutions using formal
power series [CCdlL20, GdlLY25, MS78] or using numerical approximations.

2For ε “ 0, the delays and advances vanish so that (59) is an ODE.
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The a-posteriori formulation of Theorem 4.8 shows that these approximate solutions are close to
solutions of (59).

4. The delays/advances τij , σij may be unbounded if the particles i, j get far apart. This is not covered
by our Theorem 4.8. We assume in this paper that the unperturbed orbits remain in a bounded
region.

One can hope that this assumption can be weakened because when the delays are large, the in-
teractions are weak. The problem of charges scattering is, of course, of great physical importance
and has been considered many times. Starting with the pioneering work of [Dri63]. We refer to the
recent [BDDH17] for an account of progress in this line of research and several other approximate
models of electrodynamics.

5. Other recent advances in the theory of constructing solutions for electrodynamics exploit that pe-
riodic solutions of these equations have a variational structure. This allows to use deep variational
tools such as Floer theory. We refer to [AFS20, Fra21].

The approach for periodic orbits in [YGdlL22] does not require a variational structure, but on the
other hand, requires proximity to an ODE.

Denoting yptq
def
“ pq1ptq, . . . , qN ptq, 9q1ptq, . . . , 9qN ptqq, we can write the equation (59) in the form of (56)

with the delays being implicitly defined. Note that there are NpN ´ 1q delays and NpN ´ 1q advances.
Of course, we can consider cases where the expression of the forces does not depend on the advances.

Note that formally, the effect of delays is Op1{cq whereas the effect of Lorentz-Fitzgerald contractions
is Op1{c2q. Therefore, it is common to consider models in which only the delays are considered and the
Lorentz-Fitzgerald contraction effects are ignored [Ver16, CM07].

These models are of the form considered in (59). So, the results of this paper on persistence of hyper-
bolic solutions of the non-relativistic models apply. Furthermore, thanks to the a-posteriori formulation
of Theorem 4.8 we obtain that the exact solutions in these models are at a distance Op1{c2q from the
solutions to the full model.

Similarly, the hyperbolic solutions produced by other models that solve the relativistic equations to
order n (e.g. [MS78] to order 4) will be Opεn`1q close to the solutions produced here.

However, it is important to note that the justification of the results here is only for hyperbolic solutions
and that the quantitative aspects of the corrections needed depend on the hyperbolicity constants. In
particular, in non-uniformly hyperbolic sets, where the hyperbolic constants deteriorate, the range of
validity of the approximations will become smaller and the errors will be affected by larger constants.
This is consistent with the impossibility of formulating effective equations valid everywhere [CJS63], which
still allows formulating approximations in some sets.

7.6.2 The result

Since the equation (59) has singularities, we have to assume that the unperturbed solution is away from
the singularities.

Definition 7.2. We say that a solution of the classical equations of motion is non-singular when there
exist 0 ă ξ1 ă 1 and ξ2 ą 0, such that for all t:

| 9qjptq| ď ξ1c, for all j,

|qiptq ´ qjptq| ě ξ2, for all i ‰ j.

The internal forces and the masses are analytic around non-singular solutions, by Definition 7.2.
Therefore, the regularity assumptions of Theorem 4.8 on the unperturbed equation concern only the
external fields.

Assuming that the solutions remain in a bounded set and that the trajectories are uniformly away
from collisions, we obtain that the vector fields giving the evolution are uniformly differentiable.
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Theorem 7.3. Consider the model (59) with the delays or advances defined in (60). Denote 1{c as ε,
and treat it as a parameter.

Assume that the external fields are Aext are C
ℓ`2`Lip.

Assume that for ε “ 0, the ODE (59) has a solution such that:

1. It is hyperbolic in the sense of Definition 2.1,

2. It is non singular in the sense of Definition 7.2.

3. It lies in a bounded set.

Then, Theorem 4.8 applies to the problem given by (59) and for small enough values of ε, we can find
solutions of (59) of the form in (35).

The proof follows from Theorem 7.1 once we have the estimates on regularity bounds and low regularity
contraction of the delays and advances (60). These estimates will be obtained in the following section.

Given the formulation of the fixed point argument, we only need to prove that the delays are differen-
tiable when the history segments are assumed to be differentiable (propagated bounds) and to show that
the operator Γ is a contraction in a low regularity space when the history segments are differentiable.

Results on the regularity properties of the delay In this section, we study (60) as an equation
for τijptq and σijptq when we prescribe the trajectories qi and qj . This makes precise the notion that
the delay/advance is a functional of the whole trajectory and it shows that Theorem 7.3 follows from
Theorem 7.1.

Proposition 7.4. Let qi and qj be continuously differentiable trajectories that satisfy Definition 7.2 and
have derivatives bounded uniformly away from the speed of light c.

Then, for all t P R, we can find unique τijptq, σijptq ą 0 solving (60).
Furthermore, let τ̃ij , σ̃ij be the delay and advance of trajectories q̃i and q̃j, there exists a constant C

such that
}τij ´ τ̃ij}C0 , }σij ´ σ̃ij}C0 ď C

`

}qi ´ q̃i}C0 ` }qj ´ q̃j}C0

˘

.

Moreover, if the trajectories qi and qj are Cℓ`Lip and satisfy Definition 7.2. Then the τij , σij are
Cℓ`Lip, and there is an explicit algebraic expression g such that

}τij}Cℓ`Lip , }σij}Cℓ`Lip ď gp}qi}Cℓ`Lip , }qj}Cℓ`Lip , ξ1, ξ2q.

Proof. The first part of Proposition 7.4 follows from the standard contraction mapping theorem applied
to (60). The second part also follows from the contraction principle, remembering that we are assuming
uniform differentiability of the qi.

Let us define the operator N rτ ; qi, qjsptq
def
“ ε|qiptq ´ qjpt ´ τptqq| and let us first prove that N is a

contraction for small enough ε. That is,

|N rτ sptq ´ N rrτ sptq| “ ε
ˇ

ˇ|qiptq ´ qjpt´ τptqq| ´ |qiptq ´ qjpt´ rτptqq|
ˇ

ˇ

ď ε|qjpt´ τptqq ´ qjpt´ rτptqq| ď εLippqjq}τ ´ rτ}C0 .

Let ε ă 1{}qj}C1 , and define κ
def
“ ε}qj}C1 , then N is a contraction with rate κ.

We first bound }N rτ̃ ; qi, qjs ´ τ̃}C0 ď B for τ̃ a fixed point of N r¨; q̃i, q̃js of some particles q̃i and q̃j ,
and B related to the difference between q and q̃. This implies }τ ´ τ̃}C0 ď B

1´κ .

|N rτ̃ ; qi, qjsptq ´ τ̃ptq| “
ˇ

ˇε|qiptq ´ qjpt´ τ̃ptqq| ´ ε|q̃iptq ´ q̃jpt´ τ̃ptqq|
ˇ

ˇ

ď ε|qiptq ´ q̃iptq| ` ε|qjpt´ τ̃ptqq ´ q̃jpt´ τ̃ptqq|

ď ε
`

}qi ´ q̃i}C0 ` }qj ´ q̃j}C0

˘

.
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The estimates on the derivatives of τij , σij follow from applying the implicit function theorem for the
solutions of (60).

By Proposition 7.4, for τij , σij , we have Lipschitz estimates and that they are Cℓ`Lip if qi, qj are
Cℓ`Lip. Therefore, we can use the procedure in Section 7.5 and apply Theorem 7.1. Note that the τ ’s in
Theorem 7.1 correspond to τij{ε or σij{ε since both τij , σij are of order Opεq.

Acknowledgments

The project has been supported with the Spanish grant PID2021-125535NB-I00 (MICINN/AEI/FEDER,
UE) and the Catalan grant 2021 SGR 01072. The project that gave rise to these results also re-
ceived the support of the fellowship from “la Caixa” Foundation (ID 100010434), the fellowship code
is LCF/BQ/PR23/11980047. J.G. also thanks the School of Mathematics of GT for its hospitality in
2022 year. This project has been supported by the Fundamental Research Funds for the Central Univer-
sities.

Statements and Declarations

The authors declare that they have no conflict of interest.

References

[AFS20] Peter Albers, Urs Frauenfelder, and Felix Schlenk. Hamiltonian delay equations—examples and a lower
bound for the number of periodic solutions. Adv. Math., 373:107319, 17, 2020.

[Ano69] D. V. Anosov. Geodesic flows on closed Riemann manifolds with negative curvature. Proceedings of the
Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder. American
Mathematical Society, Providence, R.I., 1969.
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