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Abstract

We consider the Chirikov standard map for values of the parameter larger than but close to
Greene’s kG. We investigate the dynamics near the golden Cantorus and we study escape
rates across it. Mackay [17, 19] described the behaviour of the mean of the number of
iterates 〈Nk〉 to cross the Cantorus when k → kG and showed that there exists B < 0
so that 〈Nk〉 (k − kG)

B becomes 1-periodic in a suitable logarithmic scale. The numerical
explorations here give evidence of the shape of this periodic function and of the relation
between the escape rates and the evolution of the stability islands close to the Cantorus.

Dedicated to the memory of Alexey V. Borisov

1 Introduction

Professor Borisov has done an impressive task in Dynamical systems and related topics. He
did an excellent work on the dynamics of rigid bodies and falling bodies, on the dynamics of
points masses and vortices in surfaces, on integrable, nonintegrable and nonholonomic systems,
on chaotic and regular motions, etc. Furthermore he did an impacting work as cofounder and
editor-in-chief of Regular and Chaotic Dynamics. His unexpected sudden death was a shock for
many people in Dynamical Systems.

In the present paper we discuss a topic strongly related to the passage from regular to chaotic
dynamics in a classical problem.

Any reasonable attempt of describing the phase space transport properties of a given dynamical
system must take into account the interaction between the main invariant objects and their
evolution with respect to the sensitive parameters. Clearly, the breakdown of codimension one
invariant manifolds changes the global transport properties of the system.

In the simple setting of twist area-preserving maps (twist APMs) of the cylinder, the rotational
invariant curves (RIC) confine the dynamics. If a large enough perturbation acts on the map
so that a RIC of a given rotation number is destroyed, a remnant Aubry-Mather set, with the
same rotation number persists, [23]. Since these sets have a Cantor structure with gaps usually
one refers to them as Cantori. In particular, orbits can leak through these Cantori, but one may
expect the transit time to be extremely large if the gaps are small.
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The purpose of this paper is to perform a quantitative study of the escape rates across a Cantorus.
Concretely, we consider the Chirikov standard map [5] Mk : S1 × R → S

1 × R given by

Mk :

(

x
y

)

7→
(

x̄
ȳ

)

=

(

x+ ȳ

y + k
2π sin(2πx)

)

, (1)

and we investigate the transport properties for values of the parameter k larger than but close
to Greene’s parameter kG ≈ 0.971635406, that is through the remnant Cantor set after the
breakdown of the RIC with golden rotation number ω = (

√
5−1)/2. There is a strong numerical

evidence supporting the fact that the RIC with golden rotation number is the last one to
be destroyed when increasing k ≥ 0. On the other hand, the golden frequency has optimal
Diophantine properties among real numbers. Even though it has not been formally proved, we
implicitly assume this fact in our explorations, as we consider values of k near kG and we use
the arithmetic properties of the golden number to explore the dynamics. Our numerical work
also supports this evidence.

Certainly this is a classical problem that has been the topic of many previous studies. One of the
goals of this paper is to overview the results available while providing new numerical evidences.
In particular, special emphasis is made on the fine structure of the phase space close to the
destruction of the golden invariant curve. The careful computations reported in this work give
a clear evidence of the role of the tiny islands in the escape rates through the Cantorus. The
paper is organised as follows.

In Sect. 2 we review the main features of the so-called Greene-MacKay renormalisation theory. In
particular, we recall the definition and the main features of the dynamics of the renormalisation
operator for golden invariant curves in APMs.

In Sect. 3 we link the renormalisation operator with the phase space of the standard family of
maps. In particular, we choose suitable scalings close to the golden Cantorus with the aid of the
position of periodic points whose rotation number is an approximant of the golden mean.

Sect. 4 is devoted to the study of the geometry of the phase space close to the Cantorus. We pay
special attention to the local dynamics around elliptic (|tr| < 2) and/or reflection-hyperbolic
(tr < −2) periodic orbits whose rotation number is an approximant of the golden mean, and to
the area of the stability domain that surrounds them, if any1. We argue that these objects are
key to explain the transport rates across the Cantorus.

In Sect. 5 we present a numerical study of escape rates based on massive simulations. The
available theoretical frameworks predict an inverse potential behaviour of the escape rates in
a parameter that measures the distance to the breakdown ∆k = k − kG, k > kG, times some
periodic fluctuations in logarithmic scale of ∆k. We show the corresponding periodic function
and link it to the existence and evolution of the islands of stability we dealt with in Sect. 4. We
finish by studying the probability law of the escape rates and its behaviour as k tends to kG.

Finally, in Sect. 6 we summarize the results obtained and mention future research directions
that can lead to a better comprehension of the escape rates through Cantori.

To end this introduction, we note that some of the computations that we report in this paper
require multiprecision arithmetics. We have used Pari/GP [2] to this end.

1For a q-periodic point of (1), the symbol tr refers to the trace of the differential matrix of Mq

k evaluated at
the periodic point.
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2 A review of renormalisation for invariant curves

Renormalisation in dynamical systems is a tool to deal with asymptotic self-similarity. In the
discrete context, this is done by studying the system in smaller scales, by considering a conve-
niently scaled version of the original phase variables, and in longer scales of time. Kadanoff and
Shenker [14] were the first to introduce a renormalisation approach to deal with RIC. Later,
MacKay [19, 17] refined the idea by linking in a more precise way the renormalisation operator
and RIC, by taking into account the pioneering work of Greene [12]. This approach is usu-
ally referred to as Greene-MacKay renormalisation theory. This section is a compendium of
well known facts about the Greene-Mackay renormalisation theory for invariant curves of twist
APMs.

2.1 Renormalisation for invariant curves

Briefly explained the Greene-Mackay renormalisation scheme consists in the following. Consider
an area-preserving twist map F of the cylinder S1×R and assume that it has a RIC with rotation
number ρ ∈ [0, 1). Denote by F̄ a lift of F to the plane. Let (x0, y0) be a point of the RIC,
denote F̄n(x0, y0) as (xn, yn) and consider any sequence {nj/mj}j of rationals tending to ρ as
j → ∞. Then,

π1F̄
mjRnj (x0, y0) = xmj

− nj → x0,

where π1(x, y) = x is the projection onto the first variable and R(x, y) = (x− 1, y) is the back
rotation by one period around the cylinder. This suggests that the study of the dynamics near the
invariant curve can be approached by considering a sequence of maps of the form ΛF̄mjRnjΛ−1,
where Λ is a change of variables that is meant to scale the phase space and zoom in regions
chosen according to the relative positions of periodic orbits whose periods correspond to two
consecutive best approximants of ρ. The setting introduced in [19, 17] consists in embedding
this sequence as iterates of a suitable renormalisation operator in a suitable functional space.

The map F is periodic in x ∈ S
1, that is, it commutes with R. To preserve periodicity in x ∈ S1

the renormalisation operator is defined on commuting pairs (U, T ), that is, it acts on a pair U, T
of real orientation-preserving diffeomorphisms of the plane that are assumed to commute where
the compositions UT and TU are defined. Concretely, one introduces the following family of
renormalisation operators:

Rm(U, T ) = Λ(T, TmU)Λ−1, m ∈ Z,

where Λ(A,B)Λ′ = (ΛAΛ′,ΛBΛ′) for arbitrary changes of variable (Λ,Λ′).

To investigate the phase space structure near the RIC one considers the commuting pair (R, F̄ )
and perform iterates under a suitable sequence (a sequence of m values) of renormalisation
operators Rm. The choice of the sequence of m’s is related to the arithmetic properties of
ρ ∈ [0, 1). Consider the continuous fraction expansion

ρ = [l0, l1, l2, . . .] =
1

l0 +
1

l1+...

and recall that the best approximants of ρ are pk/qk where p0 = 0, q0 = p1 = 1, q1 = l0 and
pk = lk−1pk−1 + pk−2, qk = lk−1qk−1 + qk−2, for k ≥ 2. It follows from properties of continued
fraction expansions that

Rlj · · · Rl0(R, F̄ ) = Λj+1(F̄
qjRpj , F̄ qj+1Rpj+1)Λ−1

j+1,

3



where Λj+1 is the composition of successive shifted scalings. We will assume that the sequence
Λj tends to a limit Λ, as this is a necessary requirement for the existence of fixed points of the
renormalisation operator. Hence the phase space structure close to the RIC of rotation number
ρ is encoded in the first component ΛF qnRpnΛ−1 of Rln · · · Rl0(R, F̄ ). The following properties
hold:

1. Let us briefly recall the definition of rotation number for commuting pairs (see [19]): a
point (x, y) has rotation number ρ under (U, T ) if, for any sequence pn/qn → ρ as n → ∞,
0 < pn < qn, qn → ∞ as n → ∞, the first component of UpnT qn(x, y)/qn → 0 as n → ∞.
In particular, a p/q periodic orbit of (U, T ) is a fixed point of UpT q.

Then, as noticed in [19], if a map F has an orbit with rotation number ρ = [l0, l1, l2, . . .],
one finds that Rln · · · Rl0(R, F̄ ) has an orbit with rotation number ρ′ = [ln+1, ln+2, . . .].

In particular, if ρ = ω = (
√
5 − 1)/2 = [1, 1, 1, . . .] and pj/qj are its approximants (hence

quotients of successive Fibonacci numbers) then:

(a) if F has an orbit with rotation number pj/qj , thenR1(R, F̄ ) has an orbit with rotation
number pj−1/qj−1, the previous approximant; and

(b) if F has a golden RIC (resp. Cantorus) then the first component of Rn
1 (R, F̄ ), n ≥ 1,

defines a map of the annulus that has a golden RIC (resp. Cantorus).

2. The linear stability of a q-periodic orbit is determined by the trace τ = trDF q(x0, y0),
where (x0, y0) is any point in the orbit. Then, if F has an orbit with rotation number
ρ = p/q with τ as trace, then the corresponding periodic orbit with rotation number
ρ′ = p′/q′ = q/p− l0 of R1(R, F̄ ) has also trace τ .

2.2 Dynamics of the renormalisation operator R1

As commented above, the phase space structure close to a golden RIC is encoded in the iterates
of the operator

R1(U, T ) = Λ(T, TU)Λ−1,

where Λ : R2 → R
2 will be assumed to be of the form

Λ :

(

ξ
η

)

7→
(

αξ + c
βη + p(ξ)

)

(2)

being α, β ∈ R the phase scaling factors, c ∈ R is a constant and p(x) is a real polynomial
that we shall consider to be of degree 3. See the comments on this assumption in Sect. 3.1.
The dynamics of the renormalisation operator R1 was first studied in [19, 17], where the most
important features of its phase space were described. Some of them have been already proven,
but some essential questions that have a reasonable conjectural solution remain still open, [16].

Below we consider area and orientation preserving maps of the cylinder with zero flux. We recall
that, geometrically, the flux is simply the net area between an embedded circle wrapping once
around the cylinder and its image. More formally, let F be a lift of a map f of the cylinder and
denote by (x̄, ȳ) = F (x, y) the image of a point z = (x, y). Denote by T (z) = (x + 1, y) and
choose a base point z0 = (x0, y0) in the cylinder. Then the flux of f is given by the difference of

path integrals
∫ T (z)
z0

λ−
∫ z
z0
λ where λ = ȳdx̄− ydx. Note that λ is a closed 1-form, hence Stokes

theorem implies that the integrals do not depend on the chosen path on the cylinder. See, for
example, [11, 25] for further details.
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Mk
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RT
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δ
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Figure 1: Sketch of the conjectured skeleton of R1.

Essentially, when acting on the area preserving zero flux class of maps, the most relevant part
of the phase space of R1 is characterised by the existence of two fixed points:

1. The trivial fixed point RT which is an integrable linear shear

RT

(

x
y

)

=

(

x+ (ω + 1)y + ω
y

)

.

It is an attracting fixed point in the area-preserving class of maps, see [19]. All the periodic
orbits in the phase space of RT are parabolic (τ = 2).

2. The critical fixed point RC which is a map having a critical golden RIC. It is a saddle fixed
point with a single unstable eigenvalue δ. All elliptic approximating orbits of RC have the
same trace, τ = τ⋆, see (6). By approximating orbit we refer to periodic orbits having as
rotation number an approximant of the golden number ω.

The fixed point RC was numerically computed in [19] together with a 1-parameter family
of maps contained in W u(RC), giving a strong numerical evidence of its saddle linear
behaviour. The existence of RC was finally proven in [1] and the fact that it was hyperbolic
with a single unstable direction with eigenvalue δ was proven in [15].

Summarizing, it was conjectured in [19, 17] that the dynamics in a neighborhood of these two
fixed points was as sketched in Fig. 1. In this figure we also added in red the conjectured relative
position of the standard family, Mk, in this functional phase space.

Note that W s(RC) is a codimension one invariant manifold of maps with a critical golden
RIC, so locally separates maps with a golden RIC and maps with a golden Cantorus. Hence
W u(RC) \ {RC} has two components. Denote the one that consists in maps with a golden RIC
as W u,−(RC), and the other component as W u,+(RC). A conjecture related to Fig. 1 that is
still open is if W u,−(RC) is a heteroclinic connection between RT and RC , that is, if this whole
branch is contained in the basin of attraction of the trivial fixed point RT . In fact, it was the
original motivation of the renormalisation operator: the goal was to prove that all maps with a
golden RIC with a smooth conjugacy to a rotation converged to RT under R1 and to understand
how golden RICs break. For results in this direction one can see, for instance, [13, 31, 32].
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3 The standard family in the phase space of R1

All numerical experiments dealing with approximating periodic orbits of the golden RIC carried
out for the standard map suggest that this family of maps is close to W u(RC), as depicted in
Fig. 1. Namely, the approximations of the phase space scalings α and β (2) and the eigenvalue δ
given in [1, 15] in the proofs of the existence and hyperbolicity ofRC agree with the corresponding
quantities found experimentally in the standard map [14, 17, 19]. Through the text we shall
refer to the Birkhoff periodic orbits having rotation number the nth best approximant pn/qn of
the golden frequency as nth approximating orbits.

For the numerical experiments we shall present it will be important to recall how the constants
α, β and δ were first obtained and the most accurate values available in the literature. Here
one uses that all monotone elliptic (with |tr| < 2) and reflection-hyperbolic periodic orbits (with
tr < −2) in the standard map (1) have a point on the symmetry line {x = 1/2}, that is a line
of fixed points of the involution (x, y) 7→ (−x, y + k sin(2πx)/2π), see [19]. We recall, see for
example [11], that an orbit {(xk, yk)}k∈Z of a twist map is said to be monotone (or Birkhoff) if the
sequence {xk}k∈Z is cyclically ordered, that is, if xk ≤ xj+p for k, j, p ∈ Z then xk+1 ≤ xj+1+p.
Let kj denote the value of the parameter at which the jth elliptic approximating orbit is at a
period-doubling bifurcation2, that is, tr = −2.

Given k, let yn(k) denote the y-coordinate of the position of the point of the nth elliptic or
reflection-hyperbolic approximating orbit on the symmetry line {x = 1/2} and, if n is odd (resp.
even), let xn(k) denote the x-coordinate of the point in the nth hyperbolic approximating orbit
closest to the right (resp. left) to {x = 1/2}. The standard map symmetries imply that the
points in the hyperbolic orbit that are the closest to the left or to the right to the symmetry
line are equidistant from the symmetry line. We note that:

1. The eigenvalue δ was first approximated in [19] as the inverse of the convergence rate of
the sequence {kj}j towards kG. In [15] it was obtained

lim
n→∞

kn − kn−1

kn+1 − kn
= δ ≈ 1.62795006498458161676240425734986. (3)

2. The phase scaling β is the inverse of the rate of convergence to 0 of the relative distance be-
tween consecutive elliptic (or reflection-hyperbolic) approximating orbits on the symmetry
line, that is,

lim
n→∞

yn(kG)− yn−1(kG)

yn+1(kG)− yn(kG)
= β ≈ (−0.32606339662500148530812206358643)−1 , (4)

and α is the inverse of the rate of convergence to 0 of the relative distance between elliptic
(or reflection-hyperbolic) and hyperbolic orbits of the same rotation number

lim
n→∞

(xn(kG)− 0.5) − (xn−1(kG)− 0.5)

(xn+1(kG)− 0.5) − (xn(kG)− 0.5)
= α ≈ (−0.70679566917963727816491731416)−1 . (5)

The previous values for α and β can be found in [1, 15]. We emphasize that they agree
with the actual values for the standard map [14, 19].

2We will slightly change this notation in Sect. 4.
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3. There are two other constants, τ⋆ and δ′, that is worth to take into account, see [19, 17].
Let trj(k) = trace DM

qj
k (1/2, yj(k)). Then,

lim
n→∞

trn(kG) = τ⋆ ≈ 0.999644. (6)

Moreover, the rate of convergence of the sequence {trj(kG)}j is

lim
n→∞

trn+1(kG)− trn(kG)

trn(kG)− trn−1(kG)
= δ′ ≈ −0.610830 (7)

and corresponds to the dominant attraction rate in W s(RC).

Clearly, the standard family Mk is not invariant under R1, but it reflects the behaviour of
W u(RC). Namely, if k > kG the orbit of Mk underR1 will have some iterates close to W u,+(RC)
due to the hyperbolic character of RC in the functional space. And after some iterates, the
maps one obtains behave as maps with a seemingly fully chaotic phase space. If k < kG then
the iterates are conjectured to tend to RT . And if k = kG, since MkG ∈ W s(RC), they will tend
to RC under iteration of R1.

We refer to [16] for an explanation of the dynamics of R1, a discussion on the open questions
related to the renormalisation operator and its relationship with Greene’s criterion [12] and with
Olvera and Simó’s Obstruction criterion [28].

Note that the previous considerations on R1 hold for the RIC with golden rotation number ω.
In general, the scaling factors and eigenvalues α, β, δ and δ′, and even τ⋆ depend strongly on the
continued fraction expansion of the rotation number of the RIC under study. Namely, for noble
rotation numbers the set of parameters we should eventually find are α, β, δ, δ′ and τ⋆, but not
necessarily for metallic irrational numbers (those whose quotients in their continued fraction
expansion are equal or eventually equal to a ∈ N, a > 1). Moreover, if the corresponding con-
tinued fraction expansion is n periodic, one expects the corresponding renormalisation operator
to have a critical n-periodic orbit and a set of n different values of τ⋆, and of course different
scalings. See [3].

3.1 Choice of the successive scalings Λj

As commented above, the scalings Λj depend on the positions of the approximating periodic
orbits. Approximating orbits are not generically on straight horizontal lines, so one can not
expect Λj to be a diagonal scaling (that is, c = 0 and p(x) = 0 for all x in (2)), despite this
can be achieved in many examples by a suitable coordinate change. But if we assume that we
have a preferred symmetry line where all elliptic or reflection-hyperbolic monotone orbits have a
point on, we can reduce Λj to be of the form (2). For the standard map (1) this symmetry line
is {x = 1/2}. Hence c = 0 in (2). For simplicity, we are going to use the coordinate ξ = x− 1/2
instead of x.

Let us consider the jth approximant of ω. For a given value of k, the renormalisation iterates
of Mk are defined on domains around the golden RIC or golden Cantorus, between the orbits
with rotation number pj/qj and pj+1/qj+1. The following steps determine the scalings defining
the corresponding renormalised domains:

1. Compute the following orbits and points:
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1.1 The elliptic (or reflection-hyperbolic) orbit on the symmetry line with pj/qj as rota-

tion number. Call it P j
e .

1.2 If j is odd (resp. even), the point in the orbit of P j
e closest to the right (resp. left) of

it 3. Call it Qj
e.

1.3 The elliptic (or reflection-hyperbolic) orbit on {x = 1/2} with pj+1/qj+1 as rotation

number. Call it P j+1
e . It can be either above or under P j

e , depending on the parity
of j.

1.4 The hyperbolic orbit with pj/qj as rotation number4. Call the points in this orbit

closest to P j
e to the left and to the right as Lj

h and Rj
h, respectively.

2. Let p(j)(ξ) = s
(j)
1 ξ + s

(j)
2 ξ2 + s

(j)
3 ξ3 be the cubic interpolating polynomial of the 4 points

Lj
h, P

j
e , R

j
h, Q

j
e, after moving their abscissas −0.5, that is, in such a way that the x-

coordinate of P j
e is 0.

3. Let d
(j)
x = max

(

|π1(P j
e − Lj

h)|, |π1(P
j
e −Rj

h)|
)

, and d
(j)
y = |π2(P j

e − P j+1
e )|, where π1 and

π2 are the projections onto the first and second variable.

After all these computations, consider the sequence of changes of variables obtained as the

composition of, first, scaling around P j
e by d

(j)
x in the x direction and by d

(j)
y in the y direction,

then subtracting p(j)(ξ) in the second variable and finally shifting the coordinates to translate
P j
e to the origin. This altogether reads (suppressing some dependencies on j to lighten the

notation)

Λj :

(

ξ
η

)

7→
(

dxξ + 1/2

dyη + π2(P
j
e ) + s1dxξ + s2(dxξ)

2 + s3(dxξ)
3

)

=

(

x
y

)

, (8)

and transforms the rectangle [−1, 1] × [0, 1], where the island is centered in the origin and the
next approximant is at (0, 1), into the variables of the standard map, see Figures 2 and 3 for
some examples.

Remark 3.1. 1. Concerning d
(j)
x , the symmetries of the standard map imply that, actually

|π1(P j
e −Lj

h)| = |π1(P j
e −Rj

h)|. Hence in the box [−1, 1]× [−1, 1] we will have (−1, 0) and
(1, 0) as hyperbolic fixed points and (0, 0) as elliptic or reflection-hyperbolic fixed point.

2. The sequences d
(j)
x and d

(j)
y go to zero geometrically with rates 1/α and 1/β, respectively.

3. The fact that the polynomial p(ξ) has been chosen as cubic is enough [20, 15], since there
is numerical evidence that this condition guarantees that after qj iterates of points in some

compact domain around P j
e they return to the desired domain. The fact that it is enough

to use a cubic polynomial follows because |β| < |α|4, see [17] and the values given in (4)
and (5).

4. We want the renormalised domain close to η = 0 to be the domain of definition of a map
of the cylinder, that is, to be able to identify the segments of points with coordinates
(−1, η) and (1, η) for |η| small. To do so, the right branches of the invariant manifolds of
(1, 0) should be the same as the right branches of the invariant manifolds of (−1, 0), but
horizontally shifted by 2 units. We get this by imposing that Λ−1

j (Qj
e) also lies on η = 0.

3This point has to be chosen in different sides of the symmetry line depending on the parity due to the fact
that two periodic orbits with consecutive approximants as rotation number lie on different sides of the invariant
curve or Cantorus.

4In the case of the standard map (1), it can be found either on the lines {y = 2x} and {y = 2x− 1} or in one
of them, depending on j.
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5. The symmetries of the standard map Mk impose some conditions on the coefficients of
of the cubic polynomial p(ξ). Express Mk = I1 ◦ I2, I1 : (x, y) 7→ (−x + y, y), I2 :
(x, y) 7→ (−x, y+k sin(2πx)/2π). By construction, the points that define the domains of a
renormalisation step lie on invariant sets under I2 that are near the set {ξ = x− 1/2 = 0}
of fixed points of I2. Imposing y = p(ξ) = s1ξ + s2ξ

2 + s3ξ
3 to be invariant under I2 leads

to p(−ξ) = p(ξ) − k sin(2πξ)/2π and s1 = k/2, s3 = −kπ2/3. Then, for each fixed value
of k, the coefficients of p(j)(ξ) are such that

lim
j→∞

s
(j)
1 = k/2, lim

j→∞
s
(j)
3 = −π2k/3. (9)

3.2 Iterations of the standard map Mk under the operator R1.

The renormalisation iterates of Mk are defined in the renormalised domains given by Λj as

derived in Sect. 3.1. In Fig. 2 and Fig. 3 we show the phase space structure of Rj
1[Mk] =

Λ−1
j ◦ M

qj
k ◦ Λj in (ξ, η) ∈ [−1, 1] × [0, 1.2] for two different values of the parameter k before

and after the breakdown of the golden RIC. We considered an equispaced 512 × 512 grid and
we indicate in light grey those pixels whose center can be considered regular by approximating
the maximal Lyapunov exponent. In black, we highlight the positions of the 0/1, 1/2 and
2/3-periodic orbits of Rj

1[Mk]. More concretely,

1. In Fig. 2 we show how does R1 act on Mk, for k = 0.9716 < kG. For this value of the
parameter it has been proved in [10] the existence of the golden RIC. Hence, as conjectured
[17, 19] (recall Fig. 1) we expect the iterates under R1 to tend to RT . In the top left plot
we show the dynamics around the golden RIC under M2

k . Hence, the 1/2 elliptic periodic
orbit of Mk corresponds to the fixed point at the origin and the 2/3 elliptic periodic
orbit of Mk becomes the 2-periodic orbit at (0, 1) shown in the plot. In the same plot,
we also indicate the points that are going to define the next renormalised domain. The
phase space of the renormalised mapping (that is, under M3

k between the 2/3 and the 5/8
periodic orbits of Mk, and changing signs both in ξ and η) is shown on the next right plot
in the sequence. Successive iterations of the renormalisation operator are shown. From
left to right and from top to bottom we show 16 iterates of the renormalisation map, the
title in each picture indicates the number of iterate.5 Note that, as we iterate, we tend to a
more regular phase space and, in fact, for the 17th iterate (not shown), with the resolution
used for these plots, we do not detect a single chaotic orbit.

2. Fig. 3 is analogous to Fig. 2 but for k = 0.98. We see that phase space of Mk becomes
more and more chaotic when performing iterates of R1. This is the expected behaviour
once the golden RIC is destroyed, see Fig. 1. To reach a seemingly fully chaotic phase
space, with the resolution used in the plots and for k = 0.98, one only needs 11 iterates
(we show the first 10 iterates of R1[Mk]).

4 The phase space near a Cantorus

In this section we want to describe the phase space around a broken invariant curve. We consider
the golden Cantorus and we study the relative position and relative size of the approximating

5For iterates ≥ 14 small chaotic zones are visible by magnifying the plot in the electronic version.
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Figure 2: Iterates of Mk, k = 0.9716 < kG under R1. From left to right and from top to bottom,
we show how the consecutive iterates of Mk tend to a regular map.

islands (that is, islands of stability related to the best approximants of the golden rotation
number). The renormalisation theory implies that the scaling factors that will allow to relate
the renormalised islands are the eigenvalues δ and δ′ for the parameter and α and β for the
phase variables. First, we provide numerical computations that support that the traces trj of
the elliptic approximating orbits change monotonically in the parameter. Second, we show that
for each fixed k, close enough but larger than kG, the approximating islands tend, as j → ∞,
to an island with a limit structure, and we show how such island evolves with respect to k in a
suitable fundamental domain.

4.1 Numerical study of the local dynamics of elliptic approximating orbits

We consider ranges of k where elliptic periodic orbits evolve from parabolic to the period-
doubling bifurcation and we numerically study the dependence of the traces trj with respect
to k. The numerical studies in [12] suggest that the sequence {kj(−2)}j , of values of k for
which the j-approximant elliptic orbit has trace equal to −2 (that is, it bifurcates to reflection-
hyperbolic), is monotonically decreasing and limj→∞ kj(−2) = kG. The behaviour of kj(τ), both
as a function of τ and as a sequence {kj(τ)}j for each fixed value of τ ∈ [−2, 2) is displayed in
Fig. 4 left, for kj(τ), j = 1, . . . , 17. First, the results suggest that the following property holds
for Mk.
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Figure 3: Iterates of Mk, k = 0.98 > kG under R1. From left to right and from top to bottom,
we show how the successive iterates tend to a chaotic map.

Conjecture 1. The function kj(τ) is strictly decreasing in τ , for all j > 0.

Note that if such conjecture holds, the multiplier of the jth elliptic approximating orbit has a
full passage through resonances and, in case Greene’s criterion holds, that the golden RIC can
not reappear after kG. We remark that we would not expect such monotonicity in cases where
RIC can reappear after their destruction, as happens, for instance, in standard-like maps with
a two-harmonic potential, see [8, 9, 4, 22]. Other examples where all the RIC are destroyed and
then several RIC reappear when increasing a parameter can be found in [6].

On the other hand, in Fig. 4 left, we can also see that, as j increases, the graphs kj(τ) tend
point-wise to be a constant function. That is,

lim
j→∞

kj(τ) = kG, if τ < 2, (10)

Note that (10) includes values of k where the golden RIC still exists, as shown in Fig. 4 left.
Here we give evidence for τ > −2, but we also have evidence for some values of τ such that
τ < −2. For these values, the sequence {kj(τ)}j behaves as in the interval τ ∈ [−2, τ−], where
τ− is the value of the trace given in (11) below.

The convergence of {kj(τ)}j to kG implies the convergence of the coefficients s
(j)
1 and s

(j)
3 of

the cubical change of variables (8) to the limit values (9). We checked such convergence by
considering convergents j = 3, . . . , 30, that is, from the 2/3 to the 832040/1346269 elliptic

periodic point, and computing s
(j)
i , i = 1, 2, 3, along the sequence {kj(−1)}j corresponding

to the 1:3 resonance of each of the approximating elliptic periodic orbits. We used 75 digits
precision to compute the positions P j

e and the values kj(−1). The results are summarised in
Table 1, where we also report on the rates of convergence and Aitken’s delta-squared acceleration
is used to obtain better approximations of the limit of each sequence. We note that:
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Figure 4: Left: Evolution of the value kj(τ), for τ ∈ [−2, 2) for j = 1, . . . , 17. Right: k̃j(τ) =
logδ |kj(τ) − kG| as a function of τ ∈ [−2, 2) for j = 4, . . . , 17. Here we only show values of j
that are visibly equispaced in some ranges of τ . See the text for the definition of the highlighted
values τ+ and τ−, as given in (11).

j s
(j)
1 rate−1

j (s1) s
(j)
2 rate−1

j (s2) s
(j)
3 rate−1

j (s3)

10 0.491794333165 1.666 0.124199 -1.593 -3.7 -0.17
15 0.486321203980 1.639 0.130891 -1.461 -3.5 2.38
20 0.485861368123 1.630 0.130224 -1.596 -3.4 0.87
25 0.485821514330 1.628 0.130316 -1.483 -3.3 1.14
30 0.485818036195 1.628 0.130306 -1.569 -3.3 1.06

0.4858177030 1.628 0.130307 -1.532 -3.1 1.08

Table 1: For each j we report the coefficients s
(j)
i , i = 1, 2, 3, for kj(−1), and their numerical

rates of convergence as j → ∞. The last row displays the 30th element of Aitken’s sequence.

� The results suggest that s
(j)
1 converges to kG/2 with ratio δ, that s

(j)
2 converges to 0.130307 . . .

at rate that seems to be α2/β ≈ (−1.532)−1; and s
(j)
3 converges to −π2kG/3 at rate

α3/β ≈ (1.082878)−1 . Since this last is very close to 1 the convergence is very slow, and

one should go further in j to get values of s
(j)
3 closer to the expected limit.

� The same computations for τ = −2 and 0 instead of −1 show similar results.

On the other hand, concerning the sequences {kj(τ)}j we note that:

� Our numerics support that {kj(τ)}j , for τ = −2,−1, 0, converges to kG at rate 1/δ. This
agrees with the numerical results in [19] for τ = −2. This rate of convergence is too
slow to compute kG with high precision. A faster alternative sequence will be chosen in
Section 4.2.

� For different ranges of τ the sequence {kj(τ)}j appears to be either eventually increasing
or decreasing or alternating. In Fig. 4, left and right, we have added two vertical lines
that separate the regions where we can see different behaviour.

� In Fig. 4 right, k̃j(τ) = logδ(kj(τ)− kG), for j = 4, . . . , 17. We see that
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1. For τ ∈ [−2, τ−) ∪ (τ+, 2) the graphs for different j seem to be vertically equispaced
by 1 unit, that is, the rate of convergence of the sequence {kj(τ)}j seems to be 1/δ.

2. For τ ∈ [τ−, τ+] the sequence {kj(τ)}j seems to alternate around kG and becomes
eventually monotone, but this requires further detailed numerical investigations.

4.2 Obtaining an accurate approximation of Greene’s constant

The computations of the sequences {kj(τ)}j lead to a method to approximate kG. The graphs
kj(τ) are strictly decreasing functions of τ and intersect each other as shown in Fig. 4 left. For
1 ≤ j < l let τj,l be the value of the trace such that kj(τj,l) = kl(τj,l). In particular, one has,
computed with 50 correct decimal digits,

τ− = τ3,4 = 0.836316630998899379064771402918493203122884569070177 . . . (11)

τ+ = τ2,3 = 1.224105134257633758347076577736673021132619783370115 . . .

The basic idea to approximate kG is based on the following numerically supported properties
concerning the convergence of the sequences {kj(τ)}j .

Conjecture 2. For all τ ∈ [−2, 2), the sequence {kj(τ)}j converges to kG geometrically. For
τ = τ⋆ (given in (6)) the rate of convergence is δ′, and 1/δ otherwise. Furthermore,

1. If τ ∈ [−2, τ−) the sequence {kj(τ)}j is strictly decreasing,

2. If τ ∈ (τ+, 2) the sequence {kj(τ)}j is strictly increasing,

3. For τ ∈ [τ−, τ+] \ {τ⋆}, if τ < τ⋆ the sequence {kj(τ)}j is eventually decreasing and, if
τ > τ⋆, it is eventually increasing.

4. For τ = τ⋆ the sequence {kj(τ)}j alternates around kG. Moreover the sequence of pairs of
points

{(τj−1,j, kj(τj−1,j)), (τj,j+1, kj+1(τj,j+1))}j ,
defines domains around the limit point (τ⋆, kG) that scale as δ′ in τ and as δ′/δ in k.

Recall from Sect. 2.2 that the critical fixed point RC is a map where all approximating elliptic
orbits have trj = τ⋆, so as we approach RC from the upper branch of W u(RC) all the values of
these traces accumulate to the limit value at the same rate 1/δ. The standard map Mk inherits
this behaviour, that is, the dynamics of Mk in a length 1 interval in k̃ = logδ(k− kG) for values
of k larger but close enough to kG resembles the dynamics of the (one-parameter family of)
maps in a fundamental domain of W u(RC).

Further, note that the study of the sequences

{τj−1,j}j≥2
δ′−→ τ⋆ and {kj(τj−1,j)}j≥2

δ′/δ−→ kG (12)

does not rely on the knowledge of either of the limits. In fact, the right limit in (12) converges
faster than the sequence {kj(τ)}j for fixed τ .

In [19, 17] it was already suggested to use the sequence {kj(τ⋆)}j to approximate kG, since it
has rate of convergence δ′/δ, but in practice this sequence depends on the approximation of τ⋆.
Instead we use the sequences (12) to approximate kG while refining the value of τ⋆ at the same
time. We computed the pairs (τj,j+1, kj(τj,j+1)) for 1 ≤ j ≤ 35. We performed computations
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with 50 decimal digits arithmetics. Using the Aitken’s acceleration method we get the first 21
digits of kG and the first 12 digits of τ⋆, that is, we obtain the approximations

τ⋆ = 0.999644540920 . . . and kG = 0.971635406047502179389 . . . (13)

and the estimates of the rates of convergence of sequences (12) are −0.610830 and −0.3752144
respectively.

The routines for computing the periodic orbits and get the previous results were implemented
in Pari/GP [2], which allows to easily increase the precision. The code takes advantage of the
symmetry lines of the standard map Mk and solves the corresponding one dimensional equation
by combining bisection and Newton methods to get the desired accuracy.
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Figure 5: Left column: kj(τ) as a function of j. Right column: k̃j(τ)=logδ(kj(τ)−kG)+logδ(2π).
The values of the trace are τ = 2cos(2πp/q). Top: p/q = 1/2, 1/3, 2/3, 1/4, 1/5, 2/5, 2/7, 2/9,
all of them give τ ∈ [−2, τ−). Middle: p/q = 1/6 and p/q = p/1000 with 163 ≤ p ≤ 170, that
give τ ∈ (τ−, τ+). Bottom: p/q = 1/q for 7 ≤ q ≤ 15, that give τ ∈ (τ+, 2].

Let us give some numerical evidences to support Conjecture 2 on which the previous computa-
tions are based. The left column of Fig. 5 corresponds to kj(τ) and the right column to k̃j(τ),
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Figure 6: Magnifications of Fig. 4, left, 2πkj(τ) for different values of j. The upper left and lower
right vertices of the inner box are of the form (τn,n+1, 2πkn(τn,n+1)) and (τn−1,n, 2πkn(τn−1,n)).
The corresponding n and the j’s shown in each figure are: Top left: n = 5, j = 3, . . . , 17.
Top right: n = 7, j = 5, . . . , 17. Bottom left: n = 9, j = 7, . . . , 17. Bottom right: n = 11,
j = 7, . . . , 17.

for fixed τ as a function of j. On top, middle and bottom we show examples of τ ∈ [−2, τ−),
τ ∈ (τ−, τ+) and τ ∈ (τ+, 2), respectively (see the caption in Fig. 5 for the actual values of τ
shown). On the left we clearly see the decreasing, alternating and increasing character of the
sequences predicted in Conj. 2. On the right we show logδ(kj(τ) − kG) also as a function of j,
where we added a segment with slope −1 corresponding to δ−j , to stress out the fact that the
rate of convergence of all the sequences shown is 1/δ. In the middle right plot we highlighted
the behaviour of the case τ = 2cos(π/3) = 1, the 1:6 resonance. Since this value of τ is very
close to τ⋆ we checked that the sequence is monotonically increasing once j ≥ 19.

Moreover, in Fig. 6 we show convenient magnifications of Fig. 4 left where the domains of item
4. of the Conjecture 2 can be seen. The fact that these domains present these scalings may be
useful to eventually derive a limit approximation of the dynamics of these islands of stability.

Remark 4.1. Greene’s criterion deals with the behaviour of the traces trj as a function of k.
Indeed, if in Fig. 4 one considers the sequence of intersections of the horizontal line {k = k∗}
with the graphs of kj(τ), one observes the behaviour supported by Greene’s conjecture, that is,

1. if k∗ < kG, the sequence {trj(k∗)}j is bounded and tends to 2 (sub-critical case),

2. if k∗ = kG, the sequence {trj(k∗)}j is bounded and tends to τ⋆ (critical case),

3. if k∗ > kG, the sequence {trj(k∗)}j tends to −∞ (super-critical case).
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We emphasize that in the sub-critical case there is an analytic RIC, see [8, 18].

4.3 The size of the approximating islands and the flux through them

In this section we investigate the behaviour of the following two observables as the order j of
the approximants increases:

1. The size µj of the stability domain DSj around the j approximant elliptic (or reflexive
hyperbolic) periodic orbit.

2. The so-called Mather’s ∆Wj [24] which is commonly used to describe transport properties
of twist maps. Recall that Mather’s ∆W can be seen as the flux, that is, the area per
iterate that crosses a turnstile, see [21]. By ∆Wj we refer to the flux through the jth
approximating pair of periodic orbits.

Let us briefly recall the concepts of flux and turnstile mentioned above. Given a region with
a piecewise smooth boundary, the flux is the volume of the subset of points of the region that
escapes from the region at each iterate. Then, for a twist map of the cylinder, to define the flux
through a pair of Birkhoff periodic orbits of the same rotation number, one considers a simple
closed rotational curve C joining the successive points on the pair of hyperbolic and elliptic (or
reflexion hyperbolic) periodic orbits and such that the intersection of the curve C with its image
reduces to the points on the pair of approximating orbits. Then the flux through the pair of
periodics orbits is given by the flux through the region delimited by C (upper or lower region in
the cylinder). Note that the curve C and its image define exit and incoming sets to the region,
hence it acts as a turnstile. We refer to [26] for a review of these concepts.

4.3.1 Behaviour of µj and ∆Wj as a function of τ .

Let us consider a fixed value of τ and recall that, for each approximant j, kj(τ) denotes the
value of the parameter k for which the j-approximating elliptic (or reflection-hyperbolic) periodic
orbit has trace equal to τ . Denote by DSj the stability domain around such orbit. We aim to
investigate the measure of DSj and discuss how it behaves as j increases.

Numerical evidences support that the standard family of maps is close to W u(RC), where RC is
the critical fixed point of the renormalisation operator R1. Hence, in particular, we expect the
stability domains DSj of the approximating islands to scale as (αβ)−j for the jth approximant,
provided j is large enough, see (4)-(5). Indeed, for different j, we compare the sizes µj of DSj

scaled according to (8). The numerical approximation of µj is obtained as follows.

1. We consider τ ∈ [−4.5, 2). For τ < −4.5 the islands are not detected with the resolution
used in computations. For each of the values of τ considered we obtain kj(τ).

2. To approximate µj we consider a 800× 800 equispaced grid in (ξ, η) ∈ [−1, 1]× [−0.6, 0.6].
Each point of the grid defines a point in the original coordinates (x, y) which is considered
to be in DSj if it stays in [−1, 1] × [−0.6, 0.6] for at least 105 iterates. Then, using these
criteria, we compute

µ̃j =
µj

d
(j)
x d

(j)
y

, with µj ≈
#DSj

64 · 104 ,
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Figure 7: Left: µ̃j as a function of τ for j = 2, . . . 9 (that is, for periodic orbits with rotation
number from 1/2 to 55/89). The vertical line corresponds to the limit value of the trace τ⋆.
Right: Magnification of the left plot.

where #DSj denotes the number of points of the grid that are considered to be in DSj.

Note that µj includes both regular and confined chaotic orbits in the island. On the other
hand, an orbit that we consider to be confined actually remains stuck close to the whole
island chain of the standard map for at least 105 × qj iterates.

Computations were performed for 2 ≤ j ≤ 9 (up to rotation number 55/89) and taking a fine
grid of values of τ ∈ [−4.5, 2). In Fig. 7 we show the evolution of µ̃j as a function of the trace
τ . The right plot is a magnification of the left one. We observe that the curves µ̃j(τ) alternate
as j increases around a “limit curve” which would correspond to the evolution of the size of the
stability domain of the “limit” islands when j → ∞.

Next, let us consider Mather’s ∆Wj along the sequence of best approximants of the golden
number. Since ∆Wj is the area per iterate that crosses a turnstile [21] it can be approximated
by the number of pixels of a grid with η > 0 and that M q maps to points with η < 0. In the
computations we used the same grid as before for estimating µj. From the set of points that
cross η = 0 we also check if those can be considered to be ‘confined in an island’. As before, a
point is considered ‘confined in an island’ if remains stuck close to the island chain for at least
105 × qj iterates. Hence, following this criterion, we express

∆Wj = ∆W c
j +∆W nc

j ,

where the superscript c stands for ‘confined in an island’ and nc for ‘non-confined in an island’.
To compare the values of ∆Wj for different j we take into account the scalings in (8), that is,
we compute

∆W̃j =
∆Wj

d
(j)
x d

(j)
y

In Fig. 8 we show, from left to right, ∆W̃j, ∆W̃ nc
j and ∆W̃ c

j , respectively, as a function of τ .
We have used the same grid used to approximate µ̃j in Section 4.3. Comparing the left and
center plots we see that most of the turnstile area is in ∆W̃ nc

j , but there is still some part of the

island that is included in ∆W̃j. Compare the right plot in Fig. 8 with the left plot in Fig. 7.
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Figure 8: ∆W̃j (left), ∆W̃ nc
j (center) and ∆W̃ c

j (right), as a function of τ ∈ (−4.5, 2). The
curves correspond to the same rotation numbers as shown in Fig. 7. Note that the order of the
curves corresponding to different rotation numbers changes, the color identifies each curve in
each plot.

4.3.2 Behaviour of µj and ∆Wj as a function of k > kG.

To study escape rates across the golden Cantorus we look for the area of the stability domain
of the approximating islands for k > kG. In Subsect. 4.1 we saw that if τ < τ−, then the
sequence {kj(τ)}j converges monotonically and geometrically to kG with ratio δ. In Fig. 9 we
show µ̃j as a function of k̃ = logδ(k − kG) < 0. As in Fig. 7 we used a 800 × 800 equispaced
grid in (ξ, η) ∈ [−1, 1] × [−0.6, 0.6], and considered that a point in this region is non-escaping
(and hence belongs to DSj) if it remains in this box for, at least 105 iterations of the map
Λ−1
j ◦M qj

k ◦Λj . The results in Fig. 9 show µ̃j(k̃) for j = 3 (period 2/3) to j = 13 (period 233/377)

in the range k̃ ∈ [−12,−3], that is, for k ∈ [0.974521477288362, 1.20341583474535]. The 14th
approximating periodic orbit corresponding to rotation number 377/610 has no detectable area
(with the resolution used) surrounding it in the range of k̃ shown.

We observe in Fig. 9 that, as j increases, the shape of the curves roughly seems to get closer

to a limit shape, that is, limj→∞

∣

∣

∣
µ̃j(k̃ + 1)− µ̃j+1(k̃)

∣

∣

∣
= 0, and limk̃→−∞ µ̃j(k̃) = µ̃j(kG).

Nevertheless, on top left of Fig. 9 we can see that for each j, µ̃j(k̃) seems to tend to a different
limit value as k̃ → −∞. This is consistent with the results in Fig. 7, where we saw that the
scaled areas of consecutive approximants alternate around the limit.

Let us also report the results about ∆W . Similar to Fig. 8, we plot the corresponding total,
non-confined and confined turnstile areas of the islands shown in Fig. 9 and in Fig. 10. These
turnstile areas are those that actually play a role in transport properties, see related comments
in Section 5.

Finally, let us illustrate the stability islands in Fig. 11 for a length 1 interval of k̃, k̃ = [−10,−9).
We plot the islands of rotation number 13/21 up to the ones with rotation number 89/144 (a
total of 5 approximants) for k̃ = −9.125(−0.125)− 10.000. We see that the island with rotation
number 13/21 (rightmost column) does not change much in this interval of k̃, while the islands
with larger period change at a faster rate. Even the last one shown (that with rotation number
89/144) disappears in this range of k̃. The scaled area that these islands occupy can be seen in
Fig. 9. Each row in Fig. 11 corresponds to a fixed value of k̃.

In Fig. 9 we can see sudden decreases in the scaled confined area. From the displayed evolutions
in Fig. 11 we can guess to which satellite islands these correspond to. Recall that the sudden
decreases in the confined area are related to the breakdown of an invariant curve that allows
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Figure 9: Scaled areas of approximating islands µ̃j(k̃), where k̃ = logδ(k− kG) for j = 3, . . . , 13.
Some of the curves are labelled with the rotation number they correspond to. This figure is
related to Fig 7. Here k̃ is used as parameter instead of τ , and only the data on the left of τ⋆

in Fig 7, left, is shown. See text for further explanations.
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Figure 10: We display ∆W̃j (left), ∆W̃ nc
j (center) and ∆W̃ c

j (right) as a function of k̃. The left
and center plots display the curves for 3 ≤ j ≤ 14 but the curve for j = 14 is not shown in the
right plot.

previously chaotic confined region to escape from a compact set that contains the whole island,
see for example [29, 30]. At this global bifurcation satellite islands leave the connected component
of the domain of stability. We labelled some of the jumps in Fig. 9 as p3, p4, p5 and p6 to refer to
the effect of the breakdown of the invariant curves surrounding the islands of rotation number
1/3, 1/4, 1/5 and 1/6, respectively.

5 Transport across a golden Cantorus

The gaps of a Cantorus allow orbits to leak across it, but the time to cross them can be very
large, specially for parameters just after the breakdown. In this section we study escape rates
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Figure 11: Evolution of the shape of approximating islands with rotation numbers
13/21, 21/34, 34/55, 55/89 and 89/144 in the interval k̃ ∈ [−10,−9). We show the shape of
these islands for the eight values k̃ = −9.125(−0.125) − 10.000. See text for further explana-
tions.

across the golden Cantorus of the standard map Mk for k > kG but close to kG. First, we study
the behaviour of the mean escape rate and its standard deviation as k → kG. Next, we consider
the stopping time of the previous escape process and look for its probability distribution.
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5.1 Escape rates

For k < kG, but close to kG, the standard map Mk has a RIC with rotation number ω, the
golden mean, and another RIC with rotation number 1− ω, which is symmetric of the previous
one with respect to the point (1/2, 1/2). These curves intersect the y axis in points close to
(0, y∗) and (0, 1 − y∗), respectively, where y∗ ≈ 0.664759 (this value y∗ is not the minimum,
which is close to 0.5296, nor the maximum, which is close to 0.6848, of the RIC with rotation
number ω). But these RIC have points with y > y∗ and y < 1− y∗, respectively.

We can take initial conditions in the chaotic region between these curves to see how many iterates
are needed to cross one of the Cantori with rotation number ω or 1− ω which replace the RIC
for k > kG. A simple way is to consider a set U(k) of initial conditions in a fundamental domain
of one of the branches of the local invariant unstable manifold, W u

H2
, of the period 2 saddle orbit

of Mk, which for k < kG is located between the two invariant RIC.

Concretely, if we consider the formulation of the standard map with x, y ∈ [0, 2π) to obtain H2

we look for an initial point x ∈ [0, π/2) with y = 2x and such that the image is the symmetric
point (2π− x, 2π− 2x). The image of this second point is the first one. This implies that x has
to be a solution of the equation 4x+ k sin(x) = 2π, which has a unique solution in (0, π/2) for
all k > 0. Concretely, for values of k until approximately 1 the solution is close to π/2 − k/4.
For k large it tends to behave as 2π/(k + 4).

Because of the symmetry it is immediate to check that the differential map is the same in both
points. The dominant eigenvalue of the differential at the first point, say γ, behaves as 1 + k/2
for k small, it is ≈ 1.624863 for k = 1 and approaches k + 2 for k large. Hence, the dominant
eigenvalue of the differential of the period 2 orbit H2 is γ2.

Given (x0, y0) ∈ S
1×(0, 1) denote by (xn, yn) = Mn

k (x0, y0) = Mk(xn−1, yn−1). Let n = n(x0, y0)
be the number of iterates for which either yn > y(u) or yn < y(l) for the first time, where y(u)

and y(l) denote upper and lower limits. We shall take y(l) = 0 and y(u) = 1 in the computations,
but other values are possible. One can take y(l) ∈ (0, 0.3] and y(u) ∈ [0.7, 1), for instance. If
n = n(x0, y0) < ∞ we say that (x0, y0) escapes across one of the golden Cantori in n iterates.

Taking the initial conditions in U(k) they are candidates to escape, hence with n(x0, y0) < ∞.
For values of ∆k = k − kG > 0 small, we have numerically approximated the probability law

Nk(m) = P (n(x0, y0) = m) , m ∈ N, (14)

and we have computed its average 〈Nk〉 and its standard deviation σk. That is, if ic is the
number of initial conditions in U(k), then we have studied the behaviour of

〈Nk〉 =
1

ic

∑

u∈U(k)

n(u) and σ2
k =

1

ic

∑

u∈U(k)

(n(u))2 − 〈Nk〉2 . (15)

Concretely, we have computed the mean escaping time for 1101 values of the parameter k in
an equispaced grid in logδ-scale. We have considered k̃ = −3(−0.01) − 14. Since we expect
the mean escaping time to behave as a negative power law in k − kG, we have considered less
initial conditions as we approached the breakdown value of the parameter kG. Namely 104

initial conditions for k̃ = −12(−0.01) − 14 (but for some of them in this range up to 105),
105 initial conditions for k̃ = −9(−0.01) − 11.99, 106 for k̃ = −6(−0.01) − 8.99 and 107 for
k̃ = −3(−0.01) − 5.99.
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Figure 12: Statistics of 〈Nk〉, the mean escaping time of orbits of the Chirikov standard map
(1), for values of the parameter near kG. Top left: 〈Nk〉 × 10−9 as a function of k (purple),
{k = kG} (black). Top right: logδ 〈Nk〉 as a function of k̃ (purple), and the slope B〈Nk〉 (black).

Bottom left: 〈Nk〉 × (k − kG)
−B , with B = B〈Nk〉 (purple, top) and B = BMac (green, bottom),

as a function of k̃, see (18). Bottom right: Detail of bottom left. Compare with Fig. 9 and
Fig. 10. See text for further explanations.

The evolution of the mean 〈Nk〉 as a function of k can be seen in Fig. 12. There we show the
same data in different scales. First, on top left, one can see the direct results for the mean
as k → kG. As expected, we observe substantial increase in the mean escaping time as we
approach kG (highlighted as a vertical line in this plot). There we show 〈Nk〉× 10−9. The value
of k closest to kG shown in Fig. 12, top left, corresponds to k = 0.972724398546588 ≈ kG+δ−14,
being δ−14 ≈ 1.089 × 10−3. In average, for this value of k each initial condition needs over
1.5× 1010 iterates to leave y ∈ [0, 1].

In order to explain the bottom plots in Fig 12 let us recall that for any irrational rotational num-
ber ω, Mather’s ∆Wω is defined as the limit of ∆Wpj/qj over sequences of rationals {pj/qj}j≥0

tending to ω, see [24]. On the other hand, it follows from renormalisation theory, see [17, 19],
that Mather’s ∆Wω satisfies

∆Wω(kG +∆k/δ) ≈ ∆Wω(kG +∆k)/(αβ),

so that there exists a 1-periodic universal function U(x) = U(x+ 1) such that

∆Wω(kG +∆k) ≈ A(∆k)BU(logδ(∆k)), where B = logδ(αβ). (16)

As a consequence, we expect the mean time to escape 〈Nk〉 to behave as an inverse power law
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Interval B A

[−14,−12] −3.00± 0.01 25± 1

[−14,−11] −2.978 ± 0.005 28± 1

[−14,−10] −2.978 ± 0.003 28.7 ± 0.5

Table 2: Approximate constants in (17) obtained by least square fitting in different ranges.

in ∆k, that is,

〈Nk〉 = A(∆k)B (17)

In Fig. 12 top right, we show logδ
〈

Nk̃

〉

as a function of k̃ = logδ(∆k). Note that, as k → kG,

the slope seems to change slightly. A linear fit of the data in different ranges of k̃ provides
approximations of the constants A and B in (17), we show some results in Table 2. The slope
shown as a reference in Fig. 12 top right is B〈Nk〉 = −3.00, that is, the one obtained for the

linear fit in the interval k̃ ∈ [−14,−12]. Note that the expected theoretical value according to
(16) is

B = BMac = − logδ(αβ) ≈ −3.01172189133849. (18)

Our numerical results based on direct simulations of the standard map Mk show that B〈Nk〉

seems to approach to BMac as we approach the breakdown.

In Fig. 12 bottom, left and right, we show 〈Nk〉 × (k− kG)
−B , as a function of k̃. As labelled in

the bottom left figure, the top graph corresponds to choosing B = B〈Nk〉 = −3.00 while the one
below corresponds to B = BMac. The right plot is a magnification of the leftmost oscillations
of the left plot. The oscillations in k̃ ∈ [−14,−12] are less smooth since we had to consider 10
times less initial conditions than in k̃ ∈ [−12,−10].

We observe in the bottom plots of Fig. 12 that, after subtracting the power-law tendency, there
seems to be a 1-periodic behaviour as we approach the breakdown. This periodic behaviour is
due to the 1-periodic function U(logδ(k−kG)) in (16). Also the fluctuations far from kG (k̃ > −6
in Fig. 12, bottom left) seem to be related to this 1-periodic behaviour close to kG, but strongly
deformed.

The numerical results included in this paper suggest that the shape of the 1-periodic fluctua-
tions shown in the figure is a consequence of the shape and area of the approximating islands
(see Fig. 9), the turnstile area (see Fig. 10 and compare it with Fig. 12: minima in Fig. 12
approximately correspond to maxima in Fig. 10, left and center), the area of the lobes created
by the invariant manifolds of hyperbolic approximating periodic orbits, and stickiness effects
due to the fine structure of the border of the stability islands.

Let us report now the results of the computations related to the standard deviation σk (15). In
Fig. 13 we show that the standard deviation σk seems to behave similarly to the mean. On the
left of this figure, we plot σk as a function of k, and on the right we plot logδ(σk̃) as a function

of k̃ and the slope B〈Nk〉. Compare with the plots in Fig. 12 top.

Despite having a similar behaviour as k → kG, as an inverse power law in ∆k with the same
power that in the case of 〈Nk〉, the main difference between the two observables is the existence of
peaks in σk, that are much more prominent far from the breakdown. Namely, as one can observe
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Figure 13: On the left plot we display σk × 10−9 as a function of k (purple), {k = kG} (black).
The right plot shows logδ(σk̃) as a function of k̃ (purple), and the slope B〈Nk̃〉 (black).

in Fig. 13, right, despite we can see some small peaks near k̃ ≈ −10, the largest deviations from
the straight line appear for k̃ > −8. In Fig. 14 we plot σk̃/

〈

Nk̃

〉

as a function of k̃. On top

left we see the behaviour in the whole range considered, k̃ ∈ [−14,−3], while the other figures
are magnifications of this first one. These magnifications allow to see the actual shape of the
peaks. In all the plots, we show a black horizontal line that corresponds to σk̃/

〈

Nk̃

〉

= 1. It is
remarkable that besides the peaks, the statistics of escape rates seem to have close values of the
mean and the standard deviation.

So far, we have presented the results of a massive evaluation of the mean escaping time across
the golden Cantorus of the standard map. The following remarks on the obtained results could
help to interpret them correctly:

1. The power law behaviour
〈

Nk̃

〉

∼ (∆k)−BMac . In our simulations we approached the break-
down by δ−14 ≈ 0.00108 and got a difference between the theoretical value and our exper-
imental approximation |BMac − B〈Nk̃〉| = O(10−2). This means that we are still far from

the limit, but computing representative statistics for values of k̃ smaller than −14 is still
far from practical. Note further that if we were close enough to the limit, the oscillations
in Fig. 12 should take place around a horizontal line. But we expect this to happen closer
to the limit, that is, as k̃ → −∞.

2. The visible peaks in σk̃/
〈

Nk̃

〉

and the stickiness effect of islands of stability. We see in Fig. 14

that, for values of k̃ < −8, there is little effect due to the stickiness of stability islands, if
any. This is mainly due to the fact that the time to cross the Cantorus is of an order of
magnitude larger than the mean trapping time around any of the islands that are present
in the phase space.

On the other hand, in the figure we see that there are many visible peaks, that seem to
be more prominent for k̃ > −8. Recall that the way initial conditions are chosen ensures
that all of them will eventually escape. Hence σk remains bounded in any case, but it
is expected to strongly depend on the number of initial conditions, σk = σk(ic). In
Fig. 15 we show examples of this strong dependence: we plot σk̃(ic) for k̃ ∈ [−5,−3] and
ic = 105, 5 × 105, 106, 5 × 106 and 107. Note that the values of σk̃(ic) do not increase as
ic does. Here, the initial conditions of the case ic = 5 × 105 are those of ic = 105 plus
4× 105 extra initial conditions, and so on.
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Figure 15: Left: σk̃ × (k− kG)
BMac as a function of k̃ ∈ [−5,−3], obtained for different values of

ic, see the key in the plots. Right: Magnification of the domain marked in the left plot.

3. The limit 1-periodic oscillations U(logδ(k− kG)). The power-law behaviour comes from the
scaling in area and in parameter, but yet it needs to be clarified which are the objects re-
sponsible for the actual transport probabilities. One expects the oscillations to be strongly
related to the area of the heteroclinic lobes of intersecting invariant manifolds of hyperbolic
periodic orbits and the turnstile areas of approximating orbits. Namely, as k varies, the
area in the phase space that is accessible to orbits that can escape changes as the islands
of stability do, and not in a monotone way in k̃, but if we conveniently scale the phase
space, the area occupied by evolving islands varies in a periodic way, recall Sect. 4.3, and
also Figs. 9 and 10.

We end up this section by referring to previous works where similar simulations were performed:

� To our knowledge, the first similar computations were done in [5], where a total number
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of 100 orbits starting at {y = 0} were iterated under Mk for (at most) 107 times, keeping
track on the number of iterates needed to eventually cross the line {y = 0.5}. As a result
of the computations, a fit of the power law (17) provided the coefficients A = 103 and
B = 2.55. However, values of k in (kG, 2π) were used in the computations. In particular,
for the largest values for which the statistics are computed, there are almost no visible
stability islands in the phase space and the diffusion coefficient D(k) grows as k2, see [27].
This might be the reason why the value of A is much larger than the value we obtain.

� The power law behaviour was theoretically justified in [21]. In this work, the authors fixed
B = BMac as theoretical value and the value of A ≈ 25 in (17) was obtained. These values
are close to the ones we obtain, see Table 2.

� Finally, in [7] the authors give numerical evidence of the predictions from renormalisation
theory [19, 17] and transport theory [21]. They computed the diffusion coefficient averaged
among 5000 initial conditions. They restricted themselves to 1 ≤ k ≤ 2.5, and in this range
they were able to get satisfactory results for the exponent B in (17). In the whole range,
they got B = 3.24. In 1 ≤ k ≤ 1.4 they got B = 3.16 and in 1.4 ≤ k ≤ 2.5 numerical
simulations gave B = 2.96, which is closer both to the theoretical result BMMP obtained
in [21] and to the value we obtain. The value of the constant A in (17) was not reported.

As a final comment, we want to note that the computation of escape rates near Greene’s critical
values is still a hard computational issue. To obtain the results shown in Figures 12 and 13 we
had to perform over 8.33× 1015 iterations of the standard map (1). The sharpness of the above
results in the literature is still remarkable.

5.2 The probability law of escape rates

In this subsection we approximate the probability density function (pdf) of Nk (14). To this
end, we compute histograms with bins of constant length for integer values of k̃ ≤ −5 as follows.
Let T = [t0, t1] a time interval, depending on k, for which most initial conditions (chosen as in
the previous section) escape in a number of iterations that is contained in T . Then we consider
ni sub-intervals Ij = [t0λ

j, t0λ
j+1), where λ = (t1/t0)

1/ni , and a counter Cj initially set to 0,
j = 0, . . . , ni−1. Each initial condition adds a unit to Cj if escapes in m iterates, where m ∈ Ij.
To recover the pdf from the histogram we divide each counter by the length of the interval and
by the total number of initial conditions, ic, that is, we plot Cj/((ni + 1)ic).

We show the pdf’s obtained in Fig. 16. On the left we can see the pdf Nk in the actual scale time
for k̃ = −5(−0.5)− 12, and on the right we display these same pdf’s, but in decimal logarithmic
scale in time, that is, we plot

N ′
k(ξ) = log(10)10ξNk(10

ξ). (19)

The pdf’s were computed using ni = 400, t0 = 103 and t1 = 109 for k̃ ≥ −10 while t1 = 1011

otherwise. We have labelled some pdf’s according to the value of k̃ they correspond to. In both
plots, left and right, one can follow Nk for decreasing values of k̃ by following the maximum of
each pdf from left to right. In the left plot, one observes that the pdf’s accumulate to 0 as k goes
further apart from kG. To see what happens for k → kG, the right plot is more convenient. The
pdf’s in log10-scale in the number of iterates appear to be equispaced since they correspond to
equispaced values of k̃ and 〈Nk〉 ∼ (∆k)B . Note that, in log10 scale for the number of iterates,
the pdf’s evolve from a seemingly symmetric shape to some asymmetric shape as k̃ decreases.
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Figure 16: Estimates of the probability density function (pdf) of the number of iterates needed
to escape, Nk, for different values of k̃. Left: Nk in the original scale of time. Right: N ′

k vs ξ,
see (19). Here we show the pdf’s for k̃ = −5.0(−0.5) − 12.0.

Concerning the underlying probability law, a Kolmogorov-Smirnov test of adjustment was per-
formed to see if the experimental data followed the hypothetical gamma pdf with the adjusted
parameters. We recall that the gamma pdf G(x;κ, θ) = xκ−1e−x/θ/(Γ(κ)θκ) is defined for x > 0
and depends on the shape and scale parameters κ, θ > 0. We tried a gamma pdf because of the
apparent similitude between the gamma pdf and the plots in Fig. 16 left. In all cases studied,
the statistic D (the largest vertical distance between the experimental cumulative distribution
function (cdf) and the cdf of the theoretical distribution) was D ≈ 0.02. Unfortunately, for
ic = 105, it is way larger than the maximum to accept that the data follows a gamma distribu-
tion. Therefore, further investigations of the pdf’s need to be perform to clarify the underlying
probability law.

6 Conclusions and outlook

A numerical study of the standard map Mk (1) for values of the parameter close but larger than
Greene’s constant has been presented. In particular, we have reviewed the way the standard map
dynamics fits within the framework of the Greene-MacKay renormalisation theory for invariant
curves of twist maps. The accurate computations performed together with the comprehension of
the properties of the renormalisation operator lead to an algorithm that allowed us to compute
an approximation, with 21 significant digits, of Greene’s constant.

On the other hand, we have explored the phase space near the golden Cantorus of Mk with
special emphasis on the evolution of the approximating islands. Moreover, we have presented a
detailed study of the escape rates through the golden Cantorus of Mk for values of the parameter
close but larger than Greene’s constant. The detailed study of the evolution of the approximating
islands near the Cantorus we performed might help to explain the periodic fluctuations around
the mean inverse potential behaviour of the escape rates one observes as k → kG. We have also
given evidence of the shape of the periodic function 〈Nk〉 (k − kG)

B that has period one in logδ
scale.

Finally, we would like to comment that the careful numerical exploration of the approximating
islands we performed suggests to investigate the transport properties using a nearest neighbour
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Markov process with different states (as many as relevant approximating islands appear near
the Cantorus). Such approach might help to determine the probability law of escape rates that,
as commented, deserves further investigations to be clarified.

A natural question that arises is how the reported results depend on the precise choice of the
standard map family (1) for the simulations. The local results concerning the islands near the
Cantorus and the local transport properties are expected to hold for other maps provided the
last destroyed curve in the local Cantor set of invariant curve has a noble frequency. On the
other hand, the global results concerning the mean escape rate might significantly differ for other
families of maps. As mentioned in Section 4 one can consider modifications of the standard map
with a two harmonic term instead of the sin(x) term, for which the last RIC can reappear (usually
with a different rotation number) once destroyed when changing the perturbation parameter (the
k for the standard family Mk here considered) monotonically, see [8, 9, 4, 22]. Also for families
like the rational standard map, where sin(x)/(1− µ cos(x)) with µ ∈ [0, 1) is considered instead
of the sin(x) term, the results might differ, see [6]. It would be interesting to consider these
cases and compare with the results here in future works.
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