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Abstract

The Quasi-Bicircular Problem (QBCP) is a periodic time dependent perturbation of
the Earth-Moon Restricted Three-Body Problem (RTBP) that accounts for the effect
of the Sun. It is based on using a periodic solution of the Earth-Moon-Sun three-
body problem to write the equations of motion of the infinitesimal particle. The paper
focuses on the dynamics near the L1 and L2 points of the Earth-Moon system in the
QBCP. By means of a periodic time dependent reduction to the center manifold, we
show the existence of two families of quasi-periodic Lyapunov orbits around L1 (resp.
L2) with two basic frequencies. The first of these two families is contained in the Earth-
Moon plane and undergoes an out-of plane (quasi-periodic) pitchfork bifurcation giving
rise to a family of quasi-periodic Halo orbits. This analysis is complemented with the
continuation of families of 2D tori. In particular, the planar and vertical Lyapunov
families are continued, and their stability analyzed. Finally, examples of invariant
manifolds associated to invariant 2D tori around the L2 that pass close to the Earth
are shown. This phenomena is not observed in the RTBP, and opens the room to direct
transfers from the Earth to the Earth-Moon L2 region.

Keywords: Restricted Four-Body Problem · Quasi-Bicircular Problem · Quasi-
periodic Halo orbits · Center manifold · Invariant manifolds of tori · Transfers
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1 Introduction

The comprehension of the natural dynamics of a spacecraft in the Earth-Moon system is
key to develop mission design. Researchers from different areas have contributed to push
away the boundaries of common knowledge, and dynamical systems theory has been proved
to be a powerful tool to understand the relevant factors that determine the motion of a
probe under the gravitational attraction of Earth (E) and Moon (M). This is better fulfilled
by using simplified models.

The Restricted Three Body Problem (RTBP) is one of the most simplest, well-known
and vastly used simplified model to describe the motion of a test particle in the Earth-
Moon system. In this model, the Earth and the Moon are assumed to move along circular
orbits about their common barycenter. By using suitable units and frame, the motion of
the particle is described by an autonomous three degrees of freedom Hamiltonian system.
The RTBP, even though extremely useful, only takes into account the gravitational pull
of the Earth and the Moon. The next step to a more complete model (but still simple) is
to include the direct effect of the Sun on the spacecraft. This can be done in a number
of ways. Perhaps, the simplest one is the Bicircular Problem (BCP). The BCP completes
the RTBP by considering also the Sun (S), moving together with the E-M barycenter in a
circular orbit about the (E+M)-S center of masses. Written down with the same units and
coordinates as the RTBP, the model is a periodic time dependent Hamiltonian system. In
fact, the effect of Sun’s gravity can be regarded as a periodic perturbation to the RTBP.
This perturbative effect is strong enough to produce relevant changes on several dynamical
aspects of the RTBP.

The BCP, though, only takes into account the direct effect of the Sun i.e. the Earth
and the Moon do not feel the presence of the Sun. The model is, therefore, not coherent in
the sense that the motion of Earth, Moon and Sun does not verify Newton’s laws.

The Quasi-Bicircular Problem (QBCP) is a coherent version of the BCP, meaning that
it is designed to remove the lack of coherence by considering the Earth, the Moon and the
Sun to move in a trajectory of the Three-Body Problem.

This paper is structured as follows: In the remaining subsections of this introduction,
describe more precisely the models and discuss some known facts. In Section 2 we provide
an insight on the dynamics in the center manifolds related to the (dynamical equivalents of
the) collinear points L1 and L2. In Section 3, we describe the dynamical equivalents of the
Lyapunov and Halo orbits in the QBCP. In Section 4 we compute one-maneuver transfers
from Halo invariant tori related to the translunar point to the Earth. Finally, in Section 5
we provide the conclusions of the work.

1.1 The Restricted Three Body Problem

The Restricted Three Body Problem is a model that describes the dynamics of a massless
particle under the influence of two massive bodies called the primaries. This model has
been extensively studied, although a lot questions still remain unanswered. Besides its
simplicity, it has been used to plan space missions using as primaries the Sun and the Earth
(for example, the missions ISEE-C, SOHO, Gaia, DSCOVR, or JWST), and the Earth
and the Moon (for example, the missions Chang’e 5-T1 or Queqiao). Hence, it has both
academic and practical interest.

This model assumes that the two primaries orbit in circular motion around their common
barycenter following the Newton’s Law, and that the third body does not influence the
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Table 1: Some µ parameters from different systems

System µ value

Sun-Earth 3.04042339E-6

Sun-Jupiter 9.54791915E-4

Earth-Moon 1.21505816E-2

motion of the other two bodies. It is convenient to use a rotating frame, with an angular
rate equal to the orbital angular rate of the primaries, and scale the time such that the
period equals to 2π. This way, the two primaries are fixed on the x-axis. Moreover, it is
convenient to chose the unit of distance equal to the constant distance between the two
primaries. Finally, the unit of mass is chosen such that the gravitational constant is 1 and
then, in these units, the total mass of the system is also 1. Let us denote by µ the mass
of the smallest primary. Then, the primary of mass 1 − µ (resp. µ) is at x = µ (resp.
x = µ − 1). Hence, the model is fully characterized by the value of µ. Some approximate
typical parameters for different systems are listed in Table 1. For the sake of simplicity,
from now on we focus discussion in the Earth-Moon system.

Note that this reference frame, often referred to as a synodic reference frame, is not
inertial. Details on the construction of the model can be found in [Sze67]. In the synodic
frame, the RTBP equations of motion are:

Ẍ = 2Ẏ +X − 1− µ

R3
PE

(X − µ)− µ

R3
PM

(X − µ+ 1),

Ÿ = −2Ẋ + Y − 1− µ

R3
PE

Y − µ

R3
PM

Y,

Z̈ = −1− µ

R3
PE

Z − µ

R3
PM

Z,

(1)

where R2
PE = (X − µ)2 + Y 2 + Z2 is the distance of the particle P to the Earth and

R2
PM = (X − µ + 1)2 + Y 2 + Z2 is the distance of P to the Moon. Defining the momenta

PX = Ẋ − Y , PY = Ẏ +X and PZ = Ż, the dynamics of the RTBP can be expressed in
the Hamiltonian formalism,

HRTBP =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX −XPY − 1− µ

RPE
− µ

RPM
. (2)

In the synodic reference frame, it is well know that the RTBP has five equilibrium
points, three of them on the horizontal axis (usually called collinear or L1,2,3) and two of
them forming equilateral triangles with the primaries (usually called triangular, equilateral
or L4,5), see Figure 1. In this paper we focus on the neighborhood of L1,2. In this line,
[JM99] study the dynamics around the collinear Lagrange points in the RTBP. One of the
results of this paper is a qualitative description of the stable motions around the Earth-Moon
L2 Lagrange point. This is accomplished by means of a reduction to the center manifold
around the Earth-Moon L2 point and by generating Poincaré sections for different energy
levels. These results were expanded in [GM01] providing a comprehensive description of the
dynamics around all the collinear points in the Earth-Moon system. Note that these results
do not account for other effects such as the eccentricity of the Moon or the gravitational
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Table 2: Parameters of the BCP.

µ = 0.012150581623433 ms = 328900.5499999991

ωs = 0.925195985518289 as = 388.8111430233511

influence of the Sun. None of these effects is negligible. The following sections describe
models that account for the effect of the Sun’s gravity.

1.2 The Bicircular Problem

The Earth-Moon BCP is a model that describes the motion of a massless particle (P) under
the influence of the Earth, the Moon, and the Sun. The Earth and the Moon are defined
as the primaries. The dynamics of the Earth, Moon and Sun is simplified considering that
the three bodies move in the same plane. Also, it is assumed that the Earth and the Moon
follow circular orbits around their barycenter (B), and that B is orbiting around the S-E/M
barycenter. Note that this model is not coherent, in the sense that the motion of the three
massive bodies is not described by the Newton’s equations.

As in the RTBP, using synodic coordinates with respect to the Earth-Moon center, with
the origin centered at their respective center of mass, the equations of motion of the BCP
are

Ẍ = 2Ẏ +X − 1− µ

R3
PE

(X − µ)− µ

R3
PM

(X − µ+ 1)− mS

R3
PS

(X −XS)−
mS

a2S
cosϑ,

Ÿ = −2Ẋ + Y − 1− µ

R3
PE

Y − µ

R3
PM

Y − mS

R3
PS

(Y − YS) +
mS

a2S
sinϑ,

Z̈ = −1− µ

R3
PE

Z − µ

R3
PM

Z − mS

R3
PS

Z,

(3)

with units of mass, length and time such that the sum of masses the primaries (Earth and
Moon), the gravitational constant, and the period of motion of the primaries are 1, 1 and
2π respectively. Moreover, the parameter µ (resp. 1 − µ) is the normalized mass of the
Moon (resp. Earth) and it is located at (µ − 1, 0, 0) (resp. (µ, 0, 0)), the parameters mS ,
and aS are the mass of the Sun and its distance to the Earth-Moon barycenter respectively.
The frequency of the Sun around the Earth-Moon barycenter is ωs and ϑ = ωst, (XS , YS) =
(aS cosϑ,−aS sinϑ) is the Sun position vector, R2

PE = (X − µ)2 + Y 2 + Z2 is the distance
of the particle P to the Earth, R2

PM = (X − µ+ 1)2 + Y 2 + Z2 is the distance of P to the
Moon, and R2

PS = (X −XS)
2 + (Y − YS)

2 +Z2 is the distance of P to the Sun. The values
of the parameters are shown in Table 2.

Note that in this reference system the Sun moves around the origin in a circular motion
(see Figure 1). A derivation of these equations of motion can be found in [GJMS93]. Earlier
formulations of the BCP can be found in [Hua60, CRR64].

Defining the momenta PX = Ẋ − Y , PY = Ẏ + X and PZ = Ż, the dynamics of the
BCP can be expressed in Hamiltonian form,

HBCP =
1

2
(P 2

X +P 2
Y +P 2

Z)+Y PX −XPY − 1− µ

RPE
− µ

RPM
− mS

RPS
−mS

a2S
(Y sinϑ−X cosϑ).
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Figure 1: Sketch of the Bicircular problem. The points L1,...,5 are the Lagrangian (equilib-
rium) points of the Earth-Moon RTBP.

This Hamiltonian can be expressed as a time-dependent perturbation of the RTBP,

HBCP = HRTBP +HS

where:

HRTBP =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX −XPY − 1− µ

RPE
− µ

RPM

is the Hamiltonian of the RTBP, and

HS = − mS

RPS
− mS

a2S
(Y sinϑ−X cosϑ)

is the perturbation due to the Sun. Let us define

Hε = HRTBP + εHS (4)

Note that Hε=0 = HRTBP , and Hε=1 = HBCP . When ε = 0, the Lagrange points (Li,
i = 1, ..., 5) are equilibrium points of the system (4). When ε > 0 and small enough,
the Implicit Function Theorem implies that, under generic non-resonant conditions, these
equilibrium points become periodic orbits with the same period as the perturbation (in this
case, Ts = 2π/ωs).

1.2.1 Known facts on the BCP

The dynamics near the collinear points of the BCP has been analyzed in a number of papers.
The direct effect of Sun’s gravity has been shown to have a remarkable dynamical impact
on the motion of a probe in the Earth-Moon system. Hereafter, we provide a review of
results that will help to understand the rest of this work.

The motion around L1 in the BCP is analyzed in [JJCR20]. There, the authors provide
a description of the centre manifold of L1. In particular, it is shown that the bifurcation
that leads to the creation of the Halo orbits in the RTBP has a counterpart in the BCP:
the vertical and horizontal families of Lyapunov of invariant tori undergo a 1:1 resonance
and bifurcate producing a Halo family of invariant tori.
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When it comes to L2, in [JCFJ18] it is shown that there is no dynamical equivalent
of L2 in the BCP. Indeed, the dynamical equivalent of L2 merges with a 1 : 2 resonant
horizontal Lyapunov orbit. However, at some distance of L2 the model displays common
features with the RTRBP. In [RJJC21a], the counterparts of Lyapunov and Halo families
(in this case, families of 2-dimensional invariant tori) are described. This paper focus on
Halo-like familes: Two different families, labeled as Type I and Type II, are analyzed with
more detail. Type I is the family that plays the role of the classical Halo family. Type II is
a family of Quasi-Halo orbits which is in 1:2 resonance with the Sun. Due to this resonance,
this Quasi-Halo family persists as a family of two dimensional tori in the BCP and it is
connected with some (Lyapunov type) horizontal families. In [RJJC21b] some invariant tori
of Type I and Type II Halo families are used to produce direct transfers from the Earth.
This kind of transfers have not found in the RTBP.

The motion near L3 in the BCP is described in [JN20]. There, invariant manifolds of
invariant tori near L3 are shown to organise the transport of some meteorites from the
Moon (lunar ejecta) to the Earth. It is remarkable that these results are also valid for a
high-fidelity model. These manifolds also allow to enter/exit the Earth-Moon system and
can be used to capture some near-Earth asteroids [JN21].

The motion around the triangular points (L4 and L5) in the BCP was firstly described
in [SGJM95]. There the authors show that the dynamical equivalents of the the triangular
points are three periodic orbits: One of them mildly unstable and the remaining two,
stable. These periodic orbits are consequences of a broken pitchfork bifurcation. The lack
of symmetry that leads to the pitchfork breaking comes from higher order terms of Sun’s
gravitational potential (see [JCFJ18]). In [Jor00, CJ00] it is shown that, despite the presence
of an unstable periodic orbits, there exist out-of-plane regions of effective stability near L4

and L5.

1.3 The Quasi-Bicircular Problem

The Quasi-Bicircular Problem (QBCP) is also time-periodic perturbation of the RTBP that
accounts for the effect of the Sun’s gravity. The difference with the BCP is how the motion
of the primaries is modeled. Contrary to the case of the BCP, in the QBCP the motion
of the primaries is coherent; this is, their motion follows Newton’s equations and it is a
solution of the Three Body Problem for the Sun-Earth-Moon case. To have a simple model,
the chosen solution is the simplest periodic solution close to the true motion of Earth, Moon
and Sun.

This model was first introduced by C. Simó (see [And98]), and the reader is referred
there for a detailed construction of the model (see also [GJ01]). In this section we provide
an overview of the basic steps to construct the model. The first step is to compute a quasi-
bicircular solution that models the motion of the Sun, the Earth, and the Moon under
each other’s gravitational influence. This is accomplished by expressing the Three Body
Problem in the Jacobi formulation. Then, an approximation to the Jacobi decomposition
of the Three Body Problem is obtained as Fourier serie, solving for the coefficients. The
details are in [And98].

With this solution, the origin of the (inertial) reference frame is translated from the
center of masses of the Sun, Earth, and Moon to the Earth-Moon barycenter. Then, the
reference frame is rotated such that the x-axis contains both the Earth and the Moon. A
third change is a time-dependent transformation that keeps the Earth and the Moon fixed
on the x-axis. This defines a pulsating reference frame with period equal to one revolution
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of the Earth and the Moon around their common barycenter.
Also, the unit of distance is scaled such that the distance between the Earth and the

Moon is equal to one, the time is scaled such that one revolution of the pulsating reference
frame is equal to 2π, and the unit of mass is scaled such that mE +mM = 1, where mE

(resp. mM ) is the mass of the Earth (resp. Moon). With these transformations, the
Earth is located at (µ, 0, 0) and the Moon at (1− µ, 0, 0). These are the same scalings and
transformations done in the RTBP and the BCP.

With this, the Hamiltonian of the system is:

HQBCP =
1

2
α1(P

2
X + P 2

Y + P 2
Z) + α2(PXX + PY Y + PZZ) + α3(PXY − PYX)

+α4X + α5Y − α6

(1− µ

RPE
− µ

RPM
− mS

RPS

) (5)

where:

• R2
PE = (X − µ)2 + Y 2 + Z2 is the distance of the particle P to the Earth

• R2
PM = (X − µ+ 1)2 + Y 2 + Z2 is the distance of P to the Moon

• R2
PS = (X − α7)

2 + (Y − α8)
2 + Z2 is the distance of P to the Sun

The coefficients αi, i = 1, ..., 8 are 2π-periodic real functions of the form:

αi(ϑ) = ai0 +
∑
k≥0

aik cos(kϑ) +
∑
k≥0

bik sin(kϑ) (6)

The values for the coefficients aik, b
i
k can be found in [And98]. A property of the coefficients

αi, i = 1, ..., 8 that they are odd functions for i = 1, 3, 4, 7, and even for the rest. These
properties imply that the following symmetry holds:

HQBCP (ϑ,X, Y, Z, PX , PY , PZ) = HQBCP (−ϑ,X,−Y, Z,−PX , PY ,−PZ)

Also, the physical interpretation of these coefficients is:

• α1(ϑ), α2(ϑ), α3(ϑ), and α6(ϑ) capture instantaneous distance between the Earth and
the Moon

• α4(ϑ) and α5(ϑ) are the instantaneous Coriolis effect due to the rotating reference
frame

• α7(ϑ) and α8(ϑ) capture the instantaneous position of the Sun the plane of motion

The values used in this work are in Table 3.

Table 3: Parameters of the QBCP.

µ = 0.012150581600000 ms = 328900.5423094043

ωs = 0.925195985520347 as = 388.8111430233511

Subsection 1.3.1 reviews the the connection between the collinear libration points in
the RTBP, and their dynamical equivalents in the QBCP. These results are known (see for
example [And98, JCFJ18]), but due to their relevance it was considered that they deserve
their own section in this paper.
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Figure 2: Dynamical substitutes of the RTBP collinear points in the QBCP (L1, top row
and L2, bottom row). The first column represents in the x-axis the first component of the
periodic orbit’s position at t = 0, and the y-axis its associated value of ε ∈ [0, 1]. The
second column contains the dynamic substitutes in the QBCP (this is, the periodic orbits
obtained for ε = 1).

1.3.1 Dynamical substitutes of the collinear points

In the QBCP, the collinear points in the RTBP are replaced in the QBCP by small periodic
orbits with the same period as the perturbation, Ts = 2π/ωs. These orbits are computed
by continuation from the RTBP to the QBCP. The formulation of the problem is defined
in [And98], and reproduced here for completeness. The starting point is the family of
Hamiltonians Hε, where ε ∈ [0, 1] is a parameter:

Hε = HRTBP + ε(HQBCP −HRTBP ), ε ∈ [0, 1] (7)

Note that in Equation (7), H0 = HRTBP , and H1 = HQBCP . The process is the
following: the starting point is the collinear equilibrium point Li, i = 1, 2, and then the
value of ε is increased until it reaches ε = 1 (this is, the QBCP model). For each value of
ε ∈ [0, 1], there is a Ts-periodic orbit. The result of this continuation process is illustrated in
the first column of Figure 2 for the collinear libration points, and the second column shows
their dynamic substitutes in the QBCP. The first row corresponds to L1 and the second
row to L2.

In all two cases there is a direct connection between the starting point and the final
periodic orbit. We recall that, in the BCP, for L2 this is not the case (see [JCFJ18]). Also,
in the QBCP there are no changes of stability, and throughout the continuation process
the stability type of the periodic orbits is saddle×center×center for all values of ε ∈ [0, 1].
For completeness, the eigenvalues of the monodromy matrices associated to the dynamical
substitutes for the collinear points are listed in Table 4.
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Table 4: Monodromy matrix eigenvalues λi,j , i, j = 1, 2 of the dynamical substitutes for
Li, i = 1, 2. (L1, top and L2, bottom).

j abs(λ1,j) arg(λ1,j)

1 460182151.5759 0.000000000000

2 1.000000000000 2.871101174766

3 1.000000000000 2.981120162511

j abs(λ2,j) arg(λ2,j)

1 2397196.843443 0.000000000000

2 1.000000000000 0.408977840813

3 1.000000000000 0.091483781904

2 Center manifold around the collinear points L1 and L2

In this section the dynamics in a vicinity of the collinear Earth-Moon Li, i = 1, 2 points in
the QBCP model are studied by means of a reduction to the center manifold. The center
manifold has been computed for the dynamic equivalents of the L1 and L2 collinear points.
These are the Ts-periodic orbits presented in Figure 2. From now on, we will refer to the
dynamic equivalent of L1 as POL1 and L2 as POL2.

The implementation of the reduction to the center manifold follows the algorithm de-
scribed in [GJMS93, And02, JJCR20], see also [GJ01]. As a summary, this process consists
in the following steps:

• A linear time-dependent change of coordinates such that in the new variables the
periodic orbit becomes an equilibrium point centered at the origin, plus a scaling to
make the unit of distance equal to the distance between the libration point studied
and the closest primary. We call this distance γi, i = 1, 2, and the values used are
listed below:

i γi
1 0.1509342729900642

2 0.1678327317370704

This results in a (non-autonomous) Hamiltonian with no linear components.

• A symplectic time-dependent (Floquet) change of coordinates such that in the new
variables the second order components of the (non-autonomous) Hamiltonian obtained
in the previous step are in normal form and time-independent. There is a certain
freedom in choosing the frequencies corresponding to the elliptic eigenspace of the
periodic orbit. See [JJCR20] for more details. The normal frequencies chosen in each
case are:

Case κ1 ω1 ω2

POL1 2.93720564115629 2.27316022488810 2.33661946019073

POL2 2.16306748237037 1.79017018257069 1.86386291350378
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where in both cases κ1 corresponds to the hyperbolic part, and ω1 and ω2 to the ellip-
tical parts. Note that, for each case, these normal frequencies are very similar to their
associated equilibrium points counterparts in the RTBP. We define for convenience
the following vector ω = (κ1, iω1, iω2).

• An expansion of the Hamiltonian with second order terms in an autonomous normal
form, and other non-linear terms expanded as a series of homogeneous polynomials.
(See [GJR04, JJCR20] for details on this expansion.)

• A symplectic and time-dependent change of variables to transform the non-autonomous
Hamiltonian in an autonomous one up to certain degree N with the hyperbolic and
the central part decoupled. The Lie transformation method is used to compute this
change.

The last step is done such that the resulting expansion of the Hamiltonian has the
elliptic and the hyperbolic dynamics decoupled. In other words, that we have a description
of the neutral dynamics (this is, the center manifold) around the periodic orbit of choice.
Note that for dynamic equivalents of the collinear Li, i = 1, 2 points, the center manifold
has dimension four. A consequence of removing time dependence of the Hamiltonian is the
presence of small divisors during the process. Small divisors do not appear in the center
manifold reduction of the RTBP.

The coefficients of the Hamiltonian restricted to the central manifold around POL1,
and POL2 have been computed up to degree N = 16. During this process, the following
indicators have been calculated:

• The presence of small divisors

• Estimated radius of convergence of the series for different values of N ≤ 16

A proxy to measure the presence of small divisors are the denominators of the form

δD(j,K
0,K1) = jωs

√
−1− ⟨ω,K1 −K0⟩,

that appear the generating functions as defined of the Lie tranformation. No small divisors
smaller that 10−2 were identified in the computation of the center manifold around POL1
or POL2 for degrees up to N = 16.

Let H = H2+ ...+HN be a Hamiltonian approximating the center manifold. The radius
of convergence is computed as

rn =
1

n
√

∥Hn∥1
where ∥Hn∥1 =

∑
|k|=n

|ak|, 3 ≤ n ≤ N . The radius of convergence for different values of n

are shown in Table 5 for POL1 and Table 6 for POL2.

Table 5: Radius of convergence for some values of n for the center manifold around POL1

n rn n rn
6 9.813101e-01 12 9.838444e-01

8 9.913491e-01 14 9.708615e-01

10 9.909848e-01 16 9.609837e-01
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Table 6: Radius of convergence for some values of n for the center manifold around POL2

n rn n rn
6 8.199574e-01 12 7.106946e-01

8 8.108276e-01 14 5.779491e-01

10 7.983601e-01 16 5.137823e-01

2.1 Center manifold around L1

The expansion of the center manifold is a Hamiltonin HCM = H2+ ...+HN where Hk, k =
2, ..., N are homogeneous polynomials of degree k. Each Hk is an expression of the form

Hk =
∑

k1+k2+k3+k4=k

a(k1,k2,k3,k4)Q
k1
1 P

k2
1 Qk3

2 P
k4
2 , ki ∈ N, i = 1, ..., 4 (8)

where (Q1, Q2) are the positions, and (P1, P2) the conjugated momentums. The coefficients,
up to degree 6, of the Hamiltonian of the center manifold corresponding to the periodic orbit
POL1 are captured in the Appendix A, Table 14.

After the computation of the center manifold, the test described in [Jor99] was executed
to check the software implementation and that, numerically, the computed center manifold
behaves as expected. The initial condition integrated was of the form x0 = (λ0, λ0, λ0, λ0)/2,
where λ0 ∈ R+. Note that x0 is divided by 2. This is done so the value λ0 is equal to the
distance of the initial condition from the origin (i.e., ∥x0∥2 = λ0). The integration timespan
was from t = 0 to t = 1.

For the L1 case (orbit POL1), the results of the test for N = 16 are in Table 7 and
Table 8. The data in Table 7 illustrate how as the distance of the initial condition x0 from
the origin increases, the error also increases. Table 8 shows good agreement between the
degree of the center manifold approximation and the order of the error. Hence, it is safe to
conclude that the center manifold has been properly computed.

Table 7: Differences between the POL1 center manifold predictions and a numerical inte-
gration for N = 16

λ0 ∥v0 − v10∥2 λ0 ∥v0 − v10∥2
0.125 2.532617e-10 0.250 3.989719e-08

0.150 3.631822e-10 0.275 1.817547e-07

0.175 5.019000e-10 0.300 7.241818e-07

0.200 1.267081e-09 0.325 2.579780e-06

0.225 7.452637e-09 0.350 8.355658e-06

For the sake of completeness, the accuracy of the center manifold obtained was esti-
mated. The process to estimate the accuracy is described in [And02], and also in a similar
fashion in [LMGLD17a]. The results of this test are plotted in Figure 3a and Figure 3b.
In Figure 3a the logarithm of the error is plotted against the distance to the origin, and
in Figure 3b with respect to the energy for different degrees. As before, these results have
been obtained by integrating an initial condition x0 of the form x0 = (λ0, λ0, λ0, λ0)/2. The
data shows that increasing the degree of the expansion does not necessarily translate in a
better accuracy around a distance of the origin. This behavior is expected, since the series
is not in general convergent in any open set. Finally, the relationship between the distance
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Table 8: Estimations of the truncation order for the reduction to the centre manifold around
POL1 for N = 16

λ
(1)
0 λ

(2)
0 n

0.125 0.150 1.97717

0.150 0.175 2.09857

0.175 0.200 6.93523

0.200 0.225 15.04336

0.225 0.250 15.92378

0.250 0.275 15.90966

0.275 0.300 15.88740

0.300 0.325 15.87174

0.325 0.350 15.85841

from the origin and the energy is depicted in Figure 3c for different values of N . It can be
seen that for different degrees there is good agreement. Note that the analysis described is
limited to the subspace defined by Q1 = Q2 = P1 = P2, but is still a good indicator.

One of the main takeaways of the accuracy analysis is that, if we pick an orbit on
the center manifold and apply the change of coordinates to transform it to the synodic
frame, the resulting object may not be (quantitatively) representative. In some cases, it
may be a good initial condition for a refinement algorithm. However, the benefit of the
center manifold is that qualitatively it provides a good picture of the dynamics. For the
validity of the qualitatively analysis, the radius of convergence (see Table 5 for POL1) is
the right metric to use. Finally, quantitative description on how some families of objects
are organized in a vicinity of L1 will be discussed in Section 3.1.
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Figure 3: Accuracy of the center manifold around POL1. See text for details.
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To obtain a qualitative description of the dynamics, the (truncated) Hamiltonian re-
duced to the center manifold has been integrated with degree N = 16. Note that the
Hamiltonian integrated has two-degrees of freedom. This means that the phase space has
dimension four. To visualize the center manifold, it was implemented the process described
in [JM99]: let (Q1, P1, Q2, P2) be the coordinates of the Hamiltonian reduced to the center
manifold. The starting point is the selection of the 3D Poincaré section Q2 = 0. Then, an
energy level h0 is fixed to obtain a 2D section. Note that the Hamiltonian is autonomous
up to order N . Hence, the energy h0 is conserved for the truncated Hamiltonian. Using
this fact, and that Q2 = 0, if values (Q1, P1) are picked, the component P2 in constrained
by the energy level and can be computed numerically. (There are two solutions for P2, one
negative and one positive; we used the positive one.) This gives an algorithm to compute
initial conditions. These initial conditions are integrated numerically, storing the points
that have Q2 = 0 and P2 > 0. The process can be applied by picking as a Poincaré section
Q1 = 0 and P1 > 0.

The Poincaré sections for different energy levels using Q1 = 0 are shown in Figure 4.
Respectively, the Poincaré sections for different energy level for Q2 = 0 are in Figure 5.
In Figure 4 is it observed that for low energy levels (h = 0.2), there is a fixed point that
corresponds to a periodic orbit. It is observed that this orbit is surrounded by invariant
curves that correspond to 2D invariant tori for the reduced Hamiltonian. Note that for the
original QBCP Hamiltonian in synodical coordinates, these objects are 3D invariant tori.
If the energy level is increased, the space phase undergoes a pitchfork bifurcation. The
interpretation in the synodic reference is the following: the fixed point close to the origin
corresponds to a quasi-periodic vertical Lyapunov in the synodic reference frame. These
are invariant tori with two basic frequencies. The quasi-periodic orbit surrounding the
origin correspond to quasi-periodic Lissajous orbits with three basic frequencies. The fixed
points that appear after the bifurcation takes place correspond to the northern and southern
families of quasi-periodic Halo orbits with two basic frequencies. The quasi-periodic orbits
around them correspond to quasi-Halo orbits with three basic frequencies.

This is qualitatively similar to the dynamics in around the L1 region in the BCP
(see [JJCR20]), and to the results obtained by [LMGLD17a] in the QBCP using the
parametrization method to compute the center manifold.
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Figure 4: Poincaré section Q1 = 0 of the center manifold around POL1 for different energy
levels with N = 16
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Figure 5: Poincaré section Q2 = 0 of the center manifold around POL1 for different energy
levels with N = 16
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2.2 Center manifold around L2

The same process described in Section 2.1 is repeated for the L2 case. Table 15 in Ap-
pendix A contains the coefficients, up to degree 6, of the reduced Hamiltonian of the center
manifold. Also, the same tests described in Section 2.1 are done for the present case. Again,
the initial condition is of the form x0 = (λ0, λ0, λ0, λ0)/2, with λ0 ∈ R+, and the integration
timespan is from t = 0 to t = 1. The results are captured in Table 9 and in Table 10. In this
case, because the radius of convergence is not as good as in the L1 case, the degree of the
expansion used is N = 12. The results in Table 15 show that as the distance of the initial
condition x0 from the origin increases, the error increases, too. This behavior is expected.
The Table 15 shows that the error increases consistently with the degree of the expansion,
as explained in Section 2.1.

Table 9: Differences between the POL2 center manifold predictions and a numerical inte-
gration for N = 12

λ0 ∥v0 − v10∥2 λ0 ∥v0 − v10∥2
0.100 2.226642e-12 0.225 3.051407e-09

0.125 3.706322e-12 0.250 1.095514e-08

0.150 2.248650e-11 0.275 3.497710e-08

0.175 1.457249e-10 0.300 1.014818e-07

0.200 7.336179e-10 0.325 2.719555e-07

Table 10: Estimations of the truncation order for the reduction to the centre manifold
around POL2 for N = 12

λ
(1)
0 λ

(2)
0 n

0.100 0.125 2.28349

0.125 0.150 9.88844

0.150 0.175 12.12324

0.175 0.200 12.10403

0.200 0.225 12.10166

0.225 0.250 12.13174

0.250 0.275 12.18007

0.275 0.300 12.24192

0.300 0.325 12.31541

The same analysis of accuracy has been done in this scenario, and the main takeaway
is the same as for the L1 case. The results are captured in Figure 6a for the evolution
of the logarithm of the error with respect to the distance of the initial condition from the
origin, and in Figure 6a its evolution with respect to the energy for different degrees of the
expansion of the center manifold. The main difference is that initially, for low energies,
the error is approximately two orders of magnitude smaller that in the L1 case. This is
consistent with what is observed in [LMGLD17a]. Finally, the distance with respect to the
energy is in Figure 6c, and again it is shown good agreement for different degrees.
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Figure 6: Accuracy of the center manifold around POL2. See text for details.
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Finally, following the same procedure as for the L1 case, the Poincaré sections Q1 = 0
and Q2 = 0 at different energy levels have been plotted. These are represented in Figure 7
for the section Q1 = 0, and in Figure 8 for the section Q2 = 0. The qualitative behavior
and its interpretation is equivalent to the L1 described in Section 2.1 and it will not be
repeated here. As for the L1 case, in this scenario the results are also qualitatively consistent
with [LMGLD17b]. We remind that in [LMGLD17b] the center manifold was constructed
using the parametrization method, and not the Lie transform.

As mentioned in Section 1.3, the center manifold around L2 in the QBCP was also
studied (see [And02]). It is important to note that in [And02] the construction of the center
manifold is different from the one presented here. The reason is that it follows different
criteria. First, the choice of the normal frequencies used in the Floquet transformation for
the terms of degree two are different from the ones used here. In [And02], the author uses
the following values:

ω̃1 = 1.34709425E-02

ω̃2 = 2.16306748E+00

ω̃3 = -6.02217885E-02

where, in this case, ω̃1 and ω̃3 correspond to the elliptical parts, and the ω̃2 to the hyperbolic
part. The differences in the normal frequencies of the elliptical part are due to the multiple
determination of the complex logarithm as explained in [JJCR20]. The relationship between
the values used here and the ones used in [And02] is:

ω̃1 = ω1 − 2ωs

ω̃3 = ω2 − 2ωs

The rationale behind using the values ω̃i, i = 1, 2, 3 for the Floquet transformation as
opposed to those close to the natural frequencies of L2 is, as argued in [And02], to improve
the radius of convergence.

Second, the criteria to kill monomials is also slightly different in [And02]. In that case,
the center manifold is computed removing the time dependency (up to certain order), killing
all the monomials associated to the hyperbolic part, and those monominals where K0 = K1

(K0 = (k1, . . . , k3) and K1 = (k4, . . . , k6)) as long as the denominators in the creation of
the generating function are not smaller that the threshold ε = 0.05.

However, the penalty of constructing the center manifold as in [And02] is that it only
provides information for low energy levels. With the criteria used to compute the center
manifold in this work, the expression obtained is good enough to provide a good qualitatively
description of the dynamics around the L2 point. Overall, both approaches are valid and
offer a different perspective on how the dynamics are organized.
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Figure 7: Poincaré section Q1 = 0 of the center manifold around POL2 for different energy
levels with N = 12
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Figure 8: Poincaré section Q2 = 0 of the center manifold around POL2 for different energy
levels with N = 12
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3 Families of 2D invariant tori

In this section we compute some of the families of 2D invariant tori that exist in a vicinity
of the L1 and L2 collinear points. We show that, in the QBCP, there exist horizontal
and vertical families of invariant tori near L1 and L2. These families are the dynamical
equivalents of the well-known Lyapunov families of periodic orbits in the RTBP. In addition
to that, in the continuation of the planar Lyapunov family for each L1 and L2 we identify
bifurcation points. At those bifurcation point, we find and continue families that have an
out-of-plane component. Finally, we show that a big set of Halo orbits in the RTBP survive
when continued to the QBCP. The computation and continuation of tori and their stability
in this section is computed with the algorithms described in [Jor01, RJJC21a].

3.1 Families around L1

This section starts with the analysis of the vertical family of quasi-periodic orbits around
L1. This is the family born from the dynamic equivalent of the L1 (see Figure 2), following
the vertical component. This family would be the quasi-periodic counterpart in the QBCP
of the vertical Lyapunov family that appear in the RTBP. The result of continuing this
family is shown in Figure 9. The x-axis is the third component of the position vector
(the vertical component) when the invariant curve is evaluated at θ = 0. The y-axis is the
rotation number of the invariant curve of the Poincaré section. We note that the lower-right
part of Figure 9, between x = 0.13 and x = 0.14 there is sharp turn. This reminds to the
branch a pitchfork bifurcation obtained by symmetry breaking. We attempted to verify this
hypothesis, but we were not successful. This is left as future work.

The stability of this family has been computed for a selected subset of tori. Because of
the Hamiltonian character of the system (and the consequent fact that tori lie in families),
1 is always an eigenvalue with multiplicity two. Hence, there are two pairs of eigenvalues.
The analysis showed that there is always a real eigenvalue (and its inverse). The largest
eigenvalue starts with a value of the order of 108, and decreases with the rotation number
until a value of the order of 106. The other pair is formed by a complex value of norm 1
and its conjugate. This is represented in Figure 10. Thus, this family is formed by partially
elliptic tori. As a final remark, note that no bifurcations were identified. However, based
on the results from Section 2.1 and specifically shown in Figure 4, at least one bifurcation
exists. One hypothesis is that step-size used to generate this family probably jumped over
the bifurcation. Another explanation may be that the family was not continued long enough.
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Figure 9: Quasi-periodic vertical Lyapunov family in the QBCP around L1. See text for
details.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

a
rg

(λ
)

rotation number

Figure 10: Stability of the quasi-periodic vertical Lyapunov family in the QBCP around
L1. See text for details.

24



The following figures are representative tori of this family, and provided here just to
illustrate how their shape and size evolve with the rotation number. The first example, in
Figure 11 is a torus with rotation number ρ = 2.8710835247657562. This torus is very
small, and close to the periodic orbit that replaces L1. The second example is in Figure 11,
and it is a representative of the family with rotation number ρ = 1.7158771247657665.
This is similar to the vertical Lyapunov orbit found in the RTBP around L1 but “shaken”
due to the effect of the periodic time-dependent perturbation. Finally, an example of a large
invariant tori with rotation number ρ = 1.0158771247657681 is illustrated in Figure 13.
It can be seen that all three tori are very different in size and shape.

Next, the family of horizontal quasi-periodic orbits around L1 born from the planar fre-
quency was computed. This family is the quasi-periodic equivalent to the planar Lyapunov
periodic orbits that appear in the RTBP. In addition to the quasi-periodic planar Lyapunov
orbits, others families were found during the process. These are captured in Figure 14. The
x-axis is the first component of the position vector when the invariant curve is evaluated at
θ = 0. The y-axis is the rotation number of the invariant curve. The quasi-periodic planar
Lyapunov family is colored in green and labeled as L1-HLy. It can be seen that a new fam-
ily, colored in red and labeled as L1-QV, is born from it. The L1-QV family is born from
a bifurcation of the L1-HLy. This bifurcation was identified during the stability analysis of
the family L1-HLy. As for the quasi-periodic vertical Lyapunov family, two eigenvalues are
real, and the largest one has an order of magnitude between 106 and 108. Then there is the
eigenvalue equal to one with multiplicity two. The last pair of eigenvalues is shown in Fig-
ure 15, where the x-axis is the rotation number, and the y-axis is the absolute value of the
eigenvalue. At the beginning of the family, this pair of eigenvalue are complex with norm
equal to one. Then, a bifurcation occurred, and the pair of eigenvalues becomes real. From
this bifurcation, the family L1-QV was born. Recall that this bifurcation was observed in
the center manifold analysis done Section 2.1, where the Figure 5 captures the present case.

The first tempting (and natural) thought is to claim that this family corresponds to
the Halo orbits in the RTBP. To test this hypothesis, a few Halo orbits in the RTBP were
continued from the RTBP to the QBCP. Then this initial orbit was continued in the QBCP.
This is the family colored in purple and labeled as L1-Halo seen in Figure 14. These two
families do not seem to be connected, but it is important to stress the representation of the
these families in the figures has its limitations: from one point of a 6-dimensional object, we
are picking one component and plotting it against the rotation number. A lot of information
is missed during this process, but it is still useful to for a first analysis.

One check done to see if the families L1-Halo and L1-QV are the same is to pick two
representatives with similar rotation number and plot them. A member of the family L1-
Halo with rotation number ρ = 3.4622727594120977 and a member of L1-QV with rotation
number ρ = 3.4623791625106679 are shown in Figure 16. Both orbits are different in size
and position. It is interesing to see that the representative of the L1-Q1 family is a Halo-like
orbit so, from a practical standpoint it is useful and could be a candidate for a mission.
The main difference comes when the stability of these families is analyzed. Leaving aside
the big real eigenvalue and its inverse and the unit eigenvalue with multiplicity two, it can
be seen that they have differnt stability types. For example, Figure 17 shows the stability
of the Halo family. The x-axis shows the rotation number, and the y-axis the absolute
value of the eigenvalues. The majority of the eigenvalues are complex and have norm equal
to one, with very few exceptions. On the other hand, following the same convention for
the axes, Figure 18 characterizes the stabilty of the QV family, and it can be seen that it
undergoes a bifurcation that changes its stability from elliptic to hyperbolic. Hence, the
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numerical evidence and data gathered in this study do not indicate that these two familes
are connected, but it is important to remark that this is a local analysis, and hence the
results are not conclusive.
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Figure 11: Example of small vertical torus around L1. Note that the axes have been scaled
to appreciate the details.
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Figure 12: Example of medium vertical torus around L1.
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Figure 13: Example of a big vertical torus around L1.
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Figure 16: Example of representative of the Halo and QV families with similar rotation
numbers. See text for details.
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Figure 17: Stability of the Halo family in the QBCP around L1. See text for details.
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Figure 18: Stability of the QV family in the QBCP around L1. See text for details.
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3.2 Families around L2

For the L2 case, we start analyzing the vertical family. The starting point is again the
dynamical equivalent of the L2 point in the QBCP. This is, the periodic orbit that replaces
the L2 equilibrium point shown in Figure 2. By continuing along the vertical direction,
the family of quasi-periodic orbits illustrated in Figure 19 is obtained. Like in the L1 case,
this family is the quasi-periodic counterpart of the vertical Lyapunov periodic orbits that
appear in the RTBP.

The stability of these tori was also computed, and the results for the pair of eigenvalues
that are not real or equal to one are shown in Figure 20. The x-axis is the rotation
number, and the vertical axis is the argument of the eigenvalue. This pair of eigenvalues
are complex with norm one, and Figure 20 shows how the argument evolves with respect
to the rotation number. In this case it is observed that at the end of the family (rotation
number ρ ≈ -1.0179) it seems that the two eigenvalues become real, leading to a change in
the stability type. This may be the bifurcation observed in the Figure 7 from Section 2.2.
For completeness, we mention that the large real eigenvalue starts at value on the order of
106, and decreases with the rotation number to a value on the order of 105.

As for the L1 case is Section 3.1, we plotted some representatives of the family with dif-
ferent rotation numbers. starting from the beginning of the family, Figure 21 shows a torus
with rotation number ρ = -0.4089841068128386. This torus is very close to the reference
periodic orbit, and its shape and size is influenced by it. Another example is illustrated in
the in Figure 22. This example has as a rotation number ρ = -0.8717553068128412. This
case, as in the L1 scenario, portrays an orbit that resembles those found in the RTBP, but
under the influence of the periodic perturbation. Finally, the last example is a torus with
rotation number ρ = -1.0173803068128409. The same comments made for the L1 case
apply here.

The next step is to continue the family of planar invariant 2D tori. As in the L1

case, other families were found, and are plotted together in Figure 24. Starting from the
dynamical substitute of L2, we start continuing the family along the horizontal frequency
to find a family of planar quasi-periodic orbits. This family is quasi-periodic counterpart
of the planar Lyapunov that appear in the RTBP. Is it shown in read in Figure 24 and
labeled as L2-HLy. Proceeding as in Section 3.1, we computed the stability of this family
and found a bifurcation. This is shown in Figure 25, where a change of stability can be
seen. From this bifurcation, a new family is born. This family was computed, and it
is illustrated in Figure 25 as the purple curve labeled as L2-QV. This is the bifurcation
obtained in the analysis of the center manifold from Section 2.2, and shown in Figure 8.
Note that this bifurcation was also identified in [And98]. However, in [And98] three other
small bifurcations were found. These were not noticed here, probably because the step-size
used to continue the family was not small enough.
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Figure 19: Quasi-periodic vertical Lyapunov family in the QBCP around L2. See text for
details.
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Again, it is tempting to claim that the family L1-QV is the equivalent to the Halo family
coming form the RTBP. Following the previous argument made in Section 3.1, we continued
a Halo orbit from the RTBP to the QBCP. Once in the QBCP, we continued the resulting
torus to see how its evolves and to check for any connection with other families. The result
of this continuation is the family plotted in Figure 24 in color green and labeled as L2-Halo.

Figure 26 is an amplification of the area around the bifurcation of the planar quasi-
periodic Lyapunov orbits. There are two observations to be made: the first one is that the
family L2-QV and L2-Halo are not connected. The second comment is that the L2-Halo
family connects to another family of 2D tori resonant with the frequency of the Sun. This
is seen around the point (−1.12,−0.05) in Figure 26. This connection was conjectured
in [And98], and the numerical evidence provided here seems to prove it.
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Figure 21: Example of small vertical torus around L2. Note that the axes have been scaled
to appreciate the details.
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Figure 22: Example of medium vertical torus around L2.
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Figure 23: Example of big vertical torus around L2.
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Figure 24: Families of 2D invariant tori in the QBCP around L2. See text for details.

Now, let us show some examples of the different tori computed. Figure 27 shows three
examples of orbits from the L2-Halo family. The rotation numbers are listed in Table 11.

Orbit Rotation Number ρ

Blue -0.0480876152458433

Red 3.6403791158911880

Green 1.0224171606049586

Table 11: Rotation numbers of the orbits plotted in Figure 27
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Figure 25: Stability of the quasi-periodic horizontal Lyapunov family in the QBCP around
L2. See text for details.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-1.125 -1.12 -1.115 -1.11 -1.105

ro
ta

ti
o
n
 n

u
m

b
e
r

x

L2-HLy
L2-QV

L2-Halo

Figure 26: Families of 2D invariant tori in the QBCP around L2. See text for details.
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It can be seen that, as expected, the orbits in Figure 27 resemble the Halo orbits
from the RTBP. An orbit from the Halo-L2 family with a rotation number close to the
point where the family L2-Halo meets the family of 2D resonant tori was intentionally
chosen for comparison purposes. A representative of the family of 2D resonant tori with
rotation number ρ = -0.0774976152458405 is shown in Figure 28. It can be seen the
L2-Halo is “thinner” than the 2D resonant torus from Figure 28. The end this short catalog
of orbits, examples of two representatives of the L2-QV family are plotted in Figure 29
and Figure 29. The rotation numbers are ρ = -0.0721362180958642 for Figure 29 and
ρ = -0.2449362180958645 for Figure 30. It can be seen that this family is not Halo-like.

Finally, the stability of the L2-Halo family and the 2D resonant tori family that continues
from it, and L2-QV family has been computed. The results are plotted in Figure 31 and
Figure 32. The x-axis is the rotation number, and the y-axis is the absolute value of the
eigenvalues. It can be seen in Figure 31 that the tori from the L2-Halo family have an
elliptical direction, with some small pockets of real eigenvalues. On the other hand, the
stability for the L2-QV tori computed have all real eigenvalues, as shown in Figure 32. For
both families, the other two eigenvalues are real, with a range between 102 and 106 for
the L2-Halo family, and between 105 and 106 for the L2-QV family and the family of 2D
resonant tori that meet the L2-Halo family.
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Figure 27: The representatives of the family L2-Halo. Rotation numbers are in Table 11.
See text for details.
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Figure 28: Representative of the family of 2D resonant tori that meets the L2-Halo family.
See text for details.
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Figure 29: Representative of the QV family at the beginning of the family. See text for
details.
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Figure 30: Representative of the QV family away from the bifurcation point. See text for
details.
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Figure 31: Stability of the Halo family in the QBCP around L2. See text for details.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05

a
b
s(
λ
)

rotation number

Figure 32: Stability of the QV family in the QBCP around L2. See text for details.

4 Transfers in the QBCP

In this section we take advantage on the invariant manifolds of three Halo quasi-periodic
orbits in the QBCP to design direct transfers from the translunar point to the Earth. This
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kind of transfers where already found in the BCP in [RJJC21b]. Here, we repeat a similar
analysis for the case of the QBCP. The main idea to construct the transfers is to take initial
conditions for a test particle on the unstable manifold of the tori and propagate them until
some event takes place. Those possible events are:

1. The particle’s distance to the center of the Earth is less than RE + 200km, where
RE = 6400km is the radius of the Earth. (The sphere centered at the center of the
Earth and radius equal to the radius of the Earth plus 200km is referred as the LEO
sphere from now on.)

2. The particle collides with the Moon.

3. The particle leaves the Earth-Moon system. We set as a criterion for this case that
the distance of the particle to the Earth-Moon barycenter is larger than 6 times the
distance between the Earth and the Moon.

4. None of the above happens after integrating 6Ts units of time in the normalized frame
(the orbits with this behavior will be referred as wandering trajectories).

Also, and as in [RJJC21b], we look for transfers that minimize three different cost
functions. These three cost functions are:

• Minimum ∆v: J1(θ, h) = ∆v(θ, h)

• Minimum transfer time ∆t: J2(θ, h) = ∆t(θ, h)

• Minimum norm of (∆v,∆t): J3(θ, h) =
√
∆v(θ, h)2 +∆t(θ, h)2

Finally, the observations in [RJJC21b] about how the ∆V and the transfer time are com-
puted apply to this analysis.

To produce initial conditions on the unstable manifold of the tori, it is suitable to
regard them as invariant curves of the stroboscopic map. Then if x, ψu : [0, 2π) 7→ R6 are
the invariant curve of rotation number ρ for the stroboscopic map and ψu the eigenfunction
related to the unstable eigenvalue λu, a linear approximation of the invariant manifold is
given by

Λu
0(θ, h) = x(θ) + hψu(θ).

Here, h is a small displacement. Take into account that the error of this linear approximation
behaves as O(h2). Notice that h can be negative. The initial conditions are taken in the
so-called fundamental cylinder given by [0, 2π) × [h0, h0λu] where h0 is small so the
following quantity:

∥PTs(Λ
u
0(θ, h))− Λu

0(θ + ρ, λuh)∥,

is small enough.
We have selected three (Halo like) invariant curves: ICQ1, ICQ2, and ICQ3 to preform

the experiment. Their characteristics are given in Table 12. The unstable eigenvalues are
also of the same order of magnitude. Different projections of the three invariant curves
associated to the orbits used in this analysis are plotted in Figure 33.

Figure 34 shows the results of the analysis for the selected QBCP Halo orbits. The
first row corresponds to the invariant curve ICQ1, the second to curve ICQ2, and the third
one to ICQ3. The first column corresponds to the negative side of the unstable manifold,
and the second one to the positive side. In the ICQ1 case the distance to the invariant
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Table 12: Characteristics QBCP Halo orbits invariant curves.

Invariant Curve rotation number λu
ICQ1 3.239814740891185 1269.060394604636

ICQ2 1.022417160604956 58362.76296971765

ICQ3 0.517157160604977 206452.6867125494
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Figure 33: Invariant curves ICQ1, ICQ2 and ICQ3 of the QBCP.

curve has been chosen equal to 2.5 × 10−7 units of distance in the normalized frame (or
approximately 100 m), 7.5×10−7 (or approximately 290 m) for the ICQ2 case, and 7×10−7

(or approximately 270 m) in the ICQ3 case. The color code is as follows: successful transfers
are colored in red (this is, at some point the distance of the particle is less than RE+200km),
collisions with the Moon are shown green, yellow shows trajectories where a particle leaves
the Earth/Moon system, and none of the previous cases in black. As mentioned before, the
maximum integration time is set to 6Ts units of time in the normalized frame.

In all three cases we observe regions were direct transfers exists, although they are not
prominent. It is also observed that the collisions with the Moon are mainly concentrated in
the cases ICQ2 and ICQ3, positive sides (these are the sides between the Halo orbit and the
Moon). On the other hand, and also for the cases ICQ2 and ICQ3, the negative sides show
that a significant number of trajectories leave the influence of the Earth-Moon gravity.

Looking at specific transfers that minimize the cost functions Ji, i = 1, 2, 3, we see that
the total costs in terms of ∆v and transfer time are consistent with the results described
in [RJJC21b]. These results are captured in Table 13. We see that the cheapest transfer in
terms of total ∆v is the case {ICQ2, –, J1} with a cost of 3.1517 km/s. This case, however,
spends a total of approximately 125.4 days to complete. In terms of total travel time, the
shortest transfer is the case {ICQ3, –, J2}, with a total of approximately 104 days. In this
case, the ∆v is approximately 3.3 km/s, which is comparable to the cheapest transfer. It is
worth noting that there are other interesting trade-offs between total ∆v and travel time,
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Figure 34: Fundamental cylinders for QBCP orbits. Valid transfers are colored in red,
trajectories where a particle leaves the Earth/Moon system are colored in yellow, collisions
with the Moon are green, and none of the previous cases in black. See text for details.
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like {ICQ2, –, J3}.

Table 13: Transfer cost to QBCP Halo orbits.

Invariant
Curve

Manifold
Side

Cost
Function

∆v
(km/s)

∆t
(days)

Latitude
(deg)

ICQ1 + J1 3.2386 134.2429 10.710279

ICQ1 – J1 3.2003 137.4482 6.415619

ICQ1 + J2 3.8470 131.3539 -18.440223

ICQ1 – J2 3.3394 118.9735 -2.317154

ICQ1 + J3 3.8470 131.3539 -18.440223

ICQ1 – J3 3.3394 118.9735 -2.317154

ICQ2 + J1 3.2271 159.5806 18.505784

ICQ2 – J1 3.1517 125.3764 -13.777695

ICQ2 + J2 6.3825 121.0911 -54.610093

ICQ2 – J2 3.2460 107.9764 -4.959981

ICQ2 + J3 3.7862 121.6507 -21.937209

ICQ2 – J3 3.2460 107.9764 -4.959981

ICQ3 + J1 3.1581 127.7909 -5.262186

ICQ3 – J1 3.1587 132.4915 5.678865

ICQ3 + J2 3.7272 115.9231 -19.960734

ICQ3 – J2 3.2713 104.0634 -6.622813

ICQ3 + J3 3.7272 115.9231 -19.960734

ICQ3 – J3 3.1586 132.4914 5.678865

Figure 35 shows the trajectory followed by the transfer {ICQ3, –, J2}. This trajectory
corresponds to the stable manifold of the target orbit ICQ3; this is, is the trajectory that
a spacecraft would follow from the Earth to the target orbit. Note that the trajectory
circles two times the Earth and the Moon before converging to the target Halo orbit. This
“bending” of the invariant manifold is due to the direct gravitational effect of the Sun and
it was also observed in the BCP (see [RJJC21b]. Figure 36 shows different projections of
the transfer when arriving to the target orbit. Again, the black circle corresponds to the
radius of the Moon, and blue circle to the LEO sphere. It can be seen that for the ICQ3
orbit there is no Moon occultation.

Finally, it is worth looking at how the total transfer time changes with the ∆v, and how
the ∆v changes as a function of the latitude of the intersection with the LEO sphere. These
are shown in Figure 37a and Figure 37b respectively.

It can be observed in Figure 37a that the total maneuver cost is between 3.1517 km/s
(the minimum computed in this case) and slightly more than 13 km/s. The total ∆v as
function of the latitude LEO sphere latitude is shown in Figure 37b. The same qualitatively
behavior as for the BCP case analyzed is seen here, where the majority of the transfers less
than 4km/s are concentrated between a latitude of −20 deg and 40 deg. Overall, the
behavior of the cases studied in the QBCP are pretty similar to their counterparts in the
BCP (see [RJJC21b]).
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Figure 35: Trajectory followed by the transfer {ICQ3, –, J2}.
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Figure 36: Zoom around the target orbit showing the trajectory followed by the transfer
{ICQ3, –, J2}.
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Figure 37: Plots of transfer time against total ∆V (left) and ∆V against latitude in the
LEO Sphere (right).
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5 Conclusions and further work

In this paper we explored some aspects of the dynamics around the Earth-Moon L1 and
L2 regions in the context of the QBCP. The QBCP is dynamical system that models the
motion of a massless particle under the influence of the Sun, the Earth, and the Moon.
One of the main features of the QBCP is that the motion of the Sun, the Earth, and the
Moon is coherent. This model can be written in the Hamiltonian formalism as periodic
time-dependent perturbation of the RTBP. To study this Hamiltonian, we used numerical
tools to get an insight on the phase space. The two techniques used were the reduction to
the center manifold and the computation and continuation of 2D tori, their stability, and
their associated invariant manifolds.

We first revisited the dynamical substitutes of the RTBP Earth-Moon L1 and L2 points
in the QBCP. These dynamical substitutes are periodic orbits with the same period as the
perturbation, and it is around these objected where we focused our analyses.

We showed that the reduction to the center manifold around the dynamical substitutes
provides relevant qualitative information about the dynamics around L1 and L2. The main
takeaway was that L1 and L2 had a similar qualitative behavior. In both cases there
were two families of quasi-periodic Lyapunov orbits, one planar and one vertical. It was
also shown that the quasi-periodic planar Lyapunov family underwent a (quasi-periodic)
pitchfork bifurcation, giving rise to two families of quasi-periodic orbits with an out-of-
plane component. Between them, there was a family of Lissajous quasi-periodic orbits,
with three basic frequencies.

In addition to the reduction to the center manifold, we also computed families of invari-
ant 2D tori around L1 and L2. In these cases, the quasi-periodic planar and vertical families
were continued. The bifurcations of the quasi-periodic planar Lyapunov were identified. A
conclusion from this exercise was that the family of out-of-plane orbits born from the bi-
furcation seemed not to be the RTBP Halo counterparts in the QBCP. The RTBP Halo
orbits do survive in the QBCP, but do not seem to be connected to the quasi-periodic pla-
nar Lyapunov family. Another conclusion for the L2 case is about a conjecture enunciated
in [And98]. This conjecture stated that the family of Halo orbits in the QBCP obtained
from direct continuation of the RTBP Halo orbits is connected to a to another family of
2D tori resonant with the frequency of the Sun is true. The numerical evidence seemed to
indicate that this conjecture is true.

Finally, and also in the context of the QBCP, numerical simulations to study transfers
from a parking orbit around the Earth to a Halo orbit around the Earth-Moon L2 point
were studied. The main conclusion is that, contrary to the RTBP, the invariant manifolds
of the target orbits studied intersect with potential parking orbits around the Earth. This
opens the room to potentially planning one-maneuver transfers from a vicinity of the Earth
to Earth-Moon L2 Halo orbits. In terms of DV cost and total transfer time, the results are
comparable to other techniques requiring two or more maneuvers.

Future research focuses on showing whether or not the objects computed in the context
of the QBCP survive in a full ephemeris model. This is specially relevant in the case of
invariant manifold used for transfers. If these transfers persist in a full ephemeris model,
this could pave the way for efficient ways to reach Halo orbits around the Earth-Moon L2

point.
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A Normal forms

Table 14: Hamiltonian reduced to the central manifold up to order 6 around POL1

k1 k2 k3 k4 a(k1,k2,k3,k4) k1 k2 k3 k4 a(k1,k2,k3,k4)
2 0 0 0 1.1365801124440E+00 1 1 0 3 -7.4012409047879E-02

0 2 0 0 1.1365801124440E+00 0 2 0 3 9.6176086630088E-09

0 0 2 0 1.1683097300953E+00 0 0 2 3 8.0037887245600E-08

0 0 0 2 1.1683097300953E+00 0 0 1 4 1.4436762488537E-01

2 0 1 0 -4.2742797554386E-01 0 0 0 5 -6.7934034132082E-08

0 2 1 0 -5.3891327233143E-05 6 0 0 0 6.2094210958681E-03
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Table 14: (continued)

k1 k2 k3 k4 a(k1,k2,k3,k4) k1 k2 k3 k4 a(k1,k2,k3,k4)
0 0 3 0 2.5523418206125E-02 5 1 0 0 -6.7815393271166E-09

1 1 0 1 -1.2254290645138E-04 4 2 0 0 -2.0086057404615E-02

0 0 1 2 -4.9529829287648E-01 2 4 0 0 2.7250801950251E-02

4 0 0 0 -1.0387633163417E-01 0 6 0 0 -1.2378414626373E-03

2 2 0 0 8.5654706992094E-02 4 0 2 0 -2.1866965033703E-03

0 4 0 0 1.0812958900733E-05 3 1 2 0 1.6754220796143E-09

2 0 2 0 2.1622139838010E-01 2 2 2 0 1.0778375887518E-01

1 1 2 0 -1.4863019899213E-09 1 3 2 0 1.0666533414263E-08

0 2 2 0 -1.5360957052390E-02 0 4 2 0 -8.5673296189717E-03

0 0 4 0 -1.5779796388201E-02 2 0 4 0 5.0908816751363E-02

2 0 1 1 -9.1489731924294E-08 1 1 4 0 1.0801455668335E-08

1 1 1 1 -3.2495127186968E-02 0 2 4 0 -1.2873305122172E-02

0 2 1 1 -3.2599524388118E-08 0 0 6 0 -5.5676966532490E-03

0 0 3 1 -2.1506277895067E-08 4 0 1 1 7.1268148429479E-08

2 0 0 2 -2.4182953302687E-01 3 1 1 1 8.6670022069764E-02

1 1 0 2 1.4246394326115E-09 2 2 1 1 -4.8046664060818E-08

0 2 0 2 9.9396670609705E-02 1 3 1 1 -3.7167629573763E-02

0 0 2 2 2.8794821677007E-01 0 4 1 1 -1.6472545989214E-08

0 0 1 3 -9.9796480381400E-08 2 0 3 1 -7.0795221695100E-08

0 0 0 4 -1.4074479895471E-01 1 1 3 1 -1.0655124578491E-01

4 0 1 0 3.7745746907786E-02 0 2 3 1 -3.9935005395564E-08

3 1 1 0 -3.1696042934014E-09 0 0 5 1 -2.4022343097574E-08

2 2 1 0 -1.2726077950140E-01 4 0 0 2 2.0982296568260E-02

0 4 1 0 1.0507633803701E-02 3 1 0 2 -3.3030448427256E-08

2 0 3 0 -1.1083737547103E-01 2 2 0 2 -3.1233429812347E-02

1 1 3 0 -6.0652645741202E-09 1 3 0 2 -4.9317299850824E-09

0 2 3 0 2.2665985616829E-02 0 4 0 2 2.0641390341789E-02

0 0 5 0 1.1494979183962E-02 2 0 2 2 -8.3158755543959E-02

4 0 0 1 -6.0213290782196E-08 1 1 2 2 -1.4711027029686E-09

3 1 0 1 -6.3675915101523E-02 0 2 2 2 1.0852170163338E-01

2 2 0 1 8.9009096319913E-09 0 0 4 2 1.2851003627049E-01

1 3 0 1 1.7507059394155E-02 2 0 1 3 1.7764130617398E-07

2 0 0 3 -1.2846150897253E-07

56



Table 15: Hamiltonian reduced to the central manifold up to order 6 around POL2

k1 k2 k3 k4 a(k1,k2,k3,k4) k1 k2 k3 k4 a(k1,k2,k3,k4)
2 0 0 0 8.9508509128534E-01 0 0 3 2 5.8051203522045E-01

0 2 0 0 8.9508509128534E-01 1 1 0 3 -1.7844450052689E-01

0 0 2 0 9.3193145675189E-01 0 0 2 3 -3.0394344483381E-09

0 0 0 2 9.3193145675189E-01 0 0 1 4 -3.0140880721764E-01

2 0 1 0 6.5589636328480E-05 6 0 0 0 -6.4307281988146E-03

0 2 1 0 6.4841149489243E-01 4 2 0 0 8.1725097260177E-02

0 0 3 0 -6.4947365185738E-02 2 4 0 0 -4.2728780806097E-03

1 1 0 1 -1.4657320225294E-04 0 6 0 0 -1.3308183673882E-02

0 0 1 2 8.3042596977058E-01 4 0 2 0 -2.7581282162579E-02

4 0 0 0 1.6691540956563E-05 2 2 2 0 3.0570142682015E-01

2 2 0 0 1.6501717240559E-01 0 4 2 0 4.1375312168077E-02

0 4 0 0 -1.8016477271676E-02 2 0 4 0 -3.0925874741699E-02

2 0 2 0 -4.9579201703060E-02 0 2 4 0 9.6429491577036E-02

0 2 2 0 3.5651315214778E-01 0 0 6 0 -1.0289658815507E-02

0 0 4 0 -4.1231015606744E-02 3 1 1 1 1.9906619251976E-01

1 1 1 1 1.0973656675138E-01 2 2 1 1 -1.7463324777085E-09

2 0 0 2 2.1143854714294E-01 1 3 1 1 -1.5531042568898E-01

0 2 0 2 -4.7292944632242E-02 1 1 3 1 4.7597114070644E-01

0 0 2 2 5.9236862155832E-01 0 2 3 1 -3.0413181902431E-09

0 0 0 4 -3.1058453169198E-02 4 0 0 2 4.1938736410204E-02

4 0 1 0 -4.3777802018475E-02 2 2 0 2 -4.3943735317670E-02

2 2 1 0 2.8508460013478E-01 0 4 0 2 -7.3614758826606E-02

0 4 1 0 -8.3453433400644E-03 2 0 2 2 3.5211138710868E-01

2 0 3 0 -7.6670187245196E-02 1 1 2 2 -3.0449382625031E-09

0 2 3 0 1.9426009938526E-01 0 2 2 2 -1.0297348505084E-01

0 0 5 0 -3.1013224023379E-02 0 0 4 2 4.5913199291929E-01

3 1 0 1 7.4667616272107E-02 2 0 1 3 -1.9587319456264E-09

2 2 0 1 -1.0319019428507E-09 1 1 1 3 -2.9968970918954E-01

1 3 0 1 -1.3880815534462E-01 0 0 3 3 -5.6536567341678E-09

1 1 2 1 4.1875686746481E-01 2 0 0 4 -6.3932143025888E-03

0 2 2 1 -1.5463320553586E-09 0 2 0 4 -1.2340310730044E-01

2 0 1 2 2.8479184552457E-01 0 0 2 4 -2.7360468675825E-01

1 1 1 2 -1.6240816892809E-09 0 0 1 5 -1.2601762375995E-09

0 2 1 2 -2.4495800601342E-01 0 0 0 6 -6.5234840557094E-02
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