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Abstract13

This paper discusses the numerical integration of high-order variational equations of14

ODEs. It is proved that, given a numerical method (say, any Runge-Kutta or Taylor method),15

to use automatic differentiation on this method (that is, using jet transport up to order p with16

a time step h for the numerical integration) produces exactly the same results as integrating17

the variational equations up to of order p with the same method and time step h as before.18

This allows to design step-size control strategies based on error estimates of the orbit and of19

the jets. Finally, the paper discusses how to use jet transport to obtain power expansions of20

Poincaré maps (either with spatial or temporal Poincaré sections) and invariant manifolds.21

Some examples are provided.22

Keywords: Jet transport | Variational equations | Poincaré map | Parametrization method.23

1 Introduction24

It is well-known that invariant objects (equilibrium points, periodic orbits, invariant tori and25

their stable/unstable manifolds) play a key role in the understanding of the global properties26

of a dynamical system. They can be seen as the skeleton of the dynamics and, therefore, their27

knowledge provides insight on the properties of the system. To have a complete and reliable28

picture of the dynamics, it is common to combine theoretical results with numerical methods to29

analyze these manifolds.30

To study dynamical systems defined as the flow of an Ordinary Differential Equation (ODE)31

it is common to use suitable Poincaré sections. They reduce the dimensions (phase space and32

invariant objects) by one and usually simplify the use of numerical methods. One of the difficul-33

ties of using Poincaré maps is that it has to be computed by means of a numerical integration of34

the flow. When the derivatives of the Poincaré map are needed it is usual to resort to variational35

equations, whose numerical integration provides the derivatives of the flow with respect to initial36
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conditions and/or parameters: let us denote by Φ(t; t0, x0) the flow of the Initial Value Problem1

(IVP)2

ẋ = f(t, x), x(t0) = x0. (1)

Then, if we denote the matrix Dx0Φ(t; t0, x0) as V (t), it follows that V satisfies the linear3

differential equation V̇ = Dxf(t, x(t))V , where x(t) is the solution of (1). These equations are4

usually written together in the form5

ẋ = f(t, x), x(t0) = x0,

V̇ = Dxf(t, x)V, V (t0) = I,

where I denotes the identity matrix. Similarly, one can look at the differential equations satisfied6

by higher order derivatives of the flow Φ. However, they are usually complicated expressions7

involving high order derivatives of f .8

There are several situations in which high order derivatives of a Poincaré map are needed.9

One of them is the computation of high order approximation to invariant manifolds by means of10

the parametrization method [HCL+16]. The main idea of the parametrization method is to look11

for a suitable parametrization of the required manifold. For instance, under generic conditions,12

the stable and unstable manifolds of a fixed point can be represented as a high-order Taylor13

expansion w.r.t. a parameter along the manifold. Then, it can be seen that the coefficients14

of this Taylor expansion satisfy a set of linear equations. These equations involve high order15

derivatives of the map.16

This paper focuses on the effective computation of high-order derivatives of stroboscopic17

and spatial Poincaré maps. We discuss, as a particular example, the computation of high-order18

approximations of stable/unstable manifolds of fixed points, which correspond to periodic orbits19

of the ODE flow. We are also interested on the efficiency, to allow the use of extended precision20

arithmetic when required. A similar process has already been applied for invariant manifolds of21

tori of stroboscopic maps [GJNO22]. The computation of invariant manifolds is a classical topic22

in dynamical systems, and the standard methods to compute them are based on computing first23

a linear approximation to the manifold and then to globalize it [Sim90, KOD+05]. What we24

propose here is to compute first a high order approximation of the manifold and then to globalize25

it. The advantage of using a high order approximation is that we can start the globalization26

further away from the fixed point, and this: i) reduces the total computation time; and ii)27

increases the accuracy of the computed manifold. This is shown in Section 6.2 with the help on28

an example.29

One of the main tools used here is automatic differentiation (AD) [Gri00], which is an30

alternative way of computing derivatives at a given point. It is based on replacing the arithmetic31

of real numbers of a given algorithm by a (truncated) formal power series arithmetic so that the32

same algorithm will produce not only the result of the algorithm but also its derivatives.33

In this paper we use these ideas to compute the derivatives of a Poincaré map. As the34

numerical integration of the flow is written as a sequence of formulas, we can replace the floating35

point arithmetic by a truncated power series arithmetic with floating point coefficients. We36

prove that regardless of the numerical integrator –e.g. Runge-Kutta, Taylor, etc– the process37

can be implemented. Note that these ideas can be viewed as an extension of the phase space to38

propagate the derivatives of the flow in addition to the trajectory. We are going to refer to this39

technique as “jet transport” ([AFJ+08, JPN10]) since the set of derivatives of a function on a40

point is sometimes called the jet of derivatives of the function at this point.41
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A natural question is the accuracy of the derivatives of the flow obtained by using automatic1

differentiation on a time stepper for ODEs. As usual, by accuracy we mean the difference2

between these values and the exact solution of the variational flow. The error introduced by the3

time stepper on the orbit is a well studied topic and its knowledge is used, for instance, to derive4

algorithms of step size control according to a prescribed threshold. If, for instance, the time5

stepper (with step h) has an error O(hp), do the derivatives of the flow w.r.t. initial conditions6

obtained by jet transport also have an error O(hp)? Does this error depend on the order of7

the derivative? How to derive a suitable step size control for a time stepper that includes jet8

transport? These questions are also addressed in this paper. The answer comes from the fact9

(proved in Section 3) that the error in the derivatives obtained using jet transport is exactly10

the same as the error obtained when applying the time stepper (without jet transport) to the11

corresponding variational equations. Therefore, we can estimate the error in the coefficients of12

the jet using the same error formulas used to estimate the error of the orbit, since the coefficients13

of the jet coincide (exactly) with the values obtained applying the time stepper to the variational14

equations. In particular, if the error of the time stepper on the orbit is O(hp), the error on the15

derivatives of the flow obtained using jet transport is also O(hp). This implies that we can use16

the existing step size control strategies for general ODEs when using jet transport, handling the17

coefficients of the jets as the components of the solution of the variational equations.18

There is a vast literature on the applications of the numerical integration of high-order vari-19

ational equations. This contribution is also devoted to its combination with the parametrization20

method for the computation of the high-order approximation of invariant manifolds. It is worth21

noting that these techniques have been used to tackle problems that range from those that arise22

from the theory of dynamical systems to applications to astrodynamics and orbital mechanics.23

The following gives an overview to the reader of the state of the art of the topic.24

Jet transport techniques can be used to study problems in computational dynamical systems.25

This allows to deal with high-order derivatives of solutions of ODE that can be used, e.g., in26

the following contexts:27

• The non-integrability of Hamiltonian systems can be established by studying its high-order28

variational equations via the so-called Morales-Ramis and Morales-Ramis-Simó theories.29

See [MS09] and references therein, where these are applied and exemplified.30

• Jet transport has been extensively used to cope with the problem of propagation of un-31

certainties, namely in the loss of accuracy for long term integrations due to the change of32

shape of the propagated set of initial conditions, [AFJ+08, AFJ+09, JPN10, ADLBZB10].33

Jet transport allows to propagate not only an initial condition but a region whose shape34

is determined by some polynomial, see [PPMG13, PPGM18, VADLL13]. In [WDLA+15],35

the authors present an automatic method of to split the propagated domains to increase36

accuracy. The method relies on detecting when the flow expansion with respect to ini-37

tial conditions is no longer accurate enough, and to split the region into two subregions.38

Each subregion is further propagated using the same polynomial representation before the39

splitting, but centered on different point (on each subregion).40

• These same ideas can be used to refine techniques for detecting invariant structures. These41

techniques, that include e.g. Fast Lyapunov Indicators (FLI for short), usually rely on42

linear approximations of the dynamics. By means of jet transport one can use high-order43

approximations to get a better insight of the dynamics, see [PPMG14, PPMG15].44
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From the perspective of applications to orbital mechanics problems, jet transport techniques1

are a tool that allows to refine and extend the results using reference solutions.2

• The computation of collision probability can also be addressed using jet transport tech-3

niques, see, for instance, [MADLBZ15]. In this work, the authors look first for close4

approaches (regular integrations with standard double arithmetic), and then once closest5

approaches are detected, collision probabilities are computed via propagation of uncertain-6

ties using jet transport.7

• Affine optimal control problems, that is, problems that can be set as the equations of mo-8

tion being affine in the controls, have been dealt with and jet transport as well. Integration9

of high-order variational equations can be used to find expansions of the solutions of the10

optimal control problem around a reference trajectory. Examples of such systems are low11

thrust transfers, see [LABZB14].12

• High-order numerical and analytical extended Kalman Filters are implemented using jet13

transport techniques to easily go to high-orders in the derivatives, to reduce computa-14

tional effort and to improve accuracy. This is applied to orbit determination problems,15

see [VADLL14].16

• Two-point boundary value problems are dealt with jet transport techniques. A reference17

solution is found via classical iterative methods. An expansion around this reference solu-18

tion is computed transporting the Jet to high-orders to find close new solutions, obtained19

via evaluation of the obtained Taylor expansions, see [LAL08].20

• Validation of a-posteriori theorems. In [CCGd22] the computation of high-order derivatives21

of a stroboscopic Poincaré map with extended arithmetic precision was used to validate the22

existence a KAM torus close to its breakdown in a quasi-conformally symplectic system.23

The norm computation of these derivatives were needed to verify the inequalities of an24

a-posteriori theorem in [CCd13].25

• Jet transport has been used in computer assisted proofs, such as [KS17] and implemented26

in computational libraries and packages, such as [CAP].27

This paper starts in Section 2 fixing the notation of basic notions in automatic differentiation.28

After that, Section 3 presents the main contribution of the paper showing that the use of jet29

transport is equivalent to integrate high-order variational flows. Section 4 applies the previous30

results to the computation of high-order derivatives of Poincaré maps which is later applied in31

Section 5 to the parametrization method. Finally, Section 6 shows some illustrative examples32

using all this new methodology.33

2 Automatic differentiation and jet transport34

Automatic differentiation is a technique used to obtain high-order derivatives of the output35

of a given algorithm with respect to the input, see [GC91, Gri00, Nau12]. In this section,36

we summarize the main ideas involved in this tool. An essential ingredient for the successful37

implementation of automatic differentiation is the manipulation of (formal) power series.38
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2.1 Formal power series in one variable1

A formal power series in one variable s is an expression of the form2

∑

k≥0

aks
k, (2)

where the coefficients ak belong to a field. If f is a C∞ function defined on a neighborhood of3

0, we can choose as ak its k-th normalized derivative,4

ak =
1

k!
f (k)(0),

and then (2) can be seen as a formal series that encodes the jet of derivatives of f at 0. The5

manipulation of formal power series goes back to L. Euler. A modern reference for the topic is,6

for instance, the book by D. Knuth [Knu98]. To discuss the arithmetic of formal power series,7

let us define8

A =
∑

k≥0

aks
k, B =

∑

k≥0

bks
k, C =

∑

k≥0

cks
k.

The basic operations of power series, A ± B and AB are defined in a natural way. If b0 ̸= 0,9

the quotient C = A/B is obtained by writing BC = A and taking the coefficients of degree k at10

both sides,11

b0ck + b1ck−1 + · · · + bkc0 = ak,

which implies12

ck =
1

b0
(ak − b1ck−1 − · · · − bkc0),

and this allows to compute the coefficients ck recursively, starting from c0 = a0/b0.13

Let us see how to perform other operations. For instance, let us focus on C = Aα for α ∈ R.14

We assume α ̸= 0, 1 (these two cases are trivial) and a0 ̸= 0. Taking formal derivatives w.r.t. s15

we obtain C ′ = αAα−1A′ which implies C ′A = αCA′. Now we equate the coefficients of degree16

k − 1 at both sides to obtain17

k∑

j=0

jcjak−j = α
k∑

j=0

(k − j)ak−jcj ,

and, therefore18

ck =
1

ka0

k−1∑

j=0

[αk − (α + 1)j]ak−jcj ,

which allows to compute the coefficients ck (k ≥ 1) recursively starting from c0 = aα0 . We note19

that this formula includes the inversion (α = −1) and the square root (α = 1
2).20

The same idea can be used to compute C = h(A) when h is any function that satisfies a21

simple differential equation. This includes log, exp and the trigonometric functions.22

Remark 1. As a formal series A codifies the derivatives of a C∞ function f at, say, 0. The formal23

series h(A) codifies the derivatives of the composition h ◦ f at 0. In other words, the operations24

with formal series can be seen as the “transport” of derivatives through these operations.25
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2.2 Formal power series in several variables1

In a similar way, we can consider power series of n variables,2

A =
∑

m≥0

∑

|k|=m

aks
k, (3)

where k ∈ Nn, |k| = k1 + · · · + kn and sk = sk11 · · · sknn . As before, if f is a C∞ multivariate3

function defined on a neighborhood of 0, we can take4

ak =
∂kf

k1! · · · kn!
(0),

then (3) encodes the jet of partial derivatives of f at 0. The arithmetic of multivariate power5

series is very similar to the case of one variable. As an example, let us show how to compute6

C = Aα for α ∈ R. As before, we assume α ̸= 0, 1. We replace sj by sjz (z is an extra one-7

dimensional variable that, at the end, it will be selected equal to 1 to recover the initial form)8

and we obtain,9

A =
∑

m≥0

Amzm, where Am =
∑

|k|=m

aks
k.

Using the same notation for C, we can use the procedure derived in Section 2.1 to obtain,10

Cm =
1

mA0

m−1∑

j=0

[αm− (α + 1)j]Am−jCj ,

where now Aj and Cj denote homogeneous polynomials of degree j. As the only required11

operations are sums and products of homogeneous polynomials (note that A0 appears in a12

denominator but it is always a number), the formula can be carried out easily. In the same13

way, similar formulas can be obtained for other operations. As in the one dimensional case,14

operations with multivariate formal series can be seen as the “transport” of partial derivatives15

through these operations.16

2.3 Truncated power series17

The computer implementation of these techniques is done using truncated power series. For18

instance, assume we are working with truncated series up to order, say, M . Then, the equality19

C = Aα means that C is a truncated power series whose coefficients coincide with the ones of20

Aα. Note that this does not mean that they coincide as functions of their variables (in fact they21

do not, since Aα contains terms of order higher than M that we are neglecting). We expect that22

this notation will not confuse the reader.23

Note that the efficiency of the operations depends on the efficiency of the product of homo-24

geneous polynomials. Moreover, note that the complexity of these operations is very low: for25

instance, the cost of Aα is similar to the cost of a product of two truncaded power series of order26

M . It is not difficult to see that this is the complexity of all the standard operations.27

2.4 Jet transport28

The automatic differentiation can be used on an algorithm for the numerical integrations of29

ODEs to compute the derivative of the final point of the orbit with respect to the the initial30
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data and/or parameters. More concretely, given an ODE, an initial condition (t0, x0) and a1

numerical method for ODEs, let us denote by Φ(t0, x0;h) the algorithm of numerical integration2

that, from the initial data (t0, x0) approximates the point of the orbit at time t0+h. Jet transport3

is the result of using automatic differentiation on this algorithm, that is, to replace the usual4

floating point arithmetic by an arithmetic of power series, truncated at degree m. Then, running5

this algorithm on the data (t0, x0 + s), where we assume x0 ∈ Rn and s = (s1, . . . , sn) we obtain6

something like x1 + A1(s) + A2(s) + · · · + Am(s), where x1 is the (approximation to the) new7

point on the orbit, A1(s) is an n-dimensional vector of polynomials of degree 1 in s which are the8

first order terms of the Taylor series of Φ(t0, x0;h) at x0, A2(s) contains the second order terms,9

and so on. In this way we compute a numerical approximation to high-order variationals of10

the flow by computing high-order derivatives of the numerical integration algorithm. A natural11

question is about the difference between this result and the exact integration of the corresponding12

variational equations. In particular, if the error is higher for high-order derivatives. This will13

be useful to design a step size control that takes into account that the numerical integration has14

been overloaded with jet transport. This is the goal of the next section.15

3 Variational flow and jet transport16

Consider a generic Initial Value Problem (IVP),17

ẋ = f(t, x), x(t0) = x0, (4)

where f is smooth and x belongs to a suitable domain of Rn. We want to compare the results18

of using jet transport on a numerical integrator for this equation and the results obtained by19

integrating the corresponding variational equations with the same numerical integrator. In this20

comparison, we restrict ourselves to Runge-Kutta methods (explicit or implicit), Taylor method21

and multistep methods. The main result is given by the next theorem.22

Theorem 3.1. Given a step size h, the use of jet transport of order m on a Runge-Kutta23

method, Taylor method or multistep method produces exactly the same results as the integration24

of variational equations up to order m with the same method.25

Proof. First, we will show in the following subsections (Propositions 3.2 and 3.3) that the use of26

jet transport of order 1 on a Runge-Kutta or Taylor method for (4) produces exactly the same27

results as the ones obtained by using this numerical integrator on the first order variational28

equations,29

ẋ = f(t, x), x(t0) = x0,

v̇ = Dxf(t, x)v, v(t0) = v0,
(5)

where v(t) ∈ Rn and v0 ̸= 0 is an arbitrary direction. Then, the proof of the theorem is easily30

completed proceeding recurrently on m: note that the variational flow of (5) contains the second31

variational flow of (4) so we can use the previous proposition to show that the result is true up32

to second order variational equations, and so on. The proof for the multistep method is very33

similar to the proof for the Runge-Kutta case and we omit the details.34

To describe the numerical methods in this section we use the notation35

ẏ = F (t, y), y(t0) = y0, (6)
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to refer either to IVP (4) or (5). To simplify the presentation, we assume that F is smooth1

enough on a suitable domain. We will focus on a single (time) step of the methods, using a2

given time step h. Once it is shown that the jet transport results and the results of integrating3

the variational flow are equal, it is clear that if we apply the same step size control strategy to4

both methods we also obtain the same step sizes for the integration.5

3.1 Runge-Kutta methods6

A generic σ-stage Runge-Kutta method for the IVP (6) is defined by the formulas (see, for7

instance, [But87, HNW00]),8

κi = F (t0 + cih, y0 + h(ai,1κ1 + · · · + ai,σκσ)), i = 1, . . . , σ,

y1 = y0 + h(b1κ1 + · · · + bσκσ),
(7)

where aij , bj and cj are suitable real coefficients and h is the time step. It is well known that, if9

h is small enough, these equations have a unique solution ([HNW00]). When aij = 0 for i ≤ j10

the method is explicit, which means that the vectors κj can be obtained explicitly.11

The goal of this section is to show that to use jet transport of order 1 on the σ-stage Runge-12

Kutta method (7) to approximate the solution and the variational flow of (4) is exactly the13

same as to apply the Runge-Kutta method (7) to the IVP (5). To this end, let us introduce the14

following notation. Let us denote the values κj that corresponds to the IVP (5) as κj = (κ̄j , κ̂j)15

where κ̄j refers to the coordinates x, and κ̂j refers to the coordinates v.16

Proposition 3.2. Assume that we are using jet transport of order 1 on the scheme (7) when17

applied to the IVP (4). Then, the κj values obtained are exactly κ̄j + κ̂js.18

Proof. If we use jet transport of order 1 on a Runge-Kutta method applied to the IVP (4) we19

obtain the equations20

κ̄′i + κ̂′is = f(t0 + cih, x0 + v0s + h
σ∑

j=1

ai,j(κ̄
′
j + κ̂′js)).

This equation is equivalent to21

κ̄′i + κ̂′is = f(t0 + cih, x0 + h
σ∑

j=1

ai,j κ̄
′
j) + Dxf(t0 + cih, x0 + h

σ∑

j=1

ai,j κ̄
′
j)(v0 + h

σ∑

j=1

ai,j κ̂
′
j)s,

which implies22

κ̄′i = f(t0 + cih, x0 + h

σ∑

j=1

ai,j κ̄
′
j),

κ̂′i = Dxf(t0 + cih, x0 + h
σ∑

j=1

ai,j κ̄
′
j)(v0 + h

σ∑

j=1

ai,j κ̂
′
j).

These are the equations (7) for κj = (κ̄j , κ̂j) corresponding to the IVP (5). As the solution is23

unique ([HNW00]), we have that κ̄j = κ̄′j , κ̂j = κ̂′j .24

This implies that a single step of a RK method (either explicit or implicit) with jet transport25

of order 1 on (4) produces the same result as a single step of the RK on (5).26
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3.2 Taylor method1

One of the oldest methods for the numerical integration of an IVP like (6) is based on the2

computation of the Taylor series of the solution.3

y1 = y0 + y
[1]
0 h + y

[2]
0 h2 + · · · + y

[p]
0 hp,

where y
[i]
0 denotes the normalized derivative of the solution of (6) at t0,4

y
[i]
0 =

1

i!

diy

dti
(t0).

The computation of the values y
[i]
0 by taking derivatives to both sides of the ODE can be a difficult5

process and, moreover, it produces very complex expressions for these derivatives so that the6

resulting method is not very efficient, specially if high orders are required. On the other hand,7

automatic differentiation can be used to compute these normalized derivatives very efficiently,8

up to high orders, giving rise to very efficient implementations of Taylor method ([JZ05]). As9

before, we can use jet transport on the Taylor method to approximate the variational flow. This10

has been implemented in the new version of the package taylor, [GJZ22].11

Proposition 3.3. A step of Taylor method with first order jet transport on the IVP (4) produces12

exactly the same results as a step of Taylor method on the IVP (5).13

Proof. The i-th normalized derivative of the orbit of (5) is14

x
[i]
0 =

1

i!

di−1

dti−1
[f(t, x(t))](t0, x0), v

[i]
0 =

1

i!

di−1

dti−1
[Dxf(t, x(t))](t0, x0)v0,

which can be used to perform a Taylor step on (5).15

To apply jet transport of order 1 to (4), we replace x0 by x0 + v0s and we propagate first16

derivatives with respect to s,17

1

i!

di−1

dti−1
[f(t, x(t))](t0, x0 + v0s)

=
1

i!

di−1

dti−1
[f(t, x(t))](t0, x0) + Dx

1

i!

di−1

dti−1
[f(t, x(t))](t0, x0)v0s + O(s2)

=
1

i!

di−1

dti−1
[f(t, x(t))](t0, x0) +

1

i!

di−1

dti−1
[Dxf(t, x(t))](t0, x0)v0s + O(s2)

= x
[i]
0 + v

[i]
0 s + O(s2).

That is, the Taylor coefficients obtained from jet transport of order 1 are exactly the same as the18

Taylor coefficients coming from the variational equations. Hence, given an order and a nonzero19

time step h, the output of a step of Taylor integration using jet transport of order 1 on (4) gives20

exactly the same results as using Taylor method on (5).21

Remark 2. Theorem 3.1 is also true for methods (either explicit or implicit) in which the new22

point on the orbit is found as a linear combination of evaluations of the vector field at given23

points. We do not include the details since the proofs are very similar to the ones for the24

Runge-Kutta case.25
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3.3 Stepsize control1

As the use of jet transport is equivalent to the integration of the normalized variational equa-2

tions1, we can use the standard stepsize control of the numerical integration. This means that3

we can use the coefficients of the Aj (see Section 2.4) as if they were the values obtained of4

the numerical integration of the normalized variational equations. Therefore, applying the step-5

size control using these coefficients gives the same result as applying the stepsize control on an6

integration of the (normalized) variational flow.7

In some cases, for instance when we are computing very high-order derivatives, we do not8

require the same level of accuracy for all of them (sometimes, high-order derivatives require less9

accuracy than the low order ones). Then, we could use a weighted norm in the stepsize control.10

4 Power expansion of Poincaré maps11

Assume that we have a flow defined by a smooth ordinary differential equation defined on an12

open subset of Rn, and that we are using a suitable Poincaré section to study its flow. To13

simplify the discussion, we will consider two separate cases. One when the section is based on a14

known time of integration (temporal section) and a second one based on an unknown time but15

determined by the crossing on a certain region (spatial section).16

In what follows, Φ(t; t0, x
(0)) denotes the solution at time t of the initial value problem17

corresponding to the initial data (t0, x
(0)).18

4.1 Temporal Poincaré sections19

This is a common situation when we have a periodically time-dependent ODE with a period,20

say, T > 0. Then, it is usual to define a Poincaré map P as the time T flow of the ODE, that21

is, P (x) = Φ(T ; 0, x). Periodic orbits of period T appear as fixed points of P , P (x∗) = x∗.22

The linear stability of the periodic orbit follows from the monodromy matrix DxP (x∗), but to23

study nonlinear aspects of the dynamics higher order terms are needed. A typical example is24

the analysis of bifurcations ([Kuz04]).25

The power expansion (up to order m) of P at a given point x(0) ∈ Rn can be obtained26

by evaluating P on x(0) + s, using a jet arithmetic of order m for the n-dimensional vector of27

symbols s.28

4.2 Spatial Poincaré sections29

To simplify the discussion, we focus on an autonomous ODE in Rn. This is in fact the usual30

situation in which spatial sections are used. Let us assume (also for simplicity) that the Poincaré31

section Σ is defined by a plane in general position. Let x(0) be a point on the plane Σ, and32

let us denote by n⃗ the normal vector to this plane. We assume that, after some integration33

time T (x(0)), depending on the initial point, the trajectory comes back to the section, i.e.34

Φ(T (x(0)); 0, x(0)) ∈ Σ. To produce the expansion, we have to define coordinates on the plane.35

Without loss of generality, let us choose x(0) as the origin of coordinates, and let us choose36

suitable linearly independent unitary vectors v1, . . . , vn−1 such that x(0) + v1s1 + · · ·+ vn−1sn−137

is a parametric representation of Σ.38

1By normalized variational equations we refer to the variational equations divided by the corresponding fac-
torials so that they are the normalized derivative of the flow.
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Now we start the integration of the ODE at the point x(0) + v1s1 + · · · + vn−1sn−1 using a1

jet arithmetic of order, say, m, with the symbols s = (s1, . . . , sn−1). Note that if we stop the2

integration at time T (x(0)) what we obtain is the power expansion of the flow at time T (x(0))3

w.r.t. the n − 1 variables that are the coordinates on Σ, but this is not the power expansion4

of the Poincaré map P : Σ → Σ because this expansion does not lay inside Σ. To produce the5

power expansion of the Poincaré map up to a given order m, we stress that the time needed for6

an orbit to return to the section Σ depends on the initial point. This means that the return7

time also depends on s, that is, we have to write the return time as a formal series on s,8

T (x(0) + v1s1 + · · · + vn−1sn−1) = T (x(0)) +
m∑

|k|=1

τks
k, (8)

whose coefficients τk are real numbers that have to be determined from the condition9

Φ(T (x(0) + v1s1 + · · · + vn−1sn−1); 0, x(0) + v1s1 + · · · + vn−1sn−1) ∈ Σ. (9)

As usual, this condition must hold up to order m in s. In other words, we expect that the10

distance between the evaluation of the power expansion of the Poincaré map and Σ behaves like11

Om+1(∥s∥). As we will see, the coefficients τk in (8) can be computed recurrently, degree by12

degree. To shorten the following formulas, we denote T0 = T (x(0)) and13

s̄ = v1s1 + · · · + vn−1sn−1.

Let us denote x(1) = Φ(T0; 0, x(0)) ∈ Σ and we recall that the ODE is ẋ = f(x). Let us start by14

the degree m = 1. The flow at time t = T0 +
∑

|k|=1 τks
k can be written as15

Φ(T0 +
∑

|k|=1

τks
k; 0, x(0) + s̄) = Φ(T0; 0, x(0) + s̄) + DtΦ(T0; 0, x(0) + s̄)

∑

|k|=1

τks
k

= Φ(T0; 0, x(0)) +
∑

|k|=1

aks
k + DtΦ(T0; 0, x(0))

∑

|k|=1

τks
k

= x(1) +
∑

|k|=1

aks
k + f(x(1))

∑

|k|=1

τks
k,

where the values ak come from the first order expansion of Φ(T0; 0, x(0) + s̄) w.r.t. s,16

Φ(T0; 0, x(0) + s̄) = x(1) +
∑

|k|=1

aks
k.

Hence, to impose condition (9) at first order (at order 0 is already satisfied) we have to ask that17

∑

|k|=1

〈
ak + τkf(x(1)), n⃗

〉
= 0,

where ⟨·, ·⟩ denotes the standard scalar product. This condition implies that18

τk = − ⟨ak, n⃗⟩〈
f(x(1)), n⃗

〉 .

From a geometric point of view, this is equivalent to project the directional derivatives w.r.t.19

each component of s on the Poincaré section, following the flow (see Figure 1).20
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The computation of the higher order terms is more involved. In particular, it requires to1

perform integration steps with step sizes that also depend on s̄. This introduces a limitation: if,2

for instance, we have to perform the step size h =
∑

|k|=1 τks
k and the numerical integration has3

a local truncation error of O(hp), then the resulting power expansion in s will have an error of4

the order of O(|s|p) and this means that we cannot trust the resulting expansion in s for orders5

equal and higher than p. Therefore, we have to limit the degree of these expansions by the order6

of the local truncation error of the numerical integration algorithm. We note that this is not a7

limitation for Taylor methods, since the order can be easily increased to the desired value.8

Now let us focus in the computation of high-order derivatives, assuming that the order of9

the local error is large enough for the derivatives we want to obtain. We proceed in a recurrent10

way. Assume now that we have computed the values τk for |k| ≤ m, and we want to compute11

them for |k| = m + 1:12

Φ


T (x(0)) +

m∑

|k|=1

τks
k +

∑

|k|=m+1

τks
k; 0, x(0) + s̄




= Φ


T (x(0)) +

m∑

|k|=1

τks
k; 0, x(0) + s̄


 + DtΦ


T (x(0)) +

m∑

|k|=1

τks
k; 0, x(0) + s̄


 ∑

|k|=m+1

τks
k

= x(1) +
m+1∑

|k|=1

aks
k + f(x(1))

∑

|k|=m+1

τks
k.

To obtain the last equality note that, as DtΦ is multiplying
∑

|k|=m+1 τks
k which is already of13

order m + 1, we have to use the terms of degree 0 of DtΦ, that is, DtΦ(T (x(0)); 0, x(0)) which14

is f(x(1)). Therefore, for |k| = m + 1, imposing condition (9) leads to the same expression as15

before,16

τk = − ⟨ak, n⃗⟩〈
f(x(1)), n⃗

〉 .

Let us summarize how to apply these formulas. We first integrate for a time T (x(0)) such that17

the orbit starting at the initial condition x(0) lands on the Poincaré section Σ. This integration18

can be done with jet transport so that we obtain Φ(T (x(0)); 0, x(0) + s̄). Then, to compute the19

return time (8) such that the power expansion of the flow lays inside Σ up to degree m, we20

proceed degree by degree in (8): for degree 1, we use first the formulas above to compute the21

numbers τk, and then we perfom a step of numerical integration with step22

h =
∑

|k|=1

τks
k, (10)

starting at Φ(T (x(0)); 0, x(0) + s̄) to obtain Φ(T (x(0)) +
∑

|k|=1 τks
k; 0, x(0) + s̄) which is a power23

expansion with its first order terms inside Σ. Next, using the second order terms w.r.t s in24

Φ(T (x(0)) +
∑

|k|=1 τks
k; 0, x(0) + s̄) (the coefficients of these terms are the values ak above) we25

compute the values τk for |k| = 2 and we perfom another numerical integration step,26

h =
∑

|k|=2

τks
k, (11)

starting at Φ(T (x(0))+
∑

|k|=1 τks
k; 0, x(0)+ s̄) to obtain Φ(T (x(0))+

∑2
|k|=1 τks

k; 0, x(0)+ s̄) with27

its second order terms inside Σ. This process is continued up to the desired order. Figure 128

12



illustrates these ideas. Another approach is to consider a Newton approach to find the τk in (8)1

imposing the condition on (9) , see [Sim90].2

Φ(T (x(0)); 0, x(0) + s)

Σ = {x: g(x) = 0}

~n
f(x(1))

x(1)
Φ(T (x(0)) +

∑m

|k|=1
τks

k; 0, x(0) + s)

Figure 1: Projection of a directional derivative of the flow on the Poincaré section.

It is important to note that, in this procedure, the truncation error of the time stepper can3

affect to the jets. For instance, if we use a time stepper with a local truncation error of the form4

O(hp+1), after a step of the form (10) or (11), the error of the numerical integration contains5

terms of order p + 1 in s and, therefore, it is impossible to obtain derivatives of the spatial6

Poincaré map of order higher than p. So, if high order derivatives are wanted, it is better to use7

a numerical integration method like the Taylor method, where it is very easy to obtain a high8

order truncation error.9

4.3 On normal forms10

One of the applications of the power expansion of a Poincaré map is the computation of normal11

forms. A normal form is a local (and high order) integrable approximation of the dynamics in12

a neighborhood of an invariant object like a fixed point or an invariant curve, and it is useful to13

have accurate information of the nearby dynamics [DJ22]. So, it is possible to use the machinery14

in this paper to compute high order normal forms [GJJC+].15

5 The parametrization method16

The origin of the parametrization method goes back to the 80’s when it was used by C. Simó17

(see also [FR81]) for numerical computations. It is remarkable that this method is also excellent18

to prove the existence of invariant manifolds, as shown by X. Cabré, E. Fontich and R. de la19

Llave [CFdlL05]. Here, we are only interested in computing these invariant manifolds from an20

algorithmic point of view. A complete description of the method can be found in the book21

[HCL+16].22

Let P be a Poincaré map. To discuss the paremetrization method for invariant manifolds,23

let us first focus on the case for which the manifold is unstable. The stable one can be computed24

similarly replacing P by P−1. In the case that P is given in terms of a flow map, its inverse is25

obtained integrating the differential equation backwards in time (see [GJNO22] for more details).26

The main idea of the method is to consider that the manifold can be parametrized by a map27

K which we denote as a formal power series. Then K is plugged into the invariance equation28

involving K, P , and internal dynamics of the manifold. Thus, each term of the formal series can29

be solved order by order. You will note that, as far as the final series is converging, the map K30

will be unique up to a scaling factor. We assume:31

• There exists a fixed point z0 by the map P , i.e. P (z0) = z0,32

13



• there exists a decomposition Rn = Λu ⊕ Λc ⊕ Λs, where dim(Λu) = d and dim(Λs) = r.1

Here Λu is the eigenspace corresponding to the d unstable eigenvalues λu = (λ1, . . . , λd)2

of the matrix DP (z0). Similarly, Λs and Λc are the eigenspaces related to the unstable3

eigenvalues and the elliptic eigenvalues. For the sake of simplicity, we assume that all these4

eigenvalues are real. The complex eigenvalue case can be handled similarly.5

Assume that the parametrization, with parameters u = (u1, . . . , ud), is given by6

K(u) =
∑

m≥0

Am, with Am =
∑

|k|=m

ak uk, (12)

where k = (k1, . . . , kd) ∈ Nd, is a multi-index, |k| = k1 + · · ·+ kd, uk = uk11 · · ·ukdd , and ak uk are7

the different monomials of degree |k| = m. The invariance equation characterizes the invariant8

manifold –parametrized by the map K– under the dynamics. It is given by9

P ◦K = K ◦ U, U = diag(λ1, . . . , λd), (13)

which we will solve it, order by order, recursively.10

The zeroth order is set by the coordinates of the fixed point z0, i.e. A0 = z0. The next11

order has the form A1 =
∑d

j=1 vj uj , where {vj}1≤j≤d are the eigenvectors of the matrix DP (z0)12

corresponding to the eigenvalues {λj}. This choice verifies the invariance equation at first13

degree order but we have a freedom by scaling the parameters u leading to an equivalent result.14

Although they are equivalent, a suitable rescaling of the parameters allows to improve the15

numerical behavior of the series, see Section 5.1.16

To compute the next degree orders, we proceed inductively order by order. Assume we have17

computed the coefficients of Am up to degree j. Then we can write the series at degree j + 1 by18

Kj(u) + Aj+1, where Aj+1 must be determined and19

Kj(u) =

j∑

m=0

Am, with Am =
∑

|k|=m

ak uk.

By applying the invariance condition (13), an expression to Aj+1 is deducted:

P (Kj(u) + Aj+1) = P ◦Kj + DP (z0)Aj+1 + O(uj+1)

= Kj ◦ U + Bj+1 + DP (z0)Aj+1 + O(uj+1).

Here Bj+1 is the Taylor term of order j + 1 of P (Kj(u)) which is obtained following the jet20

transport technique described in Section 4. To be more precise, it has the form21

Bj+1 =
∑

|l|=j+1

bl u
l. (14)

Neglecting the term O(uj+1) and imposing that the last equation has to be equal to Kj+1 ◦ U ,22

we get23

Bj+1 + DP (z0)Aj+1 = Aj+1 ◦ U.
Then, for l such that |l| = j + 1 is given by solving the linear systems24

(
DP (z0) − λl

uIn
)
al = −bl, (15)
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and then,

Aj+1 =
∑

|l|=j+1

al u
l,

is the homogeneous polynomial of degree j + 1 we are looking for.1

Note that from the computational point of view, the step consisting in getting (14) is, by far,2

the most expensive step when the computation of P requires to integrate an ODE. Also note3

that (15) is assumed to be a solvable linear system for each of the different values of l. Those4

conditions for which the linear systems have a solution are called non-resonance conditions and,5

in such cases, the manifold admits the locally convergent power series of the form in (12).6

Remark 3. Some modifications are convenient when this method is applied in combination with7

a multiple shooting method, where the map P is split as the composition of several maps.8

An exhaustive explanation can be found in [GJNO22] in the context of the parametrization of9

invariant manifolds of high-dimensional tori.10

5.1 Scaling factor11

The parametrization of the invariant manifold is not unique. In particular, if K(u) is a parametriza-12

tion in (13), then K(cu) for c ̸= 0 is also a parametrization. An effect of c is to rescale the13

coefficients ak in (12) as ckak. In some situations, to minimize the error propagation, we want14

to avoid the norms of the coefficients to grow or decrease too fast with |k| [Ric80, FdlL92].15

If the radius of convergence w.r.t. u in (12) is known, ρ, we can use the scaling c = ρ, which16

scales the radius of convergence to 1 and, hence, gives a mild increasing or decreasing of the17

size of the coefficients. If the radius of convergence is not known, it can be estimated using, for18

instance, a root test. If this estimation of the radius ρk and the scaling is done at each degree19

k of the manifold computation, then the scaling factor at each degree k is ρk/ρk−1 with ρ1 = 1.20

Note that, one may consider to perform the scaling after the end of the parametrization21

up to a fixed degree, however, to undo and do scaling at each degree is computationally more22

efficient and it helps the integration of the high-order variational flows since the magnitudes23

involved are of similar order.24

5.2 On the choice of the degree25

A numerical implementation of the explained parametrization method in truncating the formal26

power series (12) up to a certain degree. As the power expansion is computed degree by degree,27

a criterion to select the final degree consists in estimating, for each degree, the validity region28

of the parameter u. This is the set of values of u for which the truncated power expression is an29

accurate representation of the manifold. Assume that we know the coefficients up to degree m,30

then an estimation of the validity region of the variable u with tolerance ϵ consists in finding a31

real positive number s, say smax
m , such that32

∑

|k|=m

|ak| sm < ϵ, |s| ≤ smax
m . (16)

Equation (16) is a rough bound of valid parameters u but it is easily solvable. Indeed, so we33

can take smax
m = (ϵ/

∑
|k|=m |ak|)1/m.34

To prevent the effect of symmetries (i.e., to deal with the situation when all the coefficients of35

odd or even degree are zero) we can consider the minimum value of smax obtained from degrees36
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m and m − 1. This computation can be done after the calculation of each degree to decide if1

this is enough. Hence, a suitable degree choice m is when, for instance, the gain between and2

smax
m and smax

m−2 has little significance, for example when smax
m /smax

m−2 is below 1.01 or 1.001.3

Note that there are, of course, other ways to estimate a validity region of u but they must4

be computationally easy enough to perform it at each new parametrization degree.5

5.3 Globalization6

The parametrization K is valid in a neighborhood of the fixed point. To extend the manifold7

outside this domain we can use a suitable mesh of points on the fundamental interval, and to8

iterate these points (forward for an unstable manifold, backward for a stable one) to extend9

the manifold outside this domain. To estimate the error propagation in these iterations we10

can accumulate, for each point in the fundamental interval, the products of the norms of the11

differential of the map along each orbit to have an estimate of the error growth factor. When12

this factor is larger than some prescribed threshold, the globalization should stop. These ideas13

can be easily extended to globalize higher dimensional manifolds.14

6 Examples15

In this section, we provide several examples in which we apply the parameterization method16

as explained in Section 5 to compute high order approximation of stable/unstable manifolds.17

Those examples are intended to illustrate different situations: In Section 6.1, we globalize the18

stable and unstable manifolds related to hyperbolic periodic orbits of the Hénon-Heiles system.19

To do so, a suitable spatial Poincaré section is used. In this example, we take advantage of the20

high-order approximation to the stable/unstable manifolds to globalize numerically them using21

fewer iterates of the map. The numerical integration in this example is done my means of a22

Taylor method. Its variable order allows to compute easily high order derivatives of the Poincaré23

map, see Section 4.2.24

As example, in Section 6.2, we consider a pendulum with a fast periodic forcing. When the25

perturbation is activated, the system ceases to be integrable and the homoclinic connection of26

the hyperbolic equilibrium point splits, leading to chaotic behavior of the system. It is well27

known that, in this situation, the splitting angle is exponentially small with the size of the28

perturbation. This means that, if the angle is to be computed, extended precision is required.29

In this example we compare the efficiency between a linear approximation and a high order one30

when computing the splitting angle. The numerical integrations are done by means of a Taylor31

method.32

In Section 6.3 we compute high-order approximations of the stable/unstable manifold of33

the dynamical equivalent of the triangular point L4 in the Bicircular Problem. This dynamical34

equivalent is a hyperbolic periodic orbit which is mildly unstable. Therefore, to globalize its35

stable/unstable manifolds starting from a linear approximation, a large number of iterates to36

move away from the periodic orbit is needed. Here we show that the the parameterization37

method produces a power expansion of the manifold which is valid in a quite large domain.38

In this example, the numerical integration is done by means of a Runge-Kutta-Fehlberg 7(8)39

method. As we are using a temporal (stroboscopic) Poincaré section, the order of the Runge-40

Kutta does not limit the order of the computed derivatives.41

Finally, Section 6.4 deals with a system that models the behavior of an electron near an42

atomic core and excited by a laser field. Some trajectories, the recolliding orbits, are of especial43
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interest. These orbits get expelled from the ionic core and come back after some laser cycles.1

Some of these recolliding trajectories are driven by a hyperbolic periodic orbit which has two2

unstable directions: One strongly unstable and the other one mildly unstable. Our interest is in3

computing the 2-dimensional unstable manifold. Notice that the fact that the two hyperbolic4

eigenvalues are so different in size, brings numerical difficulties to the computation. Therefore, a5

combination of a high order approximation to the manifold with extended precision arithmetic6

is required.7

6.1 The Hénon-Heiles system8

The Hénon-Heiles (HH) system is a Hamilonian model proposed by Michel Hénon and Carl9

Heiles for the motion of massless star under the attraction of an effective potential due to other10

stars in a galaxy. The dynamics of the system, of two degrees of freedom, is determined by the11

Hamiltonian function12

H =
1

2
(p2x + p2y) +

1

2
(x2 + y2) + x2y − y3

3
.

The HH system stands out as a classical and simple example of chaotic conservative system. A13

typical approach to study it, is to consider a certain Poincaré map (e.g. {x = 0}). Then, the14

dynamics can be described by means of a family of Area Preserving Maps (APM) parametrized15

by the energy. When the energy is chosen to be very small, most of the phase space is populated16

by invariant curves carrying quasi-periodic motion. In a typical converse KAM picture, these17

invariant curves get destroyed (according to some arithmetic properties of their rotation number)18

when the value of the energy is increased and the gaps left are occupied by chaotic motion. The19

destruction of the invariant curve is related to the existence of hyperbolic periodic orbits and their20

(stable and unstable) invariant manifolds. These manifolds intersect in a complicated tangle in21

the phase space. The size of the chaotic motion depends on the angle of the intersection, the22

so called splitting angle. In the case of the family of APM coming from the HH Hamiltonian,23

these angles are quite large and can be computed easily by using a standard double precision24

arithmetic.25

As example, we have computed some periodic orbits and their stable and unstable manifolds.26

We used a Taylor integrator [JZ05] with 10−16 integration tolerance and modified to work with27

jet arithmetic, [GJZ22]. The hyperbolic fixed points of the Poincaré map with section {x = 0}28

and fixed Hamiltonian level H = 0.125 are reported in Table 1.29

y py λu

q1 3.01400650333283e-01 2.99870268931536e-01 3.76068592161369

q2 -1.85405087090801e-01 5.30699126253682e-15 3.76068592161372

q3 3.01400650333287e-01 -2.99870268931531e-01 3.76068592161374

Table 1: Periodic orbits of HH and its unstable eigenvalue λu, being the stable one 1/λu.

For each of the points qℓ in Table 1, we compute a parametrization of the invariant manifold30

associated to λu and also to λs = 1/λu (in this case using the inverse of the Poincaré map)31

up to the degrees reported in Table 2. These degrees where determine following the strategy32

described in Section 5.2. The Table 2 also shows the scalings based on estimating the radius33

of convergence, see Section 5.1, and the validity region of the parametrization with a tolerance34

10−14 in (16), see Section 5.2. As we can inference from Figure 2 both quantities converge as35

the degree increase.36
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degree scaling, c validity region, smax time (in sec.)

W s(q1) 66 7.825189525522893e-01 4.776699128424906e-01 10.471215
W u(q1) 44 2.301773423837667e-01 1.090485567028463e-01 13.105170

W s(q2) 88 5.097743807635171e-01 3.519317633442122e-01 54.432266
W u(q2) 88 5.097743807635167e-01 3.519317633442118e-01 54.484148

W s(q3) 44 2.301773423837770e-01 1.090485567028529e-01 13.105150
W u(q3) 66 7.825189525522871e-01 4.776699128424852e-01 10.537275

Table 2: Degree, scaling, validity region, and computational time of stable and unstable invariant
manifolds for the periodic orbits qℓ of HH with Hamiltonian level 0.125.
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Figure 2: Evolution of the scaling and estimated validity region of the unstable manifold of q1
and the stable manifold of q2 in terms of the parametrization degree.

Figure 3 shows the image of the validity range by the Poincaré map done by evaluating the1

parametrized Taylor expansion for different values of s. The Figure 3 also shows the globalization2

of the invariant manifolds, following Section 5.3, until the iteration threshold of 1012 with the3

Fröbenius norm. Each of the globalizations took around 40 seconds, and 7 or 8 iterations of the4

fundamental interval with 104 equispaced points in it.5

6.2 Splitting of separatrices of a pendulum6

Let us consider a model for a rapidly forced pendulum,7

ẋ = y,

ẏ = − sinx + µ sin
t

ε
.

(17)

Here, 0 < ε < 1 and µ are small parameters and x is an angular variable (defined mod 2π)
so the phase space is topologically a cylinder. The unperturbed (µ = 0) equation has a simple
behavior. It has two equilibrium points; an elliptic one at (0, 0) and another one at (±π, 0) which
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Figure 3: On the left the intervals [−smax, smax] and on the right globalization of the un/stable
manifolds overlapping with background the Poincaré plot with Hamiltonian level 0.125.

is hyperbolic. The remaining trajectories are integral curves (the system is integrable, as it has
one degree of freedom). These curves are classified in three types: librational (homotopically
trivial), rotational (homotopically non-trivial), and separatrices which separate the libration
and the rotational curves. The separatrices correspond to the (un)stable invariant manifold
associated to the hyperbolic point. That means that the origin is a homoclinic point. As the
system is integrable, the stable and unstable manifold coincide (see Figure 4, left). The two
homoclinic orbits can explicitly be parameterized as Γ± = {(x0(t),±y0(t))}, where

x0(t) = 2 arctan(sinh t),

y0(t) = ẋ0(t) =
2

cosh t
.

y

x

Γ+

Γ−

α

x

y

zn

P (zn)P−1(zn)

Figure 4: Sketch of the pendulum phase space; in the unperturbed case (left)the (un)stable
manifolds coincide while in the perturbed one (right) intersect transversally.

The situation is different when µ ̸= 0. First, the system is no longer autonomous but1

periodic time dependent: Henceforth, the phase space dimension increases by one. Moreover the2

equilibrium point no longer exist. Using the Implicit Function Theorem, it can be proved that,3

19



for sufficiently small values of µ, the equilibria are replaced by periodic orbits of period T = 2πε1

(these are usually called dynamical equivalents). A suitable tool to cope with periodically time2

dependent systems is the stroboscopic map which is obtained by evaluating the flow at the3

period: P (x, y) = φ(0, T ;x, y) and φ stands for the flow of the ODE. Periodic orbits of period4

T are fixed points of P . Since in this example the system is Hamiltonian, the map will be5

symplectic. Again, if µ is small enough, the dynamical equivalent of the origin is a hyperbolic6

fixed point of P and, therefore, there exist stable/unstable manifolds attached to the fixed point.7

Another consequence of the perturbation is that the system is no longer integrable, therefore8

the manifolds do not coincide, but they intersect infinitely many times, producing a homoclinic9

tangle. Due to the symmetries of the system, these manifolds are forced to intersect at the10

vertical axis (see Figure 4, right). The angle α in the intersection of the manifolds provides11

insight on the chaotic motion near the separatrices. In particular, if α ̸= 0, the invariant12

manifolds intersect transversely and this leads to regions of chaotic motion. This angle can be13

studied asymptotically as the next result shows:14

Theorem 6.1 ([DS92]). For ε → 0 and µ → 0, the following asymptotic formula hold.15

α =
π

2ε

µ

cosh π
2ε

[
1 + O(µ, ε2)

]
. (18)

In this section we will discuss the numerical computation of this exponentially small in-16

tersection angle, stressing the huge advantages provided by the use of high-order variational17

flow, especially when high accuracy is needed. To this end, we have chosen the MPFR library18

([FHL+07]) that allows the user to select the number of digits and has proven to be efficient and19

reliable. To use it from a C program we have “updated” it to C++ to use the operator overload20

facility of this language to replace the standard double precision of the computer with MPFR.21

Before starting with the computations, note that the symmetries of the Hamiltonian imply22

that it is enough to compute the angle of intersection α∗ of the manifold with the vertical axis23

{x = 0}: the splitting angle is then α = 2α∗ (note that α∗ = 0 means that the manifold is24

perpendicular to x = 0). So, in what follows, we will compute α∗. To this end we first compute25

the hyperbolic point by a standard Newton method, then we produce an approximation of26

the manifold and we globalize it till it intersects x = 0. The goal here is to compare the27

performance of the method when the approximation of the manifold is linear against a high28

order approximation. Independently of the approximation, a way to obtain the splitting angle29

is as follows:30

1. We select a fundamental domain J of the manifold, close enough to the fixed point so the31

approximation of the manifold is valid with a fixed accuracy.32

2. We compute m such that Pm(J) crosses the vertical axis {x = 0}. Notice that the33

fundamental domain J can be chosen to be far away of the fixed point if the approximation34

of the manifold is of high order and, therefore, m will be smaller in that case.35

3. We compute the parameter s∗ ∈ J for which Pm(Ku(s∗)) is on the vertical axis {x = 0}36

at a point y = y∗.37

4. We approximate, by means of numerical differentiation, the tangent vector of the manifold38

at (0, y∗).39

5. Using the tangent vector, we compute α∗.40
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One of the inconveniences one has to overcome with this computation is the accumulation1

of error. Indeed, close to the fixed point, the amplification of error can be estimated by means2

of the norm of the differential map DPm(Ku(s∗)). As the unstable manifold is attracting at3

least near the fixed point, it is not difficult to produce a globalization of the manifold. However,4

in this case we are interested in computing the crossing point of the unstable manifold and the5

vertical axis. This is a little bit more complicated as the numerical error is also expanded along6

the stable direction (again, close to the fixed point) so that the error in the evaluation of Pm
7

is large at it does not allow an accurate computation of s∗ (for instance, if ∥DPm(s∗)∥ ≈ 1020,8

then we will loose 20 decimal digits in this computation). Notice also that the amplification9

factor grows exponentially with the number of iterates and, therefore, it is advisable to keep it10

small.11

We have tested the algorithm for the case ε = 1/32 and µ = 1/1024. As we have already12

discussed, extended accuracy is required for this computation. Hence, have chosen a Taylor13

method ([JZ05]) with MPFR arithmetic with mantissa of 65 decimal digits. To compute the14

hyperbolic fixed point of P near ph = (−π, 0) we request P (x, y) − (x, y) = 0, using a Newton15

method with initial condition ph. In Table 3 we display the coordinates of the fixed point, the16

unstable eigenvalue, and the related (normalized) eigenvector. We have computed the split-17

ting for both the linear approximation of the manifold and an approximation of order 32. In18

Table 4 we display the results. The splitting angle computed for both cases is approximately19

α∗ ≈ 1.452038838722046 × 10−23. Notice that, the amplification factor in the case of the linear20

approximation is of order 1032 and this implies that the linear approximation only allows to21

compute the splitting angle with accuracy of about 10−33. This restriction is not present when22

using the approximation of order 32 for the manifold.23

To check the accuracy of each computation, we have ran again the program doubling the24

number of digits (that is, using a mantissa of 130 digits) and reduced the precision thresholds25

accordingly. Then, comparing the new splitting angle with the ones computed with the linear26

approximation and with the approximation of order 32 we see that the disagreement of the27

splitting angle for the linear approximation is of order 10−33 while for the approximation of28

order 32 is of order 10−64. Errors of the same magnitudes are obtained when computing the29

crossing point at the vertical axis.30

Regarding the computation time, there is no penalization in using high order approximation31

(of order 32). Using 65 digits, to compute the parameterization up to order 32 takes about 1132

seconds. The computation of the splitting using this high order parameterization, takes about 733

seconds. The whole process to compute the splitting is, therefore, about 18 seconds. To compute34

the splitting using the linear approximation takes about 29 seconds.35

The optimal degree to use depends on two factors: The computation time and the accuracy.36

Increasing the degree of the expansion increases the accuracy of the computation and also37

decreases the computing time of the splitting (once the manifold has already been obtained).38

However, the computing time devoted to compute the expansion increases remarkably as the39

order gets high. In Table 5 we display several runs of the program but using different orders40

and a mantissa of 65 digits. Order 1 corresponds to the linear approximation. The largest order41

(78) is the last order in which we obtain a significant increase on the radius of convergence42

(about 1%). The first column of Table 5 displays the order, the second column shows the time43

(in seconds) needed to compute the expansion of the manifold. In the third column shows the44

number of necessary iterates to cut the vertical axis in the computation of the splitting. This45

number is critical in both, accuracy and computing time. The fourth column displays the order46

of the amplification factor (OAF). The amplification factor is of order 10OAF . OAF provides47
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x = -3.141592653589793238462643383279502884197169399375105820974945

y = -0.000030487804878048783487416419772730619101256927786545793950

λ = 1.216952205507613179976602185887735099160276249406737110608447

vx = 0.707106781186587601240472487505335676116978201269367497887892

vy = 0.707106781186507447561216234432918941136429806290507412844980

Table 3: Hyperbolic fixed point (x, y), its unstable eigenvalue λ, and its eigenvector v = (vx, vy),
with 60 digits.

Linear approximation
Iterates 384

Amplif. 2.0734198e+32

Angle 1.452038838722045922104153702944869222939807020304351191883856457e-23

High order approximation
Iterates 24

Amplif. 111.31778

Angle 1.4520388383695661627181826237829704096625629214575036852867618694e-23

Table 4: Number of iterates to cut the vertical axis, amplification factor and splitting angle.
Top: Linear approximation. Bottom: Approximation of order 32.

an estimation of the digits lost due to the amplification factor. The fifth column displays the1

necessary time (in seconds) to compute the splitting (once the expansion is already obtained)2

and the sixth column displays the total time (in seconds).3

The main takeaway of Table 5 is that we can avoid the propagation of errors due to the4

amplification factor if we go to order 78. Nevertheless, the computation time is exceeds the5

computation time using the linear approximation (149 seconds vs. 29 seconds). Going up to6

order 50 takes about 44 seconds to obtain the splitting loosing just one digit. The best results7

(counting accuracy and computation time) are obtained for orders 16 and 20 (In both cases8

take about 13 seconds to compute the splitting losing 3 digits). Going up to order 32 provides9

better accuracy (losing 2 digits) for 18 seconds of computing time. Finally, going to order 8 and10

12 takes about 22 and 17 seconds respectively but more digits are lost (7 and 5). Most of the11

computing time for these two cases is spent in computing the splitting, as the expansions take12

less than a second. Notice the dramatic gain in accuracy from going to linear approximation13

(losing 32 digits) to order 8.14

6.3 The unstable manifold of L4 in the Bicircular Problem15

In celestial mechanics, the (Earth-Moon) Bicircular Problem (BCP) is a common problem which16

comes from a restricted version of the Four Body Problem [Hua60, CRR64]. In suitable coordi-17

nates, this model is a perturbation of the well known Restricted Three Body Problem (RTBP),18

see [Sze67]. The Earth-Moon BCP assumes that the Sun and the Earth-Moon barycentre move19

along a circular orbit around the center of mass of the Sun-(Earth+Moon) system while Earth20

and Moon move as in the RTBP. While written in the standard units and (synodic) coordinates21

of the RTBP, the BCP is a periodic time dependent perturbation of the RTBP. The perturbation22
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Order TM (s) It OAF TS(s) Total(s)

1 384 32 29 29

8 <1 84 7 21 <22

12 <1 59 5 16 <17

16 1 45 3 12 13

20 3 37 3 10 13

32 11 24 2 7 18

50 40 16 1 4 44

78 146 11 0 3 149

Table 5: Metrics for the computation of the splitting using different orders and a mantissa of
65 digits. The columns display the order, the time in seconds to compute the expansion of
the manifold (TM(s)), the number of iterates to compute the splitting (It), the order of the
amplification factor (OAF), the time in seconds to compute the splitting with the manifold
already expanded (TS(s)) and the total time in seconds respectively.

preserves the Hamiltonian structure of the RTBP and its Hamiltonian function is1

HBCP =
1

2
(p2x + p2y + p2z) + ypx − xpy −

1 − µ

rPE
− µ

rPM
− mS

rPS
− mS

a2S

(
y sin θ − x cos θ

)
. (19)

where mS is the mass of Sun, aS the semi-major axis of Sun, r2PE = (x − µ)2 + y2 + z2,2

r2PM = (x− µ + 1)2 + y2 + z2, r2PS = (x− xS)2 + (y − yS)2 + z2, xS = aS cos θ, yS = −aS sin θ,3

θ = ωSt and ωS is the mean angular velocity of Sun in the synodic coordinates.4

µ 0.012150581623433623

mS 328900.55

aS 388.81114302335106

ωS 0.92519598551829646

Table 6: Values of the parameters for the BCP used in this work.

In the BCP the Lagrangian points are no longer equilibria, they are replaced by periodic5

orbits with the same period as the perturbation: TS = 2π/ωS . In particular, the triangular6

point L4 is replaced by three periodic orbits of period TS , see [SGJM95, CJ00, JCFJ18]. One7

of these orbits is slightly unstable, of linear type saddle×center×center. This unstable periodic8

orbit is seen as an hyperbolic fixed point of the stroboscopic map (the map obtained evaluating9

the flow at the period TS) has an unstable eigenvalue close to 1.098. Notice that this instability10

is remarkably mild, that is, an initial condition on the manifold near to the fixed point needs11

a large number of iterates to get far from it. Therefore, to grow numerically the manifold12

from the linear approximation is numerically expensive. We can, however, produce a high-order13

approximation of the manifolds and produce large pieces of the manifolds that can be mapped14

a few times to get even larger pieces of the manifold, see Figure 5.15

Let us give some details on how Figure 5 is produced: First, we modify the well-known16

Runge-Kutta-Fehlberg 7(8) method [Feh68] to work with a jet arithmetic. Then we apply the17

parametrization method to obtain, order by order, a Taylor expansion of the manifolds. At each18
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Figure 5: High-order approximations of the stable (S+, S−) and unstable (U+, U−) manifolds
attached to the dynamical equivalent of L4 in the Earth-Moon BCP.

step, after we compute the coefficient of order k, we use the root criterion to estimate the radius1

of convergence. Obviously, this radius is increased at each step. When the gain of the radius of2

convergence is less than 1%, we stop the computation. We denote by U+ and U− the two pieces3

of the unstable manifold, using the above-mentioned criterion, these manifolds are expanded up4

to order 54. On the other hand, the stable pieces, denoted by S+ and U−, are expanded up to5

order 46. Then, all those Taylor expansions are evaluated to obtain the curves in Figure 5.6

6.4 A two-dimensional invariant manifold related to recolliding electrons7

In this example, we consider the motion of an electron in an atom that is perturbed by a strong8

linearly polarized laser field. When the electron is “impacted” by the laser with sufficient energy,9

it gets expelled out from the atomic core. An interesting question is whether the electron is re-10

captured by the atom following the Coulomb’s laws. This phenomenon is known as recollision.11

Recollision physics is an emerging field, highly related to collision physics and optics, see [Cor93,12

Cor14] and it has been tackled from the dynamical systems perspective, see [MCU10, MKCU12,13

KCUM14, KMCU14, NCUW15, MKCU12] and references therein.14

Most of these references, consider the case in which the electron is allowed to move in a15

line (i.e. the configuration space has dimension one). Here, we consider the two-dimensional16

configuration space case. It can be modeled as a Hamiltonian system with two degrees of freedom17

and periodic time dependence written as follows:18

H =
1

2
(p2x + p2y) − 1√

x2 + y2 + 1
+ Ecx cos(ωt), (20)

where ω = 0.0584 is the frequency of the laser, Ec = 0.1 its amplitude. We notice that this19

Hamiltonian function has three terms: The kinetic energy, the potential energy and the laser20

interaction. In a neighborhood of the atom core, the laser acts as a periodic perturbation.21
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As usual, this problem is better faced by means of the stroboscopic map which, we recall, is1

given by the flow of system (20) evaluated at the period 2π/ω.2

The dynamical mechanism that guide most of the recolliding orbits is well understood when3

the electrons move in a one dimensional space, that is, the dynamics restricted to the invariant4

subspace {y = 0, py = 0} of system (20). The stable and unstable manifolds of some key5

hyperbolic fixed point drive these trajectories to recollide many times, see [KCUM14]. Notice6

that a fixed point of the stroboscopic map corresponds to a periodic orbit of period 2π/ω.7

In the two dimensional configuration space, this fixed point does not drive recollisions outside8

the invariant subspace {y = 0, py = 0}, see [DJCJC22]. The reason is that its normal behavior is9

of type saddle×saddle. Therefore, the stable and unstable manifolds attached to the fixed point10

are two-dimensional while the phase space is four-dimensional. This means that the invariant11

manifold do not separate the phase space as in the one-dimensional case.12

The hyperbolic fixed point studied in [KCUM14], is located near x = 30.5, y = px = py = 0.13

This orbit is easily refined by using a Newton method. The eigenvalues of the Jacobian matrix14

of the stroboscopic map are displayed in Table 7.

λ1 1.0598923797401292e+03

λ2 2.1924563502992269e+00

λ3 4.5610942259513210e-01

λ4 9.4349201788190840e-04

Table 7: Eigenvalues related to the fixed point of the stroboscopic map.

15

There is a weak unstable direction and also a strong one. The weak direction is related to the16

1D manifold that appears in a model with one degree of freedom and that it is responsible for17

the recollisions there [KCUM14]. The strongly unstable direction is consequence of adding the18

direction which is transversal to the polarization laser. Henceforth, the dynamics near the fixed19

point of the stroboscòıc map is governed by the strongly unstable direction. The influence of20

the strong unstable eigendirection makes most of the orbits close to the fixed point get expelled21

away from the core and do not return back in a few laser cycles. However, it could be possible to22

find thin strips close to the weak invariant subspace with a lot of recolliding trajectories. Still,23

it is numerically challenging to compute these 2D unstable and stable manifolds and, specially,24

to globalize the weak 1D manifold.25

Let Λ1 and Λ2 be intervals containing the origin, let W : Λ1×Λ2 → R4 be a parametrization of26

the 2D unstable invariant manifold related to the fixed point, and let P be the stroboscopic map27

associated to (20). The parametrization of the unstable manifold W must verify the following28

invariance equation,29

P (W (s1, s2)) = W (λ1s1, λ2s2).

Computing this 2D manifold (using double precision) using the parametrization method up to30

order 8 takes 0.5s. Using MPFR with a mantissa of 128 bits (39 decimal digits) it takes 131

minutes and 19 seconds. Computing up to order 16 requires 15 minutes and 26 seconds. To32

compute it up to order 30 using a mantissa of 192 bits (around 57 decimal digits) takes 8 hours33

and 50 minutes. Similarly to the 1D case, we use these different approximations to estimate the34

error on the coefficients of the expansion. Figure 6 plots the manifold. The computation stops35

at order 17, when the gain in min(smax
1 , smax

2 ) is less than 1.1.36

Let us now discuss the globalization of the 1D weak unstable manifold (the one related to the37

25



eigenvalue λ ≈ 2.1924563502992269). To start the discussion, assume that we have an approxi-1

mation to the weak unstable manifold and that p0 is a point provided by this approximation so2

we assume it is very close to the true manifold, that is, p0+δ is exactly on the manifold and ∥δ∥ is3

very small. When the map P is applied to the point p0, the error δ is multiplied, approximately,4

by λ1 ≈ 1059 at each iteration so that the distance to the weak manifold grows extremely fast.5

Therefore, it is very convenient to combine a high degree expansion of the manifold (to start6

the globalization as far as possible from the hyperbolic point) with extended precision. In this7

situation, it is convenient to accumulate the product of the norms to have an estimate of the8

growth of the error along the process.9

In Table 8, we display an example of the error propagation when globalizing the weak10

unstable manifold. We select a point on a power expansion of that manifold (computed up to11

degree 30 with an arithmetic of 60 decimal digits) for the value of the parameter s = 1. The first12

row shows an error estimate of that point (obtained as the size of the contribution of the terms13

order 30 to the manifold) and the distance to the fixed point. Next rows refer to the iterations14

of this initial point by the Poincaré map. The second column shows accumulated product of15

the norms of the differential of the stroboscopic map at each point with the initial error, and16

the third one the distance to the fixed point. It is clear that, at the beginning, we have a factor17

growth around 103 due to the most unstable eigenvalue. From the table it can be read that, the18

instability caused by the strongly unstable manifold decreases as the electron move away from19

the fixed point. This simplifies the approximation of the manifold up to long distances.20

iter error distance

0 7.996832e-46 1.001406e+00

1 8.466197e-43 2.199796e+00

2 8.928646e-40 4.848533e+00

3 9.240140e-37 1.081419e+01

4 8.411957e-34 2.553592e+01

5 2.083436e-32 1.745048e+01

6 1.966030e-29 1.976583e+01

7 1.310301e-27 7.533221e+01

8 1.615796e-27 1.267686e+02

9 1.771004e-27 1.773365e+02

10 1.873796e-27 2.275002e+02

Table 8: Estimated error for the first 10 iterations for a point in the weak unstable manifold.
The third column displays the distance to the fixed point.

This experiment also shows that the propagation of error tends, in some cases, to soften at21

some distance of the periodic orbit. This example shows the feasibility of the computation of22

2D stable/unstable invariant manifolds and their globalization, despite of having very different23

eigenvalues. The method is based on using a high-order approximation of a parametrization of24

the 2D unstable manifold combined with extended precision arithmetic.25
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