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Abstract

In this paper we present a procedure to compute reducible invariant tori and their stable and
unstable manifolds in Poincaré maps. The method has two steps. In the first step we compute, by
means of a quadratically convergent scheme, the Fourier series of the torus, its Floquet transformation,
and its Floquet matrix. If the torus has stable and/or unstable directions, in the second step we
compute the Taylor-Fourier expansions of the corresponding invariant manifolds up to a given order.
The paper also discusses the case in which the torus is highly unstable so that a multiple shooting
strategy is needed to compute the torus.

If the order of the Taylor expansion of the manifolds is fixed and N is the number of Fourier
modes, the whole computational effort (torus and manifolds) increases as OpN logNq and the memory
required behaves as OpNq. This makes the algorithm very suitable to compute high-dimensional tori
for which a huge number of Fourier modes are needed. Besides, the algorithm has a very high degree
of parallelism. The paper includes examples where we compute invariant tori (of dimensions up to 5)
of quasi-periodically forced ODEs. The computations are run in a parallel computer and its efficiency
with respect to the number of processors is also discussed.

Keywords: Parametrization method, Quasi-periodic Floquet Theory, Jet transport, and Parallel com-
puting.

1 Introduction

The understanding of the dynamics of a given system is usually based on the knowledge of a subset of
solutions that serve as skeleton for the global properties. This includes equilibrium points, periodic and
quasi-periodic solutions, and their invariant manifolds.

On the other hand, the accurate description of realistic phenomena usually requires of more sophisti-
cated models. In several cases, some effects are introduced in the mathematical model as a combination
of different periodic time-dependent perturbations. For example, the description of the motion of a space-
craft with some level of accuracy requires the introduction of several effects in the model: the effect of
the Sun can be introduced as a periodic time-dependence ([Hua60, CRR64, And98]), and adding some
other effects (like the effects coming from the non-circular motion of the Moon) results in a quasi-periodic
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time-dependence. As examples, in [GLMS01a, GLMS01b, GJMS01a, GJMS01b], the authors examine
the effect of perturbing bodies as the sum of periodic perturbations with incommensurable periods, or
in [GMM02], where very detailed models are presented for the motion of a particle in the Solar system
and in the Earth-Moon system, taking into account up to five natural frequencies of the latter system. In
these cases, we usually have a differential equation,

9x “ fpx, tq, (1)

where x P Ω “ Ω̊ Ă Rn and f : Ω ˆ R Ñ Rn is a smooth function that we assume to depend quasi-
periodically on t. This means that there exists a function F : Ωˆ Td`1 Ñ Rn, with d ě 1, such that

fpx, tq “ F px, θ0, . . . , θdq, θi “ ωit, i “ 0, 1, . . . , d.

Then (1) can be rewritten as
#

9x “ F px, θq,
9θ “ ω,

(2)

where θ “ pθ0, . . . , θdq P Td`1 is an angular variable vector and ω “ pω0, . . . , ωdq is a frequency vector, of
dimension d ` 1, whose components are considered to be linearly independent over the rationals. Since
F is periodic in each angular variable, a temporal Poincaré section can be defined using one of the angles
of the system, for example θ0 “ 0 mod 2π. The associated Poincaré map is the flow of the differential
equation from initial time at 0 to the final time at time 2π

ω0
. Then, redefining the vector θ as pθ1, . . . , θdq

we can write the Poincaré map as
#

x̄ “ P px, θq,

θ̄ “ θ ` ρ,
(3)

where ρ is a d-dimensional vector with components ρi “
2πωi
ω0

for i “ 1, . . . , d. The upper bar, ¯, denotes
the image under the Poincaré map P .

For the discrete system (3), the simplest possible invariant sets are invariant tori of dimension d
parametrized by the angle θ, and with frequencies ρ. Each of these tori can be represented by a smooth
injective map ϕ : Td Ñ Rn, which satisfies the following invariance condition

P pϕpθq, θq “ ϕpθ ` ρq, @ θ P Td. (4)

Here we are interested in these tori and in an efficient computation of them. Note that, as the dimension
of the torus is higher, the computational effort increases. If the torus is reducible (see Section 2), there
are very efficient numerical methods that allow to compute the torus jointly with the Floquet change of
variables and the reduced Floquet matrix. One of these methods is presented in [JO09], and it is based
on the proofs made in [JS96]. It is remarkable that the number of operations and storage requirements
are proportional to N logN and N respectively, where N denotes the number of Fourier modes used to
represent the torus. A side benefit is that the method has a high degree of parallelism so it can take
advantage of modern computers.

In the present work, we extend the methods in [JO09] so that now: i) the method provides a high-order
parametrization of the stable and/or unstable manifolds of the tori if they exist; ii) we implement a C code
that runs in a computer with several processors between which the computations are done concurrently
using OpenMP [DM98] instead of the PVM library [GBD`95] used in [JO09].

On the one hand, we implement a parametrization method for computing the Taylor-Fourier expansion
of the un/stable invariant manifolds of invariant tori. To implement this parametrization method on a
Poincaré map we need to estimate the high-order derivatives of this Poincaré map, which requires to
compute high-order derivatives of the flow of the ODE. This may be very tedious and tricky if we have
to compute them by hand. In particular, since here we focus on the analysis of invariant tori of maps, we
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follow and apply the ideas developed in [GJJC`21], where authors explain how to numerically integrate
high-order derivatives of maps using automatic differentiation with respect to initial data; a technique
called “jet transport” [AFJ`08, AFJ`09].

On the other hand, the use of parallel computing allows to reduce the total computational time
by using several processors. The parallelization presented in [JO09] was implemented on a cluster of
PCs (with a distributed memory), making use of the PVM library for the communications through an
Ethernet network using a master-slave scheme. Therefore, there was always a penalty time to pay for
those communications. For this reason, the reduction in temporal costs of the parallelization was relevant
for a small number of processors, but at some point, this reduction stagnates. Nowadays, the processors
involved in our parallelizations belong to the same computer (hence, with a shared memory), so there is
not communication penalty between the threads. Both, the computation of the tori and their invariant
manifolds are implemented in parallel.

There are many other papers in the literature devoted to the computation of invariant tori and their
manifolds. The computation of a quasi-periodic solution (with two basic frequencies) of a flow is done, for
instance, in [DJS91] by means of a collocation method. The approximation of an invariant tori of a flow
is also considered in [DLR91, DL95, HKM97] using a PDE approach. The computation of 1D invariant
tori of maps is discussed in [Sim98, CJ00], and an algorithm to obtain their linear stability is contained
in [Jor01]. For algorithms taking advantage of some properties of the linearized normal behaviour, see
[HdlL06, HLS12, CH17, KAdlL21]. The main differences between these papers and the present one is that
here we focus on higher dimensional tori of flows, that require a large amount of computations (and hence,
to take advantage of parallel computers) and the use of jet transport to compute high-order derivatives
of Poincaré maps.

The structure of this paper is as follows. In Section 2, the reducibility of a quasi-periodic solution
is explained along with a brief summary of the process developed in [JO09] for computing invariant tori
for maps and for obtaining their stability information at the same time. In Section 3, we introduce
the parametrization of hyperbolic invariant manifolds of those tori, that will be combined with multiple
shooting methods, explained in Section 4, in order to improve the accuracy of the computations, specially
when the instability of the invariant objects is strong. Details concerning to the implementation of the
computations are included in Section 5. Section 6 is devoted to two different applications of the presented
technique. And finally, Section 7 presents some conclusions and future work.

2 Reducibility of the system

We can analyze the linear behaviour around a torus satisfying (4) by taking a small displacement hpθq P Rn
from the torus and applying the map:

P pϕpθq ` hpθq, θq “ P pϕpθq, θq `DxP pϕpθq, θqhpθq `Op}h}2q,

where Apθq “ DxP pϕpθq, θq is the Jacobian of the Poincaré map on the torus ϕpθq.
Renaming hpθq as x, this linear behaviour can be expressed by the linear skew-product

x̄ “ Apθqx,
θ̄ “ θ ` ρ.

*

(5)

Definition 2.1 (Discrete reducible torus). The system (5) is said to be reducible if, and only if, there
exists a continuous change of variables x “ Cpθqy such that (5) becomes

ȳ “ By,
θ̄ “ θ ` ρ,

*

(6)
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where the matrix
B “ C´1pθ ` ρqApθqCpθq, (7)

does not depend on θ. The matrix B is the Floquet matrix and x “ Cpθqy is the Floquet transformation.

Notice that the Floquet matrix B is a constant matrix that contains the dynamical information of the
system in (5), and then, its eigenvalues provide the linear stability around the torus.

Remark 2.1 (Continuous reducible torus). Analogously, being Ψ a quasi-periodic solution, of d`1 dimen-
sions, of the system (1), let us consider the linearization of the system around the solution as

9x “ apΨ, tqx (8)

where apΨ, tq “ DxfpΨptq, tq. We will say that Ψ is a reducible quasi-periodic solution of (1) if, and only
if, there exists a quasi-periodic change of variables x “ cptqy that transforms (8) into

9y “ by, (9)

where b is a constant matrix.
Then, Floquet matrix B for transforming the system (5) into (6) corresponds to

B “ exptδbu

where δ denotes the time used to define the temporal Poincaré map P and b is the Floquet matrix resulting
from transforming (8) into (9).

Remark 2.2. There is some freedom in choosing the form of matrix B. For instance, it can be chosen to be
in diagonal (or Jordan) form by composing Cpθq with a suitable linear (may be complex) transformation,
or to be block diagonal to keep B (and Cpθq) real.

Assuming the existence of a torus for system (3) that satisfies invariance condition (4) and that is
reducible, [JO09] developed an iterative method based on Newton iteration (quadratically convergent)
for finding the torus and the Floquet change at the same time. For this, it is necessary to know suitable
seeds for ϕpθq and Cpθq (namely x0pθq and C0pθq respectively), such that C´10 pθ ` ρqDxP px0pθq, θqC0pθq
is close to a constant matrix B0. Let us suppose by now that these approximations are chosen. Then,
residual magnitudes y0pθq and Q0pθq indicate the error of these approximations to the real solution, i.e.,

y0pθq “ x0pθ ` ρq ´ P px0pθq, θq, (10)

Q0pθq “ C´10 pθ ` ρqDxP px0pθq, θqC0pθq ´B0. (11)

Then, the norm of these magnitudes is a small quantity of order say ε. Let us take, for example, infinite
norm, }y0}8 « ε and }Q0}8 « ε.

The idea is to use the reducibility assumption for finding a better approximation of the invariant
torus, and with it, to improve the Floquet change, iteratively until the precision of both parametrizations
is good enough. As all details are carefully described in [JO09], very brief description of the procedure is
given here, we address the interested reader to that reference.

Note that in the present work we assume that the torus exists and that it is real analytic. In [JS96] the
proof of its existence is given for flows and it can be easily translated for maps, as long as some hypothesis
are satisfied. First hypothesis is referred to the smoothness of the map. Second hypothesis is that some
Diophantine conditions, involving the frequency vector ρ and the eigenvalues λ1, . . . , λn of the matrix B0

are satisfied. Concretely, it is assumed that there exist real constants c ą 0 and γ ą d´ 1 such that

| exppxκ, ρy iq ´ λj | ą
c

|κ|γ
, @κ P Zdzt0u, j “ 1, . . . , n, (12)

ˇ

ˇ

ˇ

ˇ

exppxκ, ρyiq ´
λj
λl

ˇ

ˇ

ˇ

ˇ

ą
c

|κ|γ
, @κ P Zdzt0u, j, l “ 1, . . . , n, (13)
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where i denotes the complex unit, x¨, ¨y the standard scalar product, and |κ| “ |κ1| ` ¨ ¨ ¨ ` |κd|. Note that
condition (12) is satisfied if all the eigenvalues λj have modulus different from 1, and condition (13) is
satisfied if all eigenvalues have different modulus. As at every step of the iterative procedure, the Floquet
matrix changes, a non-degeneracy condition on the eigenvalues is needed. For this, it is common to make
eigenvalues depending on parameters such that Diophantine condition holds at every iterative step. In
practice, we do not need to verify this condition but what we have to do is to check if the left-hand side
of (12) and (13) is small. This can be done indirectly by checking the size of the Fourier modes of the
correction given by the Newton method is not too big.

Assuming all these hypothesis to hold and that x0pθq and C0pθq are available (with }y0}8 « ε and
}Q0}8 « ε), let us summarize the iterative scheme in [JO09] to find good approximations of the torus and
of the Floquet change. The iterative scheme is divided in two steps. The first one focuses on computing
a better approximation of the torus, and the second one, on improving the Floquet change and Floquet
matrix.

Algorithm 2.2 (Computation of invariant torus, Floquet change, and Floquet matrix).

‹ Input: Discrete system as (3), initial guesses x0pθq, C0pθq, and B0.

‹ Output: Torus ϕpθq, Floquet change Cpθq, and Floquet matrix B.

First step:

1. Compute the error y0pθq “ x0pθ ` ρq ´ P px0pθq, θq.

2. Compute the function gpθq “ ´C´10 pθ ` ρqy0pθq.

3. Find u that verifies upθ` ρq “ B0upθq` gpθq. For this, we expand functions g and u in real Fourier
series (the expansion can be done in complex Fourier series, but we work with real expansions in
the computer programs):

gpθq “
gp0q

2
`

ÿ

κ‰0

gpcqκ cosxκ, θy ` gpsqκ sinxκ, θy,

upθq “
up0q

2
`

ÿ

κ‰0

upcqκ cosxκ, θy ` upsqκ sinxκ, θy,

where κ P Nd and xκ, θy “ κ1θ1`¨ ¨ ¨`κdθd, and solve the following system to find Fourier coefficients

up0q, u
pcq
κ , and u

psq
κ

pId´B0q
up0q

2
“
gp0q

2
,

pB2
0 ´ 2 cosxκ, ρyB0 ` Idqu

pcq
κ “ pcosxκ, ρyId`B0qg

pcq
κ ´ sinxκ, ρygpsqκ ,

pB2
0 ´ 2 cosxκ, ρyB0 ` Idqu

psq
κ “ pcosxκ, ρyId`B0qg

psq
κ ` sinxκ, ρygpcqκ ,

(14)

where Id denotes the identity matrix.

4. Compute hpθq “ C0pθqupθq.

5. Compute x1pθq “ x0pθq ` hpθq, that is the new approximation of the torus, such that }y1}8 « ε2,
with y1 defined like in (10).

Second step:
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1. Compute the matrices Rpθq “ C´10 pθ ` ρqDxfpx1pθq, θqC0pθq ´ B0, R̃pθq “ Rpθq ´ AvgpRq, and
B1 “ B0 `AvgpRq, where AvgpRq is the average of the map θ ÞÑ Rpθq, that is,

AvgpRq “
1

p2πqd

ż

Td

Rpθq dθ

and B1 is the new approximation to the Floquet matrix.

2. Find the matrix valued function H that verifies Hpθ` ρqB1 ´B1Hpθq “ R̃pθq. For this, we expand
R and H in real Fourier series:

Hpθq “
ÿ

κ‰0

Hpcqκ cosxκ, θy `Hpsqκ sinxκ, θy,

R̃pθq “
ÿ

κ‰0

Rpcqκ cosxκ, θy `Rpsqκ sinxκ, θy,

and we solve the following system to find Fourier coefficients H
pcq
κ and H

psq
κ (note that Hp0q “ 0)

pHpcqκ cosxκ, ρy `Hpsqκ sinxκ, ρyqB1 ´B1H
pcq
κ “ Rpcqκ ,

pHpsqκ cosxκ, ρy ´Hpcqκ sinxκ, ρyqB1 ´B1H
psq
κ “ Rpsqκ .

(15)

3. Compute C1pθq “ C0pθqpId `Hpθqq, that is the new approximation of the Floquet transformation,
such that }Q1}8 « ε2, with Q1 defined like in (11).

Once we have x1pθq, B1, and C1pθq, we keep on iterating until either the norms of y and Q are small
enough or the differences between one step and the previous one are small enough.

Note that the computation of each pair of coefficients (u
pcq
κ , u

psq
κ ) in (14) is independent for each κ.

The same happens with for each pair (H
pcq
κ , H

psq
κ ) in (15). That makes these linear systems very suitable

for their computational resolution in parallel. With this, the dimension of each linear system depends on
the dimension of the phase space and the number of linear systems to be solved on the number of Fourier
modes used. On the other hand, the evaluation of the map P and DxP can be perform independently of
each θ, which leads to a straightforward parallelization.

3 Parametrization of invariant manifolds

The quasi-periodic solutions of interest in this work are those that have a saddle part, i.e., those that
have un/stable invariant manifolds associated. In that case, the use of the eigenfunctions and eigenvalues
associated with their hyperbolic directions are typically used to compute linear approximations to the
invariant manifolds. Here, we present a procedure to compute a high-order approximation of the stable or
unstable invariant manifolds for a torus in the map (3). In fact, the procedure presented here can be seen
as an extension of the one in [JN21] for the computation of the un/stable invariant manifolds of invariant
curves.

Let us write the invariant manifold of an invariant torus as a formal Taylor-Fourier expansion in terms
of two parameters, a parameter σ P R and the angle vector θ P Td:

W pθ, σq “ a0pθq ` a1pθqσ `
ÿ

kě2

akpθqσ
k, (16)

where ak is a function from Td to Rn.
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Here we consider the case in which σ is one-dimensional. The case of invariant manifolds with several
hyperbolic directions requires a parameter σj for each direction. In such a case, k in (16) becomes a
multi-index and the Taylor-Fourier polynomial manipulations have to be modified accordingly. The case
of invariant manifolds with several hyperbolic directions associated with fixed points of Poincaré maps is
detailed in [GJJC`21].

In the particular case that the system is Hamiltonian, the stable eigenvalue corresponds to the inverse
of the unstable one. And, since many of the classical mechanical systems show a symmetry when inverting
the time, sometimes it is possible to have both parametrizations, the stable and the unstable, by just
computing one of them and applying the corresponding symmetry. Here, we are going to explain the
general case, valid for Hamiltonian and non-Hamiltonian systems and without considering, in advance,
any symmetry.

3.1 Computation of the invariant manifold

The invariance condition for an invariant manifold W of a torus of a Poincaré map P like (3) can be
written as

P pW pθ, σq, θq “W pθ ` ρ, λσq, (17)

where ρ is the frequency vector and λ is a real hyperbolic eigenvalue. The right hand side of (17) can be
written as

W pθ ` ρ, λσq “ a0pθ ` ρq ` a1pθ ` ρqλσ `
ÿ

kě2

akpθ ` ρqpλσq
k.

Each function ak will be obtained by solving the invariance condition (17) order by order. Let us denote
by Wmpθ, σq the truncated Taylor-Fourier series up to order m in a neighbourhood of σ “ 0,

Wmpθ, σq “ a0pθq ` a1pθqσ `
m
ÿ

k“2

akpθqσ
k. (18)

From equations (16) and (17), we see that a0 is the parametrization of the invariant torus and a1
is the hyperbolic eigenfunction, that are obtained as truncated real Fourier series following the iterative
scheme in the previous section, see also Algorithm 3.2. More precisely, we have obtained the eigenvectors
of the Floquet matrix B. Then, if v is the eigenvector of B associated with λ, the eigenfunction a1 of the
torus is Cpθqv. The torus and its eigendirection give the linear approximation to the invariant manifolds,
which is the expansion in (16) up to order one.

Assume that we know the parametrization Wm´1 up to order m ´ 1, i.e. the functions a0, . . . , am´1
are known. We want to find the function am involved in Wm. For this, we apply the Poincaré map to
Wmpθ, σq “Wm´1pθ, σq ` ampθqσ

m,

P pWmpθ, σq, θq “ P pWm´1pθ, σq, θq `DxP pWm´1pθ, σq, θqampθqσ
m `Opσm`1q

“ P pWm´1pθ, σq, θq `DxP pa0pθq, θqampθqσ
m `Opσm`1q.

(19)

The Taylor-Fourier expansion of the invariant manifold Wm´1 under the Poincaré map is

P pWm´1pθ, σq, θq “Wm´1pθ ` ρ, λσq ` bmpθqσ
m `Opσm`1q,

where bm is a θ-dependent function at order m that comes from the evaluation of the invariant manifold
at order m´ 1. For the computation of this function we make use of the jet transport technique, detailed
in Section 5.2. Note that we only need to compute the expansion of P pWm´1pθ, σq, θq w.r.t. σ up to order
m.

Now we insert the last expression in (19) and impose the invariance condition (17) up to order m:

bmpθqσ
m `DxP pa0pθq, θqampθqσ

m “ ampθ ` ρqλ
mσm.
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If the number of harmonics used is low, functions ak can be computed by solving the above linear system
in which the matrix DxP pa0pθq, θq is involved. If the dimension of the torus is high, so is the number of
harmonics and then solving this system directly is not feasible. However, when the system is reducible we
can express the previous equation in terms of the Floquet matrix B, such that the final system to solve
offers again a high degree of parallelism.

Therefore, we introduce the Floquet change ampθq “ Cpθqumpθq,

bmpθq `DxP pa0pθq, θqCpθqumpθq “ Cpθ ` ρqumpθ ` ρqλ
m,

and multiplying by C´1pθ ` ρq on both sides, it leads to

C´1pθ ` ρqbmpθq `Bumpθq “ umpθ ` ρqλ
m. (20)

Under the generic condition of non-resonance, detailed in the Lemma 3.1, (20) determines uniquely
the function um, that gives am through the Floquet transformation. So, let us assume that gmpθq “
C´1pθ ` ρqbmpθq admits a (real) Fourier series expansion, that is,

gmpθq “
gp0q

2
`

ÿ

κ‰0

gpcqκ cosxκ, θy ` gpsqκ sinxκ, θy.

Then, we have to find the coefficients of another Fourier expansion

umpθq “
up0q

2
`

ÿ

κ‰0

upcqκ cosxκ, θy ` upsqκ sinxκ, θy,

such that (20) is satisfied. Imposing the equation (20) on the Fourier coefficients and using a Cramer-block
method, we end up with the following linear system of cohomological equations depending on κ,

pλmId´Bq
up0q

2
“
gp0q

2
,

pB2 ´ 2λm cosxκ, ρyB ` λ2mIdqupcqκ “ pλm cosxκ, ρyId`Bqgpcqκ ´ λm sinxκ, ρygpsqκ ,

pB2 ´ 2λm cosxκ, ρyB ` λ2mIdqupsqκ “ pλm cosxκ, ρyId`Bqgpsqκ ` λm sinxκ, ρygpcqκ .

(21)

The linear systems in (21) are solvable as long as Bpκq “ B2 ´ 2λm cosxκ, ρyB ` λ2mId is invertible
for all κ. If µ is an eigenvalue of B, then Bpκq has eigenvalues of the form

µ2 ´ 2λm cosxκ, ρyµ` λ2m

which makes Bpκq invertible whenever µ is different to λm expp˘xκ, ρyiq.
We have then proved the following lemma:

Lemma 3.1. Let B be a Floquet matrix associated with the frequency vector ρ on Td and let |λ| ‰ 1 be
a real number satisfying that for each eigenvalue µ of B and a fixed m P N, m ě 2,

µ ‰ λm expp˘xκ, ρyiq, @κ P Nd. (22)

Then for all smooth function gm on Td, there exists a unique smooth function um such that

λmumpθ ` ρq “ Bumpθq ` gmpθq. (23)

Remark 3.1. Note that (22) is always satisfied when λ is the dominant eigenvalue of the Floquet matrix.

8



Expressions in (21) recall those in (14) and (15). Therefore, it is clear that the computation of each

pair of coefficients pu
pcq
κ , u

psq
κ q of um is independent to each other. That makes the proposed invariant

manifold computation highly parallelizable as it was the Algorithm 2.2. Hence, to find the unknowns

pu
pcq
κ , u

psq
κ q, we solve a large number of small dimensional linear systems at the same time; the dimension

of each linear system depends on the dimension of the phase space and the number of systems only
depends on the number of Fourier modes used for the approximation of gm and um.

Notice that, when we start the computation of the functions ak for k ě 2, we use the same number
of Fourier modes Ni for each of the angular dimensions θi with i “ 1, . . . , d, as for the torus and the
Floquet change Fourier series. However, it may happen that those numbers of modes, that were enough
for distretizing accurately the torus and the Floquet change, may not be enough for discretizing some of
the parametrization functions ak for k ě 2. If this happens for a given order, it is necessary to increase
the number of Fourier modes from this order on. This has not been the case in the examples of Section 6,
where we have checked the size of the Fourier modes after the computation. Varying the number of Fourier
modes during the computation has an extra penalty that depends on the number of Fourier modes added.
An example of a varying number of Fourier modes during the computation of the manifold can be found
in [JN21].

Algorithm 3.2 summarizes the process explained above.

Algorithm 3.2 (Invariant manifold of a torus through its Floquet transformation).

‹ Input: Discrete system as in (3), torus ϕpθq, Floquet change Cpθq, Floquet matrix B, real eigen-
value |λ| ‰ 1 of B, and its eigenvector v.

‹ Output: Coefficients akpθq for k ě 2 verifying (17).

1. a0pθq Ð ϕpθq.

2. a1pθq Ð Cpθqv.

3. For k “ 2, 3, . . .

a) b0pθq ` ¨ ¨ ¨ ` bkpθqσ
k Ð P pa0pθq ` ¨ ¨ ¨ ` ak´1pθqσ

k´1 ` 0σk, θq using jet transport.

b) gkpθq Ð C´1pθ ` ρqbkpθq.

c) Find ukpθq such that λkukpθ ` ρq “ Bukpθq ` gkpθq using (21).

d) akpθq Ð Cpθqukpθq.

3.2 Stable invariant manifold

The procedure introduced above is valid for both, the stable and the unstable invariant manifold com-
putation. However, when the Poincaré map is applied forward in time to compute the stable manifold,
it approaches the torus and also the unstable invariant manifold. This computation affects the numeri-
cal accuracy of the stable manifold by increasing the numerical errors due to the effect of the unstable
direction. This effect is more relevant when the unstable direction is strong. Because of that, it is more
accurate to obtain the parametrization of the stable invariant manifold using the inverse of the Poincaré
map in (3),

#

x “ P´1px̄, θ̄q,

θ “ θ̄ ´ ρ.
(24)

In the case of the stable invariant manifold, i.e. the reals |λ| ă 1 eigenvalues of B in (6), the invariance
condition (17) is written for (24) as,

P´1pW pθ ` ρ, σq, θ ` ρq “W
`

θ,
σ

λ

˘

. (25)
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We proceed as before, we consider a formal power expansion of W in (16) and solve (25) order by
order to obtain the functions ak that parametrize the stable invariant manifold.

Notice that in that case, we must introduce a Floquet change that removes the angle dependence
when the dynamics is moving backward in time, i.e. when we apply P´1. The Floquet transformation
for the torus, and the torus itself, in the map P and in the map P´1 are related through a phase equal
to the vector ρ.

Following the Algorithm 2.2, the invariant torus and its eigenfunction (order zero and one of the
parametrization) are obtained by application of P . If we want to use them for the parametrization of
the stable manifold, where we apply P´1, we have to re-parametrize them as a0pθ ` ρq and a1pθ ` ρq.
Therefore, in this case we look for the functions ak with k ě 2 shifted a quantity ρ.

Then, assuming that we know the parametrization up to order m ´ 1, in order to find the function
ampθq “ Cpθqumpθq, such that umpθq satisfies

C´1pθqb´mpθq `B
´1umpθ ` ρq “ λ´mumpθq, (26)

where b´mpθq denotes the term of order m resulting from the evaluation of the invariant manifold up to
order m´ 1 by the inverse Poincaré map. Now, multiplying by B and by λm the last expression, we have

λmumpθ ` ρq “ Bumpθq ` gmpθq, (27)

that has the same form as (23) with gmpθq “ ´λ
mBC´1pθqb´mpθq. Therefore, relaying on Lemma 3.1 and

the solution of the linear systems in (21), there exists the function um : Td ÞÑ Rn, evaluated in umpθ` ρq,
that satisfies (27). Note that, the condition in (22) remains the same.

Algorithm 3.3 (Stable invariant manifold of a torus through its Floquet transformation).

‹ Input: Discrete system as in (3), torus ϕpθq, Floquet change Cpθq, Floquet matrix B, real eigen-
value |λ| ă 1 of B, and its eigenvector v.

‹ Output: Coefficients akpθ ` ρq for k ě 2 verifying (25).

1. a0pθ ` ρq Ð ϕpθ ` ρq.

2. a1pθ ` ρq Ð Cpθ ` ρqv.

3. For k “ 2, 3, . . .

a) b0pθq` ¨ ¨ ¨` bkpθqσ
k Ð P´1pa0pθ` ρq` ¨ ¨ ¨` ak´1pθ` ρqσ

k´1`0σk, θ` ρq using jet transport.

b) gkpθq Ð ´λkBC´1pθqbkpθq.

c) Find ukpθq such that λkukpθ ` ρq “ Bukpθq ` gkpθq using (21).

d) ukpθ ` ρq Ð ukpθq.

e) akpθ ` ρq Ð Cpθ ` ρqukpθ ` ρq.

3.3 Scaling factor

The parametrization of the invariant manifold is not unique. In particular, if W pθ, σq is a parametrization,
then W pθ, cσq for c ‰ 0 is also a parametrization. The role of c is to rescale the coefficients akpθq in (16)
as ckakpθq. To minimize the error propagation we want to avoid the norms of the coefficients to grow or
decrease too fast with k [Ric80, FdlL92].

If the radius of convergence w.r.t. σ is known, %, we can use the scaling c “ 1{%. If % is not known, we
can run the algorithm for the manifold twice; one to estimate it and a second one to rescale. Note that if
after the first run the estimated radius of convergence is not far from 1, we accept the computed expansion
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without the second run. On the other hand, if the radius is far from 1, we can decide to recompute the
manifold with a proper scaling.

Finally, a simple way to rescale the expansion is to scale the eigenvector of the Floquet matrix to have
norm c and run the algorithm.

4 Multiple shooting

There are invariant objects so unstable that it is impossible to integrate accurately the flow around them
during the time involved in the Poincaré map. In these cases, it is convenient to split the time into a
certain number of temporal sections, such that the integration time between each two consecutive sections
is considerably reduced and so the propagation of the numerical error. These methods are commonly
known as multiple shooting or parallel shooting methods and they have been widely used to compute
highly unstable periodic orbits [SB02]. A version of this methodology applied to the computation of
invariant tori and their Floquet changes can be found in [Olm07].

A multiple shooting method splits the Poincaré map into a finite number of maps such that the
composition of them gives the original one. Let φpt; 0, x, θq be the time t flow of (2) from initial time 0
and initial conditions x P Rn and θ P Td. The temporal Poincaré map is defined as

P px, θq “ φpδ; 0, x, θq,

with δ “ 2π{ω0. Let us assume that P admits a reducible torus ϕ : Td Ñ Rn with frequency vector ρ P Td
given by ρ “ ωδ being ω in the given model (2). That is, ϕ must satisfy (4). A multiple shooting method
with r sections splits the map P into P1, . . . , Pr new maps such that their composition gives P . Therefore,
the problem consists in finding a reducible torus given in r pieces ϕ1, . . . , ϕr that are the intersections of
the torus of the flow with respectively each temporal section.

A standard multiple shooting method is one that considers the r sections equidistantly in time. Let
us then define

Pjpx, θq “ φpjδ{r; pj ´ 1qδ{r, x, θq, j “ 1, . . . , r.

There are several options to define the new invariance equations associated with ϕ1, . . . , ϕr. For instance,

Pjpϕjpθq, θq “ ϕj`1pθq, j “ 1, . . . , r ´ 1,

Prpϕrpθq, θq “ ϕ1pθ ` ρq,

or another example can be,

Pjpϕjpθq, θ ` pj ´ 1qρ{rq “ ϕj`1pθ ` jρ{rq, j “ 1, . . . , r ´ 1,

Prpϕrpθq, θ ` pr ´ 1qρ{rq “ ϕ1pθ ` ρq.

However, these two examples do not scale with the Algorithms 2.2, 3.2, and 3.3 because, in both cases,
the right hand side has no a uniform rotation angle for each j “ 1, . . . , r. That forces us to change other
steps in those algorithms besides the only evaluation of the Poincaré map.

Our goal is then to choose an expression that only change the evaluation of the P and DxP and the
other steps in Algorithms 2.2, 3.2, and 3.3 remain the same. The previous proposed invariance equations
require to consider a rotation vector of dimension d for each shooting. To keep the same shifting over the
r new sections, we propose

Pjpϕjpθq, θ ´ pj ´ 1qρ{rq “ ϕj`1pθ ` ρ{rq, j “ 1, . . . , r ´ 1,

Prpϕrpθq, θ ´ pr ´ 1qρ{rq “ ϕ1pθ ` ρ{rq.
(28)

Note that one can see a multiple shooting approach as a single shooting but with a larger phase space. The
equations (28) do not recover P in (4) by a direct composition since they must be alternated with rotation
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operators. Similarly, the ϕ in (4) can be obtained from the ϕ1, . . . , ϕr in (28) by undoing rotations. The
Lemma 4.1 makes explicit all these rotations and, in particular, says that DxP is a product of differentials
of Pj with interlaced rotations.

Lemma 4.1. Let α be an angle and let Tα be the operator defined as Tαxpθq “ xpθ ` αq. Then the map
P at the torus ϕ in (4) and Pj in (28) at the torus ϕj are related by

P “ Tρ´ρ{r ˝ Pr ˝ T´ρ{r ˝ Pr´1 ˝ ¨ ¨ ¨ ˝ T´ρ{r ˝ P1.

4.1 Reducibility and multiple shooting

The linear skew-product associated to the linearization around a torus found with this multiple shooting
has a uniform rotation over the sections. Thus, (28) has a linear behaviour expressed by

X̄j`1 “ AjpθqXj , j “ 1, . . . , r ´ 1,

X̄1 “ ArpθqXr,

θ̄ “ θ ` ρ{r,

(29)

with Ajpθq “ DxPjpϕjpθq, θ ´ pj ´ 1qρ{rq for j “ 1, . . . , r.
Following the Definition 2.1, (29) is reducible if, and only if, there exist a change of variables of the

form Xj “ CjpθqYj for j “ 1, . . . , r such that (29) becomes

Ȳj`1 “ BjYj , j “ 1, . . . , r ´ 1

Ȳ1 “ BrYr,

θ̄ “ θ ` ρ{r,

(30)

where the matrices B1, . . . , Br P Rnˆn are defined by

Bj “ Cj`1pθ ` ρ{rq
´1AjpθqCjpθq, j “ 1, . . . , r ´ 1

Br “ C1pθ ` ρ{rq
´1ArpθqCrpθq,

(31)

and they do not depend on θ.

Remark 4.1 (Matrix-form). The linearization around a torus can also be formulated in a matrix-block
form of a higher dimensional problem, that is, n ¨ r dimension. Thus in practice, Algorithm 2.2 can be
used with multiple shooting just considering ρ{r instead of ρ and evaluating Pj and DxPj following (28).
Indeed, if we consider the block matrices

Ãpθq “

¨

˚

˚

˚

˝

Ar
A1

. . .

Ar´1

˛

‹

‹

‹

‚

pθq, B̃ “

¨

˚

˚

˚

˝

Br
B1

. . .

Br´1

˛

‹

‹

‹

‚

, (32)

C̃pθq “

¨

˚

˚

˚

˝

C1

. . .

Cr´1
Cr

˛

‹

‹

‹

‚

pθq, C̃´1pθq “

¨

˚

˚

˚

˝

C´1r
C´11

. . .

C´1r´1

˛

‹

‹

‹

‚

pθq,

then using a little bit more memory to keep the zeros for each θ we can directly use Algorithm 2.2.

As a consequence of the Remark 4.1, we have the following straightforward lemma.
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Lemma 4.2. Let B1, . . . , Br be the matrices in (31) and let B̃ be the matrix in (32). Then µ is an
eigenvalue of B̃ if, and only if, µr is an eigenvalue of BrBr´1 ¨ ¨ ¨B1. In other words, the eigenvalues of
B̃ are the complex roots of the eigenvalues of BrBr´1 ¨ ¨ ¨B1.

Lemma 4.3 (see §51 in [Wil65]). Let A and B be square matrices. Then the spectrum of AB is the same
as the spectrum of BA.

Combining Lemmas 4.1, 4.2, and 4.3, we prove Proposition 4.4. That result links the relation between
the Floquet matrix with the one using the multiple shooting. To prove it, it is enough i) to observe
that from Lemma 4.1 the spectrum of DxP on the torus ϕ has the same spectrum as pDxPrq ¨ ¨ ¨ pDxP1q,
respectively on ϕr, . . . , ϕ1. ii) The different rotation operators T´ρ{r do not change the spectrum because
of the Lemma 4.3. iii) The Floquet Cj do not change the spectrum of Bj . Therefore, Lemma 4.2 allows
to finish the proof of the Proposition 4.4.

Proposition 4.4. The eigenvalues of the Floquet matrix of a multiple shooting (30) with r sections are
the complex r roots of the eigenvalues of the Floquet matrix with single shooting (6).

4.2 Multiple shooting applied to invariant manifolds

If the torus is very hyperbolic, the linear approximation to the manifold in one of the sections of the torus
(single shooting) is enough to globalize the manifold with a good level of accuracy. This is because, as the
manifold is very unstable, it is sufficient to use the unstable direction of the torus in one of the sections,
say ϕ1, to grow numerically the manifold [Ros20]. Other works, as [Dua20], use multiple shooting to
compute the linear approximation to the invariant manifold. As here we are interested in a high-order
approximation to these manifolds, we need to compute high-order derivatives of the map. Due to the
strong instability of the torus, we have to continue with the multiple shooting scheme in order to compute
the derivatives of the maps Pj accurately. Therefore, we will compute the Taylor-Fourier expansions for
the torus ϕj , j “ 1, . . . , r.

The parametrization of the manifold, as explained in Section 3, is done at each of the r sections. Let
Wj be a formal power expansion for each j “ 1, . . . , r of the form

Wjpθ, σq “
ÿ

kě0

aj,kpθqσ
k, θ P Td.

We denote the truncated power expansion of Wj of order m by Wj,m.
Let us assume, by simplicity, that |µ| ‰ 1 is real. Then, applying the invariance condition of the torus

to the invariant manifold leads to the equations

PjpWjpθ, σq, θ ´ pj ´ 1qρ{rq “Wj`1pθ ` ρ{r, µσq, j “ 1, . . . , r ´ 1,

PrpWrpθ, σq, θ ´ pr ´ 1qρ{rq “W1pθ ` ρ{r, µσq.
(33)

The zeroth order in σ of (33) is just the torus ϕj in (28), that is, aj,0 “ ϕj . The first order in σ in (33)
has the form

DxPjpaj,0pθq, θ ´ pj ´ 1qρ{rqaj,1pθq “ aj`1,1pθ ` ρ{rqµ, j “ 1, . . . , r ´ 1,

DxPrpar,0pθq, θ ´ pr ´ 1qρ{rqar,1pθq “ a1,1pθ ` ρ{rqµ.

Using the change aj,1pθq “ Cjpθqvj for j “ 1, . . . , r and the definition of Bj in (31), we end up with

Bjvj “ µvj`1, j “ 1, . . . , r ´ 1,

Brvr “ µv1,
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and by the matrix-block form in Remark 4.1, we conclude that v “ pv1, . . . , vrq is an eigenvector of
eigenvalue µ of B̃ that, by Proposition 4.4, means that µ is a r root of an eigenvalue of (6).

Let us now assume that we know the functions aj,k for j “ 1, . . . , r and k “ 0, . . . ,m´ 1. Then, using
the induction hypothesis, for j “ 1, . . . , r ´ 1, (and similarly for j “ r)

PjpWj,m´1pθ, σq, θ ´
j ´ 1

r
ρq

“ PjpWj,m´1pθ, σq, θ ´
j ´ 1

r
ρq `DxPjpWj,m´1pθ, σq, θ ´

j ´ 1

r
ρqaj,mpθqσ

m `Opσm`1q

“ PjpWj,m´1pθ, σq, θ ´
j ´ 1

r
ρq `Ajpθqaj,mpθqσ

m `Opσm`1q

“Wj`1,m´1pθ `
ρ

r
, µσq ` bj,mpθqσ

m `Ajpθqaj,mpθqσ
m `Opσm`1q,

(34)

with Ajpθq “ DxPjpaj,0pθq, θ ´ pj ´ 1qρ{rq. Equating the order σm in (34) with the right hand side in
(33), we end up with the expressions

bj,mpθq `Ajpθqaj,mpθq “ aj`1,mpθ ` ρ{rqµ
m, j “ 1, . . . , r ´ 1,

br,mpθq `Arpθqar,mpθq “ a1,mpθ ` ρ{rqµ
m.

Introducing the Floquet change aj,mpθq “ Cjpθquj,mpθq for all j “ 1, . . . , r, and using (31), we deduce

Cj`1pθ ` ρ{rq
´1bj,mpθq `Bjuj,mpθq “ µmuj`1,mpθ ` ρ{rq, j “ 1, . . . , r ´ 1,

C1pθ ` ρ{rq
´1br,mpθq `Brur,mpθq “ µmu1,mpθ ` ρ{rq.

(35)

The system of equations (35) can directly be solved as the one in (23) and independently on j.
This scheme works for real un/stable manifolds. For the reasons discussed in Section 3.2, to compute

stable manifolds is numerically more precise to consider the inverse Poincaré map. We can then write
similar conditions to (33) for P´1j .

Remark 4.2. The parametrization (33) can also been seen as a single shooting in higher dimension. Thus
we can skip the detailed expressions in (35) for each index j and apply directly the Section 3 but with
the matrix-block in the Remark 4.1 and with ρ{r instead of ρ. In particular, the Algorithms 3.2 and 3.3
can be used with the penalty of more memory usage.

5 Computer implementation

This section is devoted to provide some technical details and information concerning to the computer
implementation of the introduced algorithms.

First, we give some explanations about how to work with Fourier series of several variables and the
package used for this aim. Section 5.2 details the idea of the jet transport technique that we use to
obtain high-order derivatives of the Poincaré map through automatic differentiation. Then, since this
work is focused on the parallelism of computations, Section 5.3 is devoted to the technical details in the
implementation of our computations and an analysis of the degree of parallelism achieved. Finally, we
include some numerical tests to analyse the accuracy of the obtained results.

5.1 Manipulation of Fourier series in several variables

An effective manipulation of Fourier series has a crucial impact on the performance of Algorithms 2.2,
3.2, and 3.3 to do the steps of shifting by ρ and to solve cohomological equations.

We do not only need to able to express the series in its Fourier coefficients and its tabulation on a grid
of angles θ P Td; a process based on the Discrete Fourier Transform. We have to know how to perform
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operations affecting to its coefficients. In particular, we need to be able to know at each memory location
which is its coefficient and vice versa. These two operations; to know the tuple pκ1, . . . , κdq from its index
and to know index from its tuple, are simple and essential and they are encoded in Algorithms 5.2 and
5.3.

The former depends on how the coefficients are packed, since it is highly dependent on the package.
We are going to assume that the coefficients and its tabulation are contiguously allocated in memory but
they may be interleaved and/or split in memory. Moreover, we will also assume, for simplicity, that the
mesh will have odd size in each of the directions in order to avoid discussions about aliasing phenomena
and Nyquist frequencies.

5.1.1 Truncated Fourier series representation

Let x be a real-periodic function admitting a Fourier representation. That this,

xpθq “
ÿ

κPZd

cκ expp´2πixκ, θyq, cκ P C and θ P Td. (36)

where T is identified with r0, 1q or r´1
2 ,

1
2q. Note that (36) can easily be expressed in terms of sum of

sin { cos with real coefficients by a change of the basis. It is standard in FFT (Fast Fourier Transform)
algorithms to truncate the series in (36) in an even equispaced mesh N̄ “ pN̄1, . . . , N̄dq P Nd, with
Nj “ 2N̄j ` 1 and N “ pN1, . . . , Ndq. Thus, the mesh points are tκ{N : κ P INu, being IN the set of
indices defined by

IN “ tpκ1, . . . , κdq P Zd : ´ N̄j ď κj ď N̄j for all j “ 1, . . . , du (37)

and, whose cardinal is

M “

d
ź

j“1

p2N̄j ` 1q “
d
ź

j“1

Nj . (38)

Hence, numerically (36) is equivalent to

xpθq “
1

M

ÿ

κPIN

pxκ expp´2πixκ, θyq (39)

where pxκ{M is close to the exact Fourier coefficient cκ.
Since xpθq is always real some of the coefficients are redundant, more explicitly pxκ “ px˚κ with ˚

representing the conjugate as complex numbers. This fact allows us to reduce the coefficients storage to

M̄ “ pN̄d ` 1q
d´1
ź

j“1

Nj . (40)

The truncated Fourier series (36), in the equispaced mesh, is in bijection with the values of the function
at those points. That is,

1

M

ÿ

κPIN

pxκ expp´2πixκ, θyq “
ÿ

κPIN

xpθq expp2πixκ, θyq, θ P tκ{N : κ P INu.

Therefore, numerically it is equivalent to store the values txpκ{Nq : κ P INu or the Fourier coefficients
tpxκ : κ P INu. The former contains N real numbers given in (38) and the latter 2N̄ given in (40) real
numbers. Note that N and 2N̄ differ, and then, both representation can be stored in-place if a padding
for the table of values is considered.
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5.1.2 Major orders of Fourier coefficients

In the literature one can mainly find two approaches to store the Fourier coefficients depending on the
memory order of them. In this work, we have used the one followed in the FFTW3 (Fastest Fourier
Transform in the West) package [FJ05] and, in particular, in its dft c2r and dft r2c plans.

In computer science, the ordering of data can generically be in row-major or col-major orders. To
detail the access in the Fourier coefficients for an arbitrary dimension, and following the approach in the
FFTW3 package, we use the row-major order.

Definition 5.1 (Row-major and col-major orders). Let x be a contiguous allocated N -dimensional vector
and let pN1, . . . , Ndq be in Nd so that M “

śd
j“1Nj .

1. x is said to be in row-major order if, and only if, for each index ` “ 0, . . . ,M ´ 1 of x, there is a
unique pκ1, . . . , κdq in

śd
j“1t0, . . . , Nj ´ 1u such that

` “ p¨ ¨ ¨ pκ1N2 ` κ2qN3 ` ¨ ¨ ¨ qNd ` κd. (41)

2. x is said to be in col-major order if, and only if, for each index ` “ 0, . . . ,M ´ 1 of x, there is a
unique pκ1, . . . , κdq in

śd
j“1t0, . . . , Nj ´ 1u such that

` “ p¨ ¨ ¨ pκdNd´1 ` κd´1qNd´2 ` ¨ ¨ ¨ qN1 ` κ1.

Note that we can go from ` to its tuple pκ1, . . . , κdq using just integer operations. Algorithms 5.2
details the steps to get the unique tuple corresponding to a certain index of a vector x in row-major order
(similarly for col-major order).

Algorithm 5.2 (From index to tuple in row-major order).

‹ Input: Integer ` and odd integers pN1, . . . , Ndq.

‹ Output: Integers pκ1, . . . , κdq such that (41) is verified.

‹ Notation: { denotes the integer division and % the integer modulus.

1. j Ð `.

2. For i “ d, . . . , 1

a) κi Ð j%Ni.

b) j Ð j{Ni.

Algorithms 5.2 is suitable to recover the tuple of mesh points from the contiguously allocated vector
of them. However, the Fourier coefficients are indexed by IN defined in (37) and the Algorithm 5.2 does
not apply directly. A slightly modified version given in Algorithm 5.3 takes into account the different
values of the tuple pκ1, . . . , κdq in IN . The inverse process of the Algorithm 5.3 is now straightforward,
in practice, this process of given an element in IN to determine the corresponding index ` of the vector
(in row-major order) has not been needed in all the implementation of computing the invariant torus, its
Floquet, and its invariant manifolds.

Algorithm 5.3 (Fourier coefficients: from index to tuple).

‹ Input: Integer ` and odd integers pN1, . . . , Ndq.

‹ Output: Integers pκ1, . . . , κdq in IN defined in (37).
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‹ Notation: { denotes the integer division and % the integer modulus.

1. j Ð `.

2. For i “ d, . . . , 1

a) κi Ð j%Ni.

b) If κi ą Ni{2, then κi Ð Ni ´ κi.

c) j Ð j{Ni.

Algorithm 5.3 allows us to easily apply a rigid rotation to the periodic orbit x : Td Ñ R. Indeed, if ρ
is in Rd, then

xpθ ` ρq “
ÿ

κPIN

expp´2πixκ, ρyqpxκ expp´2πixκ, θyq.

and with Algorithm 5.3 we can get the tuple κ from the index ` of the contiguously allocated vector of
size M̄ encoding the Fourier coefficients. Similarly, we can easily solve the different cohomology equations
in Algorithms 2.2, 3.2, and 3.3.

5.2 Jet transport

Jet transport is a computational technique to obtain high-order derivatives of the flow of an ODE with
respect to initial data and/or parameters [BM98, AFJ`08, AFJ`09, ADLBZB10, WZ12]. It is based on
applying automatic differentiation [Gri00] to a numerical integrator of ODEs. This is done by substituting
the basic arithmetic by an arithmetic of (truncated) formal power series in several variables. A formal
power series codifies the value of a function (the constant term) and their derivatives (the coefficients of
each monomial) up to a given order (the truncation order of the series), and the propagation of these
power series through the numerical integration produces exactly the same results as the integration of the
corresponding high-order variational equations of the ODE (see [GJJC`21] for more details).

Here we approximate the un/stable invariant manifolds by truncated Taylor-Fourier series of W pθ, σq
in (16) and we need to compute P pW pθ, σq, θq as a truncated Taylor-Fourier series of

P pW pθ, σq, θq “
ÿ

kě0

bkpθqσ
k, θ P Td,

where P is a Poincaré map. The idea is to use the equivalence between trigonometric polynomials and
a suitable table of values. As the Fourier series ak in (16) are, in fact, trigonometric polynomials, we

can represent them as a suitable tabulation, ta
p`q
k u` “ takpθ`qu`. Then, the Taylor-Fourier series can be

represented as a set of Taylor expansions,

W p`qpσq “
ÿ

kě0

a
p`q
k σk, ` “ 0, 1, . . . ,

Then, we use jet transport to compute P pW p`qpσq, θ`q,

P pW p`qpσq, θ`q “
ÿ

kě0

b
p`q
k σk, ` “ 0, 1, . . . ,

and, from the coefficients of these Taylor expansions, we can use Fourier transforms to recover the cor-
responding Fourier series bk so that we have P pW pθ, σq, θq. If, for some bk, the size of the last Fourier
modes is not small, it means that more Fourier modes are needed. Then, we restart the calculation using
a finer discretization for the corresponding ak (i.e. a larger number of points θ`) so that more Fourier
modes for bk are obtained. Consequently, function ak is also approximated by a higher number of Fourier
modes.
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5.3 Parallelism

Algorithms 2.2, 3.2, and 3.3 contain steps that are highly parallelizable. Such a parallelism was already
exploited in [JO09] in Algorithm 2.2 using the PVM library [GBD`95] running on a cluster of PCs
connected through an Ethernet network. Here we use OpenMP 4.5 [Ope15] which runs concurrently in a
PC with several CPUs and it provides an easier and efficient parallelism programming.

The use of profilers for the experiments in Section 6 shows that more than the 98% (in both algorithms)
is spent in the evaluation of the discrete map P and its derivatives, which involves ODE integrations, and
a lower percentage is required to solve the cohomological equations. Therefore, the parallelism strategy
has consisted in running the evaluation of the ODE integrator, Taylor [JZ05] and Runge-Kutta-Verner
8(9) [Ver78] in the experiments, sequentially and independently in each of the different available CPUs
of the PC. This provides an automatic parallelism since the algorithms require to evaluate the discrete
map for each of the different angle values in the mesh in Td. Note that with this approach the use of jet
transport does not provide any downside because we do not parallelize the integrator itself.

The second level of parallelism is in the cohomological equations, the shifting by ρ, and some of the
matrix-solvers that are independent to each other either in a Fourier representation or in a table of values.

Finally, we parallelize the transformation between the table of values and the Fourier coefficients
(and vice versa). That has been done by the feature already provided in the FFTW3 package and in
combination with the OpenMP. We did not detect a major improvement because the package itself is
already optimized enough and already the profiler indicated that these transformations do not contribute
too much in the performance when one use the FFTW3.

We took care of the potential overhead in the initialization of the threads, that is, the different
(sub)processes that are executed in the CPUs. Thus, we initialize the threads at the beginning of the
algorithms to have ready the pool of threads and bifurcate the code execution when we reach those
parallelizable steps.

5.4 Accuracy tests

In order to ensure that the computations are correct we implement some tests. First, regarding to the
torus and the Floquet change, we implement three tests, two of them already introduced in [Olm07], let
us call them Test 1, Test 2, and Test 3. Secondly, Test 4, is implemented to assess the parametrization
of the hyperbolic invariant manifolds. The Tests 2 and 3 are run after the solutions have been obtained,
which means that they can be used to check how good are these solutions in terms of the invariance
equations they must satisfied.

In all the tests we are going to use norms and tolerances that must be chosen depending on the
model, precision arithmetic, and matching with other tolerances in the algorithms, such as, the one for
the Newton’s process or the ODE integrations. In Section 6, we will made explicit all these freedoms.

5.4.1 The invariance equation

Algorithm 2.2 stops when the invariance condition (4) for the torus ϕ and for the Floquet change (7)
are satisfied within a certain threshold. On the other hand, Algorithm 3.2 and Algorithm 3.3 are not
iterative processes and the steps in each algorithm are deduced by imposing (by power matching in σ)
the invariance equations (17) and (25), respectively.

Test 1. Let A be a mesh in Td. A function z is said to verify the equation Ipzpθqq “ 0 with tolerance τ
if, and only if,

max
θPA

}Ipzpθqq} ď τ.

Note that Test 1 can be defined in terms of the relative error instead of the absolute error.
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5.4.2 The tail of the Fourier discretization

The test consists in checking that the truncated Fourier representation is accurate enough with the mesh
size. We use the fact that, under a smoothness assumption, the Fourier coefficients decay. In the appli-
cations in Section 6, these functions are analytic and then their Fourier coefficients decay exponentially.
The truncation error is approximated by the size of the last Fourier coefficients in its representation. To
prevent potential symmetries that make zero some of the entries, we check the last two indexed coefficients.

Test 2. A truncated real Fourier representation given by

xpθq “
xp0q

2
`

N
ÿ

|κ|“1

xpcqκ cos xκ, θy ` xpsqκ sin xκ, θy , θ P Td.

is said to verify the Test 2 with tolerance τ if, and only if, for all κ P Nd such that |κ| “ N or |κ| “ N ´1,

}pxpcqκ , xpsqκ q}2 ď τ.

We apply the Test 2 for each of the Fourier series involved in the torus, in its Floquet change, and
its parametrized manifold. Moreover, Test 2 can be used to keep track which of the components of the
angular variables vector θ P Td have the biggest tail size in norm, and then increase the mesh size on that
direction until either we reach a maximum mesh size or we reach the desired tolerance.

5.4.3 The mesh

The third test is computationally more expensive, it consists in checking the function that we want to
make zero in a different mesh but with the same size. A way to do this check without the need of using
more computational sources is just to perform a fixed shift by an angle, say γ, and then check if the
equation is still verified with a prescribed tolerance.

Test 3. Let A be a mesh in Td. A function z is said to verify the equation Ipzpθqq “ 0 with tolerance τ
and shifting γ P Td if, and only if,

max
θPA

}Ipzpθ ` γqq} ď τ.

Note that as Test 1, Test 3 can be defined in terms of the relative error instead of the absolute error. In
the case of the torus, the Test 3 consists first in performing the shift ψpθq “ ϕpθ`γq and then checking (4)
but for ψ and with the same original mesh in θ, that is,

max
θPA

}ψpθ ` ρq ´ P pψpθq, θ ` γq} ď τ.

Similarly, we can apply Test 3 for the Floquet change C, and for the coefficients ak in the expansion
of (18).

5.4.4 The invariant manifolds

Once we have computed the parametrization of the manifold up to the desired order, we check the final
accuracy of the approximation of the invariant manifold. This is done by comparing the error of the
invariance condition for the parametrization of the invariant manifold, W pθ, σq, at a given angle vector
θ, but at two different values of σ, say σ1 and σ2 “ σ1{2.

Notice that, when computing the parametrization of the manifold up to order m, the truncation error
depends on the power m` 1 of the parameter σ.
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Test 4. For σi, with i “ 1, 2, we would have that

εi “ |P pWmpθ, σiq, θq ´Wmpθ ` ρ, λσiq| « cσm`1i ,

where c is a constant. The relation between the two errors is

ε1
ε2
«

σm`11

pσ12 q
m`1

« 2m`1.

Therefore, we check that the quantity
logpε1{ε2q

logp2q
,

has a value close to m` 1.

The Test 4 will not numerically be satisfied for all values of σ1 and m due to round-off and cancellations
in ε1, ε2, and ε1{ε2. Thus, we must play with σ1 and m in order to have enough significant digits to avoid
these digit cancellations.

6 Applications

In this section we implement two different applications. The first example is a classical quasi-periodically
forced pendulum and the second one is an application to celestial mechanics; a model for the Earth-Moon
system subjected to five basic natural frequencies.

In order to stress the independence of the integration method, we use a Taylor integration with jet
transport and tolerance 10´16 for the first method and a Runge-Kutta-Verner 8(9) with jet transport and
tolerance 10´14 for the celestial mechanic one. To verify the different tests described in Section 5.4, we
consider Euclidean norms for vectors, Fröbenius for matrices, and a generic test tolerance of τ “ 10´10.

In all the experiments we have used the gcc compiler, version 8.3.0, on a Linux computer with two
Intel(R) Xeon(R) CPU E5-2680 @2.70GHz processors, which give a total of 16 cores. For the sake of
simplicity, in what follows we use the terms core and processor equally, to refer to a single computational
unit.

6.1 A quasi-periodically forced pendulum

This first application considers one of the examples included in [JO09]. The system describes the move-
ment of a quasi-periodically forced pendulum

9x “ y

9y “ ´α sinx` εζpθ0, . . . , θdq,

9θi “ ωi, i “ 0, . . . , d

(42)

where x, y P R, and α is a parameter whose value is chosen as 0.8. For i “ 0, . . . , d, θi P T and ε accounts
for the weight of the forcing function ζ:

ζpθ0, . . . , θdq “

«

d` 2`
d
ÿ

i“0

cos θi

ff´1

.

As frequencies we have chosen, with d “ 4,

ω0 “ 1, ω1 “
?

2, ω2 “
?

3, ω3 “
?

5, ω4 “
?

7. (43)
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p Total time speed-up

1 8m3.286s 1.000

2 4m9.742s 1.934

4 2m18.073s 3.500

8 1m13.779s 6.550

16 39.234s 12.318

Table 1: Computational time needed for computing the torus of system (42) with frequency vector of
dimension d “ 4. First column corresponds to the number of processors used, second one to the total
time employed according to the number of processors, and the last one designs the speed-up.

We have applied the methodology summarized in Section 2, Algorithm 2.2, to obtain the torus, the
Floquet transformation, and the Floquet matrix near x “ π, y “ 0 for ε “ 0.01. Recalling the Section 1,
according to the dimension of the frequency vector selected, d, the dimension of the resulting torus of the
flow (42) near the point pπ, 0q is d ` 1. By defining a returning map P to the section θ0 “ 0 mod 2π,
the dimension of the torus is reduced by one. As initial seeds we used the point pπ, 0q for the torus, the
identity for the Floquet transform, and the differential of P at pπ, 0q for the Floquet matrix.

Each of the angles has been discretized using N “ 31 Fourier modes, that results to a total of
2N4 “ 1847042 unknowns for the torus and 4N4 “ 3694084 for the Floquet change. Note that a direct
method to compute the torus and not using the advantage of the Floquet change needs 4N8 memory
space which is totally unfeasible.

The Algorithm 2.2 was run with a Newton threshold of 10´10 and the Test 1 for the torus is satisfied
with 10´13 after 3 Newton’s iteration and with 10´12 for the Floquet transformation and Floquet matrix.

After the Newton convergence and the success in the Test 1, we apply the Test 2 reporting the different
values for each of the angular directions, that is, respectively, 10´10, 10´11, 10´10, and 10´11. The Test 3
is also satisfied with 10´11 for the torus and 10´12 for the Floquet transformation.

The Floquet matrix, B, has hyperbolic real eigenvalues λs “ 3.625204837874207 ˆ 10´3 and λu “
2.758464817115549 ˆ 102. In the Table 1, we show the computational time required for computing the
torus using different number of processors. In the same table, the speed-up factor is included. This factor
measures the relation between the time needed for solving the system with p processors with respect to the
time of the linear resolution, that is, using just one processor (p “ 1). Ideally, when the parallelization
is performed with p processors, the time should be divided by p. We can see in the table that this
does not happen, specially when the number of processors increases and so the overhead in each of the
processors. Some checks have been done regarding to this; for example, disabling the Hyper-threading
of the processors the computational times remained the same. It is noteworthy that the analysis of the
profiler to our program shows that 99.76% of the computations have been parallelized.

We compute the approximations to the un/stable invariant manifolds up to order 10 following the
Algorithms 3.2 and 3.3. Table 2 shows the required times for these computations using different number
of processors and the corresponding values for the speed-up. The Test 1 is satisfied in relative error for
each of the order in σ starting with a 10´14 at zeroth order to 10´11 at order 10. Tests 2, 3, and Test 4
have also been successful at each of the orders.

6.2 A quasi-periodically perturbed model for the Earth-Moon system

G. Gómez, J. J. Masdemont and J. M. Mondelo developed a methodology to generate simplified Solar
Systems models (SSSM) using a set of basic frequencies, see [GMM02, Mon01]. The systems of equations
introduced in those works describe the motion of a massless particle subjected to a series of time-periodic
perturbations. These models are defined in such a way that if we remove all the time-periodic dependencies
present in the SSSM, the resulting models correspond to the well-known Restricted Three-Body Problem
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unstable stable

p Total time speed-up Total time speed-up

1 2h33m13s 1.000 2h33m31s 1.000

2 1h19m08s 1.936 1h28m59s 1.725

4 43m12s 3.546 48m23s 3.173

8 22m13s 6.894 25m03s 6.129

16 11m09s 13.746 12m32s 12.245

Table 2: Computational time needed for the un/stable manifolds up to order 10 of the torus in Table 1.
First column corresponds to the number of processors used.

(RTBP), [Sze67].
Among the simplified models introduced in [GMM02, Mon01], special attention is paid to the Earth-

Moon case, including the gravitational effect of the Sun. For the description of this simplified model they
use five basic frequencies for the accurate characterization of the lunar motion. The selection of these
frequencies comes from the simplified Brown theory presented in [Esc68]. Their values in terms of cycles
per lunar revolution (RTBP adimensional units) are the following:

• mean longitude of the Moon, ω1 “ 1,

• mean elongation of the Moon from the Sun, ω2 “ 0.925195997455093,

• mean longitude of the lunar perigee, ω3 “ 8.45477852931292ˆ 10´3,

• longitude of the mean ascending node of the lunar orbit on the ecliptic, ω4 “ 4.01883841204748ˆ10´3,

• Sun’s mean longitude of perigee, ω5 “ 3.57408131981537ˆ 10´6 .

So, this model includes the perturbative effect of the solar gravitational field, the lunar eccentricity,
inclination between the orbital plane of the Moon and the ecliptic plane, and also between the orbital
and equatorial planes.

In order to generate the model, the authors change these frequencies to a new basis ν “ pν1, . . . , ν5q
defined as ν1 “ ω2, ν2 “ ω1 ´ ω3, ν3 “ ω1 ´ ω2 ` ω4, ν4 “ ω1 ´ ω5, and ν5 “ ω5 ´ ω2, such that when the
frequencies ν1, . . . , νi are added to the unperturbed system (Earth-Moon RTBP), the simplified models
SSSMi are generated for i “ 1, . . . , 5, each of them subjected to ν1, . . . , νi perturbations.

The equations of motion for an infinitesimal particle in these models SSSMi, i “ 1, . . . , 5 are introduced
in terms of time-dependent functions cij , j “ 1, . . . , 13,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

:x “ ci1 ` c
i
4 9x` ci5 9y ` ci7x` c

i
8y ` c

i
9z ` c

i
13

BΩi

Bx
,

:y “ ci2 ´ c
i
5 9x` ci4 9y ` ci6 9z ´ ci8x` c

i
10y ` c

i
11z ` c

i
13

BΩi

By
,

:z “ ci3 ´ c
i
6 9y ` ci4 9z ` ci9x´ c

i
11y ` c

i
12z ` c

i
13

BΩi

Bz
,

(44)

being

Ωi “
1´ µ

a

px´ µq2 ` y2 ` z2
`

µ
a

px´ µ` 1q2 ` y2 ` z2

`
µS

b

px´ xiSq
2 ` py ´ yiSq

2 ` pz ´ ziSq
2
,

(45)

where µ is the Earth-Moon mass parameter, µS is the mass of the Sun with respect to the sum of masses
of Earth and Moon, and xiS , y

i
S , z

i
S denote the positions of the particle with respect to the Sun.
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The quasi-periodic time-dependent functions cij can be computed in terms of the positions, veloci-
ties, accelerations, and over-accelerations of the two selected primaries. The description of these time-
dependent functions as well as the positions xiS , yiS and ziS , consists on a refined Fourier analysis, de-
tailed in [GMS10a, GMS10b]. Note that, regardless of the model i, taking cj “ 0 except for c5 “ 2,
c7 “ c10 “ c13 “ 1 and omitting the last term in (45), the system of equations in (44) becomes that of
the RTBP.

The RTBP presents five equilibrium points ([Sze67]), L1,...,5. In the Earth-Moon RTBP, L1,2,3, are
colinear of centerˆcenterˆsaddle type, and the other two, L4,5, form an equilateral triangle having a
dynamics of centerˆcenterˆcenter. The dynamics of the saddle parts of L1,2 are numerically difficult to
compute because its unstable parts are of order 108 and 106 respectively.

The angular dimension of these points increases as the frequencies of the SSSM are included. In
the SSSM1 the equilibrium points become periodic orbits, in the SSSM2 become two-dimensional quasi-
periodic solutions (or 2D tori), and so on. A way of computing these quasi-periodic solutions is to
continue them from one SSSMi to SSSMi`1 as the number of considered frequencies increases. This
continuation is sometimes difficult due to appearance of resonances. This phenomena was studied in
works like [Olm07, HdlL07].

In order to avoid the continuation problems, we add a small dissipation parameter to the equations
of the system when continuing from SSSMi to SSSMi`1. Thus, elliptic eigenvalues become hyperbolic
and difficulties of convergence with the algorithm coming from possible resonances are likely removed.
Once we have the invariant torus in the system SSSMi`1 plus the dissipation parameter, we remove that
parameter and refine the invariant object in the original SSSMi`1.

To prevent the numerical difficulties coming from the strong instability in L1,2, we use multiple shooting
with r sections, in particular, r “ 4 and r “ 3 respectively. Then we perform the computation of the torus,
its Floquet change, and Floquet matrix until we reach the SSSM3 model. With this, we have obtained
the invariant tori that replace L1,2 in the SSSM3 model, which are tori of dimensions 3 for the flow, and
their Floquet matrices. Note that, as we are using multiple shooting, we have computed r sections of the
torus. Next, we have computed the unstable manifold of each torus. Table 3 shows the computational
times and corresponding speed-up for the approximation of the unstable invariant manifolds up to order
10.

L1 unstable L2 unstable

λu 1.469645480926268e+02 1.343539917760893e+02

p Total time speed-up Total time speed-up

1 16m29s 1.000 6h41m46s 1.000

2 9m44s 1.886 3h58m09s 1.912

4 5m20s 3.450 2h39m36s 3.456

8 2m30s 6.610 1h52m39s 6.596

16 1m18s 12.740 26m02s 13.090

Table 3: Computational time with p CPUs of the unstable manifolds of L1 and L2 of SSSM3 using meshes
N “ p43, 43q and N “ p223, 223q, and parallel sections 4 and 3 respectively.

7 Conclusions and future work

This paper has shown that the computation of high-order Taylor-Fourier expansions of un/stable invariant
manifolds associated with high-dimensional tori are, nowadays, feasible. Even when the instability of the
torus is very strong, where we have combined the algorithms with multiple shooting methods. We have
provided explicit algorithms to compute all these invariant objects.
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The developed methods look suitable to address computation of invariant manifolds generated by
several eigendirections. We plan to modify the current code for such a context as well as to manage some
of the eigenvalue cases not included here. Similar ideas can be applied to the case when the frequency
vector ρ is not known or even when the internal dynamics is not a fixed rotation ρ, in particular, in a
context when the dynamical system is autonomous. Some results in these directions have already been
worked in [Olm07].

The method is highly parallelizable to compute torus, the Floquet transformation, and its invariant
manifolds. In the experiments, we used OpenMP showing a really good speed-up. We are also aware of
other approaches that can take advantage of the intrinsic parallelism of the algorithms such as a GPU
approach. We plan exploring in future works a GPU parallelization scheme and providing experiments
showing that there is no relevant penalty in the communication between the CPU and the GPUs.
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