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Abstract
This paper focuses on the capture of Near-Earth Asteroids (NEAs) in a neighbourhood of the L3 point of

the Earth-Moon system. The dynamical model for the motion of the asteroid is the planar Earth-Moon-Sun
Bicircular problem (BCP). It is known that the L3 point of the Restricted Three-Body Problem is replaced,
in the BCP, by a periodic orbit of centre×saddle type, with a family of mildly hyperbolic tori that is born
from the elliptic direction of this periodic orbit. It is remarkable that some pieces of the stable manifolds
of these tori escape (backward in time) the Earth-Moon system and become nearly circular orbits around
the Sun. In this work we compute this family of invariant tori and also high order approximations to their
stable/unstable manifolds. We show how to use these manifolds to compute an impulsive transfer of a NEA
to an invariant tori near L3. As an example, we study the capture of the asteroid 2006 RH120 in its approach
of 2006. We show that there are several opportunities for this capture, with different costs. It is remarkable
that one of them requires a ∆v as low as 20 m/s.
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1 Introduction

Today, several space agencies and private companies are considering the exploitation of raw materials from
asteroids, e.g., gold, iridium and platinum [MMBM15, ABB+15, VMC20]. Metals such as gold or platinum
could be transported to Earth, while more common metals could be used for construction in space [O’L77].
Different options have been pointed out to obtain these materials from asteroids. One option is to send a robotic
probe to visit an asteroid, collect such materials and bring them back to Earth. A second option is to attach
a propulsion system to the asteroid and, by means of a small manoeuvre, capture it into a suitable orbit of
the Earth-Moon system. This last technique, although difficult to carry out, allows for a much simpler mining
strategy once the asteroid is inside the Earth-Moon system. In this context, near Earth asteroids (NEAs) offer
very suitable targets.

There are several works in the literature that analyse the capture near the L1 and L2 collinear points (for a
recent review, see [SNU18]). For instance, [SGYAM12] studies the capture opportunities for a selection of NEAs
targeting Lyapunov and Halo orbits of the Earth-Sun Circular Restricted Three-Body Problem (RTBP). The
capture of NEAs targeting L2 Lyapunov and Halo orbits in the Earth-Moon RTBP is discussed in [TMC17].
In both works, the case of asteroid 2006 RH120 is analysed, resulting in costs between 58 m/s and 298 m/s
in the first case (Earth-Sun RTBP) and less than 500 m/s in the second (Earth-Moon RTBP). The attention
paid to the collinear points L1 and L2 is due to their strong instability and low energy level, that aids to
a rapid dynamics to enter and leave the system passing close to the small primary, either the Moon in the
Earth-Moon system or the Earth in the Sun-Earth system. However this advantage to have a fast approach is
also a disadvantage to control it, since high fuel costs have to be employed to avoid the asteroid to leave this
region with the same facility as it is approached. Not to mention the risks of a crash into the Moon or the
Earth. Other works suggest the capture of an asteroid without targeting any particular orbit, for example, in
[USB+14], the authors analyse the lengthening of the time that the asteroid 2006 RH120 was orbiting the Earth
in its last approach in 2006, by sweeping a three dimensional mesh on the parameters that define a low thrust
maneouver. Among their results, a manouver of total ∆v of only 32 m/s is found to have been able to extend
this time another five years.

In this paper we propose the neighbourhood of the L3 point of the Earth-Moon system as one of the potential
destinations for a captured asteroid. One of the advantages of this region is a very mild instability that allows
for an extremely cheap control to keep the asteroid there: the station keeping manoeuvres to remain in the
neighbourhood of L3 are of just some cm/s per year [FV04]. So, it is very cheap to keep the asteroid in that
region, in order to perform a mining process or just waiting for the right moment to send it towards to some
other region. Another advantage of this region is that, as we will see later on, there are invariant manifolds
connecting the vicinity of L3 with the trajectories of some NEAs.

The model we have used is the planar Bicircular model. In this model, Earth and Moon revolve in circular
orbits around their centre of mass, and this centre of mass and the Sun revolve in circular orbit around the
(Earth+Moon)-Sun centre of mass. The description of the motion of a fourth infinitesimal particle moving
under the gravitational attraction of these three masses is known as the Bicircular problem (BCP). The BCP
is usually written as a periodic time-dependent perturbation of the RTBP, where the time dependence comes
from the presence of the Sun. In this model, when the the infinitesimal particle is at some distance from Earth
and Moon it follows a nearly-Keplerian orbit around the Sun, while when enters the Earth-Moon systems it
follows the dynamics of a Restricted Three-Body Problem with a perturbation coming from the Sun. Hence, it
seems a natural initial model to study the capture of a NEA.

It is well-known that the L3 point of the RTBP becomes a periodic orbit in the BCP model of centre×saddle
type. It is also well known that, under generic conditions, the elliptic directions of such a periodic orbit give
rise to a one-parametric family of quasi-periodic motions (invariant tori) with two basic frequencies, one coming
from the effect of the Sun and one coming from the family of periodic Lyapunov orbits of L3 in the Earth-Moon
RTBP [JV97b, JV97a]. If we use the temporal Poincaré map given by the period of the Sun these quasi-periodic
orbits become an invariant curve. The computation of these invariant tori is done on a suitable Poincaré map
and it is discussed in [JN20]. These invariant curves are (mildly) hyperbolic so that they have stable/unstable
invariant manifolds. A standard procedure to compute these manifolds is to use the linear approximation to
the manifolds and globalising them by numerical integration. In this case, to have a good level of accuracy the
numerical integrations have to start very close to the torus and, hence, a long integration time is needed to
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move away from the neighbourhood of L3. This long integration time introduces some numerical difficulties (see
Section 4) and, for this reason, we have implemented the parametrization method to compute these invariant
manifolds up to high order. As these computations are done in a Poincaré map, the parametrization method
is combined by a jet transport technique to propagate the high order derivatives needed in the parametrization
method [GJJC+21]. The last step of the process is to refine trajectories on the stable manifold that arrive at
some given position at a given time; the position and time of the asteroid. The difference in their velocities
gives the value of the impulse maneouver, ∆v, required to insert the NEA into the stable manifold.

As a test example, we have considered the capture of the asteroid 2006 RH120. This is a small asteroid
(3.3 ± 0.4 meters in size [KKP+09]) that makes close approaches to the Earth-Moon system. In fact, it was
orbiting the Earth from September 2006 to June 2007. We have selected the 2006 approach to show a strategy to
capture it near the L3 point of the Earth-Moon system. We show that there are many options to capture it using
a ∆v in the range 100-300 m/s, and some other options to capture it with a ∆v below 100 m/s. Remarkably,
there is one option with a ∆v as low as 20 m/s.

The paper is structured as follows. Section 2 describes the BCP model and some previous results that will
be used here, Section 3 explains the computation of invariant manifolds of invariant curves, Section 4 discusses
the use of these manifolds to construct a capturing strategy, and Section 5 shows the results of applying the
previous strategy to the capture of the asteroid 2006 RH120. Finally, Section 6 is devoted to the conclusions
and future work.

2 The Bicircular model

The Bicircular model (BCP) can be seen as a modification of the Circular Restricted Three Body Problem
(RTBP), in which the effect of the gravitational field of a fourth body is introduced as a time-periodic pertur-
bation [Hua60, CRR64]. We consider the primaries to be the Earth and the Moon, and the perturbative body
to be the Sun. As in the RTBP, units are taken such that the distance between Earth and Moon (3.8440× 105

km) and the sum of their masses (6.0457× 1024 kg) are normalised to 1, and such that their period (27.321577
days) is normalised to 2π. In these units the gravitational constant is 1. Considering the synodic Earth-Moon
RTBP frame of reference with the origin fixed at the Earth-Moon barycentre, the Hamiltonian for the planar
BCP is written as

HBCP =
1

2
(p2x + p2y) + ypx − xpy −

1− µ
rPE

− µ

rPM
− ms

rPS
− ms

a2s
(y sin(ϑ)− x cos(ϑ)), (1)

being rPE , rPM and rPS the distances from Earth, Moon and Sun to the particle, respectively. ms is the
mass of the Sun, as is the distance between the Sun and the Earth-Moon barycentre, and ϑ = ωst is the angle
that specifies the position of the Sun at each time t, where ωs is the Sun angular velocity with respect to the
Earth-Moon system, see Figure 1. In this system, the period of the Sun, T = 2π/ωs ≈ 29.53 days, coincides
with the synodic period of the Moon.

Notice that, the Hamiltonian in (1) is the Hamiltonian of the RTBP plus the last two terms that accounts
for the solar gravity perturbation. In Table 1 the parameters for Earth-Moon-Sun BCP are presented in
adimensional units. Notice that in this reference frame, the Sun is seen as rotating around the Earth-Moon
barycentre. Also notice that the BCP is not coherent, since the gravitational attraction of the Sun affects the
particle, and not to the primaries. Nevertheless, BCP has been proved to describe dynamical phenomena in the
Earth-Moon system through comparison with real system integrations, [SGJM95, Jor00, JN20].

µ ms ωs as
0.012150582 328900.55 0.925195985 388.811143023

Table 1: Parameters of the Bicircular model for the Earth-Moon system, in RTBP units.

Under generic conditions, the equilibrium points of the RTBP are replaced by periodic orbits in the BCP,
with the period of the perturbation. In particular, for the Earth-Moon system under solar perturbation, each
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Figure 1: Schematic of the Bicircular Model. Note that distance to Sun is not in scale.

of the three collinear points, L1, L2 and L3, are replaced by one unstable periodic orbit1 and the triangular
equilibrium points, L4 and L5 (that are linearly stable in the RTBP) are replaced by three periodic orbits; two
of them stable and the other one, linearly unstable, see [SGJM95, Jor00].

2.1 The Lyapunov family of quasi-periodic orbits near L3

The periodic orbit of the BCP replacing the L3 point of the RTBP is of centre×saddle type. Therefore,
under generic hypothesis, there exists a Cantor family of quasi-periodic orbits emanating from its centre direc-
tion [JV97b, JV97a]. The fact that the family is Cantorian means that there is an infinite number of holes in
the family. These holes correspond to resonances and are exponentially small with the order of the resonance
[JV97b]. This implies that only a few of them are visible, corresponding to low order resonances. The resonances
here are all of high order and this makes that, with the usual double precision accuracy, the family looks like if
it were continuous. The family of quasi-periodic solutions around L3 have two basic frequencies (the frequency
of the Sun in the BCP plus a frequency coming from the centre direction of the periodic orbit) and inherit the
hyperbolic character of the periodic orbit. Next, we summarise the computation of this family of quasi-periodic
motions and their linear stability (for more details, see [JN20]).

As the time dependence of the Hamiltonian is periodic, we use the Poincaré map P defined with the period
T of this time dependence. This is a 4D discrete autonomous dynamical system whose fixed points correspond
to periodic orbits of period T of the Hamiltonian. In the same way, the above-mentioned quasi-periodic orbits
become invariant curves for this map. An invariant curve can be represented by a smooth map ϕ : T1 → R4

that satisfies an invariance condition,

P (ϕ(θ)) = ϕ(θ + ω), ∀θ ∈ T1, (2)

where ω ∈ T1 is the frequency of the invariant curve. To approximate invariant curves, we represent them by
truncated Fourier series and we apply a Newton method to find the Fourier coefficients that solve the invariance
equation (2). The number of Fourier coefficients is selected according to the accuracy requirements. Once the
invariant curve is computed, its stability is obtained from the following generalised eigenvalue problem,

DxP (ϕ(θ))ψ(θ) = λΓωψ(θ), (3)

where Γω denotes the operator Γω : C(T1,C4) → C(T1,C4) such that Γωψ(θ) = ψ(θ + ω). As before, this
eigenproblem is solved in the space of Fourier coefficients. Following [Jor01] it is not difficult to see that it
has 4 distinguished eigenvalues: a couple of 1 (a 1 refers to the tangent direction to the invariant curve and a
1 refers to the tangent direction to the family of invariant curves), and a real couple λu, λs = λ−1

u with, say,

1The L2 point is a bit more involved, see [And02, JCFJ18, RJJC21]
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Figure 2: Left: the family of invariant curves around L3 projected in XY -plane; the Earth is included as a black
circle of corresponding radius. Right: hyperbolic eigenvalues of the invariant curves according to their distance
to the periodic orbit replacing L3.

|λu| > 1. Then, the eigenfunctions of eigenvalues λu and λs give the linear approximation to the unstable and
stable manifolds: for instance, if ϕ is the invariant curve, and ψ the stable eigenfunction, then

(θ, σ) 7→ ϕ(θ) + ψ(θ)σ, (θ, σ) ∈ T1 × R, (4)

is the linear approximation to the stable manifold. Of course, this approximation is accurate only for small
values of |σ|.

Figure 2 (left) shows the family of invariant curves that emanates from the centre direction of the periodic
orbit that replaces L3 in the BCP model. This family and its stability has already been computed in [JN20].
Figure 2 (right) shows the eigenvalues λs and λu. The horizontal axis identifies the invariant curves by their
distance to the periodic orbit replacing L3. This distance is defined as follows. The periodic orbit that replaces
L3 is seen as a fixed point p0 of the map P . Due to the symmetries of this problem, it happens that p0 is on the
OX axis. On the other hand, the parametrization of the invariant curves, θ 7→ ϕ(θ), has been chosen such that
ϕ(0) is on the OX axis and to the left of p0. Then, the distance between the curves and the periodic orbit is
defined as the distance, on the OX axis, between the points p0 and ϕ(0). This distance is what we have called
“distance to L3”, for short.

3 Invariant manifolds of invariant curves

In this section we focus on the effective computation a high order approximation to the invariant manifolds
of an invariant curve. We will use the well-known parametrization method, that has been used for numerical
computations in the 80’s by C. Simó to approximate the invariant manifolds of equilibrium points of ODEs and
fixed points of maps (see also [FR81]), but it is remarkable that this method is also an excellent tool to prove
the existence of invariant manifolds, as shown in [CFdlL05]. A very good exposition can be found in the book
[HCL+16]. The case of the stable/unstable manifolds of an invariant curve of quasi-periodic maps is considered
in [HdlL06]. In this paper, we combine the parametrization method with the jet transport technique to compute
accurate high order approximation of stable/unstable manifolds of invariant curves of Poincaré maps.

3.1 Jet transport

Jet transport is a computational technique to compute high order derivatives of the flow of an ODE with
respect to initial data and/or parameters ([BM98, AFJ+08, AFJ+09, ADLBZB10, WZ12]). It is based on using
automatic differentiation [Gri00] on a numerical integration of ODEs. The main idea is to replace the basic
arithmetic of the integrator by an arithmetic of (truncated) formal power series in several variables. The formal
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power series codifies the value of a function (the constant term) and their derivatives (the coefficients of each
monomial), and the propagation of these power series through the numerical integration produces exactly the
same results as the integration of the corresponding high order variational equations of the ODE [GJJC+21].
Although other options are possible, here we have used, as basic numerical integrator, the Taylor method [JZ05]
that has been modified to operate on power series, see [GJJC+21].

3.2 The parametrization method

Let us describe the procedure with some level of detail for our situation. First, let us write a formal Taylor-
Fourier expansion of the invariant manifold depending on two parameters, θ ∈ T1 and σ ∈ R,

W (θ, σ) = a0(θ) + a1(θ)σ +
∑
k≥2

ak(θ)σk,

where ak(θ) ∈ R4. It is clear that a0 is the parametrization of the invariant curve (ϕ in (4)) and a1 the
eigenfunction (ψ in (4)) and this gives the linear approximation to the invariant manifold. To compute the
functions ak, k ≥ 2, we use that the manifold must be invariant under the Poincaré map P ,

P (W (θ, σ)) = W (θ + ω, λσ), (5)

where λ is the eigenvalue related to the eigenfunction ψ. It is clear that

W (θ + ω, λσ) = a0(θ + ω) + a1(θ + ω)λσ +
∑
k≥2

ak(θ + ω)λkσk.

As it is usual in these situations, we find the coefficients ak order by order. Let us denote by Wm the truncation

Wm(θ, σ) = a0(θ) + a1(θ)σ +

m∑
k=2

ak(θ)σk,

and let us assume that we know Wm−1 and we want to compute Wm (that is, we assume we know a0, ..., am−1

and we want to compute am). Applying the Poincaré map P to Wm,

P (Wm(θ, σ)) = P (Wm−1(θ, σ)) +DP (Wm−1(θ, σ))am(θ)σm +Om+1(σ)

= P (Wm−1(θ, σ)) +DP (a0(θ))am(θ)σm +Om+1(σ). (6)

As Wm−1 is the Taylor-Fourier expansion of the invariant manifold, we have that it is invariant up to degree
m− 1, that is

P (Wm−1(θ, σ)) = Wm−1(θ + ω, λσ) + bm(θ)σm +Om+1(σ),

where bm(θ) denotes the coefficient at order m that appears in the evaluation up to order m of the Poincaré
map of Wm−1. Therefore, putting this last expression into (6) we obtain

P (Wm(θ, σ)) = Wm−1(θ + ω, λσ) + bm(θ)σm +DP (a0(θ))am(θ)σm +Om+1(σ).

Next, we impose the invariance condition (5) up to degree m, to obtain

bm(θ)σm +DP (a0(θ))am(θ)σm = am(θ + ω)λmσm,

which can be rewritten as
(DP (a0(θ))− λmΓω)am(θ) = −bm(θ). (7)

This is an equation that, under generic conditions of non-resonance, uniquely determines the function am. The
numerical treatment of this equation is discussed in the next section.

Note that this procedure is valid for parametrizing both the stable and the unstable invariant manifold of an
invariant curve. However, when applying the map P forward in time to compute the stable invariant manifold
the expanding effect of the (unwanted) unstable direction amplifies the error propagation. For this reason, it is
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more accurate to parametrize the stable invariant manifold by imposing the invariance equation on the inverse
of the Poincaré map, that can be easily obtained by integrating backward in time,

P−1(W (θ, σ)) = W (θ − ω, σ
λ

). (8)

Again, we solve (8) order by order. Obviously, as before, order 0 and order 1 correspond to the invariant curve
and the associated eigenfunction, respectively. In general, assuming that we know the coefficients up to order
m− 1, coefficient am(θ) satisfies the system given by

(DP−1(a0(θ))− λ−mΓ−ω)am(θ) = −b−m(θ), m ≥ 2, (9)

where, as before, b−m(θ) denotes the coefficient at order m of the evaluation by the inverse Poincaré map of the
manifold up to order m− 1.

3.3 The numerical algorithm

We have already seen that the order zero and one coefficients, a0 and a1, correspond to the invariant curve
and to the linear approximation to the invariant manifold, respectively, and that the coefficients of order higher
than one, ak are obtained by solving recursively the system in Equation (7) or (9). In this section we detail the
algorithm for computing these coefficients of the parametrization of the invariant manifolds.

As it has been mentioned before, the procedures to compute the invariant curve and linear stability can
be found in [CJ00, Jor01, GJ04]. There, the discretization of the invariant curve is done by means of a real
(truncated) Fourier series in terms of the angle θ ∈ [0, 2π],

ϕ(θ) ≈ α0 +

N∑
κ=1

ακ cos(κθ) + βκ sin(κθ), (10)

being (α0, ακ, βκ) the Fourier coefficients for the modes κ ∈ [1, N ]. The generalised eigenvalue problem (3) is
also solved in terms of the Fourier coefficients, so that eigenfunctions are also approximated by Fourier series
truncated at order N.

Expressing the invariant curve and eigenfunction as Fourier series is very convenient from the point of view
of computations, due to their fast convergence. Moreover, the operator Γω is just a 2×2 block diagonal matrix
matrix that applies a rotation equal to ω to each pair of coefficients (ακ, βκ). Following this idea, we solve the
system in (7) in terms of the Fourier coefficients, what gives the expression for each ak also as a Fourier series.

Then, the algorithm for computing the parametrization of the invariant manifold of an invariant curve up
to order K starts by defining a mesh of angles along the curve: θj = 2πj/l, being l the number of points of
the mesh such that j ∈ [0, l] and θj ∈ [0, 2π], and to apply the jet transport to each of these points in order to
obtain the values bk(θj). Notice that, the jet transport algorithm applied to an invariant manifold up to order
k − 1 gives the coefficients of order equal and higher than k, but only order k is of interest at each application.

Once we have the table of values (bk(θj), θj), we compute the corresponding Fourier series for the bk(θ)
coefficients, and solve one linear system in terms of Fourier coefficients to find coefficients ak(θ) as Fourier series:

(DP (a0(θ))− λkΓω)ak(θ) = −bk(θ). (11)

Note that, bk(θ) is then parametrized by a Fourier series of l = 2N + 1, Fourier coefficients, and consequently,
the series for ak(θ) has the same number of modes. For convenience, we start using the same number of modes
used for discretizing the invariant curve and its eigenfunction. However, it may happen that this number, that
is good enough for approximating the invariant curve and the eigenfunction, does not approximate accurately
some of the ak(θ) for k ≥ 2, and therefore it is necessary to add modes to the Fourier series in order to
improve the approximation of the invariant manifold. As the accuracy of each ak(θ) is related to the accuracy
of corresponding bk(θ), when we compute the Fourier series of bk(θ) we check the euclidean norm of its last
two modes to be below some tolerance. If it is not, we re-compute the table of values (bk(θj), θj) for a larger
number of points such that the number of modes of bk(θ) is increased, as well as the number of modes of ak(θ).

Let us now summarise our numerical implementation. The starting point is a truncated Fourier series
that approximates the invariant curve (ϕ) and a truncated Fourier series that approximates the eigenfunction
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ψ giving the linear approximation to the manifold. Then, a0 = ϕ and a1 = ψ. Moreover, we need the
(2N + 1)n × (2N + 1)n matrix that contains the matrix flow DP (a0) (this is the same matrix that appears
in the Newton method and in the stability computation (3)). As before, 2N + 1 is the number of Fourier
coefficients and n the dimension of the dynamical system (n = 4 in our case). The chosen values of N and the
accuracy is discussed later on (see also [JN20]).

Note that at each step we have to evaluate P (Wm), where Wm is a Taylor-Fourier series. As the jet transport
technique only allows to evaluate P on power series, we compute {W (θj , σ)}j being θj a suitable equispaced
mesh of values of θ. Each W (θj , σ) is now a power series so we can compute P (W (θj , σ)) and, using a Fourier
transform, we obtain P (Wm).

To end this section, let us summarise the computation of the coefficients ak, k ≥ 2, which is done recurrently
order by order. So, assume that we know Wm−1 and we want to compute Wm. We also assume that we have
computed and stored the matrix (of size (2N + 1)n× (2N + 1)n) DP (a0(θ). Then,

1. Evaluate Wm−1(θj , σ) on a mesh {θj}`−1
j=0 of ` points (θj = 2πj/l, ` = 2N + 1), to obtain ` polynomials of

degree m− 1.

2. Apply the jet transport algorithm (working with polynomials of degree up to m) to each of the Wm−1(θj , σ)
polynomials to obtain the table of values (θj , bm(θj)) from the coefficient of degree m.

3. Apply a Fourier transformation to obtain bm(θ). We use as an estimate of the error the size of the last
terms of these Fourier coefficients. If this estimate is not small enough, we repeat steps 1 and 2 with
larger value of l.

4. Solve the linear system in (11) to obtain am, and then Wm = Wm−1 + amσ
m.

These steps are applied up to the desired degree for the invariant manifold.
The previous algorithm is applied “as is” to compute the unstable manifold. For the stable manifold,

to minimise the error propagation, this method is applied to the inverse map P−1. The reason for this better
numerical behaviour is that the stable manifold is a repelling manifold under P and not repelling under P−1 (and
the unstable manifold is repelling under P−1 and not repelling under P ). Moreover, note that the computation
of the inverse of the Poincaré map, P−1, can be done very easily by simply integrating backward in time.

3.4 Fundamental Cylinder (FC)

The stable/unstable manifolds of can be seen as cylinders, parametrized by the same angle as the invariant curve
(θ) and a parameter to move away from the invariant curve (σ). Looking at these parameters, the dynamics on
this cylinder is very simple: the point corresponding to the parameter values (θ, σ) in the unstable manifold is
mapped to (θ+ω, λuσ) through P , and, equivalently, the point corresponding to the parameter values (θ, σ) in
the stable manifold is mapped to (θ − ω, λ−1

s σ) through P−1. This means that we can define a set of the form
θ ∈ T1, σ ∈ [σ0, λuσ0] for the unstable manifold (and σ ∈ [σ0, λ

−1
s σ0] for the stable), which can be seen as a set

that generates, under iteration of the map P (and P−1), the complete manifold. We will refer to such set as
Fundamental Cylinder (FC).

To simplify the discussion, let us focus on the unstable manifold. An approximation for a curve of the
fundamental cylinder is given by WK(θ, σ0), where K is the order of the approximation and σ0 is a sufficiently
small value. If we choose this curve as the “lower part” of the cylinder, then the “upper part” is given by
WK(θ, λuσ0). Note that neglecting the rotation of the angle for the upper curve does not affect to the definition of
the fundamental domain. The parametrization of the fundamental cylinder for the unstable invariant manifold,
WK(θ, τ) =

∑K
k=0 a

u
k(θ)σk, is the following:

z(θ, τ) =

K∑
k=0

auk(θ)((1 + τ(λu − 1))σ0)k, (12)

where τ ∈ [0, 1] is a parameter: when τ = 0, z(θ, τ) parametrizes the lower curve, WK(θ, σ0), and when τ = 1,
it parametrizes the upper curve, WK(θ, λuσ0). The FC is used as starting place for the numerical integrations
used to extend the manifold as much as needed. Note that the value σ0 has to be chosen small enough such
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that this representation of the FC is accurate, but large enough to minimise the integration time to reach the
asteroid. The choice of σ0 is discussed in the next section.

Finally, let us mention that for the fundamental cylinder of the stable manifold, WK(θ, τ) =
∑K
k=0 a

s
k(θ)σk,

we use

z(θ, τ) =

K∑
k=0

ask(θ)((1 + τ(1/λs − 1))σ)k. (13)

Again, z(θ, τ) parametrizes the lower curve, W s(θ, σ), when τ = 0, and when τ = 1 it parametrizes the upper
curve, W s(θ, λ−1

s σ). The globalisation is done using the inverse of the Poincaré map.

3.5 Accuracy and tests

In this section we discuss the choice of the degree K of the parametrization of the manifolds, the estimation
of the domain of validity of the computed parametrization, and the tests used to check the correctness of the
results. We recall that, applying the algorithm given in Section 3.3, we approximate the coefficients ak, up to
some order K, as a truncated Fourier series,

ak(θ) ≈ α0 +

N∑
κ=1

ακ cos(κθ) + βκ sin(κθ).

As a general rule, we have that the higher the degree of the parametrization K and the number of Fourier
modes N , the more accurate is the approximation of the parametrization of the invariant manifold W (θ, σ) =∑K
k=0 ak(θ)σk. However, when K is large enough, the gain of accuracy provided by a new degree K + 1 of the

parametrization does not compensate the computational cost needed to obtain this new degree.
To fix the discussion, let us focus on the unstable manifold (a similar discussion is valid for the stable

one), and let us also assume that the value N has already been chosen to have the required accuracy, may be
depending on K (see the discussion in Section 3.3). A fast error estimate for the truncated expansion of the
manifold follows from the size of the last computed term (the one of degree K),

‖aK‖1 |σ|K ≈ ε, ‖aK‖1 = |α0|+
N∑
κ=1

|ακ|+ |βκ|.

We have to choose a value σ̄0 > 0 such that the parametrization of a fundamental domain as in (12) is accurate
up to λuσ̄0. Hence, from the previous formula we obtain that

σ̄0 ≈
1

λu

(
ε

‖aK‖1

)1/K

. (14)

Therefore, given an accuracy ε, we compute the value of σ̄0 and use some σ0 ≤ σ̄0 for computing the approxima-
tion to the FC. Notice that, in the presence of symmetries, checking only the last order of the parametrization
may cause problems since it could vanish depending on its parity. In this case the last two terms of the expansion
have to be used.

In order to check the final accuracy of the approximation of the invariant manifold we compare the error
of the invariance condition for the parametrization of the invariant manifold, W (θ, τ), at a given angle θ, but
at two different values of σ, say σ1 and σ2 = σ1/2. Obviously, if the parametrization of the manifold has been
computed up to order K, the truncation error depends on the power K + 1 of the parameter σ. Then, for σ1
we would have that

ε1 = |P (WK(θ, σ1))−WK(θ + ω, λσ1)| ≈ cσK+1
1 ,

and for σ2,
ε2 = |P (WK(θ, σ2))−WK(θ + ω, λσ2)| ≈ cσK+1

2 ,

where c is a constant. The relation between the two errors is

ε1
ε2
≈ σK+1

1

(σ1

2 )K+1
≈ 2K+1.
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Therefore, we compute the quantity
log(ε1/ε2)

log(2)
,

and check that the result corresponds to K + 1. This test has been passed for the manifolds used in this work.

4 Computational strategy

Some parts of the invariant manifolds of the quasi-periodic orbits near L3 move around the Earth-Moon system,
while other parts escape and orbit the Sun, [JN20]. The main idea to capture a NEA in the vicinity of L3

is to propagate, backward in time, the stable invariant manifold of a quasi-periodic orbit near L3 looking for
encounters in positions with the target object. The difference in velocities at this “meeting point” gives the
manoeuvre to inject the NEA in the manifold so that the natural dynamics of the problem sends the asteroid
to the neighbourhood of L3. As mentioned in the Introduction, the advantages of using L3 are mainly a very
low cost for the station keeping there, the possibilities offered to reach a different region from there and the low
risk of crashing during the transfer.

It is worth mentioning that a preliminary exploration of the possibilities of L3 for the capture was done
using the linear approximation of the invariant manifolds of the invariant curves shown in Figure 2. However
we do not aim just to find an invariant manifold that passes close to the position of an asteroid to justify the
capture, but to be able to find the initial condition on the fundamental domain of a torus that is sent (by
the backwards flow of the BCP) to the position of the asteroid at the right time. Notice that, when using
the linear approximation of the invariant manifolds, the fundamental domain needs to be defined very close
to the invariant curve (for σ ≤ 10−5), therefore the globalisation of those initial conditions requires numerical
integration of trajectories that spend a significant amount of time just closely following the quasi-periodic orbit,
increasing the numerical errors and making more difficult to find the initial condition that corresponds exactly
with the position of the asteroid. This difficulty is solved using a high order parametrization method for the
invariant manifolds.

The computational strategy for the capture that we present here is based on three steps. First of all, the
positions and velocities of the asteroid are obtained from the JPL Horizons system [JPL] in the ecliptic reference
frame at some Julian epochs. Therefore, a change of positions, velocities and time2 is needed to transfer the
information on the location of the asteroid to the Bicircular model. This is done in Section 4.1. The second
step is to define the fundamental domains of the stable invariant manifolds of tori around L3, globalise them
backward in time, see Section 4.2, and compare the position of the manifold with that of the asteroid. This
allows to identify sets of initial conditions on the FC that approach the asteroid. Finally, in Section 4.3, we
explain a Newton method used to compute the initial condition on the FC that arrives, backward in time, to
the location (positions and time) of the asteroid.

As the BCP is a periodically time-dependent model, we can look for encounters NEA-manifolds at different
times. If we use the Poincaré map P then we only look for encounters at time t = 0 mod T (that is, after
an integer number of periods of the BCP). In our analysis of the capture we define different temporal sections,
corresponding to an integer number of periods, to a quarter, to a half and to three quarter of the period. This
has two effects; on the one hand, the relative position with respect to the Sun changes and this can aid (or
difficult) the capture, and on the other hand, the positions of the asteroid itself are also different.

Finally, we want to emphasise that this work studies, as an example, the capture of the asteroid 2006 RH120
in its last approach to the Earth, but it is easy to see that the whole strategy described here can be used to
study the capture of any other asteroid of interest.

4.1 Change of coordinates and time

In order to define the change of coordinates and time for the asteroid from the ones provided by JPL (ecliptic
coordinates centered at the Solar system barycentre) to BCP coordinates we make use of two facts: first, in the
BCP the positions of the Earth, Moon and Sun at time 0 correspond to a lunar eclipse, so it is easy to identify
a real lunar eclipse and take it as the origin for time (t0 = TECLIPSE in Julian days), the second fact is that

2We recall that the BCP is a time-dependent model
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the time is a periodic variable in this model, therefore, at every solar period the Earth, the Moon and the Sun
come back to their initial positions at time 0. According to these two facts, we can establish any initial time,
t0, and take the ephemerides of the asteroid at every solar period, such that all those different Julian epochs
of the asteroid correspond to the same temporal section in the BCP. Then, the positions and velocities of the
asteroid are translated to the synodic reference frame of the BCP and compared with those of the invariant
manifolds of invariant curves computed at the same temporal sections.

As it has been mentioned before, we analyse different temporal sections. Epochs defined as

t = t0 +NTT, where t0 = TECLIPSE + STT, ST =

{
0,

1

4
,

1

2
,

3

4

}
,

being t0 the origin of time, T the solar period, NT an integer number of solar periods and ST a fraction defines
the temporal sections; for ST = 0 the epochs correspond to times 0 or “NTT” (integer number of periods) in
the BCP, for ST = 1

4 epochs correspond to temporal section at a quarter of the period, for ST = 1
2 to a half of

the period and for ST = 3
4 to three quarter of the period.

Since T = 2π
ωs

in RTBP units, T = 2π
ωs

27.321577
2π in days, the Julian epochs of interest for the asteroid are

those such that

t = t0 +NT
27.321577

ωs
where t0 = TECLIPSE + ST

27.321577

ωs
, ST =

{
0,

1

4
,

1

2
,

3

4

}
. (15)

Once we select suitable epochs, JPL Horizons database is used to obtain the positions and velocities of the
asteroid in the ecliptic’s plane at those specific times. A change of coordinates needs to be applied to them for
their analysis in the Bicircular Problem. In [GLMS01, JN20], the change of coordinates to translate a position
in the adimensional synodical reference frame to the ecliptic one is explained, so let us only summarise it here.
Let e be the positions of the asteroid in the ecliptic frame and a its positions on the adimensional BCP system;
e and a are related by an orthogonal matrix C to change from rotating to non-rotating frame, by a scale factor
k = ||RE − RM || to correct the length unit and by a translation to move the origin from the Earth-Moon
barycentre b to the barycentre of the solar system,

e = kCa+ b. (16)

Matrix C is composed by three unitary column vectors,

c1 =
RE −RM
||RE −RM ||

, c3 =
(RM −RE) ∧ (VM − VE)

||(RM −RE) ∧ (VM − VE)||
, c2 = c3 ∧ c1,

where RE , RM , VE and VM are the positions and the velocities of the Earth and Moon in the ecliptic frame.
Three observations need to be done. First one, in order to translate velocities between the two systems, it

is necessary to derive (16) with respect to time, what involves the accelerations of the Earth and the Moon.
Second one, as we want to translate the positions provided by the JPL database to the BCP frame, we have
to apply the inverse change of coordinates. This requires the inverse of matrix C, that does not suppose any
difficulty since it is orthogonal. And the last one, since we consider the planar BCP, we project the positions a
and their velocities to the XY -plane.

In our example, we study the cost to capture the asteroid 2006 RH120 near L3. This NEA was naturally
captured by the Earth from September 2006 to June 2007. We analyse the possibilities of capture at different
epochs that verify (15), such that all these epochs correspond to the same temporal section in the BCP for a
given ST . The selected epochs go from April 2006 and May 2007, some months before and along the time of
the natural capture. The reasons for choosing this time span are the following: at these epochs the vertical
coordinate is lower than in previous epochs, the change of coordinates (16) is more precise close to (or inside)
the Earth-Moon system, and finally, considering positions close to the system, the propagation time of the
invariant manifolds is quite low, so that we can guarantee a certain level of control on the numerical errors.

The exact epochs and coordinates of the asteroid in the planar BCP at a temporal section corresponding to
integer number of solar periods (ST = 0 in (15) and taking TECLIPSE = 2451564.69787 Julian Days) for the
selected time span, are shown in Table 2. First column designates an identity number to each epoch.
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it Epoch (Julian Day) x y px py
1 2453838.552774182 (2006-Apr-13) 8.49569856e+00 5.32382756e+00 -1.32303889e+00 6.39230591e-01

2 2453868.083357353 (2006-May-12) 4.30485868e+00 2.69869849e+00 -5.98173604e-01 4.69696447e-01

3 2453897.613940524 (2006-Jun-11) 2.20409179e+00 3.15215977e+00 -2.31495071e-01 4.09922742e-01

4 2453927.144523695 (2006-Jul-10) 1.79617205e+00 3.52278287e+00 4.88502390e-02 5.27242305e-02

5 2453956.675106866 (2006-Aug-09) 8.44580321e-01 1.94256864e+00 -1.83258282e-01 -2.87989646e-01

6 2453986.205690037 (2006-Sep-07) -2.03317473e+00 3.96100179e-01 -3.27669077e-01 3.32987066e-02

7 2454015.736273209 (2006-Oct-07) -1.77595242e+00 -6.00168179e-01 1.34571469e-01 -5.87429182e-02

8 2454045.266856380 (2006-Nov-05) -1.59983939e+00 -1.84351841e+00 -1.29626305e-01 1.68008169e-02

9 2454074.797439550 (2006-Dec-05) -2.52446813e+00 -1.45236080e+00 4.97133752e-02 2.81586255e-01

10 2454104.328022720 (2007-Jan-03) 5.36966985e-01 1.89106392e-01 9.19935708e-01 -1.16359612e-01

11 2454133.858605890 (2007-Feb-02) 1.01383428e+00 -1.06799662e+00 -2.12516151e-01 1.87709985e-01

12 2454163.389189060 (2007-Mar-03) -5.50357733e-01 4.66104142e-01 -1.47342869e-01 2.34743158e-01

13 2454192.919772240 (2007-Apr-02) 1.55999311e-01 -1.47760228e+00 1.76720970e-01 -6.54112731e-01

14 2454222.450355410 (2007-May-01) -1.05304516e+00 -1.90933922e+00 1.94206705e-01 1.00575691e-01

15 2454251.980938580 (2007-May-31) -3.67319092e-01 5.92231168e-01 2.52078533e-01 2.49872133e-01

Table 2: Fifteen epochs corresponding to time 0 or NTT in the BCP, and the coordinates of the asteroid 2006
RH120 in the planar BCP at these epochs.

4.2 Invariant manifolds

The Bicircular Problem, as many other classical mechanical systems, presents a symmetry when inverting the
time; if (x(t), y(t), px(t), py(t), t) is a particular solution of the system, also is (x(t),−y(t),−px(t), py(t),−t).
Since the computed invariant curves near L3 cut symmetrically the OX axis, they are symmetric to themselves
(self-symmetric), and their stable and unstable manifolds associated are also symmetric between them. Also,
in our frame of the BCP, λu = λ−1

s due to the Hamiltonian structure. Therefore, we can compute only one
invariant manifold (either the stable or the unstable) and have both, since

W s(θ, σ){x, y, px, py} = Wu(θ, σ){x,−y,−px, py}.

In this work we have computed the unstable manifolds and we have used the symmetry to obtain the stable
one.

The family of invariant curves around L3 covers a wide area of the Earth-Moon system, see Figure 2.
However, not all of them are of interest for our application, since the outermost curves are too big and too close
to the Earth. Therefore we focus on those at a maximum distance of 0.65 adimensional units from L3. Within
this distance the parametrization method is applied to a subset of curves separately by, approximately, 10−3

adimensional length units, to obtain a total of 614 invariant curves.
We have followed the algorithm in Section 3.3 to compute the parametrization of the invariant manifolds

of these 614 invariant curves up to order K = 16. Looking at Figure 2 it is clear that each invariant curve in
the family has different shape and different eigenvalues as their distance to L3 increases. This is is why each
of them is discretized by a different number of Fourier modes. Moreover, the number of Fourier modes is not
kept constant during the computation of the manifold: as it has been explained in Section 3.3, the number of
modes is increased from one order of the parametrization to the next when needed. Notice that each order of
the parametrization, m, is computed tentatively with the same number of Fourier modes as the coefficient of
the previous order, m − 1. The criteria we have followed to increase this number is for the euclidean norm of
the last two terms of bm to be below some tolerance that also depends on the order of the parametrization,
being tol2 = 10−10 at order 2 and tolm = 2tolm−1 for m > 2. When this tolerance is reached, the number of
modes is increased by 20. The reason for this criteria is that the requirement of accuracy can be decreased for
higher order terms without loss of accuracy for the manifold. The full computation of the parametrizations of
the invariant manifolds for the 614 invariant curves following the procedure explained here takes less than 1.5
hours in a computer with 16 processors.

Table 3 shows the number of Fourier modes for the coefficients of the parametrization at order 0, Nκ=0 (the
invariant curve), and the number of modes needed for the coefficient at order 16, Nκ=16, for curves at different
distances from L3 in order to illustrate how the size of the discretizing series increases according to the shape
of the invariant curve and to the degree of the parametrization.
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distance σ̄0
to L3 λu Nκ=0 Nκ=16 from (14)

10−3 3.37281360 25 25 1.34E-01

0.1 3.36135224 27 27 9.28E-02

0.2 3.32665559 28 48 7.20E-02

0.3 3.26751807 29 69 5.86E-02

0.4 3.18166131 32 92 5.02E-02

0.5 3.06474188 45 125 4.45E-02

0.6 2.90843912 72 332 4.04E-02

0.65 2.79811097 84 424 3.86E-02

Table 3: Values of the unstable eigenvalue (λu), the number of Fourier modes needed for the orders of the
parametrizations 0 (Nκ=0) and 16 (Nκ=16) and the σ parameter such that the error of the parametrization up
to order K = 16 is below 10−14, for invariant curves at different distances from L3.

distances |σ| divisions divisions

to L3 considered in θ in τ
10−3 - 0.1 5.00E-02 1000 500

0.1 - 0.3 5.00E-02 2000 500

0.3 - 0.4 5.00E-02 2500 400

0.4 - 0.65 2.50E-02 5000 200

Table 4: Values of σ and the number of divisions taken for the mesh of (θ,τ) to define the fundamental cylinders
for the invariant curves depending on their distance to L3.

Once we have the parametrizations of the stable invariant manifolds for the computed curves, we check up
to which distance from the invariant curve each of the parametrizations can be trusted. Following the criteria
defined by (14) in the Section 3.5, for the parametrizations to satisfy an error ε below 10−14, the values of σ must
be between 1.34×10−1 for the inner invariant curves of the family to 3.86×10−2 for the outer ones, see Table 3.
This supposes a big improvement with respect to the value σ ≈ 10−5 needed for the linear approximation.

Now we have the information needed to define fundamental domains for the stable invariant manifolds (13),
as explained in Section 3.4. These domains are cylinder shaped and they are parametrized by two parameters,
θ and τ ,

(θ, τ) ∈ [0, 2π]× [0, 1] 7→ z(θ, τ) =

K∑
k=0

ask(θ)((1 + τ(1/λs − 1))σ)k.

Notice that σ may have positive or negative values, in order to parametrize the two branches of the stable
invariant manifold. Therefore, to analyse the fundamental domains, first, we need to specify a value for σ and
to make a mesh on the two parameters, such that every point in the fundamental cylinder, (θ, τ), is an initial
condition on the stable invariant manifold. For each invariant curve we need to specify the value of σ and
of the number of divisions taken along the angle θ and in parameter τ to define the mesh of its fundamental
cylinder. The selected values are taken attending to the differences observed between the parametrizations of
the manifolds for curves at different distances to L3. Table 4 collects the values considered depending on the
range of distance at which the curve is placed. This way, the mean distance between each two points in the
mesh of any of the FC is of the order of 5× 10−4 adimensional units, around 200 km.

Each of the points in the mesh, i.e. initial condition on the FC, is integrated backward in time for a maximum
of 15 solar periods, by means of a Taylor method [JZ05]. After each period of the BCP, we compute the distance
to each of the fifteen positions of the asteroid given in Table 2 and we store the minimum of this distance, jointly
with the differences in velocities between the point of minimum distance and the asteroid (we will refer to this
difference as ∆v).

If, during the integration, a trajectory in the stable manifold crashes with the Earth or the Moon the in-
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tegration is stopped and we keep the information of the closest approach to the asteroid before the crash. We
also compute the growth of the derivative of the trajectory w.r.t. the initial condition (this is the typical com-
putation done to estimate Lyapunov exponents) to have an idea of the error propagation due to the instabilities
of the problem. If this factor grows more than 109, we proceed as in the crash case, in order to discard those
trajectories with significant error accumulated.

4.3 Refining an initial condition on the FC

In this section we present a Newton method to refine an initial condition on the FC, identified by two values θ
and τ , that arrives to the position of the asteroid, at a specific time. The seed for the Newton method is given
by the first approximation obtained in the previous section. The FC is parametrized according to (13) as

z(θ, τ) =

K∑
k

ask(θ)((1 + τ(λ−1
s − 1))σ)k,

where z(θ, τ) is a four-dimensional vector, (z = {x, y, px, py}). Therefore, what we want is to find parameters
(θ, τ) such that the trajectory starting at this point reaches, at some time tf , the position of the asteroid. This
condition is written as

F (θ, τ) = {x(θ, τ), y(θ, τ)}tf − {xasteroid, yasteroid} = 0.

This is the equation we will solve using a Newton method. The derivatives of F with respect to θ and to τ
follows from the chain rule,

∂F

∂θ
(θ, τ) = Df(z(θ, τ))tf

K∑
k=0

∂ask(θ)

∂θ

[
σ(1 + τ(λ−1

s − 1))

]k
,

∂F

∂τ
(θ, τ) = Df(z(θ, τ))tf

K∑
k=0

ask(θ)σkk[1 + τ(λ−1
s − 1)]k−1(λ−1

s − 1),

being Df(z(θ, τ))tf a 4 × 4 matrix that contains the derivative of the flow at the final time. Notice that for
k = 0, the derivative of F (θ, τ) w.r.t. τ is zero, since at this order, the parametrization corresponds just to the
invariant curve, that does not depend on τ . Note that these expressions involve four dimensions, but we are
only interested on the first two components, since we want to refine the values of (θ, τ) that give the desired
values for the (x, y) coordinates at the final time.

5 Results for the asteroid 2006 RH120

The strategy explained in the previous section has been applied to four different temporal sections, that is four
Poincaré maps defined at times corresponding to an integer number of solar periods (T ), to a quarter (T/4), to
a half (T/2) and to three quarter (3T/4) of solar periods.

In the time span considered, we have found several trajectories that approach different positions of the
asteroid, and requiring a low ∆v for the capture at any of the four temporal sections. Since we want to compute
the trajectory in the stable manifold that arrives exactly to the position of the asteroid at the right time, we
look for areas in the fundamental domain of the invariant curves that show clearly a minimum of the distance
to the position of the asteroid, what we have called “minimum distance areas” for short.

In order to visualise the results of globalising the invariant manifolds, we make use of colour maps corre-
sponding to fundamental cylinders, such that the horizontal axis corresponds to θ ∈ [0, 2π], the vertical one to
τ ∈ [0, 1]. Therefore, every point (θ, τ) is an initial condition on the FC, that is integrated backward in time and
coloured according to some magnitude. Details about the meshes used and how to compute these trajectories
in the stable manifolds are presented in Section 4.2.

Each point of the FC is coloured according to the minimum distance of the trajectory starting at this
point to the asteroid, making easy to identify sets of trajectories, covering some area of the FC, that approach
significantly the asteroid. In order to reduce the possibilities to the most convenient ones, we add two restrictions
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for the coloured maps. The first one is regarding to the distance to the asteroid and the second one to the
maximum affordable ∆v. Only trajectories that get closer than 105 km to the asteroid with a difference in
velocities below 1 km/s, are included in the maps. Note that these are not strong restrictions, the reason for
them is only to make easy to recognise the minimum distance areas and to have an idea of the ∆v that may
be involved. Actually, between all the suitable trajectories that have been found, only some of those requiring
a ∆v below 500 m/s are presented. Also, once the minimum distance areas are identified, we use the method
explained in Section 4.3 to refine a trajectory nearby that arrives to the asteroid position. The accuracy imposed
to the Newton method is for the trajectory in the manifold to lay as close as 10−10 adimensional units (≈ 3.8 cm)
to the asteroid position at the right time; this tolerance is achieved with just three or four Newton iterations.

The way to present and interpret the results is the same for any of the temporal sections, so an extended
examination of the results corresponding to the temporal section at times “0” or NTT are first given in Sec-
tion 5.1, and some of the results for the other three temporal sections are collected, in a more schematic way,
in Section 5.2.

At the end of Section 5.1, we also give a brief explanation about the continuity in time of the minimum
distance areas, and its effect on the ∆v, in order to express the robustness of the trajectories susceptible to be
used for the capture and to point out the possibility of implementing optimisation algorithms.

5.1 Temporal Poincaré sections at time T

The first results show that stable invariant manifolds of tori close to L3 (that are also the most unstable ones)
reach the positions of the NEA before the asteroid enters the Earth-Moon system (epochs it=1, 2 and 3 of the
Table 2), with a low difference in velocities. Once the asteroid has entered the Earth-Moon system there are
many initial conditions that approach the asteroid, specially for stable invariant manifolds of tori in the middle
of the family, not very close to L3, however, the difference in velocities when the asteroid is in the region close to
the Earth and Moon is higher than when the asteroid is far away from any massive body, as expected according
to some results found in the literature, [SGYAM12, TMC17]. Finally, when the asteroid is leaving the system,
the stable manifolds reach its position with a smaller difference in the velocities than when it is inside. In order
to support these comments, three epochs are analysed in detail; it=2, it=7, and it=14. Since the procedure to
obtain and present the results is the same for the three cases, we give a more detailed explanation for the first
one, and limit ourselves to a brief version for the other two, again to avoid being repetitive.

it=2, (2006-May-12)

In Figure 3, colour maps of the FC of different tori, covering distances to L3 from 0.01257 to 0.05784 (a length
of ∼ 17400.33 km) are shown. The first six maps, in the first two rows, are coloured according to the minimum
distance, in km, reached between the trajectory in the stable manifold and the position of the asteroid at
epoch it=2. Belonging the first colour map to the invariant curve that is closer to L3 and the following ones,
to invariant curves increasingly further away from L3. The last six maps in Figure 3 correspond to the same
fundamental cylinders as the first two rows, this time coloured according to the instantaneous ∆v in km/s,
needed for the insertion of the asteroid in those trajectories belonging to stable manifolds. Remember that only
trajectories that approach that position at least at 105 km and require a ∆v of less than 1 km/s are included
in the maps.

Recalling the effective continuity of the family of quasi-periodic orbits, we can compute any invariant curve
between those shown in Figure 3 and observe a similar dynamics for the invariant manifolds than that of their
neighbour curves, including presenting similar minimum distance areas. Altogether, considering the union of
all these tori that present some clear zones of minimum distance, there exists some three dimensional regions
of significant size where there are points that allow the capture of the asteroid with a single manoeuvre.

Now, we analyse the maps in Figure 3 separately. It is clear that for the first FC, two minimum distance
areas are identified, very close one to the other, for values of θ between 3 and 4, and for some τ around 0.6.
Let us call the minimum distance area on the left Minimum 1, and Minimum 2 to the one on the right. We can
see these two minimum distance areas on the FC of the manifolds of nearby invariant curves that are further
away from L3. These minima start moving away and two other minimum distance areas appear for the FC in
the second colour maps, named Minimum 3 (the one on the left) and 4 (the one of the right). For the FC in
the third map of the first row another two minima are already found, Minimum 5 and 6. In the following maps
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Figure 3: Fundamental cylinders of tori at distances from L3 between 0.01257 and 0.05784. First two rows, FCs
coloured according to the distance to the asteroid at position it=2, in km, and last rows, same FCs coloured
according to the instantaneous ∆v in km/s.
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Min 1 Min 2

dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)

0.01257 5 3.589 0.600 254.159 5 4.029 0.609 254.188

0.02043 5 2.953 0.580 254.098 5 4.654 0.632 254.260

0.03213 5 2.755 0.564 254.045 5 4.826 0.659 254.341

0.03947 5 2.709 0.555 254.018 5 4.849 0.676 254.392

0.04926 5 2.681 0.545 253.986 5 4.839 0.701 254.464

0.05784 5 2.672 0.537 253.962 5 4.805 0.725 254.529

Min 3 Min 4

dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)

0.01257

0.02043 6 3.065 0.664 114.391 6 3.702 0.690 114.414

0.03213 6 2.591 0.636 114.346 6 4.149 0.729 114.426

0.03947 6 2.501 0.624 114.320 6 4.216 0.749 114.425

0.04926 6 2.442 0.611 114.283 6 4.237 0.776 114.416

0.05784 6 2.419 0.601 114.248 6 4.222 0.801 114.403

Min 5 Min 6

dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)

0.01257

0.02043

0.03213 7 3.132 0.681 131.324 7 3.506 0.707 131.301

0.03947 7 2.791 0.656 131.348 7 3.827 0.740 131.272

0.04926 7 2.628 0.638 131.366 7 3.958 0.771 131.247

0.05784 7 2.556 0.626 131.379 7 3.997 0.797 131.228

Table 5: Values of θ and τ corresponding to the initial conditions in the fundamental cylinders in Figure 3, that
lay on the position of the asteroid at May 12, 2006, (it=2) after NT BCP periods, and the ∆v required for each
of them.

these six minima can be easily identified. Looking at same maps in last two rows of Figure 3, it is clear that
these minimum distance areas correspond to low values of ∆v. It is worth mentioning that these maps are very
similar for epochs it=1 and it=3.

For each of the six minimum distance areas, and for different tori, we have computed the trajectory that
exactly arrives to the asteroid position at epoch it=2, with the Newton method introduced in Section 4.3.
Table 5 collects the results for the initial condition in the fundamental cylinder, θ and τ , along with the number
of solar periods, NT , that this trajectory needs to reach the position of the asteroid and the amount of ∆v
required for the transfer. The trajectories in the stable manifold that reach the asteroid corresponding to the
first bigger two minima need five solar periods to reach the position of interest and the ∆v to take advantage
of their dynamics is around 254 m/s. For the next two minima, smaller in size than the previous ones, six solar
periods are required and the ∆v is of less than 115 m/s. Finally, for the last two, even smaller in size, another
extra solar period is needed in the propagation of the trajectories and the costs are of less than 132 m/s.

Now, we perform the simulation of the capture of asteroid 2006 RH120. For this, we consider as starting
point the coordinates of the asteroid at epoch it=2, add the corresponding velocity impulse, the ∆v included in
the Table 5, and integrate forward in time in the planar BCP, making sure that the asteroid is trapped by the
stable invariant manifolds of L3, and lead to the neighbourhood of L3, where it remains, just spining around
the corresponding torus for long time.

In Figure 4, we show the trajectories corresponding to the six minima present in the fifth colour map of
Figure 3. It is clear that the trajectories of the first two minima almost overlap, specially when they are far
from the Earth-Moon system. Similar effect is observed with the trajectories of the second two minima, and
with the ones of the third two minima. It is clear also the reason for the different values of the number of
solar periods needed for each of the trajectories. Finally, these trajectories do not approach much neither of
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Figure 4: Simulation of the capture of the asteroid at May 12, 2006, through the trajectories in the stable
manifold of the fifth FC of Figure 3 when applying the obtained ∆v, Table 5. The Earth and the Moon are
included as black circles of corresponding radius, and the initial position of the asteroid as a red star.

the massive bodies, although they pass at a distance of less than sixty thousand kilometres from the Moon,
which makes that the norm of the derivative of the actual position w.r.t. the initial conditions be in the range
between 103 and 104. This is a moderate error increasing factor.

it=7, (2006-Oct-07)

In this case, we consider the capture in an epoch in which the asteroid has already entered the Earth-Moon
system. Figure 5 contains colour maps of the FC of different tori, covering distances to L3 from 0.53075 to
0.60047 (a length of about 26800.76 km). Again, the first six maps are coloured according to the minimum
distance, in km, reached between the trajectory in the stable manifold and the position of the asteroid, this time
at epoch it=7. And the last six maps in Figure 5 correspond to the same fundamental cylinders but coloured
according to the instantaneous ∆v in km/s.

In the first fundamental cylinder of Figure 5 only one minimum distance area is identified, lets call it
Minimum 1. However, as we consider fundamental domains of curves increasingly distant to L3, this minimum
is split into two different minimum distance areas. Let us call Minimum 2 to the minimum distance area at
higher value of τ . In the third colour map, the first two minima are moving apart and a third one appears for
low values of τ , Minimum 3. If we keep on examining fundamental domains of invariant curves further away
from L3, we observe that the third minimum splits into two, naming Minimum 4 the one at lower value of τ .
In the fifth colour map, the four minimum distance areas are clearly identified, and for the last colour map
Minimum 2 passes to be at the lower part of the fundamental domain. Keep in mind that this is a normal
phenomenon since there is a continuity between the boundaries of these maps. The fact that this minimum
passes from the upper part of the fundamental domain to the lower part makes necessary to integrate an extra
period, see Table 6, since now this initial condition is closer to the invariant curve and it requires more time to
approximate the asteroid. Minimum 1 and Minimum 3 come closer as moving through the family of invariant
curves of L3, until they join and then disappear. Concerning to Minimum 2 and Minimum 4, they have been
tracked through more invariant curves, further to L3 that the six fundamental domain included here, however
the ∆v needed for using them in a capture increases, see the last map in Figure 5. Therefore, we only focus on
the results of the fundamental cylinders included in the Figure 5.

As in the previous case, we use a Newton method to find the initial condition (θ and τ on the FC) that
arrives to the asteroid 2006 RH120 at epoch it=7. The results are collected in Table 6. It can be observed
that the ∆v required for the trajectories corresponding to the minimum distance areas 1 and 3 decreases as the
curve they belong to is further away from L3. The opposite effect happens with the trajectories of the minima
2 and 4.
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Figure 5: Fundamental cylinders of tori at distances from L3 between 0.53075 and 0.60047. First two rows, FCs
coloured according to the distance to the asteroid at position it=7, in km, and last rows, same FCs coloured
according to the instantaneous ∆v in km/s.
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Min 1 Min 2

dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)

0.53075 6 2.970 0.539 402.596

0.55281 6 2.867 0.585 388.037 6 3.358 0.702 427.682

0.56617 6 2.844 0.628 379.142 6 3.451 0.800 433.318

0.57624 6 2.840 0.656 373.419 6 3.506 0.870 436.837

0.59139 6 2.850 0.691 365.138 6 3.584 0.985 442.115

0.60047 6 2.872 0.691 360.775 7 4.158 0.021 445.375

Min 3 Min 4

dist to L3 NT θ τ ∆v (m/s) NT θ τ ∆v (m/s)

0.53075

0.55281

0.56617 6 3.307 0.204 406.799

0.57624 6 3.146 0.285 389.217 6 3.600 0.216 434.045

0.59139 6 3.027 0.420 373.829 6 3.737 0.280 446.723

0.60047 6 2.964 0.533 365.323 6 3.802 0.326 452.982

Table 6: Values of θ and τ corresponding to the initial conditions in the fundamental cylinders in Figure 5, that
lay on the position of the asteroid at the October 7, 2006, (it=7) after NT BCP periods and the ∆v required
for each of them.

Finally, we take the coordinates of the asteroid at epoch it=7, we add the velocity impulse of Table 6 and
we integrate these trajectories forward in time in the planar BCP to check that the asteroid is lead towards L3

(this is also a final test of correctness of all the computations). In Figure 6 the trajectories corresponding to
the four minimum distance areas of the fifth fundamental cylinder in Figure 5 are shown. They correspond to
an invariant curve for which Minimum 1 and 3 have not yet come together, but it can be appreciated how their
trajectories are approaching. For trajectories of Minima 1 and 3 the expansion factor for the error is only of
the order 102, because they do not approach much any massive body and because of the short integration time.
This factor is of the order of 103 for the trajectory of Minimum 4, and increases to 104 for Minimum 2, due to
the fact that the trajectory approaches the Moon.

it=14, (2007-May-01)

In this last example of temporal section corresponding to time t = 0 mod T (or t = NTT ), we show the results
for the capture of 2006 RH120 when it is starting to leave the Earth-Moon system. As the evolution of the
minimum distance areas between different tori has been detailed in previous cases, from now on the results are
presented in a short version. Figure 7 shows the fundamental cylinders for tori at distances to L3 from 0.52061
to 0.59139 (a length of ∼ 27207.85 km). In the first three FCs, each initial condition is coloured according to
the minimum distance, in km, to the position of the asteroid at epoch it=14, and in the last three, they are
coloured according to the difference in velocities between the trajectories in the stable manifolds and those of
the asteroid, in km/s.

In the first colour map of Figure 7 a curved minimum distance area seems to appear for high values of τ
(if we zoom that region we realise that there are actually two very close minima). As we examine the colour
maps corresponding to invariant curves increasingly further away from L3, the distance between these two
separated minima increases: note that they move toward higher values of τ until they appear in the lower part
of the fundamental cylinders. When this happens, the trajectories corresponding to those that lay on the exact
position of the asteroid, obtained as in the previous cases and collected in Figure 8 (left), require an extra
period of integration. At the right in the same Figure, the trajectories described by the asteroid, starting at
epoch it=14 and propagated forward in time after adding the computed ∆v for the two minima of the third
fundamental cylinder are presented. In this case, the two trajectories approach a little the position of the Moon,
specially the red one, for this reason the expansion factor for the error is between 103 − 104. Nevertheless, an
expansion factor of this value is acceptable.
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Figure 6: Simulation of the capture of the asteroid at October 7, 2006, through the trajectories in the stable
manifold of the fifth FC of Figure 5 when applying the obtained ∆v, Table 6. The Earth and the Moon are
included as black circles of corresponding radius, and the initial position of the asteroid as a red star.

5.1.1 Temporal continuity

We have performed some computations in order to analyse how the minimum distance area evolve at different
time sections, close in time to the temporal section treated in the previous examples. The asteroid was considered
twelve hours before and another twelve hours after the three epochs such that the time spans cover one day and
are centered in each of the three cases.

For the first case, twelve hours before it=2, the ∆v of minima 1, 2, 3 and 4 increases about 10 m/s, however
for the minima 5 and 6 it decreases to ≈ 120 m/s. When we study these minima twelve hours later than it=2,
we see that the difference in velocities has increased for the six trajectories; about 30 m/s for Minimum 1 and
2, ≈ 70 m/s for Minimum 3 and 4 and more than 100 m/s for Minimum 5 and 6.

In the second case, twelve hours before it=7, the ∆v grows of the order of a couple of tens of m/s for the
four minima. And, twelve hours after it=7, the minimum distance areas do not appear well defined for the first
five invariant curves, but the first two minima appear in the fundamental domain corresponding to the last one,
requiring less ∆v for both; about 20 m/s less for Minimum 1 and about 40 m/s less for Minimum 2.

Finally, for the last case the differences are more homogeneous. Roughly speaking, twelve hours before it=14
the ∆v needed is about 20 m/s lower than the one obtained for the two minima studied, and twelve hour after
it=14, it increases more or less the same quantity.

Therefore, the same minimum distance areas that are found at a specific temporal section, appear at different
close temporal sections, varying a little the difference between the velocities of the trajectories in the stable
manifolds and those of the asteroid. This can be used to look for the optimal time (less ∆v required) to perform
the capture, or to use all these minima, continuous in time, to perform a low thrust. This is left for future work.

5.2 Temporal Poincaré sections at times T/4, T/2 and 3T/4

Looking at the variety of possible trajectories for the capture of asteroid 2006 RH120 offered by the stable
manifolds of the invariant curves of L3, it is expected that many other possibilities appear when applying the
same strategy for the capture at temporal Poincaré sections corresponding to T/4, T/2 and 3T/4.

Actually, several new minimum distance areas have been found for any of the these three temporal sections
and for the different epochs of the asteroid. We do not aim to present neither all the possibilities nor different
cases for any of the temporal sections, but to give some representative results in a qualitative way and to explain,
quantitatively, a couple of examples.

First, we discuss the situation where the asteroid has not still entered the Earth-Moon system. Regardless
of the temporal section applied, the obtained colour maps corresponding to fundamental cylinders of the inner
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Figure 7: Fundamental cylinders of tori at distances from L3 between 0.52061 and 0.59139. First row, FCs
coloured according to the distance to the asteroid at position it=14, in km, and last row, same FCs coloured
according to the instantaneous ∆v in km/s.

tori in the family, are very similar to those presented in Figure 3, with some variations in the required ∆v. This
is in good agreement with the temporal continuity of the minimum distance areas exposed in Section 5.1.1.

Notice that the fact that these minimum distance areas are present in the fundamental cylinders of inner
tori covering a time span of more than three months and different temporal section, implies a long continuity
in time of these possibilities of capture, which is good. The reason for this to happen is that the trajectories in
the stable invariant manifolds that are far from the Earth and the Moon, are orbiting the Earth-Moon system
while approaching it, the same behaviour is shown by the asteroid before entering the system. Therefore, the
trajectory of the asteroid and the trajectories on the stable manifolds of L3 are continually meeting before finally
entering the system, where they may behave differently.

In fact, such a long temporal continuity is not found for any of the other minimum distance areas corre-
sponding to epochs in which the asteroid in inside the system. What we have observed for these epochs is a
decrease in the required ∆v, being in many cases even lower 200 m/s. However, for these new temporal sections,
less possibilities are available for the epochs in with the asteroid is leaving the system.

Finally, we present two cases, the first one concerns to the lowest ∆v found for the epochs in which the
asteroid has not entered yet the system, and the second one is devoted to an example of relative low ∆v when
the asteroid is already inside the system.
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Min 1

dist to L3 NT θ τ ∆v (m/s)

0.52061 5 2.551 0.878 362.771

0.56111 6 2.674 0.072 359.814

0.59139 6 2.516 0.197 361.850

Min 2

dist to L3 NT θ τ ∆v (m/s)

0.52061 5 2.845 0.885 370.471

0.52061 6 3.822 0.080 391.813

0.52061 6 4.039 0.205 407.460
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Figure 8: Left, values of the initial conditions in the FCs of Figure 7, that after NT BCP periods lay on the
position of the asteroid at May 1, 2007, (it=14), and the ∆v required for each of them. Right, simulation of
the capture of the asteroid by the trajectories in the minimum distance areas of the third FC when applying
the obtained ∆v . The Earth is included as a black circle of corresponding radius, and the initial position of
the asteroid as a red star.

A very cheap transfer

If we look closely to the maps in Figure 3, we can observe that in the minimum distance areas, the trajectory
corresponding to the one that lays on the position of the asteroid is placed, roughly speaking, in the centre of
zone, however, when we look at the same colour maps coloured according to the ∆v, we see that the minimum
value of ∆v for those areas is not placed at their centres. It happens that half a period after epoch it=3, the
minimum in distance and the minimum in ∆v more or less overlap for the first two minima of the six observed,
leading to trajectories that require less than 20 m/s for the capture.

In Figure 9 we show some fundamental cylinders of tori close to L3, at distances from 0.02159 to 0.03947.
The first three maps are coloured according to the distance between the position of the asteroid at the 25
of June of 2006 (half a period after epoch it=3) and the trajectories in the stable manifolds at the temporal
section T/2; the other three colour maps are coloured according to the difference between velocities. It is easy to
observe that the required ∆v has decreased significantly for the first bigger minima, but not for the other four.
Figure 10 (left) contains the table with the data for the initial conditions in the FCs, corresponding to those
two minima, that leads to the trajectories laying on the position of the asteroid, together with the trajectories
described by the asteroid, forward in time, after adding the velocity impulse of the third presented fundamental
cylinder. These trajectories not only require a very low ∆v but also do not come close to any of the primaries,
suggesting a safe and very cheap journey for the asteroid.

A last example

Figure 11 shows some fundamental cylinders for tori at distances from L3 between 0.44160 and 0.53075. In
the first three plots, the initial conditions are coloured according to the distance between the position of the
asteroid at the 14 of October of 2006 (a quarter of period after epoch it=7) and the trajectories in the stable
manifolds at temporal section T/4; the other three maps correspond to the same FCs, now coloured according
to the difference between their velocities. Two minima are found, for one of them, the ∆v increases with the
distance to L3, and for the other one, it decreases. As before, we have refined trajectories near these minima
that arrive exactly to the asteroid, the results are collected in Figure 12, left. At the right of this figure, the
trajectories corresponding to the integration of the asteroid forward in time, after adding a velocity impulse
to reach the third fundamental domain are also included. In this last example, the asteroid is so close to the
family of tori around L3 that the trajectories are pretty short.
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Figure 9: Fundamental cylinders of tori at distances from L3 between 0.02159 and 0.03947. First row, FCs
coloured according to the distance to the asteroid half period after position it=3, in km. Second row, the same
FCs coloured according to the instantaneous ∆v in km/s.

Min 1

dist to L3 NT θ τ ∆v (m/s)

0.02159 4 2.856 0.626 19.398

0.02738 4 2.693 0.615 19.386

0.03947 4 2.555 0.597 19.338

Min 2

dist to L3 NT θ τ ∆v (m/s)

0.02159 4 4.224 0.678 19.338

0.02738 4 4.373 0.693 19.293

0.03947 4 4.472 0.725 19.176
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Figure 10: Left, values of the initial conditions in the FCs of Figure 9, that after NT BCP periods lay on
the position of the asteroid at June 25, 2006, (T/2 after it=3) and the ∆v required for each of them. Right,
simulation of the capture of the asteroid by the trajectories in the two bigger minimum distance areas on the
third FC when applying the obtained ∆v. The Earth and the Moon are included as black circles of corresponding
radius, and the initial position of the asteroid as a red star.
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Figure 11: Fundamental cylinders of tori at distances from L3 between 0.44160 and 0.53075. First row, FCs
coloured according to the distance to the asteroid a quarter of period after position it=7, in km, and second
row, same FCs coloured according to the instantaneous ∆v in km/s.

Min 1

dist to L3 NT θ τ ∆v (m/s)

0.44160 4 4.645 0.453 186.195

0.50037 4 4.517 0.560 204.122

0.53075 4 4.481 0.666 213.989

Min 2

dist to L3 NT θ τ ∆v (m/s)

0.44160 4 4.743 0.635 170.133

0.50037 5 5.137 0.026 148.754

0.53075 5 5.067 0.116 144.139
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Figure 12: Left, values of the initial conditions in the FCs of Figure 11, that after NT BCP periods lay on the
position of the asteroid at October 14, 2006, (T/4 after it=7), and the ∆v required for each of them. Right,
simulation of the capture of the asteroid by the trajectories in the minimum distance areas on the third FC
when applying the obtained ∆v. The Earth is included as a black circle of corresponding radius, and the initial
position of the asteroid as a red star.
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6 Conclusions

This paper presents a strategy for capturing a NEA in a neighbourhood of the L3 point of the Earth-Moon
system. It is based on the use of stable invariant manifolds of invariant tori around L3 of the planar Bicircular
Earth-Moon system. To compute the manifolds we first obtain a high order approximation to them by combining
jet transport and the parametrization method, and then we globalise them by means of numerical integration.
This shows that a part of these manifolds exits the Earth-Moon system and then orbits the Sun in a trajectory
close to that of the Earth around the Sun, which intersects the region of motion of NEAs. When these manifolds
intersect with the position of a NEA, the difference between their velocities (∆v) gives the necessary manoeuvre
to inject the NEA in the manifold so that it travels to the neighbourhood of L3. For a NEA following an orbit
similar to that of the Earth, this difference of velocities should not be very large.

We have applied this procedure to study the capture of the asteroid 2006 RH120. In general, several
possibilities for the capture have been found, for the different positions of the asteroid and for the different
temporal Poincaré maps applied to the stable manifolds. As expected, the ∆v varies depending on the relative
position of the asteroid with respect to the massive bodies in the system, being higher when the asteroid is
inside the Earth-Moon system and significantly lower when it is still outside. In fact, one option for the capture
that only requires a manoeuvre of less than 20 m/s has been analysed.

In addition, it has been observed that the possibilities for the capture vary continuously between nearby tori
in the family and also depend continuously in time. This suggest that the dynamics below these opportunities is
robust. Moreover, these continuities can be exploited to perform optimisation methods and reduce, even more,
the required ∆v.

We want to emphasise that this machinery is valid for studying the capture of any other asteroid or space
debris with an orbit close to that of the Earth. It is also possible to use other families of quasi-periodic orbits as
a target destination for the captured object, and it may also be a tool to analyse the deflection of NEAs (with
an orbit close to that of the Earth) that pose a collision threat to the Earth.

Finally, let us comment on some extensions of this work. The next natural steps are to use the 3D Bicircular
model, to refine the transfer trajectory and the destination orbit near L3 to a realistic model (for instance, based
on the JPL ephemeris), and to consider the use of a low thrust propulsion system for the transfer manoeuvre.
These are work in progress.
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