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Abstract: This paper is devoted to a new approach to construct the transfers from the Earth to the Earth-Moon (EM) 

L4 using stable and unstable manifolds of quasi-periodic Lyapunov orbits (QPLOs) of the EM L3 in the planar 

bicircular Sun-Earth-Moon system. Some QPLOs have stable manifolds intersecting the Earth parking orbits and 

unstable manifolds going through the EM L4 region, which gives a skeleton to build up such transfers. Tentatively, 

the stable and unstable manifolds of a QPLO are employed to construct transfer segments connecting the Earth and 

L4 vicinity, respectively. The trajectories near the stable manifolds spent some time moving around L3 before going 

away and approaching the unstable manifolds towards L4. To reduce the multi-revolution behavior around L3, a 

multiple shooting algorithm is developed to switch from the stable to the unstable manifold, where additional 

maneuvers are performed at some distance from the QPLO to reduce the time spent in the L3 vicinity. By such 

construction a spacecraft can visit and park around two high-cost far-away libration points in a single journey. 

Eliminating most of the loops around L3, the quickest one among the example transfers needs about 175 days. 

Furthermore, it is showed how to utilize the stable manifolds of the QPLO alone to design faster transfers to the EM 

L4 vicinity. By this construction, the lowest time of flight is about 61 days. The advantages of these two constructions 

are discussed. 
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1.  Introduction 

1.1 Role of Triangular Libration Points in Space Applications 

The dynamics near the triangular libration points is a classical problem in the field of celestial mechanics, 

initially motivated by the discovery of Trojan asteroids [1]. Due to the unique geometric location of triangular 

libration points with respect to both the Earth and the Moon, Maccone first proposed that L4 could be used for 

planetary defence and L5 for Moon farside exploration  [2]. Liang et al. demonstrated that the region near the Earth-

Moon triangular libration points is a perfect reservation place for asteroid capture mission [3]. Furthermore, the very 

long distance between a triangular libration point probe and a ground station, or between two triangular libration 

point probes, can aid very long baseline interferometry and can greatly enhance the accuracy of the observations 

[4]. Recently, the concept of a space weather mission is put forward and being studied in the framework of the 

European Space Agency’s Space Situational Awareness Program, where a spacecraft is envisioned to be placed at 

the Sun-Earth L5 point for the purpose of solar wind surveillance [5]. With the increasing capability of advanced 

high-impulse thrusters, e.g., magneto-plasma dynamic thrusters tested in laboratories for thrust up to 200 N [6], 



deep space exploration to the vicinity of triangular libration points can be achieved at the expense of affordable fuel 

consumption. Therefore, the triangular libration points is playing a very important role in future space exploration. 

To serve future remote sensing or observation missions, the existence of natural formation flying trajectories 

near the Earth-Moon triangular libration points were first investigated by Catlin and McLaughlin [7]. Salazar et al. 

explored the relative radial acceleration with respect to a nominal trajectory near the triangular libration points in 

the circular restricted three-body problem (CR3BP) [8], and then in the bi-circular problem (BCP) considering solar 

gravity perturbation [9]. In the real force model, the instability near triangular libration points is much milder than 

the one near collinear libration points [10]. As a result, a much lower station keeping frequency should be expected 

[11]. 

1.2 Transfers to the Earth-Moon and Sun-Earth Triangular Libration Points 

To achieve these targets, most of the literature on triangular libration points from the field of astrodynamics 

are devoted to the construction of transfers to the Earth-Moon or Sun-Earth triangular libration points. Salazar et al. 

proposed a design method for transfers from Earth-bound elliptic trajectories to the Earth-Moon triangular libration 

points by exploiting the chaotic region that connects the Earth with the Moon [12]. By matching the lunar gravity 

assist segments and the stable manifolds of a cislunar resonant orbit, Lei and Xu designed low-energy transfers to 

the triangular libration points of the Earth-Moon system [13]. Similarly, Vaquero and Howell successfully 

constructed transfers to many typical libration periodic orbits (LPOs) including those near triangular libration points 

via the patching of invariant manifolds of resonant orbits in the Earth-Moon CR3BP and transitioned the results to 

an ephemeris model [14]. Targeting at the triangular libration points in the Earth-Moon system, Zhao and Hou 

proposed two feasible transfer mechanisms using lunar and solar gravity assists, respectively, and showed that the 

theoretical minimum fuel consumption is 3.0975 km/s for  transfers from a 200 km altitude Earth parking orbit in 

the Earth-Moon CR3BP system [11]. All the aforementioned transfers require at least two maneuvers, one for speed-

up to escape from the Earth gravity field and the other for speed-down to approach the triangular libration point 

vicinity. Whereas Tan et al. creatively developed a single impulsive strategy to transfer a spacecraft from the Earth 

to the Earth-Moon L4 based on differential correction [15]. Instead of impulsive thrust, transfers to triangular 

libration points by a low-thrust technique are also investigated by many scholars. Taking advantage of the invariant 

manifolds of LPOs in the CR3BP, Elliott et al. [16] and Sullivan et al. [17] designed a low-thrust-enabled trajectory 

to the Sun-Earth L5 region. Based on the horseshoe orbits encircling triangular libration points and L3, the 

pseudospectral method and the tangential thrust control strategy are introduced to optimize two kinds of trajectories 

from the Earth to Earth-Moon triangular libration points, respectively [18]. The low-thrust fuel-optimal transfers 

from Halo orbits to periodic orbits around Earth-Moon triangular libration points are obtained by an indirect 

optimization technique incorporated with constraint gradients [19]. Furthermore, different from the Earth-Moon or 

Sun-Earth systems, Trivailo discussed a new scenario where a spacecraft is located near triangular libration points 

in a Sun-planet system under perturbation of multiple Trojan asteroids [20]. He showed that under such 

circumstances the minimum thrust for the optimized transfer trajectories from L4 to L5 is vastly different to that 

from L5 to L4. 

1.3 Dynamical Connection of Triangular Libration Points and L3 



The triangular libration points have a strong dynamical connection to L3 from many aspects. In the framework 

of the CR3BP, the triangular libration points are surrounded by planar families of long- and short-period periodic 

orbits and a vertical family of periodic orbits as μ<μR [21]. From a bifurcation point along the short-period family 

of the equilateral points emerges a planar Lyapunov orbit around L3 and the vertical periodic orbit family around 

the triangular libration points connects to the vertical Lyapunov family around L3 [22, 23]. At quite small μ, the 

practical stability domain around the triangular libration points is slightly outside the zero-velocity curve on the 

energy level of L3 and the reason leading to the escape of a spacecraft from this domain is the passage close to L3 

[24]. The horseshoe orbits that grow from L3 towards the secondary body extend through a vast area, approaching 

the vicinity of the triangular libration points, L4 and L5. This has been shown for a wide range of CR3BP mass ratios 

[25]. In the framework of the CR3BP, Anderlecht explored the links between Tadpole orbits around the triangular 

libration points to other families of LPOs, including Lyapunov orbits around L3 [26]. As the dynamical model is 

upgraded from CR3BP to Third-body perturbed model, e.g., Bi-circular Problem (BCP), some of the dynamical 

connections of triangular libration points and L3 remain, such as the horseshoe orbits, which suggests an alternative 

approach to transfer to triangular libration points through L3.  

For the first time, this investigation shows how to leverage the stable/unstable manifolds of quasi-periodic 

libration orbits (QPLOs) around L3 to construct transfer orbits from a circular Earth parking orbit to a quasi-periodic 

orbit around the Earth-Moon triangular libration points considering solar gravity perturbation. The first construction 

successfully builds up transfer trajectories by patching stable and unstable manifolds of QPLOs around L3 and such 

transfers enable a spacecraft visit both L3 and L4 points in a single journey. The total time of flight (TOF) highly 

depends on the multi-revolutions around L3 and becomes adjustable and flexible to satisfy the mission requirements 

by various combination of the stable and unstable manifolds segments of QPLOs. The smooth connections between 

them are numerically validated by multiple shooting method at a compensation of quite a small amount of fuel 

consumption. Thus, the transfers carried out by the first construction of this investigation have potential to join up 

with an L3-encircling mission as an extended task. However, the total TOF is quite long even eliminating most of 

the revolutions around L3. Then, a second construction is proposed only using the stable manifolds of QPLOs that 

connect both a circular Earth parking orbit and the Earth-Moon L4 vicinity together. For missions avoiding to visit 

L3, the total TOF can be further decreased to 61 days.  

In this investigation, the BCP is utilized to model the effect of the solar gravity as a periodic time-dependent 

perturbation of the CR3BP (see Section 2). In this model, the Earth-Moon libration points are replaced by periodic 

orbits. In particular, triangular libration points are replaced by three short-period periodic orbits [27] with quasi-

periodic orbit motion around them [28, 29]. The stability of the triangular libration points is proved for any CR3BP 

with a mass ratio μ smaller than the Routh critical value μR, except for some resonance cases [30]. However, the 

situation changes when perturbations are taken into consideration, e.g., solar gravity [29], eccentricity of lunar orbit 

[31] and Earth’s oblateness [32]. The very general way to deal with perturbed transfers in the Sun-Earth-Moon 

system is by refining the original trajectory in the CR3BP to higher-fidelity model e.g., [14, 33], or by decoupling 

the Sun-Earth-Moon-spacecraft four-body system into two coupled CR3BPs e.g., [34]. One benefit of decomposing 

the Sun-Earth-Moon-spacecraft four-body system into two coupled CR3BPs is to preserve the useful dynamical 

structure obtained in the CR3BP, e.g., invariant manifolds and LPOs. However, the ignored third-body gravity 



perturbation, especially the dominant solar gravity over the lunar gravity in the area outsides lunar sphere of 

influence, has a remarkably large effect on the motion of a spacecraft in the Sun-Earth-Moon system far from both 

the Earth and the Moon, e.g., the transfers to triangular libration points. The Sun not only alters the stability of the 

Earth-Moon libration points themselves, but also gives birth to unique dynamical properties. Thus, this investigation 

adopts the implementation of dealing with the Sun-perturbed motion in a BCP model. In many situations, the BCP 

model is regarded as a good replacement of the real Sun-Earth-Moon system [29, 35]. 

This paper is organized as follows: in Section 2, a brief introduction of the dynamical model and the associated 

mathematical tools is given. Section 3 is devoted to the construction of near-Earth and near-L4 segments of the 

stable and unstable manifolds of a quasi-periodic Lyapunov orbit around L3, respectively. In Section 4, a patching 

method based on the multiple shooting algorithm is developed to design and manage the looping segments of stable 

and unstable manifolds of quasi-periodic Lyapunov orbits around L3 and some typical transfer trajectories are shown, 

where a special situation using only the stable manifolds of a quasi-periodic Lyapunov orbit around L3 is discussed. 

2.  Dynamical Model and Mathematical Tools 

2.1 Bi-circular Problem (BCP) 

The well-known Circular Restricted Three-Body Problem (CR3BP) describes the movement of a massless 

particle subjected to the gravitational fields of two primary masses, referred to as m1 and m2 (m1>m2). They are 

supposed to revolve counter-clockwise in circular motion around their common center of masses, taken as the origin 

of the frame. Five libration points are found in this model; the collinear points L1, L2 and L3 are placed along the 

line connecting two primaries, the first two on both sides of the smaller primary and L3 close to the opposite position 

of the smaller primary, and the triangular points L4 and L5 are placed at the third vertex of the equilateral triangles 

defined by taking the primaries as the other two vertices. From now on, L1, L2, L3, L4, and L5 denote the libration 

points in the Earth-Moon system without any specification in this investigation. 

Some modifications of the CR3BP have been developed over the years in order to define models that account 

for additional physical effects. Among them, the BCP adopted in this investigation introduces a time-periodic 

perturbation that corresponds to the gravitational field of a third massive body that only acts on the massless particle 

[36, 37].  In this investigation, the primaries are the Earth and Moon moving in a circular orbit around their common 

center of mass that is assumed to revolve around the Sun in a circular orbit. The Sun produces a periodic time-

dependent forcing on the Earth-Moon CR3BP. Remark that under such assumptions, the motion of the three masses 

do not follow Newton’s law. As this investigation concerns the motion near the Earth and the Moon, the Earth-

Moon rotating frame, denoted as O-x-y, is introduced to set up the equations of motion of the spacecraft in this BCP. 

As shown in Fig. 1, the origin is located at the center of mass of Earth and Moon and the Earth and Moon are fixed 

on the horizontal axis at positions (μ, 0) and (μ-1, 0), where μ= m2
m1+m2

 and m1 and m2 denote the mass of the Earth 

and Moon, respectively. The x-axis lies along the line from the Moon to the Earth with the y-axis perpendicular to 

it, completing a right-handed coordinate system. Besides, the motions are considered and the transfers are 

constructed in the (x, y) plane in this investigation. As usual, the units of length, mass and time are the distance 



between the primaries (384400 km), the sum of the masses of the Earth and Moon (6.0457 × 1024 kg) and that the 

period of their circular motion (27.31 days) is 2π units of time. In these units, the gravitational constant is 1.  

With these considerations, given the coordinate (x, y) of a spacecraft, its motion in the planar BCP is described 

by the following equations 
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where (xs, ys) is the position of the Sun in the Earth-Moon rotating frame, 

(
xS=aScos(ωSt+θ0)
yS=-aSsin(ωSt+θ0)

                                    (3) 

In Eq. (1)-(3), rPS , rPE  and rPM  denote the distance from the spacecraft to the Sun, the Earth and the Moon, 

respectively. mS denotes the mass of the Sun and aS denotes the distance between the Sun position and the Earth-

Moon center of mass. ωS is the solar angular velocity in the rotating (synodic) frame and θ0 is the initial phase angle 

of the Sun measured from the positive x-axis of the Earth-Moon rotating frame. The values of these parameters are 

included in Table 1 in the normalized units. Note that, at the initial time t=0, the Sun is placed on the x-axis at (as, 

0), corresponding to a lunar eclipse. 

Table 1 Normalized Parameters of the Sun-Earth-Moon system 

μ mS ωS aS θ0 
0.012150582 328900.54999 0.925195985 388.811143023 0 

 

 

Fig. 1 BCP in the Earth-Moon rotating frame: the red, blue and yellow balls indicate the Moon, the Earth and the Sun, respectively.  
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2.2 Computation of Invariant Tori in BCP 

In the CR3BP, the collinear libration points are unstable (of the form center × saddle) and, for the mass 

parameter of the Earth-Moon system, the triangular points are linearly stable. It is well-known that there exists 

Lyapunov families of periodic orbits emerging from the libration points in the center direction. 

In the BCP, these libration points become periodic orbits with the same period as the perturbation, in this case, 

the period of the Sun TS=2π ωS⁄ . More precisely, each of the collinear libration points is replaced by one unstable 

periodic orbit (of center × saddle type), and each of the triangular libration points is replaced by three periodic orbits, 

two stable and one unstable (center × saddle). Of these three periodic orbits, the unstable one is the closest to the 

triangular libration point [27]. 

Then, under generic non-resonance and non-degeneracy hypotheses, the effect of a periodic time-dependent 

perturbation on a periodic orbit family of an autonomous Hamiltonian is to produce a Cantorian family of quasi-

periodic motions. Each of these quasi-periodic motions has two frequencies: the frequency of an unperturbed 

periodic orbit and the frequency of the periodic forcing [28]. In this situation, the Lyapunov families of periodic 

orbits of L3 of the CR3BP become families of quasi-periodic motions. These quasi-periodic orbits are of saddle type, 

so each of them has stable and unstable invariant manifolds. Some of these stable manifolds intersect with the 

parking orbits around the Earth and some of the unstable manifolds go through the neighbourhood of L4 providing 

a skeleton for the transfer. 

The details about the computation of the family of Lyapunov invariant tori of L3, their stability, invariant 

manifolds  and  discussions about the transport phenomena governed by L3 in the BCP of the Earth-Moon-Sun 

system can be found in Ref. [35] and references therein. Actually, the initial conditions for the present work 

correspond to some results of Ref. [35]. For this reason, only a schematic version of the procedure for computation 

of tori and their manifolds is shown. The same process has been used to compute invariant tori around L4, one of 

these tori is the final target orbit of the transfer. 

For the computation of the two-dimensional torus, a temporal Poincaré map  PTs corresponding to the period 

of the Sun TS, is employed to obtain an autonomous four-dimensional discrete dynamical system. Each quasi-

periodic motion becomes an invariant curve of the map PTs. The numerical methods used to compute these invariant 

curves and their stability are described in Ref. [38, 39]. Let us summarise them. Each invariant curve is represented 

in parametric from, φ(θ), 0 ≤θ≤2π, and must satisfy an invariance equation, 

φ(θ+ω)=PTs(φ(θ))         (4) 

where ω is the frequency of the invariant curve. For solving this equation, the invariant curve is expressed as a 

truncated Fourier series, 

φ(θ)=a0+∑akcos(kθ)+bksin(kθ) (k=1, 2, …, N)    (5) 

where N is the number of Fourier modes and a0, ak, and bk are the Fourier coefficients. In order to find the specific 

set of Fourier coefficients and frequency for which the invariance equation holds, the invariant curve is discretized 

in (2N+1) equally spaced points by evaluating Eq. (4) for angles θi=
2πi
2N+1

, where i=0, 1, …, 2N to obtain a non-linear 

set of equations for a0, ak, bk, and ω, which are solved by means of a Newton method. The family is obtained by 

applying a standard continuation method using the arc parameter on the family as the continuation parameter. 



The next step is to analyze the stability of each invariant curve by solving the following eigenvalue problem 

numerically 

A(θ)ψ(θ)=λψ(θ+ω)        (6) 

where A(θ)=DPTs(φ(θ)) is the Jacobian of the Poincaré map on the curve φ(θ), and λ is the eigenvalue and ψ(θ) is 

the eigenfunction. The eigenfunction corresponding to a real hyperbolic eigenvalue gives the linear approximation 

to the associated invariant manifold [39]. This linear approximation is used to numerically produce the manifolds. 

The family of quasi-periodic orbits of L3 is computed up to cover an 80% of the distance between L3 and the Earth. 

They give rise to rich transport phenomena as discussed in Ref. [35]. This reference shows that the dynamical and 

geometrical aspects of the QPLOs of L3 does not vary much along the family. Therefore, there is no big difference 

in the transport possibilities given by the invariant manifolds of different tori. Consequently, one medium-scale 

torus for the Lyapunov family of quasi-periodic orbits of L3 is selected, in order to analyse all the possibilities that 

just one torus offers to construct the target transfers. An optimization of the transfers is a subject of further work. 

To generate the invariant manifolds, a small displacement from the invariant curve along the stable and 

unstable directions is employed, from which the manifolds are produced by direct numerical integration either 

backward or forward in time. It is important to note that, near the invariant curve, by adjusting the magnitude of the 

displacement, the (x, y) projection of the stable and unstable manifolds overlap, which implies that there are (x, y) 

coordinates belonging to both manifolds (but with different velocities). These points allow for an easy transfer from 

the stable manifold to the unstable one. In the computations, 1000 points are taken along the selected invariant curve 

on the Poincaré section (that is, for t=0), as presented in Fig. 2. As shown in Fig. 2, the term invariant curve indicates 

the temporal section at t=0 of the selected medium-scale quasi-periodic Lyapunov orbit of L3. The first two columns 

of the supplementary file list the x and y coordinates of these positions. The supplementary file is attached to this 

paper on the journal’s webpage. They are arranged and denoted by #1-#1000 as shown in Fig. 2 and this notation 

will be used later. 

Displace each of the 1000 points of the invariant curve along the stable and unstable directions and then 

propagate to compute a point on which the (x, y) coordinates belong to both the stable and unstable manifolds. To 

achieve this condition, the magnitude of the displacement has to be adjusted for each point and the final magnitude 

of the displacement is in the range of [1.518×10-7, 1.764×10-4]. Note that this process does not generate the full 

manifolds. To produce the complete manifolds, it is necessary to also consider a fundamental interval in the 

displacement direction to cover a fundamental cylinder of the manifold [35]. Although only a part of the manifolds 

is utilized, it is enough to obtain simple transfers from the stable to the unstable manifolds of the QPLO to produce 

trajectories going from the parking orbit around the Earth to the L4 vicinity. 



 

Fig. 2 Temporal section at t=0 of the selected medium-scale quasi-periodic Lyapunov orbit of L3, projected in the (x, y) plane: 

the red star indicates the Earth. 

2.3 Multiple Shooting Algorithm 

To transfer the spacecraft from the stable to the unstable manifold of the QPLO a suitable maneuver is necessary 

to move away from a stable manifold trajectory, to pass at some distance of the QPLO and insert to another unstable 

manifold trajectory. Note that, to reduce the total TOF, it is important not to pass too close to the QPLO. 

To this end and to obtain a smooth trajectory, a multiple shooting algorithm (see e.g., [40, 41]) is employed to 

fill the gap between the two patching segments, i.e., the stable manifold trajectory that the spacecraft departure and 

the corresponding unstable manifold trajectory that it inserts in this investigation. In the multiple shooting algorithm, 

a time interval [0, tM] is divided into (M-1) subintervals [ti, ti+1], and Δt=ti+1-ti, i=1, 2, …, M-1. A state vector at a 

given time ti can be given as 

 Qi=(xi, yi, ẋi, ẏi)
T, i=1,2,…, M                             (7) 

The idea of the multiple shooting method is to integrate M-1 trajectories, one for each time subinterval, and to check 

if the final values of each trajectory coincide with the initial condition of the next, as shown in Fig. 3. 

In this section, define χ(Qi) as the mapping state vector of Qi after a propagation time Δt. Then (M-1) continuity 

conditions must be satisfied as follows  
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where F denotes the deviation between χ(Qi) and Qi+1. Hence, a system of 4(M-1) equations is built up with 4M 

variables given the planar BCP. In this investigation, the position coordinates of both the initial and final points are 

fixed to guarantee the successful matching between two trajectories but the velocity coordinates are regarded as 

variables. The constraint on the position coordinate of the first and last points can be expressed as 

5
Q1=[xinitial, yinitial, *, *]

QM= 6xfinal, yfinal, *, *7
         (9) 
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where (xinitial, yinitial) and (xfinal, yfinal) denote the position coordinates of the fixed initial and final points on the two 

trajectories to be patched. The velocity coordinates are indicated by * which are not fixed. Thus, 4(M-1) equations 

with 4(M-1) variables are solved in each iteration of the algorithm. Then a unique solution to Eq. (8) is obtained 

through an iterative numerical algorithm based on the classical Newton’s method. 

 

Fig. 3 A schematic plot of the multiple shooting method. 

3.  Transfer via Stable/Unstable Manifolds of L3 Lyapunov Orbits  

3.1 Unstable Manifolds to L4 Vicinity 

As aforementioned, the BCP model exhibits three periodic orbits (with the period of the Sun) around L4. The 

closest one to L4 is denoted as OP1 in Ref. [29, 38], and its linear stability is of saddle × center type. The instability 

of the saddle is very mild. The quasi-periodic orbits family corresponding to the center direction up to some distance 

from OP1 is produced, as illustrated in Fig 4. The inner part in the (x, y) plane is filled by invariant curves  (except 

by a set of very small gaps corresponding to resonances, too small to be relevant [28]). The spacecraft is finally 

inserted to one of these invariant curves, i.e., quasi-periodic orbits, that intersects with an unstable manifold 

trajectory of the QPLO of L3 at their common epoch, after performing an injection maneuver. 

A necessary condition for a successful insertion is that the end of such transfer trajectories locates on or inside 

these curves. The union of these curves indicates the largest boundary containing all possible insertion points. The 

target invariant curve, i.e., the quasi-periodic orbit around L4 is computed at epoch t that satisfies mod(t,TS)=t0, 

where TS=2π ωS⁄  denotes the synodic period of the solar gravity in the Earth-Moon rotating frame and t0 indicates 

a specific epoch. Ten specific epochs are taken, i.e., t0=0, 0.1TS, 0.2TS…, 0.9TS, respectively, corresponding to 

t=KTS, (0.1+K)TS, (0.2+K)TS…, (0.9+K)TS, where K indicates arbitrary non-negative integer. Fig. 4 illustrates the 

(x, y) projection of this outermost invariant curve around L4 at these ten epochs, i.e., t0=0, 0.1TS, 0.2TS…, 0.9TS, 

respectively. The green “cloud”-shaped line in Fig. 5 indicates the union of the (x, y) projections of the outermost 

invariant curve at t0=0, 0.1TS, 0.2TS…, 0.9TS. The performance of the unstable manifolds of the selected QPLO of 

L3 to the vicinity of L4 is presented on a special Poincaré section 8Σβ: arctan(y/(x-μ))=β9, as shown in Fig. 5. A 

sequence of this Poincaré sections is used varying the value of β equally distributed between the lower and upper 

boundary, i.e., 1.6937 rad, 1.7810 rad, 1.8683 rad, 1.9556 rad, 2.0429 rad, 2.1302 rad, 2.2175 rad, 2.3048 rad, 

2.3921 rad, respectively, cutting transversally the green “cloud” as shown in Fig. 5. The green “cloud”-shaped line 

intersects with Σβ twice for each β and rmin and rmax indicates distance from the Earth to the closer and farther 

intersection points. As declared in Section 2.2, all the unstable/stable manifolds generated from the selected QPLO 
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around L3 are indexed from 1 to 1000 and referred by their index1. To detect how these unstable manifold trajectories 

approach to the L4 vicinity, their intersections with Σβ are obtained and shown in Fig. 6, where r indicates the 

distance from the intersection points between the unstable manifold trajectories to the Earth. The TOF of the 

unstable manifold trajectories from the L3 vicinity to the L4 vicinity is denoted as TOFunstable and the TOF of the 

stable manifold trajectories from the Earth vicinity to the L3 vicinity is denoted as TOFstable. 

The plot of the unstable manifolds of the QPLO around L3 with r∈[rmin, rmax] at a specific value of β suggests 

that they pass in position through the invariant curves of L4 and an insertion to a quasi-periodic orbit around L4 is 

feasible. It is important to notice that only the first passage of the manifolds near L4 is considered. Further passages 

may provide better transfers but with a longer TOF. Through the examination on r∈[rmin, rmax], some members of 

the unstable manifolds are not considered and the remaining ones are presented in Fig. 6. The horizontal axis 

indicates the index of the initial state of the unstable manifold trajectories from 1 to 1000 and vertical axis indicates 

the value of β of Σβ that intersects with the unstable manifold trajectory satisfying r∈[rmin, rmax]. The tint of colour 

in Fig. 6(a) and 6(b) indicates the value of r, and the corresponding TOF, respectively. Wherein a large blank area 

exists in the middle, suggesting that trajectories inside the unstable manifold starting at points #450-#610 lead to no 

connections to L4. Note that to unify the description, “the trajectories inside the stable (or unstable) manifold starting 

at points #X, e.g., #5” is mentioned as “#5 stable manifolds trajectory” or “stable manifolds trajectory of initial 

condition #5” in the following sections. A single trajectory on the unstable manifold can intersect several Poincaré 

sections Σβ for different phase angle β, e.g., trajectories #1-#76 go through the Poincaré sections Σβ for β=1.9556 

rad and 2.0429 rad. According to the data uploaded in the supplementary document and also the Fig. 2, #1-#76 and 

#900-#1000 unstable manifolds trajectories are generated from the bottom part of the quasi-periodic Lyapunov orbit 

with negative y coordinate. More intersections with Poincaré sections Σβ lead to more insertion chances. According 

to Fig. 6(b), the total range of TOF of segments from the L3 vicinity to the L4 vicinity is 55-69 days, which is an 

acceptable value so far. As shown in Fig. 6, the feasible unstable manifolds generate from the initial condition set 

U1={#1-#76, #82-#105, #148-#156, #168-#270, #292-#317, #336-#416, #437-#443, 

               #614-#683, #701-#749, #774-#796, #802-#807, #835-#841, #848-#872, #878-#1000}, 

in the selected quasi-periodic Lyapunov orbit of L3. 

By such preliminary examination, the unstable manifolds connecting the L3 vicinity to the L4 vicinity are 

selected geometrically. Later, the final time in the unstable manifold trajectory must be confirmed to match the 

insertion time into the quasi-periodic orbits around L4. The purpose of such two-step implementation on the unstable 

manifolds is to provide a regularized process to conduct this construction method and release the burden of manual 

work the results as much as possible. The outermost curve around L4 at each epoch is irregular and can not be 

mathematically expressed. Thus, whether the unstable manifolds trajectories pass through the inner part of the curve 

must be checked one by one by manual work if the geometric information of the unstable manifolds trajectories is 

mixed up with their time information. In other words, at least 1000×10 insertion points along 1000 unstable 

manifolds trajectories have to be checked whether they are inside or on the outermost invariant curve around L4 at 

ten epochs. However, through the preliminary examination on geometric information, those unstable manifolds that 

 
1 The coordinates of initial conditions of stable and unstable manifolds generated from #1-#1000 points in the selected quasi-periodic 

Lyapunov orbit at t=0 are listed in the 1th-6th and 7th-12th column in the supplementary document, respectively.  



never intersect with any quasi-periodic orbit around L4 are not considered. After another selection in next section 

on the perigee altitude of their corresponding stable manifold trajectories, the set of the feasible unstable manifold 

trajectories is further narrowed. Then it becomes easier to finally check the time information of the intersection 

points of the remaining unstable manifolds. 
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Fig. 4 The outermost computed curve of the corresponding center manifolds of L4 at different t0: 0(a), 0.1TS(b), 0.2TS(c), 

0.3TS(d), 0.4TS(e), 0.5TS(f), 0.6TS(g), 0.7TS(h), 0.8TS(i), and 0.9TS(j). 

 

Fig. 5 Poincaré section Σ1 (black) and an example unstable manifold trajectory of the selected quasi-periodic Lyapunov orbit 

around L3 (blue): the purple star indicates the intersection point; the red mark indicates the Earth.  
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Fig. 6 The value of r (a) and TOFunstable (b) of the feasible unstable manifolds. 

3.2 Stable Manifolds to Earth Parking Orbits 

The trajectories starting at (x, y) coordinates in U1 (presented in Section 3.1) with the corresponding velocities 

in order to be on the stable manifold are used to construct transfer segments connecting the L3 vicinity and the 

circular Earth parking orbits. Initially, the same location near the quasi-periodic Lyapunov orbit around L3 is used 

for arrival of the stable and departure of the unstable manifolds. This constraint is later removed as a multiple 

shooting algorithm is introduced. 

Instead of fixing the altitude of the parking orbit, a range of potential parking orbits are considered from the 

altitude of geostationary orbits (about 0.12 in dimensionless unit) to the altitude of low parking orbits (about 0.017 

in dimensionless unit).  Within the propagation time of 40 months backward in time, the stable manifolds without 

perigee distance in this range are regarded improper to construct the Earth transfer segments and abandoned. Then, 

a spacecraft is inserted from a circular Earth parking orbit to the selected stable manifold segment by means of an 

orbital maneuver implemented at the perigee of the stable manifold segment. The fuel consumption and the TOFstable 

is related to the altitude of the Earth parking orbits. 

As shown in Fig. 7, the initial condition set of feasible trajectories on the stable manifold is furtherly narrowed 

by the previous selection strategy based on U1. In particular, the feasible trajectories generate from the initial 

condition set 

U2={#11, #21, #37, #38, #47, #58, #65, #151, #178, #190, #316, #337, #349, #372, #373, #631, #633, #646, #649, 

#660, #662, #670, #710, #777, #784, #787, #793, #851, #853, #862, #865, #872, #878, #889, #895, #896, #900, 

#908-#917, #937, #938, #966, #970, #971, #975-#984, #993, #997}, 

in the stable manifold of the selected quasi-periodic Lyapunov orbit of L3. They all have maneuver chances at several 

perigees, e.g., #914 stable manifold segment approaches the Earth at 78 different perigees with their perigee distance 

ranging from 0.02 to 0.11 and fuel consumption varying from 2.85 km/s to 1.0 km/s. A trajectory can only have one 

perigee, which is its closest approach to the center body. In this investigation, the term “perigee” is extended to 

those points that has a local minimum distance with respect to the center body, along a multiple close trajectory. 

Fig. 7(a) shows that the fuel consumption for maneuver highly depends on the altitude of the parking orbit and 

(a) (b)

β β 



varies from 1.0 km/s to 2.85 km/s. Obviously, they follow the rule that the higher the altitude of the Earth parking 

orbit, the less the fuel consumption. 

The distribution of the parameter TOFstable is illustrated in Fig. 7(b) and it varies from 300 days to over 1000 

days. The TOFstable to approach L3 is dominant over the total transfer time. The distribution of TOFstable does not 

follow the similar rule as the fuel consumption. As shown in Fig. 7(b), perigees in the four black boxes lead to 

quicker transit (shorter than 550 days) from lower circular Earth parking orbits (with altitude less than 0.04) to the 

L3 vicinity by the related stable manifolds trajectories. Thus, the transfer segments from the Earth to the L3 vicinity 

are picked out by carefully combining the fuel consumption, the TOFstable and the perigee distance based on various 

engineering requirements. 

 

Fig. 7 The distribution of perigee distance (a) and TOFstable (b) of feasible stable manifolds generated from set U2. 

3.3 Insertion Point Selection 

In Section 3.1, a preliminary selection based on the geometrical necessary condition is completed to pick out  

feasible trajectories passing through the neighborhood of L4. In this step, the time necessary condition is examined 

for the survival unstable manifold trajectories. For this purpose, the Poincaré section {Σt:	mod(t,TS)=t0}  is 

implemented to slice the unstable manifold trajectories generated from the initial condition set U2 (presented in 

Section 3.2) at different t0=0, 0.1TS, …, 0.9TS. The projection of the unstable manifold trajectories chosen in 

Section 3.2 onto the (x, y) plane and the corresponding invariant curve at t0=0, 0.1TS, …, 0.9TS are presented in 

Figs. 8(a), 8(b), …, 8(j), respectively. The trajectories starting at U2 following unstable direction  arrive at the 

specific location marked as blue diamonds at a specific time. Thus, all of the blue diamonds inside or on the 

boundary of the invariant curve indicate feasible insertion points, where the spacecraft is inserted in a quasi-periodic 

orbit around L4 by means of an orbital maneuver. According to Fig. 8, the insertion chances are not equal at each 

moment t0 and more insertion opportunities arise during the half period from 0.1TS to 0.6TS. A careful check on the 

results shows that at the same t0, there can be several insertion points along a single unstable manifold trajectory. A 

single unstable manifold trajectory from U2 does not need to lay exactly on the invariant curve at all epochs t0=0, 

0.1TS, …, 0.9TS, but each unstable manifold trajectory from U2 must goes through the invariant at at least one epoch 

t. 

(b)(a)

TOFstable [days] 
 



Initial conditions from the set U2 generate both stable and unstable manifolds segments connecting the Earth 

and the L4 vicinity, respectively. Section 2.2 discussed the existence of couples of trajectories (one inside the stable 

manifolds, one inside the unstable manifolds) sharing a point with the same (x, y) coordinates. At these points, a 

velocity change generally smaller than 1.5×10-5 m/s m/s is requested to switch a spacecraft from the stable manifold 

to the unstable one. Fig. 9 presents four sample feasible transfer trajectories by the stable and unstable manifolds 

trajectories of initial condition #37, #646, #853, and #938. 

Furthermore, the fuel consumption at each insertion point is presented in Fig. 10. The minimum and maximum 

value at each epoch is listed in Table 2. As illustrated in Fig. 10, 213 insertion points are obtained in this 

investigation at 10 specific moments serving as insertion points to the neighborhood of L4. The general fuel 

consumption at them is smaller than 310 m/s. Compared with the results in Section 3.2, they are far smaller than 

the value at perigee points of the circular Earth parking orbits. To further reduce the total fuel consumption, an 

optimization algorithm is supposed to be applied targeting at the near-Earth segments. However, the optimal fuel 

consumption is not the goal of this investigation, so they are not discussed in this paper. 

So far, a new approach using stable and unstable manifolds of a QPLO around L3 to construct transfer segments 

connecting the Earth parking orbits and the L4 vicinity is validated. The stable and unstable manifolds used are 

generated from the same initial condition along the QPLO so that a switch from the stable manifold trajectory to the 

unstable one is smooth in the sense of time and position. In the next section, the stable and unstable manifolds from 

different initial condition are combined together by a multiple shooting method in order to control the loops around 

L3. 

Table 2 The minimum and maximum fuel consumption at the final insertion near L4 

Insertion epoch Minimum ∆v at insertion points Maximum ∆v at insertion points 

t0=0 102.48 m/s 296.42 m/s 

t0=0.1TS 153.31 m/s 301.72 m/s 

t0=0.2TS 129.75 m/s 190.74 m/s 

t0=0.3TS 94.82 m/s 188.57 m/s 

t0=0.4TS 77.91 m/s 288.51 m/s 

t0=0.5TS 132.34 m/s 271.77 m/s 

t0=0.6TS 117.86 m/s 271.10 m/s 

t0=0.7TS 144.82 m/s 200.47 m/s 

t0=0.8TS 118.27 m/s 140.54 m/s 

t0=0.9TS 132.54 m/s 223.29 m/s 
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Fig. 8 The projection of the unstable manifolds chosen in Section 3.1 onto (x, y) plane (blue diamonds) and the most outer curve 

of stable regions around L4 (green curves) at t0=0(a), 0.1TS(b), 0.2TS(c), 0.3TS(d), 0.4TS(e), 0.5TS(f), 0.6TS(g), 0.7TS(h), 0.8TS(i), 

and 0.9TS(j). 

 

 

Fig. 9 Four examples of feasible transfer trajectories using stable (black) and unstable (blue) manifolds trajectories of initial 

condition #37, #646, #853, and #938: red squares indicate the first perigee with perigee distance smaller than 0.10; green squares 

indicate the insertion points near L4. 
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Fig. 10 Fuel consumption at all insertion points near L4. 

4.  Multi-revolution Behavior around L3 

4.1 Combining Different Stable and Unstable Manifolds 

The escaping rate of trajectories along stable/unstable directions can be qualified by the stability index 

(calculated from the eigenvalues related to hyperbolic motion). In the CR3BP, the stability index related to 

hyperbolic motion of Lyapunov orbits of L1 and L2 have normally a magnitude of over 104, remarkably larger than 

the value of Lyapunov orbits of L3 [42]. This value does not alter very much even with solar gravity perturbation 

added. Instead, the solar gravity promotes the unfolding and divergence of stable/unstable manifolds of QPLOs in 

the sense that they go towards various targets such as the Earth, Moon and L4 [35]. However, note that trajectories 

passing near an invariant object (fixed point, periodic or quasi-periodic orbit, etc) stay close to it for a long time. A 

trajectory along the stable manifolds towards the QPLO conducts a long-term looping towards around L3, so that 

the total TOF highly depends on the time spent near L3. 

A quick way to reduce the time spent near the QPLO is to patch the arrival segment to another departure 

segment at some distance of the QPLO, to avoid spending a lot of time looping around the QPLO. In other words, 

the initial constraint on the same (x, y) location used for arrival of the stable and departure of the unstable manifolds 

is removed in this section. This patching technique is successfully used in the literature to construct 

homoclinic/heteroclinic connections [43] or low-energy transfers [44] via stable and unstable manifolds. In these 

works, the patching is implemented in an autonomous phase space. Here, the matching of stable and unstable 

segments is carried out in two dimensions plus the time. 

The basic goal is to build up a “shortcut” trajectory by managing the multi-revolution behaviour of the unstable 

and stable manifolds. For this purpose, a Poincaré section {Σ2:	y=0}  is used to record intersection points of 

trajectories inside stable and unstable manifolds from the initial condition set U2. To increase the patching 

opportunity, the sign of ẋ for the intersection points in this step is not specified. Fig. 11 illustrates their projection 

onto (x, t) plane, where the intersection points of stable and unstable manifolds generated from the same initial 

condition are plotted by the same color. The star indicates the intersection points of the stable manifolds and Σ2 
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while the dot indicates those of the unstable manifolds. Most of the intersection points look like two smooth curves, 

with their x coordinates in the range of [0.75, 0.85] and [1.15, 1.25], corresponding to both positive and negative ẋ, 

respectively. Fig. 11(b) demonstrates that on each curve, there exist intersection points of stable manifolds close 

enough to some of the unstable manifolds. An examination on the data of Fig. 11(a) shows that the minimum 

distance between any two intersection points is 5.736×10-5, which is small enough to implement any patching 

method. The intersection points with distance smaller than 1×10-3 are searched for, as shown in Fig. 12. A diamond 

mark in Fig. 12 indicates one intersection pair that contains one intersection point of a stable manifold trajectory 

and another one of an unstable manifold trajectory. The stable and unstable manifolds are not generated from the 

same initial condition along the QPLO around L3. The horizontal axis indicates how many times both the stable and 

unstable manifolds segments cross Σ2 before the corresponding intersection point pair. Note that the total number 

of intersections with Σ2 at one intersection point pair is about twice of the number of the loops that the corresponding 

stable and unstable manifolds segments conduct. The larger the value is, the more loops the stable and unstable 

segment pairs achieve before the corresponding intersection point pair, and the more loops will be replaced through 

patching. 

One of the general ways to connect (in phase space) two intersection points in Fig. 11(a) is the shooting method. 

In this investigation, a multiple shooting algorithm is developed to patch the stable and unstable manifold segments 

indicated by the intersection pairs in Fig. 12. In the implementation of the multiple shooting algorithm, the position 

coordinates of both the initial and final points are fixed along the corresponding stable and unstable manifolds 

segments. The idea of the multiple shooting algorithm in this investigation is to fully remove the discontinuities in 

x coordinate (in the Σ2 section y=0) guaranteeing the same epoch t, in order to get a smooth transition from the 

stable to the unstable manifold segments.  

Taking #2 patching pair in Fig. 12 to describe how to locate the starting points for patching along the stable 

manifold segments and the final points along the unstable manifold segments. Suppose the associated stable 

manifold trajectory intersects with Σ2 at epoch t and the associated unstable one intersects with Σ2 later at (t+dt). 

First implement numerical integration backwards in time along this unstable manifold trajectory from its intersection 

point to obtain its state (or position) at  t. Thus, the positions that the stable and unstable manifold trajectory arrives 

at the same epoch t are obtained. Denote the position vectors on the stable and unstable manifold trajectory as Xstablet  

and Xunstablet , respectively. Then, choose the time length Δt for the patching arc. The value of Δt is experimentally 

set as π/10 in this investigation. It is not fixed but can be chosen flexibly according to the problem itself. Next, find 

the position that the stable manifold trajectory approaches at the epoch (t-Δt/2) and the position that the unstable 

manifold trajectory arrives at the epoch (t+Δt/2). Denote these position vectors on the stable and unstable manifold 

trajectory as Xstablet-Δt/2  and Xunstablet+Δt/2 , respectively. They indicate the starting and the final points of a patching arc and 

the segments from Xstablet-Δt/2  to Xstablet  and the one from Xunstablet  to Xunstablet+Δt/2  constitute the patching arc to be dealt with 

by the multiple shooting algorithm. Finally, the multiple shooting algorithm is implemented, as shown in Section 

2.3. Note that the velocities along x and y axis at the starting and final points of the patching arc are regarded as 

variables in the multiple shooting algorithm and adjusted by impulsive thrust. The tolerance to solve F=0 in Eq. (8) 

is set to 10-10, which is satisfied after 3-4 iterations of the Newton method. As a powerful tool, the multiple shooting 

method works well once the initial guess is close enough to the solution, e.g., their distance is smaller than 1×10-3 



in this investigation. 

 

Fig. 11 The projection of intersection points with Poincaré section Σ2 onto (x, t) plane (a) and a zoom-in region (b). 

 

Fig. 12 The intersection points with distance smaller than 1×10-3. 

4.2 Patching Trajectories by Multiple Shooting Method 

As explained in Section 3.2, the transfer segments from the Earth to the L3 vicinity are determined by the 

perigee points selected and thereby the corresponding TOF as well as fuel consumption. The spacecraft stays a long 

time looping around the Earth before escaping from the Earth vicinity. Thus, instead of presenting the whole stable 

manifolds, the first perigee with distance of 0.1-0.1093 (the altitude of geostationary satellites, about 35600 km) is 

chosen as the insertion point from the circular Earth parking orbit to the stable manifolds. 

The information displayed in Fig. 12 does not only contribute to the reduction of loops around L3 (and thereby 

to reduce the total TOF), but also provides us information on how to design multi-loop trajectories around L3 by 

patching the intersection points. Through a chosen number of loops, a specific looping time around L3 is achieved 

in order to satisfy the mission requirements. For example, for a quick transit via L3 QPLOs to L4 vicinity, a patched 

trajectory is chosen with as few loops around L3, as presented in Fig. 13(b). The trajectory shown in Fig. 14(b) has 

only 10 loops around L3 for over 100 days with 9 loops eliminated through patching, and a spacecraft can visit both 
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L3 and L4 in a single transfer with a low fuel consumption of 75 m/s. In this section, three pairs of patching points 

with different loops are chosen from Fig. 14 to show the refined results by the multiple shooting method, as indicated 

by the red diamonds in Fig. 12. 

The selected patching pairs are (25, 0.825×10-3), (17, 0.23×10-3) and (25, 0.410-3), numbered as #1, #2, and #3 

patching pair in Fig. 12, and their matching results are shown Figs. 13 and 14, respectively. The first patching pair 

belongs to the #337 stable manifolds trajectory and to the #349 unstable manifolds trajectory and the corresponding 

intersection point of the #349 unstable manifolds trajectory is indicated by the right red square in Fig. 13(a). The 

left red square indicates the perigee point from a circular Earth parking orbit to the stable manifolds. As shown in 

Fig. 13(a), along the #349 unstable manifolds trajectory, there are three insertion points to a quasi-periodic orbit 

around L4 at t0=0.7TS, 0.8TS and 0.9TS, indicated by the green squares. Two small segments are selected along #337 

stable and #349 unstable manifolds trajectory from the patching pair to implement the multiple shooting method. 

The refined trajectory is indicated by the red line in Fig. 13(c). Since the distance between two points on (x, t) plane 

of the first patching pair is smaller than 1×10-3 as illustrated in Fig. 12, the fuel consumption requested at the 

boundary points of this refined trajectory is very small, i.e., 33.0335 m/s and 36.4655 m/s, respectively. The TOF 

for the unstable manifold segment ending at the insertion point around L4 at t0=0.9TS is 9.4912 days and the TOF 

for the stable manifold segment and the patching segment in total is 166.49 days. The corresponding fuel 

consumption is 150.00 m/s and 1494.85 m/s, respectively. Comparing Fig. 13(a) and 13(b), it is seen that through 

matching the first pair by multiple shooting method, about 12 loops are suppressed and 225.54 days are saved 

correspondingly. The remaining loops around L3 take about 54.67 days. Thus, through the first patching pair, most 

of TOF around L3 is eliminated so that a quicker transfer is achieved based on #337 stable and #349 unstable 

manifold trajectories. 

The situation corresponding to the second patching pair is different as shown in Figs. 14(a) and 14(b), where 

more loops remain. The second patching pair belongs to #774 stable manifold trajectory and #178 unstable manifold 

trajectory and the intersection point of the #178 unstable manifold trajectory is indicated by the right red square in 

Fig. 14(a). The left red square indicates the perigee point from the circular Earth parking orbit to the stable manifolds. 

Along #178 unstable manifold trajectory, there are three insertion points to a quasi-periodic orbit around L4 at t0=0, 

0.1TS and 0.9TS, indicated by the green squares in Figs. 14(a) and 14(b). Small segments are selected along #774 

stable and #178 unstable manifold trajectories for the multiple shooting method and the refined trajectory is 

indicated by the red line in Fig. 14(c). The total fuel consumption requested for this refined trajectory is 75.00 m/s. 

The TOF for the unstable segment ending at the insertion point around L4 at t0=0.9TS is 27.61 days and the TOF for 

the stable manifold segment and the patching segment in total is 165.01 days. The corresponding fuel consumption 

is 132.54 m/s and 1013.15 m/s, respectively. As shown in Fig. 14(a) and 14(b), by implementing the multiple 

shooting method at the second patching pair, only 8 loops are eliminated, corresponding to 147.99 days. Though 

the total TOF is not beneficial for fast transfers to L4, the remaining loops around L3 are not completely useless. For 

example, during its path from the Earth to L4, a spacecraft can achieve 105.62 days flying around L3 along the 

remaining loops serving for observation and communication purposes. 

The trajectory design process at the third patching pair is similar to the first case, thus it is not discussed in 

detail. Details including the TOF and fuel consumption are listed in Table 3. The initial patching trajectory and the 



refined trajectory are illustrated in Figs. 14(c) and 14(d), respectively.  

So far, a construction method of Earth-Moon L4 transfers leveraging the invariant manifolds of QPLO of  L3 is 

presented systematically in details and the sample transfer trajectories can be reproduced step by step following the 

aforementioned description. 

Through the multiple shooting algorithm, most of the revolutions around L3 can be eliminated (at least for the 

#1 and #3 patching pairs) but the quickest one among the example transfers still need 175.98 days to reach the L4 

vicinity. The patching examples demonstrate that the time encircling around L3 is still dominant after patching and 

can not be further reduced in the frame of the current construction. Therefore, it enlightens the authors that if the 

multi-revolution behavior around L3 can be completely avoided, a faster transfer may be achieved. Meanwhile, the 

results shown in Fig. 14(c) suggests that some stable manifolds alone can connect both the Earth vicinity and the L4 

vicinity without encircling around L3 for many loops. In the next section, a new construction is explored and 

discussed.  

Table 3 The TOF and fuel consumption for the selected patching pairs 

# of the 
patching pair Total TOF  ∆v at 

perigee 

 ∆v of the 
heteroclinic 

connection at 
patching pair  

Insertion points 
near L4 

∆v at insertion 
points near L4 

Total ∆v 

1 (Fig. 13) 175.98 
days 

1494.85 
m/s 69.51 m/s 

t0=0.7TS 124.05 m/s 1688.41 m/s 
t0=0.8TS 118.92 m/s 1683.28 m/s 
t0=0.9TS 150.00 m/s 1714.36 m/s 

2 (Fig. 14(a) 
and 14(b)) 

192.62 
days 

1013.15 
m/s 75.00 m/s 

t0=0 102.48 m/s 1190.63 m/s 
t0=0.1TS 153.31 m/s 1241.46 m/s 
t0=0.9TS 132.54 m/s 1220.69 m/s 

3 (Fig. 14(c) 
and 14(d)) 

177.37 
days 

1271.80 
m/s 69.45 m/s 

t0=0.2TS 173.70 m/s 1514.95 m/s 
t0=0.3TS 111.86 m/s 1453.11 m/s 
t0=0.4TS 150.45 m/s 1491.70 m/s 

 

 

Fig. 13 The stable (black) and unstable (blue) manifolds segments corresponding to #1 patching pair in Fig. 12: the trajectories 

before (a) and after (b) multiple shooting method and a zoom-in version (c). 
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Fig. 14 The stable (black) and unstable (blue) manifolds segments corresponding to #2 and #3 patching pairs in Fig. 12: the 

trajectories before (a, c) and after (b, d) multiple shooting method. 

4.3 Using Stable Manifolds Only 

In the previous sections, the stable and unstable manifolds of the QPLO around L3 are used to build up the 

transfer segments connecting the Earth and the L4 vicinity, respectively. Through proper patching, the looping 

performances, including TOF, of the final trajectories can be adjusted by a combination of stable and unstable 

manifold segments from different initial conditions along the selected QPLO around L3. However, Fig. 14(c) shows 

that stable manifold trajectories go very close to L4 before they approach L3 so it is possible to use solely the stable 

manifolds of the selected QPLO to construct L4 transfer trajectories so that the looping around L3 does not exist by 

such transfer trajectories. This section is devoted to the second construction of L4 transfers by stable manifolds only. 

As shown in Section 3.1, the performance of the stable manifolds of the specific QPLO around L3 is examined 

by the sequence of Poincaré sections Σβ and then picked out by whether the geometric condition that r∈[rmin, rmax] 

is satisfied or not. Within the propagation time of 40 months backwards in time, the stable manifolds with perigee 

distance lower than 0.12 are chosen. The feasible stable manifolds connecting both the Earth and L4 vicinity generate 

from the initial condition set 

U3={#58, #65, #155, #316, #372, #660, #662, #670, #699, #760, #766, #816, #822, #851, #853, #862, #865, 

#872}, 

in the selected quasi-periodic Lyapunov orbit of L3. There are several perigees along each of the feasible stable 
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manifolds trajectories, e.g., #862 stable segment approaches the Earth at 19 different perigees with their perigee 

distance ranging from 0.02 to 0.11 and fuel consumption varying from 1.0 km/s to 1.96 km/s, as shown in Fig. 15(a). 

Compared with the results in Section 3.2, the maximum fuel consumption at perigee in this case is lowered from 

2.85 km/s to 1.96 km/s and less transfer opportunities are gained by the second construction using stable manifolds 

only. 

Fig. 15(b) illustrates the distribution of TOF of feasible stable manifold trajectories from the Earth parking 

orbits to the insertion points near L4. The TOF of all feasible stable manifolds varies from 60.86 days to over 757.78 

days. In this case, both the minimum and maximum value of TOF is greatly decreased compared to the results 

shown in Fig. 9. Quicker transfers are obtained by solely stable manifolds because the looping behaviour around L3 

does not appear in this case. Furthermore, as shown in Fig. 15(b), perigees in the two black boxes lead to transit 

with total TOF shorter than 350 days from the Earth parking orbits with an altitude less than 0.05 to L4 vicinity. 

These two black boxes correspond to #660 and #851 stable manifolds trajectories, with 4 and 16 perigees along 

them, respectively. Figs. 16(a) and 16(b) illustrate the L4 transfers by #660 and #851 stable manifolds trajectories, 

where the perigee points and insertion points near L4 are indicated by red and green squares, respectively. Along 

both trajectories, there are insertion points into the quasi-periodic orbits around L4 at different t0. The fuel 

consumption at these insertion points and the corresponding t0 is listed in Table 4. The fuel consumptions at the 

insertion points near L4 by the second construction is larger than the those by the first construction.  The reason is 

that the effect of the Sun breaks the conservation of energy of the CR3BP and the Sun’s cumulative effect during a 

longer transfer (e.g., the multi-revolution trajectory passing close to L3) results in larger change in the fuel cost at 

the final insertion.  

In summary, the second construction by solely stable manifolds owns an obvious advantage in the total TOF 

compared to the first construction method. However, the total number of perigee points along all feasible transfers 

is decreased from 970 in the case that both the stable and unstable manifolds (referred as the first case) are used, to 

328 in the case of stable manifolds only (referred as the second case), which means that about 2/3 of the launch 

opportunities are lost. Importantly, a comparison on the set U2 and U3 shows that there are 64 feasible transfers in 

the first case but only 18 in the second case, about 3/4 of the transfers lost. Furthermore, as shown in Section 4.2, 

by the first construction, the looping TOF around L3 can be adjusted and controlled by the multiple shooting method 

satisfying various mission requirements. Thus, another advantage of the first construction is that a designated 

looping around L3 is achieved during the transfer from the Earth vicinity to L4 vicinity, visiting and parking around 

two “high-cost” libration points far from the Earth in one transfer. The total fuel consumption is dominated by the 

cost switching from the circular Earth parking orbits to the stable manifold trajectories and determined by the 

altitude of the Earth parking orbit. A comparison of Fig. 15 and Fig. 7 shows that the minimum fuel consumption 

at perigee points in both cases is the same. Thus, it is hard to judge two cases on total fuel consumption.  

 

Table 4 The fuel consumption for selected stable manifolds trajectories 

# of the stable 
manifold ∆v at perigee Insertion points 

near L4 
∆v at insertion 

points Total ∆v 

#660 (Fig. 
16(a)) 

1776.1 m/s - 1818.3 
m/s t0=0.1TS 196.61 m/s 1972.71 m/s - 2014.91 

m/s 



t0=0.2TS 132.42 m/s 1908.52 m/s - 1950.72 
m/s 

#851 (Fig. 
16(b)) 

1709.0 m/s - 1810.1 
m/s t0=0.1TS 195.24 m/s 1904.24 m/s - 2005.34 

m/s 
 

 

Fig. 15 The distribution of perigee distance (a) and TOF (b) of feasible stable manifolds generated from set U3. 

 

Fig. 16 Feasible transfer trajectories by solely stable manifolds #660(a) and #851(b): red squares indicate the perigees selected 

from Fig. 15(b); green squares indicate the insertion points to the neighborhood of L4. 

Conclusions 
This paper is devoted to a new approach of transfers to the Earth-Moon triangular libration points in a Sun-

Earth-Moon model via the stable and unstable manifolds of a quasi-periodic Lyapunov orbit (QPLO) around Earth-

Moon L3. The dynamics related to L3 is used to achieve triangular libration point transfers for the first time.  

Tentatively, the transfer segments from a circular Earth parking orbit to the L3 vicinity and from the L3 vicinity 

to quasi-periodic orbits around Earth-Moon L4 are built up by stable and unstable manifolds of a selected QPLO of 

L3, respectively. For that purpose, a three-level selection scheme is implemented. In the first level, with the 
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assistance of a sequence of Poincaré sections, unstable manifold trajectories passing through the quasi-periodic 

orbits around L4 are selected geometrically, classified in a set called U1. It is shown that among 1000 initial 

conditions along the chosen QPLO around L3, 639 of them generate geometrical feasible unstable manifold 

trajectories and 177 with multiple intersection points. The range of the time of flight (TOF) from the L3 vicinity to 

the L4 vicinity is 55-69 days. These unstable manifold trajectories provide a sufficiently large set of feasible transfers 

connecting the L3 vicinity to the L4 vicinity for further selection in the third level. 

In the second level, each trajectory in U1 that approaches L4 is associated to another stable manifold trajectory, 

so that they share the same (x, y) coordinates at a specific time. Then, the stable manifold trajectories are propagated 

to check their perigee distance within the maximum propagation time of 40 months. The initial condition set of 

feasible stable manifold trajectories is further narrowed to a set called U2. Many of them own multiple perigees 

around the Earth, corresponding to multiple launch opportunities from the circular Earth parking orbits. Especially, 

one of them have 78 different perigees ranging from 0.02 to 0.11 in dimensional distance, covering the altitude of 

a 167 km low-parking orbit to a geostationary orbit. Their TOF ranges from 300 to 1000 days. To balance the TOF 

and altitude of the Earth parking orbits, the stable manifold trajectories connecting a circular Earth parking orbit of 

an altitude smaller than 0.04 and arriving at L4 vicinity within 550 days are picked out. The total fuel consumption 

is dominant by the cost at the insertion from the stable manifolds to the Earth parking orbits, and thereby highly 

depends on the altitude of the target Earth parking orbits. 

The third (and final) level is carried out to confirm that the corresponding unstable manifold trajectories in U2 

insert into a quasi-periodic orbit around L4 at specific epoch t0=0, 0.1TS, …, 0.9TS. All members are confirmed to 

pass through the quasi-periodic orbits around L4 at these moments but have different number of feasible insertion 

points. In the range from 0.1TS to 0.6TS, there are more insertion points along all feasible unstable manifold 

trajectories. A quick calculation shows that the fuel consumption at all insertion points is less than 300 m/s, much 

smaller than the value at perigee points on the circular Earth parking orbits. 

To control the total time of flight (TOF), the revolutions around L3 are eliminated by patching the stable and 

unstable manifold segments generated from different points in the QPLO using the multiple shooting method. The 

range of the fuel consumption switching from the stable manifold segments to the unstable ones at the patching 

points is about 60-80 m/s. Thus, the fuel cost to fill the gap in this step can be regarded as a small correction 

compared to the dominant consumption at perigee points. Although one specific combination demonstrates that 

almost 12 loops around L3 can be eliminated, saving 225.54 days, the quickest one among the example transfers 

still need 175.98 days to reach the L4 vicinity.  

In order to further reduce the TOF, the second construction using solely stable manifolds to transfer to the L4 

vicinity is explored through a similar selection scheme developed for the first construction. A large decrement in 

the total TOF is obtained and the lowest TOF is 60.86 days. However, the results also demonstrate that the second 

construction leads to much less transfer opportunities in the sense of number of transfer trajectories and launch 

opportunities from the Earth parking orbits. Two constructions show no advantage in total fuel consumption. 
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