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Abstract

Solar sails change the natural dynamics of systems: The typical trajectories are displaced and changed because of
the effect of Solar Radiation Pressure (SRP). Moreover, if the effectivity of the sail is large enough, the instability of
certain orbits can be diminished and even removed. In this paper we modify two models for the motion of a probe
in the Earth-Moon system that include the effect of Sun’s gravity to take also into account the effect of SRP. These
models, the Bicircular Problem (BCP) and the Quasi-Bicircular Problem (QBCP), are periodic perturbations of the
Earth-Moon Restricted Three Body Problem (RTBP). The models are modified to consider the effect of the SRP upon
a Solar Sail. We provide examples of periodic orbits that are stabilized (or made less unstable) due to the effect of
SRP.
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Nomenclature

µ Moon’s mass

mS Sun’s mass

aS Sun’s semi-major axis

ωS Sun’s frequency

TS Sun’s period

αi periodic functions defining QBCP

β effectivity of the sail

δ vertical pitch of the sail

α horizontal pitch of the sail

1. Introduction

The motion of a test particle in the proximity of Earth
and Moon is a hot topic in astrodynamics. The list of
potential applications (see, for instance, [1, 2, 3]) that
could be benefited from a deep understanding of the nat-
ural dynamics near Earth and Moon is long and it is in-
creasing day by day. Let us mention, for instance, the
possibility of setting of an extraterrestrial hub, the ex-
ploration in-situ of natural resources, deep space explo-
ration by means of telescopes, new solutions for the del-

icate issue of space debris, end-of-life strategies adapted
to the natural dynamics and, probably the most recent
examples, the study of mini-moons, small objects cap-
tured (temporarily) which orbit around Earth.

A correct understanding of the natural dynamics of
the Earth-Moon system is a key ingredient for prelim-
inary steps of any kind of mission. If a certain space-
craft is endowed with a Solar Sail, the effect of SRP can
change the natural dynamics substantially.

The simplest model that describes the motion of a
small particle in the Earth-Moon system is the Re-
stricted Three Body Problem (RTBP). The very specific
properties of the Earth-Moon system, such as the eccen-
tricity of the motion of the primaries or the uniformly
large effect of Sun’s gravity, are certainly not well cap-
tured by the Earth-Moon RTBP. It is natural, therefore,
to look for a more sophisticated model. Sun’s gravi-
tational acceleration upon the test particle is the most
relevant force ignored by the RTBP in a large vicinity
of Earth and Moon. In this situation, the gravity of Sun
acts as a periodic perturbation of the RTBP.

As a result of this perturbation, the Lagrangian points
are no longer equilibria but they are replaced by periodic
orbits with the same period as Sun. In general, those
periodic orbit, as invariant structures, are much more
unstable than their counterparts in the RTBP. Moreover,
the effect of Sun is uniformly large near the triangular



points and suffices to produce bifurcations the invariant
structures. In particular, the periodic orbit that replaces
L4 (and L5) is unstable. With all these considerations,
one can say that Sun acts as an unstabilizing agent in
the Earth-Moon system.

As Sun is considered to be a punctual mass, the SRP
effect is an inverse squared law that acts in the oppo-
site direction of Sun’s gravity. Therefore, when a sail
is perpendicular to Sun, the effect of SRP diminishes
the direct effect of Sun’s gravity of the Sail. Of course,
the indirect effects (such as the Coriolis effect or the
non-constant distance between Earth and Moon) persist.
Anyhow, SRP is able to stabilize (or made less unstable)
some orbits.

In this work, we consider two models that introduce
Sun’s gravity in different ways. The first model, the
so-called Bicircular Problem (BCP) [4, 5, 6], considers
only the direct effect of Sun’s gravity on the test par-
ticle and not on Earth and Moon. For that reason, the
three primaries, Earth, Moon and Sun, move following
trajectories that do not verify Newton’s laws. In particu-
lar, Earth and Moon move along a circular orbit around
their centre of masses while the Earth-Moon barycen-
tre, together with Sun, move along another (coplanar)
circular orbit around the centre of masses of the whole
system. The second model, the Quasi-Bicircular Prob-
lem (QBCP), is a coherent version of the BCP. Indeed,
in this model, the motion prescribed to the primaries is a
numerical solution of the Earth-Moon-Sun Three Body
Problem which is close to bicircular, see [7, 8, 9, 10].

The acceleration of SRP upon the sail depends on
three parameters, the effectivity of the sail (which cap-
tures, essentially, its area-to-mass ratio) and the hori-
zontal and vertical pitch angles. Because the period of
SRP term is the same as Sun’s gravitational potential,
the augmented models are, as in the case of BCP and
QBCP, periodic perturbations of the RTBP. Therefore,
the libration points are replaced by periodic orbits, what
we call dynamical equivalents.

Mathematically, to put a sail in a spacecraft means to
modify a classical restricted model by including the ef-
fect of SRP, see [11, 12, 13, 14, 15, 16, 17] for works
concerning the Earth-Moon system and [18, 19] for the
Sun-Earth. SRP modifies the natural dynamics of the
model, the invariant structures change their shape, their
linear normal behaviour and move around the phase
space. Playing with the parameters of the sail, its ef-
fectivity and orientation, one can find out different in-
variant objects with different linear behaviour that can
be used for, otherwise inconceivable, mission concepts.

In this paper we focus on some examples of peri-
odic orbits that are stabilized (or made less unstable)

due to the effect of SRP. In Section 2 we explain how
the augmented versions of the BCP and the QBCP are
derived. Section 3 contains a review of some mathemat-
ical contents that will be used widely during the rest of
the paper. Those are very well known results and def-
initions for the mathematical community, the section is
just added for selfcontainess of the paper. Section 4 is
devoted to the study of some resonant Halo orbits near
L1 and L2. The orbits appearing in this section have
been selected in order to illustrate the phenomenon of
stabilization. A deeper analysis on resonant orbits near
the Lagrangian points L1 and L2 can be found in [20]. In
Section 5 we study how the triangular points evolve with
respect to the parameters of the sail and we focus on the
stabilization of L3, leading to a stability region which is
very close to Earth. Finally Section 6 is devoted to con-
clusions and Section 7 describes some technical details
to facilitate the reproducibility of the study.

2. Dynamical models

In the present section, we discuss the models used
to describe the motion of a solar sail in the Earth-
Moon System. The recipe to construct such a model
is, first, to select a convenient motion for the primaries:
Earth, Moon and Sun and then consider the dynam-
ics of a small particle under the gravitational effect
of the primaries (in our context this means to select
either the BCP or the QBCP). Once this is accom-
plished, the selected model has to be completed includ-
ing the effect of SRP on the sail. We refer to the re-
sulting model to be the augmented version of the for-
mer. This nomenclature has already used in the litera-
ture, see [21]. There are several works in which the role
of Sun’s gravity in the Earth-Moon system is analyzed
[22, 23, 24, 25, 26, 27, 8, 28, 29, 30, 10, 31]. In [32] we
analyze two different models, the BCP and the QBCP.
According to our conclusions, the QBCP is the suitable
model to study the motion around the collinear points,
specially the translunar point. While the BCP is suitable
to undertake explorations near the triangular points. We
build our models for the motion of a solar sail accord-
ing to the conclusions of [32]. We use the Augmented
Quasi-Bicircular Problem (AQBCP ) to study the dy-
namics near the Lagrangian points L1 and L2. The Aug-
mented Bicircular Problem (ABCP) is used to study the
motion of the triangular points and L3. The reason we
study the collinear point L3 together with the triangu-
lar ones will be made clear during the exposition of the
results. These three (geometrically defined) points are
related in a very specific way when the sail is added.
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In the literature concerning to solar sails, most of the
works do not take under consideration Sun’s gravity.

The derivation of the mathematical formulation for
SRP acting upon the sail can be found in several works,
see for instance, [33, 34, 16, 20]. The direction of the
acceleration due to SRP, denoted by the vector ~ss, is
given by:

ssx = cos3 δ cos2 α(α̃7 cosα + α̃8 sinα),

ssy = cos3 δ cos2 α(α̃7 sinα + α̃8 cosα),

ssz = cos2 δ cos2 2α sin δ.

Here, α̃i = αi/(α2
7 + α2

8)1/2, ωS is Sun’s frequency
and δ, α ∈ (−π/2, π/2) are angles relative to the Sun
line. Both angles have physical sense when δ, α ∈
[−π/2, π/2]. If one of the two angles is set to π/2 or
−π/2, SRP vanishes. Once we have an expression for
SRP acceleration, we can add it to the equations of the
restricted model, to complete it. The system is given by
the periodic time dependent Hamiltonian function (with
the same period as Sun, TS = 2π/ωS ):

H =
1
2
α1(p2

x + p2
y + p2

z ) + α2(pxx + pyy + pzz)

+ α3(pxy − pyx) + α4x + α5y

− α6

(1 − µ
rpe

+
µ

rpm
+

mS

rps

)
−
βmS

a2
S

〈~ss, ~e〉.

(1)

Here, the vector ~e is given by ~e = (x, y, z)T . It is easy to
see that the Hamiltonian function (1) has the symmetries

(θ, x, y, z, ẋ, ẏ, ż, β, α, δ)
7→ (−θ, x, y,−z, ẋ, ẏ,−ż, β, α,−δ),

(2)

and

(θ, x, y, z, ẋ, ẏ, ż, β, α, δ)
7→ (−θ, x,−y, z, ẋ,−ẏ, ż, β,−α, δ),

(3)

where ẋ = px + y, ẏ = py − x, ż = pz.

Remark 2.1. The last discussion involves the periodic
functions αi’s presented in [7, 10] (see also [9, 35]).
These functions are used to define the Hamiltonian of
the QBCP. However, if we set,

α1 = α3 = α6 = 1, α2 = 0,

α4 =
mS

a2
S

cos θ, α5 = −
mS

a2
S

sin θ,

α7 = aS cos θ, α8 = −aS sin θ,

these values define the Hamiltonian of the BCP and,
setting also mS = 0, we obtain the RTBP. Therefore,
the following formulation of the acceleration due to the
SRP can be applied to the three models but using the
corresponding values of the functions αi’s. Notice that
the mass of Sun mS should not be taken zero when it
multiplies the solar sail acceleration in the case of the
ARTBP. We also point out that one of the angles defining
the orientation of the sail is named α. This is rather an
unfortunate notation that could be problematic only in
the present section. We prefer to keep this notation, as it
is used in previous works, and hope this will not confuse
the reader.

2.1. Values of the parameters used in this work

Parameter β:. The lightness number is the ratio be-
tween SRP and Sun’s gravitational acceleration. It is
used to quantify the effectivity of the sail. Real solar
sails in space have achieved the following values: β =

0.001 (IKAROS), β = 0.008 (Nanosail) and β = 0.011
(LightSail-1). When β = 1 the magnitude of SRP ac-
celeration (if the sail is perpendicular to the Sun) is the
same as Sun’s gravitational acceleration but in the op-
posite direction. If we name,

β =
σ∗

σ
, σ∗ =

LS

2πGmS c
≈ 1.53g/m2.

The quotient σ = m/A is the sail loading parameter and
parametrizes the performance of the Sail. We call char-

β σ (g/m2) a0 (mm/s2) Area (m2)
0.01 153.0 0.059935 ≈ 8 × 8
0.02 76.5 0.119869 ≈ 12 × 12
0.03 51.0 0.179804 ≈ 14 × 14
0.04 38.25 0.239739 ≈ 16 × 16
0.05 30.6 0.359608 ≈ 20 × 20

Table 1: Relation between: β the sail lightness number, σ the inverse
of the area-to-mass ratio of the satellite, a0 the characteristic acceler-
ation and A the sail area requirements for 10 kg of total mass [36].

acteristic acceleration to the acceleration experienced
by the sail-craft at 1 AU. That is, if we have a space-
craft mass of 10 kg we need a solar sail area of almost
14 × 14 m2 for a sail lightness number β = 0.03. In
Table 1 we can see, for different sail lightness numbers
β, the corresponding to inverse of the area-to-mass ra-
tio (σ), the characteristic acceleration (a0) and the re-
quired size of the solar sail for 10 kg of total space-
craft mass. This means that a sail lightness number
β = 0.03 corresponds to a characteristic acceleration of
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0.179804 mm/s2. Taking into account the current tech-
nology capabilities, we shall focus on moderate values
β ∈ [0, 0.1]. These are values for which SRP has a re-
markable impact on the natural dynamics of a spacecraft
in the Earth-Moon system.

If we compare SRP acceleration with the Sun’s grav-
ity acceleration (in the BCP, for simplicity), we notice
that the first is only a fraction (given by β) of the sec-
ond. Therefore, a priori, it could seem that the contri-
bution by Sun’s gravity is much more important to the
dynamics than the contribution by SRP. Nevertheless,
this is not the case. Let us consider the series expansion
of the Hamiltonian function of the BCP. The linear term
is the same as the Coriolis term due to the motion of
Earth-Moon barycentre but with opposite sign, see [32].
Therefore, the linear term and the Coriolis force cancel
out and the contribution due to Sun’s gravity starts at
order two:

1
aS

(
ρ

aS

)2
P2

(cos(θ)x − sin(θ)y
ρ

)
∼ O

(mS

a3
S

)
≈ 0.0056,

while the acceleration due to SRP is of order O(βmS

a2
S

) ≈
2.17β. Here, P2 is the second Legendre polynomial and
ρ = x2+y2+z2. Therefore, SRP dominates Sun’s gravity
in the Earth-Moon System.

Parameters α and δ:. These parameters define the ori-
entation of the sail in space. The angle α directs accel-
eration within the plane of motion of the primaries. The
angle δ directs out-of-plane acceleration if δ , 0. In
the case when δ = 0 there is no out-of-plane accelera-
tion. Therefore, the orbits that are confined in the plane
of the primaries stay confined when the sail is added.
To study these confined motion one can dispense with
the vertical direction and the system can be considered
a two degrees and a half Hamiltonian system. Indeed,
the discussion presented in Section 5 is done in terms of
a four dimensional stroboscopic map.

It is easy to see that, for a fixed value of β, the mag-
nitude of SRP acceleration is maximized at α = δ = 0,
while the maximum out-of-plane acceleration is given
by ±δmax = ± sin−1(1/

√
3). Recall that if one of the two

angles, α or δ, is set to π/2 or −π/2, SRP vanishes.

3. Mathematical preliminaries

In this section we review several mathematical no-
tions and facts that will be used later in this paper. This
is intended to make the reading easier. Let us con-
sider a differential equation that depends periodically
(with period T ) in time. Let us name f the mapping

obtained from the evaluation of the flow at the period.
This map is sometimes called mapping at period or stro-
boscopic map. These maps are the simplest kind of
Poincaré maps, as the section is temporal, fixed and can
be used to reduce the dimension of the whole phase-
space by one. In periodic systems, there are no equi-
librium points, the simplest invariant objects are the pe-
riodic orbits with the same period as the vector-field.
Moreover, if γ is a periodic orbit with period T ′, then
T ′ = mT for m ∈ N \ {0}. Let us name minimal periodic
orbits to those with period T . Minimal periodic orbits
are fixed points of the stroboscopic map P, orbits whose
period is a m-multiple of T are periodic points of period
m.

The notion of stroboscopic map can be extended for
vectorfields that depend on time in a quasi-periodic way.
In this case, the dynamics of the map has two compo-
nents: A part of the dynamics is an irrational rigid ro-
tation taking place on a torus (the basis), the other part
takes place on the phase space (the bundle).

If the vector-field is induced by a Hamiltonian func-
tion of m and a half degrees of freedom (2m = n), then
the stroboscopic map is a symplectic map, i.e. for each
z, the linearization of the map around z, D f (z), verifies
the following D f (z)t JD f (z) = J, where

J =

[
−Im 0

0 Im

]
and Im is the identity matrix of Rm. This condition
implies a number of interesting properties: Symplectic
mappings are volume preserving, i.e. det(D f (z)) = 1.
The converse is only true if m = 1. The spectrum of a
symplectic matrix is also tied by certain constrictions.
In first place, if λ belongs to the spectrum of a symplec-
tic matrix, then λ−1 also does. Moreover, each generic
pair (λ, λ−1) can be classified in the following stability
types:

1. If λ has modulus different than one and it is real,
the pair is said to be of hyperbolic (saddle) type.

2. If λ = eiρ, the pair is said to be of elliptic (centre)
type.

3. If λ is complex and its modulus is different from
one, it is part of a Krein quartet (λ, λ−1, λ̄, λ̄−1).
The quartet is said to be of complex saddle type.

If the matrix D f (z0) j0−In is not invertible, for some j0 ∈
N, we say that z0 is a bifurcating point. These points
are not generic but appear when the system depends on
parameters. The bifurcating points represent transitions
between different stability types. Let us think that the
eigenvalues are moving with respect some parameter. In
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absence of degeneracies in higher order terms we have
the following description:

1. Saddle-Centre bifurcation: A pair of elliptic
eigenvalues meet at λ = λ−1 = 1, then, they aban-
don the unit circle along the real line. One of the
eigenvalues starts being less than one and the other
larger, both positive. In this case, the pair goes
from elliptic type to hyperbolic. The reverse sit-
uation can happen as well, that is, two eigenvalues
abandoning the real line and entering the unit circle
through 1.

2. Period Doubling bifurcation: A pair of elliptic
eigenvalues meet at λ = λ−1 = −1, then, they
abandon the unit circle along the real line. One
of the eigenvalues starts being less than −1 and the
other larger, both negative. In this case, the pair
goes from elliptic type to hyperbolic and two fami-
lies of two-periodic elliptic points emerge from the
collision. The opposite situation in which two fam-
ilies of doubled period merge with a family of fixed
points and the last gains elliptic character is named
period halving bifurcation.

3. Krein Collision: Two pair of elliptic eigenvalues
meet at λ = λ−1 = λ̄ = λ̄−1 = eiα, then all the
eigenvalues get expelled from the unit circle. This
has more complicated consequences. In the first
place, the fixed point, after the bifurcation has 2D
complex unstable and stable manifold. Then, de-
pending on arithmetical properties of ρ it grows a
family of q-period points (if α =

p
q ∈ Q) or a fam-

ily of invariant curves. There are several aspects of
this bifurcation that depend on higher order terms.

Some aspects of the dynamics around the fixed points
can be inferred from its linear character. Under generic
conditions, from the fixed point and along each plane as-
sociated to an elliptic pair, it grows a Cantorian family
of invariant curves whose frequency tends to the (linear)
frequency ρ of the pair [37]. This result can be regarded
as the discrete version of the Lyapunov Centre Theorem
for elliptic equilibria for autonomous Hamiltonian sys-
tems. In fact, more can be said: The nonlinear coupling
of two different elliptic direction results in a Cantorian
family of 2D invariant tori. If the point is totally ellip-
tic, the nonlinear coupling of all the elliptic directions
produces a set of maximal dimension of KAM tori that
is what is expected around a totally elliptic fixed point
[38].

4. Motion near L1 and L2

The dynamical structure around the Lagrangian
points in the RTBP is well known [39, 40, 41]. For val-
ues of the mass parameter smaller than the Routh criti-
cal value, the collinear points (L1, L2 and L3) are of type
saddle×centre×centre and the equilateral points L4 and
L5 are of type centre×centre×centre.

The Lyapunov theorem (see [42]) states that, a family
of periodic orbits grows along each elliptic eigen-space.
These families can be parameterized by the frequency
of the orbits, that tends to the normal mode of the equi-
librium point as the family gets close to it. The orbits
within these families are known as Lyapunov orbits. For
each collinear point, there are two families of Lyapunov
orbits (the horizontal and the vertical family). The hor-
izontal families related to L1 and L3 can be continued
up to trajectories which collide with Earth. The hori-
zontal family corresponding to L2 can be followed up to
collisions with Moon. The vertical families finish in bi-
furcating planar orbits [43, 6]. The vertical and horizon-
tal families met at a pitchfork bifurcation that leads to a
new family of orbits, the Halo family [44, 45, 46, 6, 47].

On the other hand, the well known stable and unsta-
ble manifold Theorem states that, along each hyperbolic
direction, there exist sable (unstable) manifolds, trajec-
tories of the system that tend to the equilibrium point
when time tends to infinity (minus infinity).

The models we deal in this paper are periodic per-
turbations of the RTBP. This means that the Lagrangian
points are no longer equilibria but they are replaced by
periodic orbits with the same period as the perturbation
(TS = 2π/ωS ). In a similar way, the quasi-periodic
structures (including the periodic orbits) gain, generi-
cally, the frequency ωS . Consequently, most of the Lya-
punov and Halo orbits are replaced by two dimensional
invariant tori. The orbits that remain periodic under the
perturbation of Sun are the resonant ones i.e. orbits
whose period is a rational multiple of TS .

In this section we focus on some Halo orbits related
to the collinear points L1 and L2. See [7, 8, 32] for a
deep analysis of the orbits in the context of the QBCP.
See also [20] for a further exploration of the orbits pre-
sented in this paper and other resonant orbits related to
L1 and L2. The orbits appearing in this paper are se-
lected because their stabilization due to SRP is remark-
able. We use the AQBCP to do so, indeed, as we ex-
plained before, it is a suitable model to study the motion
near L1 and L2. Let us give some words first concerning
the QBCP: The periodic orbits that replace the collinear
points L1 and L2 are highly unstable. Indeed, the largest
eigenvalue of their corresponding monodromy matrices
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Figure 1: Trajectories of the Halo orbits 1C+ and 1N+ in the QBCP.

are of order 109 and 106 respectively. Most of the reso-
nant periodic orbits near these equilibria are also highly
unstable, see [7, 8].

Notice that, as the dynamical equivalents of L1 and
L2 are small orbits which are close to their correspond-
ing equilibrium point, we can estimate the size of the
largest eigenvalue of the monodromy matrix of each or-
bit from the eigenvalues related to the equilibria. In-
deed, if λ is the largest eigenvalue related to some equi-
librium point (L1 or L2), then the largest eigenvalue of
the monodromy matrix of the corresponding dynamical
equivalent behaves as exp(λTS ). Recall that TS is the
period of Sun and consequently the period of the dy-
namical equivalents.

4.1. Solar sail resonant Halo orbits near L1

From the Halo family related to L1, we select
two (1:3) resonant orbits: 1C+ (of linear character
saddle×centre×centre) and 1N+ (of linear character
saddle×saddle×centre), see Figure 1. The plus super-
index indicates that those belong to the northern family.
Of course, their symmetrical counterparts are denoted
by 1C− and 1N−.

To study how these orbits change with respect to the
parameters of the sail we perform the following com-
putation: fix α = 0 and some value of β, then, con-
tinue the Halo orbits but regarded as fixed points of the
stroboscopic map. In Figure 2 we observe the result
of this continuation for β = 0.01, notice that, for vi-
sualization purposes, we display the trajectories of the
flow (but the computation is done on the stroboscopic
map). The green curve corresponds to 1C+ and the
purple curve corresponds to 1N+. The blue dots corre-
spond to intermediate curves. The continuation, there-
fore, establishes an homotopy between 1C+ and 1N+.
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Figure 2: Continuation with respect to δ of 1C+ and 1N+. The param-
eter β is fixed at 0.01.

That is each value of δ ∈ [−π/2, δ1
tp] corresponds to a

trajectory in Figure 2. Here the continuation is started
at δ = −π/2 and 1C+ and ends also for δ = π/2 at
1N+. There is a turning point δ1

tp ≈ −0.98 where the
linear character changes from saddle×centre×centre to
saddle×saddle×centre. There are more bifurcations tak-
ing place in this continuation. In particular, there are
orbits which are totally elliptic and of type complex sad-
dle. That is, some of the blue curves pictured in dashed
lines are stable. We want to point out that the range of
values of δ for which the linear stability occurs is very
narrow and not much relevant for practical purposes.
However, the key phenomenon is that the largest eigen-
value decreases its size arbitrarily (until the orbits reach
total ellipticity).

In Figure 3 we measure how the maximal eigenvalue
of the orbits 1N+ and 1C+ (connected by continuation)
change with respect to δ. We have five curves repre-
sented in Figure 3, those correspond to continuations
(with respect to δ) for fixed values of β = 0.01, 0.02,
0.03, 0.04 and 0.05. The curve on the left, the one that
reaches the turning point for a largest value of |δ| ≈ 1.33,
corresponds to β = 0.05. The rest of the curves are or-
dered according to the value of β (in decreasing order).
The curve that has the turning point at δ1

tp corresponds
to β = 0.01 i.e. those are the maximal eigenvalues in
the trajectories displayed in Figure 2. In Figure 3, the
horizontal axis shows the value of δ and the vertical axis
the log 10 of the largest eigenvalue of the Monodromy
matrix corresponding to each orbit. We notice that 1N+

(for δ = −π/2, which corresponds to the QBCP) has
a maximal eigenvalue of order 200. This means that
an error in the orbit determination of 10−6 RTBP units
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(about 1km) only needs approximately 10−2 RTBP time
units (about 20 minutes) to get amplified to 1 RTBP unit
(about 380000km). With the correct orientation of the
sail, this propagation of error can be diminished as much
as desired. A similar description holds for 1C+, which
has smaller instability but of the same order.

4.2. Solar sail Halo resonant orbits near L2

From the Halo family related to L2, we select
a (1:2) resonant orbit: 2A+ (of linear character
saddle×saddle×centre), see Figure 4. Again the super-
index places the Halo orbit in the northern family and
the symmetrical counterpart will be denoted by 2A−.

We perform the same simulation to understand how
the Halo orbit 2A+ changes with respect to the parame-
ters of the sail, that is, we fix a value of β and continue
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Figure 4: Trajectories of the Halo orbit 2A+ in the QBCP.
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Figure 5: Continuation with respect to δ of 2A+ and 2A−. The param-
eter β is fixed at 0.01.

with respect to δ starting from δ = −π/2 and stopping at
δ = π/2.

There are two typical behaviours for this continua-
tion. If β is small enough, the continuation connects
2A+ with itself. There is a critical value of β∗ for which,
if β > β∗ the behaviour of the continuation is completely
different: If we start a continuation at 2A+ for δ = −π/2
and continue forward, the orbit increases its size and
height (with respect to the plane of motion of the pri-
maries) until δ = −δmax, the orientation with maximal
out-of-plane acceleration. After this point, the continu-
ation turns down, to the plane, crossing it at a dynami-
cal equivalent of a (1:2) resonant planar Lyapunov orbit.
After crossing the plane, the continuation connects with
the symmetrical counterpart 2A− at δ = δ/2. If the con-
tinuation is performed backwards (starting at δ = π/2
and decreasing the value of δ), the orbit 2A− connects
with the (1:2) resonant planar Lyapunov orbit of the
QBCP for δ = −π/2.

In Figure 5 we display the trajectories correspond-
ing to the continuation with respect to δ for β = 0.01.
The orbit 2A+ is depicted in green while its symmet-
ric counterpart, 2A− is colored in purple. The blue
points represent the intermediate trajectories in the con-
tinuation (i.e. orbits corresponding to orientations δ ∈
(−π/2, π/2)). The planar orbit in red corresponds to the
Lyapunov resonant orbit. This trajectory is of linear
type saddle×centre×centre. That is, there is a saddle-
centre bifurcation before the continuation reaches the
plane of motion of the primaries. Notice that, for δ =

±δmax the dynamical equivalents are larger versions of
2A+ and 2A− but much less unstable as we will explain.

In Figure 6 we show the change with respect to δ of
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the maximal eigenvalue of the monodromy matrix of the
orbits corresponding to β = 0.01,0.02, . . . , 0.1. Notice
that here we admit larger values of β in order to illus-
trate a remarkable decrease of the instability. Again,
the horizontal axis stands for the orientation δ and the
vertical axis is the log10 of the largest eigenvalue. We
observe that at 2A+, 2A− and 22, the dominant eigen-
value is close to a million. This means that an error in
the orbit determination of 10−6 RTBP units (about 1km)
only needs approximately 10−6 RTBP time units (about
a tenth of second) to get amplified to 1 RTBP unit (about
380000km)

Unlike the dynamical equivalents of the Halo orbits
near L1, here the trajectories are never stabilized. How-
ever it is remarkable that, selecting an orientation of the
sail corresponding to the maximal out-of-plane acceler-
ation (i.e. δ = ±δmax) one can decrease the size of the
maximal eigenvalue remarkably. In particular, it can be
reduced to the order of thousands for β = 0.1. Notice
that, this means that an error of 1km in the determina-
tion of the orbit would correspond to an error of hun-
dreds of km after a synodic month.

5. Motion near L3, L4 and L5

In this section we focus on the stable motion near
the dynamical equivalents of the triangular points and
L3 when SRP is considered. Near these locations, the
impact of SRP is enormously relevant as the lightness
number increases, the position of the dynamical equiva-
lents changes a lot. In this section the sail is taken to be
perpendicular to Sun (δ = 0 and α = 0). All the stud-
ied orbits lie in the plane of motion of the primaries and

we dispense with the vertical direction and discuss the
problem in the plane. The model we use is the ABCP.

It is well known that, in the BCP, the perturbation due
to Sun gravity is large enough to produce bifurcations.
In particular the triangular points are replaced by three
periodic orbits (PO1, PO2 and PO3) caused by a broken
pitchfork bifurcation). The orbit which is close to L4
is small and slightly unstable. The remaining two are
totally elliptic. The stable and unstable manifold of the
hyperbolic orbit wander around the families of invari-
ant tori growing from the elliptic directions of the stable
orbits in a figure eight shape [32].

In Figure 7 we display the curve of fixed points cor-
responding to the continuation, with respect to β, of the
dynamical equivalents of the triangular points (and L3)
in the BCP. The curve crosses β = 0 three times near
L4 (corresponding the three periodic orbits PO1, PO2,
PO3).

The numerical continuation uses PO3 as initial con-
dition. We observe that PO3 can be continued for low
positive values of β. Eventually the curve finds a turn-
ing point (changing from stable to unstable) and returns
back to PO1. After another turning point, the curve re-
gains stability and crosses again β = 0 at PO2. After
that, the curve keeps tracking fixed points with positive
values of β. Stress that fixed points with negative values
of β do not have physical meaning but they are helpful to
see that the three fixed points corresponding to the BCP
are connected by the curve. All this process happens
extremely fast in β.

Let β1 (∼ O(10−4)) be the value of β for which the
characteristic curve has the first turing point. For β > β1,
there is a single dynamical equivalent of L4, that is, there
is exactly one fixed point continuing from PO3. The
curve keeps going until it reaches the horizontal axis at
β2 (≈ 0.037). There, the characteristic curve undergoes
a pitchfork bifurcation, and the branch corresponding
to L4 joins with the branches corresponding to L3 and
L5. For β > β2 there exist a unique dynamical replace-
ment for L3, L4 and L5 which is totally elliptic right af-
ter the bifurcation but changes its linear behaviour as β
keeps increasing. At the same time, the trajectory (in the
flow) corresponding to this unique dynamical replace-
ment gets larger and, finally, it collides with Earth.

In Figure 7, the color of the curve represents the linear
behaviour of the periodic orbit, the color code is given
in the legend. We observe several changes of stability,
they are product of the bifurcations. For β ≈ 2.75×10−3,
the characteristic curve undergoes a period doubling bi-
furcation. The main branch switches from stable to un-
stable and it creates two families of stable 2-periodic
fixed points that eventually merge with the main branch
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in a period halving bifurcation. For β ≈ 2.1 × 10−2,
the characteristic curve undergoes a Hamiltonian-Hopf
bifurcation and the main branch changes to complex in-
stability. This is not a novelty as the same phenomenon
is illustrated in [48, 16].

The consequence of the pitchfork bifurcation merg-
ing L3, L4 and L5 is that the dynamical equivalent of
L3 is stabilized. This means that a periodic orbit pass-
ing quite close to Earth is totally elliptic. As we have
explained in Section 3, totally elliptic fixed points are
surrounded by invariant tori. Moreover, close to the
fixed point, these invariant tori are normally elliptic
[49]. Normally elliptic invariant tori are sticky, i.e. tra-
jectories close to them, need long times to move away.
Therefore, it makes sense to look for regions of effective
stability, regions in which the escape time is very large,
around elliptic fixed points.

In Figure 8 we display a region ([0.085, 0.115] ×
[−0.04, 0.04]) of initial conditions around the only pe-
riodic orbit that replaces L3, L4 and L5 for β = 0.04.
This orbit is totally elliptic and relatively close to Earth.
The plot displayed in Figure 8 can be obtained as fol-
lows. First, produce a two dimensional grid in the
plane (x, y) around the orbit (the velocities are fixed
to the ones of the initial condition of the orbit). Sec-
ond, take each initial condition of the grid and inte-
grate it for 8000TS units of time (this is the integra-
tion time used in other works [30, 48]). We control if
the trajectory escapes (this means to abandon the region
[−0.1, 0.2]× [−0.5, 0.5]) and if the trajectory gets closer
to Earth and Moon than their respective radii. Each ini-
tial condition is labeled according to its fate (1 if the
trajectory collides with Earth, 2 if the trajectory collides
with Moon, 3 if the trajectory escapes and 0 otherwise).

In Figure 8, the yellow points are initial conditions that
escape, the purple ones collide with Earth and the red
ones (located at the boundary between the purple and
yellow points) collide with Moon. Finally the black
points conform the region of effective stability, points
that wander near Earth for a long time. The size of the
stability region is about 5000km times 15000km. See
also [48] for more details on the effect of SRP on stabil-
ity regions near the triangular points and also for more
details on how to compute these orbits.

Figure 8: Initial conditions around the dynamical equivalent of L3, L4
and L5 corresponding to β = 0.04. Each initial condition has been in-
tegrated 8000TS units of time. Yellow points: Escape. Purple points:
Collide with Earth. Red points: Collide with Moon. Black points:
Stability region. Horizontal axis: x. Vertical axis y.

6. Conclusions

In this paper we have considered two models for the
motion of a solar sail in the Earth-Moon system. Both
consider the gravitational effects of Earth, Moon and
Sun, as well as the effect of SRP on the sail. The ABCP
is a suitable model to study the motion near the trian-
gular points and L3, while the AQBCP is considered to
study the motion near L1 and L2. Although the AQBCP
could be used as well to study the motion near the trian-
gular points, as the results are qualitatively similar, we
use the ABCP because some computations present in
this paper require long integrations and the ABCP has,
computationally speaking, a much cheaper vectorfield
to evaluate, see [32].

Using the AQBCP, we have shown that a couple of
resonant Halo orbits that are related to L1 can be stabi-
lized by means of a Sail. This is achieved with a not
so large value of the effectivity (β = 0.01) and a sail
pitched vertically. Also using the same model, we have
shown that a resonant Halo orbit related to the translunar
point can be made less unstable, decreasing the largest
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eigenvalue of its monodromy matrix a couple of or-
ders. To do this, the effectivity of the sail must be larger
(about β = 0.1). We have also seen that the smallest
value of the maximal eigenvalue takes place when the
orientation of the sail maximizes the out-of-plane ac-
celeration.

In the case of the triangular points and L3 the effect of
SRP in the sail is even more remarkable. SRP stabilizes
the dynamical equivalent of L4 for very small values of
β. It also changes the size and the shape of the periodic
orbit and produces several bifurcations. A remarkable
one takes place for a sail perpendicular to Sun, where
L3, L4 and L5 merge in a pitchfork bifurcation. As a
result, L3 is stabilized and a region of effective stability
close to Earth appears for β about 0.037.

7. Technical details

The integrations of this work have been carried out
using a Taylor method [50] with variable order and step-
size. The required local accuracy for the integrations
has been 10−16. Due to the highly unstable character
of some orbits, it has been mandatory to use a multi-
ple shooting approach to compute most of the periodic
orbits. A maximum of four sections has been required.
All the periodic orbits have been computed with accu-
racy higher than 10−12. The continuation method we use
is the pseudo arclenght method with a Newton scheme
as a corrector. The differential of the stroboscopic (nec-
essary to compute the orbits and study their stability) is
obtained by using Jet Transport [51, 52]. All the pro-
grams used to perform the computations of this work
have been written in C from the scratch. Files contain-
ing the values of the parameters used in this work can be
found at http://www.maia.ub.edu/∼marc/EMQBCP
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mission design near libration points. Vol. I, Fundamentals: the
case of collinear libration points, volume 2 of World Scientific
Monograph Series in Mathematics. World Scientific Publishing
Co. Inc., 2001. ISBN 981-02-4285-9.
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